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Abstract theory using low-level observability (cf. [31]). For cryp-
tographic communication the definition of a suitable indis-
The combination of first-order epistemic logic with for- tinguishability relation is somewhat delicate. The baseli
mal cryptography offers a potentially powerful framework is computational indistinguishability in the sense of mode
for security protocol verification. In this paper, crypt@gr cryptography (cf. [20]), i.e., the absence of a computation
phy is modelled using private constants and one-way com-ally feasible experiment to tell two ciphertexts apart. Ga t
putable operations, as in the Applied Pi-calculus. To give other hand, in order to serve as a basis for a useful logic, the
the concept of knowledge a computational justification, we relation should be amenable to formal treatment.

propose a generalized Kripke semantics that uses permuta- T thjs end, static equivalence [17] has recently emerged
tions on the underlying domain of cryptographic messagesas a natural starting point. Static equivalence collegtg-cr
to reflect agents’ limited resources. This interpretatiors tographic terms that are visible to an agent (or the envi-
the logic tightly to static equivalence, another important ronment) in a frame, roughly a sequencef terms. Two
concept of knowledge that has recently been examined in thérgmess ands’ are equivalent if they satisfy the same equal-
security protocol literature, and for which there are stgon ity tests. For instance, gncrypts(i), s(j)) = s(k) then
computational soundness results. We exhibit an aXiomati'encryp(s’(z'), s'(j)) = s'(k), wheres(i) is thei:th term in
zation which is sound and complete relative to the under- sequence. Static equivalence is parametrized on an under-
lying theory of terms, and to an omega-rule for quantifiers. lying equational theory of cryptographic terms over a signa
Besides standard axioms and rules, the axiomatization in-yre of “feasibly computable” operators. Depending on the
cludes novel axioms for the interaction between knov_vledgespeciﬁc choice of theory, strong links between static eajuiv
and cryptography. As protocol examples we use mixes, gjence and computational indistinguishability can sometim
Crowds-style protocol, and electronic payments. Further- pe established. Computational soundness, static equiva-
more, we provide embedding results for BAN and SVO.  |ence implying computational indistinguishability, has r
cently received particular attention (cf. [1]).

) In this paper, we use static equivalence as the basis for
1 Introduction building a program logic. Our first step is the observation
that static equivalence implicitly defines a correspondenc
Many goals of cryptographic communication concern between messages, with messages deduced by the same se-
knowledge. Authenticity, for instance, may mean that a re- quence of computations corresponding to each other: Mes-
ceiver knows the sender of a message, and anonymity maysageencrypts(i), s(j)) at frames corresponds to message
mean that the sender is unknown to an eavesdropper. Irencrypts’(i),s’(j)) at frames’, and so on. This corre-
these contexts, knowledge is used as a semantical rathespondence can be lifted to assignmevit®f messages to
than a cognitive concept: The intention is that local inter- variablesz, y, z, ... of a logic: V' at s corresponds td’’
actions (for instance, the local observations of the rexgiv = at s’ if V(z) = encrypts(i), s(j)) implies thatV'(z) =
force some global system property (for instance, that theencrypts’(i), s'(j)), and so on. Motivated by this observa-
message has a certain sender). tion, we instantiate the multi-agent system framework [16]
Knowledge, in this sense, is often tied to the concept of using frames as states and sub-frames as local states.We say
indistinguishability. This applies, for instance, in sgtu that propertyF' is known to agent at global states under
protocol analysis using some form of observational equiva- assignmenV, s,V = 04 F, if and only if ', V' |= F for
lence (cf. [17]), in multi-agent system semantics using lo- all global states’ and assignmenfg’ such that agentl’s
cal history identity (cf. [16, 27]), and in information flow local state ins is statically equivalent tod’s local state in



s, andV at A’s local state ins corresponds t&’ at A’s lo- F[M, /x| \NF[Msy/x]A...,whereM;, My, ... lists all ground
cal state ins’. This idea follows counterpart semantics [24] message terms. As explained in section 10, the complete-

by checkingF' at s’ under a corresponding assignméfit ness result significantly improves on our earlier resultsfor
rather than under the original assignmé&ntThis interpre- propositional epistemic logic [12].
tation has a number of interesting properties. The third result is epistemic characterizations of message

Firstly, our use of counterpart semantics provides a han-deduction and static equivalence. For the former, we obtain
dle on the difficult issue of mathematical omniscience in Adeduces <« 3Jy.04y = h(x), whereh is a one-way
epistemic logic. Existing multi-agent system semanti¢s (c hash operator (cf. [2] for a related use of the hash opetator)
[5, 21, 30, 32]) follow basic Kripke semantics [9], where The logical characterization of static equivalence, whsch
the assignmenit is kept constant as indistinguishable states rather immediate, gives added credence to our semantics,
are scanneds, V = O4F, ifand only if s,V |= F for all and allows the transfer of computational soundness results
indistinguishable stateg. Assuming mathematical equali- such as that of [1], to our epistemic logic. It follows, for
ties depend only on the assignméntand not on the global  instance, that if the same properties are known by agent

states, agents areryptographically omniscient.e., know in global states ands’ thenA’s local states irs ands’ are
all equalities: computationally indistinguishable.
t=t - Out=t Q) We illustrate the language in three example protocols,

using mixes, a Crowds style protocol [29], and electronic
payments. Furthermore, we illustrate the axiomatizatipn b
B _ embedding characteristic rules from authentication legic
D.Ax = decrypty, z) holds even Whgn agemt.ha.s not ob BAN [10] and SVO [32], including an infinitary weakening
tained the key:. Thus, the epistemic modality is vacuous o . =
c(i)f necessitation appropriate for BAN. The protocol specifi-

on cryp_to_graph|c statements. Various suggestions, base cations and the embedding results (as well as the character-
on explicit knowledge [16], have been made towards ad- .

dressing this issue (cf. [6, 22, 25, 28]). However, work ization ofmess_age dgdu_ction above) all rely on the absence
on explicit knowledge abandon Kripke-style semantics los of cryptographic OMMNISCIENCE.
many of the useful logical properties of knowledge, and pro- All proofs appear in [14].
vide a very syntactic account of knowledge extraction. . )

By contrast, we avoid cryptographic omniscience (1) 2 Messages and Static Equivalence
even though we stay within a Kripke-style semantics and ) )
preserve most logical properties of knowledge. This is L€t f range over a countable s&t of public, feasi-
shown by the second result, which is also the main result ofPly computable operators, each equipped with an arity.
the paper: A sound and complete axiomatization, based on-€t 4, B, ... range over a finite, non-empty set C ¥
axioms and rules from standard first-order logic and modal Of O-arity operators, representing public names of distinc
S5 logic. In addition, the axiomatization includes some @gents; Other O-arity operators ¥aalso represent public
novel axioms for the interaction between knowledge and vValues, “plain texts”. Let range over a countably infinite

cryptography. The first interaction axiom weakens (1): setSECof secret constants, andy, z... range over a count-
ably infinite setVARof variables. Message termsire:

tu=a|cl| fltr, ... tn)

for each feasibly computable operatfr The predicate  wheref has arityn. Write VAR(t) for the set of variables
deducess Dolev-Yao-style message deduction in the sensejn ¢, Let M, K, N, ... range over the sef of ground terms

of [17], and is definable in terms of the epistemic modality, (terms with no occurrences of variables). An abstract model
as will be eXplained below. Another interaction axiom says of Cryptography is given as a congruenseover ground
that the agent knows a property of non-deduced vaities terms, typically via an equational theory. The set of mes-
only if this property holds of any non-deduced val@es sages is the s@t of all equivalence classes with respect to

=. Overloading notation, we writd/ for the equivalence
class[M]=, andf for its induced operation on classes.

for any open termg and¢’ built from cryptographic opera-
tors f and variables.. For examplegx = decrypty, z) —

Adeduces — (y = f(T) — Oay = f(T))

—Adeduceg,z — U4 F — F[z/7]

In order to obtain completeness with respect to any givenExample 1 To model pairing and asymmetric encryption,
theory of abstract cryptography, the axiomatization useswe assume the least congruence over ground terms satisfy-
some infinitary machinery. Firstly, we add as axioms all ing fstpair(M, M’)) = M, sndpair(M, M’)) = M’ and
equalities and inequalities from the underlying theory of deqdend M, pk(K)),K) = M. Informally, fs{snd picks
cryptographic terms. Secondly, we add a second kind of out first/second components, pk derives a public key from a
quantifiersym-quantifiers, with an omega-rule. Intuitively, private key, andnc/dec encrypts/decrypts the first argu-
the formulavm.F[m/x] expresses the infinite conjunction ment using the second as key.



Throughout this paper, we assume that agent names in

are non-equivalent. In some results, we assume there is a

special unary operatdr € %, with h(h(M)) # M and
such that ifh(M) = h(M') thenM = M’; We call such
an operator &ash operator

Assume a non-empty, countable $€C of store loca-
tions. A state (“store”) oveltOCis a partial functiors from
LOCto 7=. A message is inferable (“deducible”) from a

state if the message is directly given by the state, i.e., be-

e pos=ys.

o p(f(M)) = f(p(M)), ifall M; € Inferablgs).
Lemmal If s ~* s’ thenp(Inferablgs)) = Inferablds’).
Proposition 1 The following hold:

Id

1. s~"%s

2. If s ~* ' ands’ ~* s thens ~*°° g,

longs to the range, or if the message can be obtained from

already inferred messages through sofre ..

Definition 1 Inferablds), the messages inferable framis
the least extension of rég) closed under allf € .

Constant need not be ifinferablgs), but O-arity f must.
We introduce a second kind of ternssterms:

a=z=1|f(ag,..

wherel € dom(s) andf € ¥. Eachs-term represents an
inference path available at We extends to a mapping on
s-terms, i.e.s(f(aq,...,an) = f(s(ar),...,s(an)). The
following corollary corresponds to proposition 1 in [2].

, 0n)

Corollary 1 Inferablgs) = {s(a) : « € s-termg.

Two states are statically equivalent if they satisfy the sam
equality tests:

Definition 2 Statess ands’ are statically equivalent, writ-
tens = ¢, if and only if,dom(s) = dom(s’) and:

s(a) =

Inrelation to [17], constantscorrespond to private/fresh
names, states correspond to framednferablgs) corre-
sponds to message deduction from the framands ~ s’
is static equivalence between (finite) framemnds’.

s(a’) & §'(a) = §'(d), all stermsa, o

3 Indistinguishability under Permutation

To fit in a counterpart semantics, we reformulate static
equivalence in a manner strongly reminiscent of framed

bisimulation [3]. Assuming =~ s’, the message(a) at
s corresponds to the messagén) at s’ in that both mes-

-1
3. If s ~? s’ thens’ ~*  s.

Write Inferablgs) for the complement ofinferables).
Messages iinferablgs) are anonymous in that every per-
mutation ofinferables) is “epistemically possible”:

Corollary 2 Assume a permutationon Inferables). Ex-
tendr to a permutatiorp on 7= such thato(M) = M for
M € Inferablgs). Then,s ~* s.

A states is normalif s has countably infinite many non-
inferred messages, i.dnferables) is countably infinite.
This corresponds to the assumption in [17] that there al-
ways are fresh private names available. In the following
two results, relating- to =, we assume states are normal.

Lemma 2 s ~* ¢ if, and only if,dom(s) = dom(s’) and
p(s(a)) = §'(«) for all s-termsa.

Theorem 1 s ~ s’ ifand only if,3p : s ~* &'
4 Systems and Statements

Multi-Agent System We instantiate the multi-agent sys-
tem framework [16] to our notion of state. A state space is
a non-empty sef of statess over LOC, intuitively the set

of possible states of some underlying program. An agent
projection| assigns a sdtOC|A C LOC of locations ob-
served (accessed) by agehtThe agent projection is lifted

to states:s|A is the restriction ok to locations inLOC| A.

A multi-agent system, or simply a system, is a structure
S = (LOC,S,|) of a setLOC of store locations, a state
spaceS and an agent projectign

Example 2 We model a system where either agenbr

sages are reached through the same inference path. Motiagent B posts a message, but agefit cannot observe

vated by this intuition, we introduce an indistinguishébil
~ between states, which is relativized to a permutation
on7=. Informally, if s ~* &', then any messagk/ at s
corresponds tp(M) ats’. To qualify as a witness for state
indistinguishability, a permutatiop must respect locations
as well as all operations if on inferable messages:

Definition 3 s ~* ¢, if and only if,dom(s) = dom(s’)
and:

whom. Assume the message congruence from example 1.
Assume two locations: LOE {sender post. The state
space isS = {s : LOC — 7= | s(sendej € {A, B}}.
AgentC observes only the post location: LOC = {post.
The systemi§ = (LOC, S, |).

Inference and indistinguishability naturally relativittean
agentA: Inferablg A, s) =4 Inferablgs|A); s ~f ¢, if
and only if,s| A ~* §'| A.



Statements Statementg” € F are defined by:

F t=t"|plt1,....tn) | Vo.F | Vm.F[m/x] |
OAF | FAF | —F

whereA € A, x € VAR p is from a countable s&P of
predicatesyn is from a countably infinite set of “place hold-
ers”, andF[m/z] is the result of uniformly replacing free
occurrences of variable by place holdern throughoutF'.

5 Cryptographic Counterpart Semantics

In this section, we interpret the epistemic modality
through a counterpart semantics based on the relativized in
distinguishability of section 3. Assume an interpreted sys
temZ, and an assignmeft : VAR — 7—=. Assignments
are extended homomorphically to terms in the usual way,
andV [z — M]isV except that: is assigned//.

Note that a statement may contain unbound variables, butbefinition 4 (Truth)

not unbound place holders.

The language has two types of quantifier, reflecting the
de rdde dictodichotomy familiar from first-order modal
logic [9]. To explain the distinction, say that receives
the valueendc,¢’), where either ofe, ¢ may be un-
known to A. Is it then true that A knows thatA re-
ceivedendc, ¢')"? Under one interpretation, thée rein-
terpretation, the answer is yes: The value (“bitstring™ de
noted byenc(c,¢’) is known by A to be received. Under
the de dictointerpretation, on the other hand, the state-
ment is about the termehdc, ¢’)” itself. In this case,
the statement might be false: Age#tneed not know that
the term used, énc(c, ¢)", applies to the value received.
In our language, variables € VAR refer de re while
closed terms\/ € 7T referde dicto To illustrate, thede
re statementvz.(Areceivedc — [ 4 Areceivedr) is in-
tuitively valid, while the correspondinde dictostatement

N\ (AreceivedV — 4 AreceivedV ) is intuitively in-
MeT
valid. Of course, the latter statement is not part of the lan-

guage, since there are no infinite conjunctions. However,

in our language, th&m-quantifier is used for such quan-
tification over closed terms: The stateme&nt. F'[m/x] ex-

presses the conjunction\ F[M/z]. To highlight their
MeT
respective use, we will refer to théc-quantifier and the

Vm-quantifier as, respectively, thie re quantifier and the
de dictoquantifier. Although we believe that the use of
the dicto quantifier is of independent interest, its motdsat
here is mainly technical. To obtain a complete axiomatiza-
tion, we need an axiom stating that each variablefers

to some messagk/. Using thede dictoquantifier, we can
express this grounding by the statemént.z m. In
section 11, we show that thie dictoquantifier cannot be
reduced to thele requantifier.

Interpreted System A predicate interpretatiohon a sys-
tem S assigns, to each predicaieand states € S, a rela-
tion I(p, s) in 7= (matching the arity op). An interpreted
system based on a systefn= (LOC, S,|) is a structure

T = (LOC,S,|,I) wherel is an interpretation 0. In
some examples and propositions, we explicitly introduce
the special unary predicatesinfersand@;, for A € A
and/ € LOC. When we do so, we implicitly require that
I(Ainfers s) = Inferablg A, s) andI(@;, s) = {s(1)}.

s, VErOsF & Vs eS:Vp:

s~ b s =58 poViEr F
V(t)=V(t)

VM ez :s,V[x— M|z F

VM €T :s,V k=g F[M/a]

s,VErt="t
s,V Ezp(t1, ..., tn)
s,V =z Va.F
s,V =z Vm.Fm/x]

Tt o0

=

For Boolean operators we assume standard truth conditions.
The semantics for the modality follows counterpart seman-
tics in that it checkd” at s’ with respect to the correspond-
ing assignmenp o V' instead of the original assignme¥it

as in basic Kripke semantics. As a result, cryptographic
omniscience (1) fails.

Validity is defined as usual: A statemehtis valid in
interpreted systerfi, written =7 F, if for all s € S and all
assignment¥’, we haves, V' =7 F. Statemen# is valid
in systemS, written =5 F, if F'is valid in all interpreted
systems based @f. Statemenf is valid, in symbolg= F,
if F'is validin all systems. Statemeatis valid at a state,
writtens = F, if s,V |=7 F for all assignment¥” and alll
interpreted systenis containings.

Example 3 Consider the interpreted systeinfrom exam-

ple 2. Since sendet LOC|C, C does not know the sender:
1 V2. (Qgenderr — ~HoQgendeft). However, since
poste LOC|C, C knows (as “bitstring”) what message is
posted: =z Vz.(Qpostz — Uc@postr). On the other
hand,C need not know the structure of the posted message:
ez Vm.(Qpostm — Oc@postm). From the former va-
lidity and the latter invalidity, it follows that cryptogphic
omniscience (1) failstcz © = M — Ocx = M.

In the following theorem, assume a hash operatand
assume that, for eache S, there are at least two messages
that A cannot infer as, i.e.,|Inferablg 4, s)| > 2.

Theorem 2 (Characterization of Inference)
E Ainfersz — Jy.O,y = h(x)

In theorem 2, recall that the interpretation of predicate
Ainfers at states is Inferablg 4, s). In light of theorem

2, we introducdl  x , read “A knowsz”, as an abbrevia-
tion for the statementy.0y = h(z). We write[J4 T for
A4 z;, and we write-04 T for A—0O4 ;.

3 K3



In the following theorem, we assume local stated
ands’|A are normal. Moreover, we assume predicédtes
includes@y, for! € LOC.

Theorem 3 (Logical Characterization of~) The follow-
ing are equivalent:

1. s|A ~ §'|A.
2. sEOFiff ¢ = 04F, for all statementd’.

6 Security Protocol Examples

Mix Consider a mix in the style of [11]. The mix
inputs a sequence of encryptioeaq My, pk(K), N1),...,
end M;, pk(K), N;), wherepk(K) is the mix’s public key,
generated by a secréf, and NV; is a random seed. The
mix later outputs the encryption content in random or-
der: My (1), ..., My, for some random permutationon
{1...1}. A spy should not be able to link inputs to outputs:

(2)
3)

where x containgy abbreviatesiz.3z'.x enc(y, z,2'),
and{,,, abbreviates:(1,,,—. Perhaps, our concern is that
the mix detects, rather than prevents, information leakage
i..e, whenever the spy determines a link, the mix knows this:

mix inputsz A mix outputy — -, x containsgy
mix inputsz A mix outputsy — O, containgy

mix inputsz A mix outputg; —
Ospyx containgy — Oy, @ containgy

In [14], we check the above security goals in some in-
terpreted systems which implement the protocol. As ex-
pected, specifications (2) and (3) fail if the implementatio
allows input replays, or if it allows inputs of various lehgt

By adding a length-computing operater:, with equations
such aden(end M, K, N)) = len(M), the spy is given the
ability to perform length-comparisons.

Crowds We consider a Crowds-style protocol [29], which
allows members of a crowd to communicate without
non-crowd members knowing who is talking to whom.
The agents of a sef'rowd share a symmetric key.
Crowd memberA sends a messagkl/ anonymously to
crowd memberB, by sending the symmetric encryption
enc(pair(B, M), K) to some random crowd membé¥,
who in turn sends this encryption 8 or to a random for-
warderCsy, and so on until the encryption reachsin ad-

for crowd membersA and B outside the observation do-

main of spy. Since spies can block messagess for A

must be defined in terms afs structure, and not in terms

of wherex eventually ends upzis for A might abbrevi-

atedy.fst(dedqz,y)) = A A VB sentr. Sender anonymity
B

means that a spy cannot tell the originator of a message:
Aoriginatedr — O, B originatedz

for crowd membersd and B who are outside the reach of
spy. Although it does not specify knowledge of structure,
this specification relies on the absence of (1), since itispec
fies what the spy knows of an undecrypted message [14].

Dual Signature Consider a purchasing protocol involving
three parties, a customér, a merchanf\/, and a bank3.

To order an itenx; using payment data (credit card number,
etc.) z,, the customer produces a dual signature [26] using
the private signing key:

dual(z, zp, ©5) =q sign(pair(h(z;), h(zp)), xs)

The merchant\/ receivesdual(z;, z,, zs), x; and h(z,),
while B receivedual(x;, zp, z5), h(z;) andz,. The dual
signature hides the order item from B, and the payment
datazx, from M, nonetheless the dual signature linksto

x, SO that their correspondence cannot later be disputed.
We now consider in more detail wh&k learns during pro-
tocol execution. Let variable; = dual(z;, x,, z,) refer to

the dual signature that creates in the current run. At the
end of the protocolB knows that the dual signature was
produced byC’s private signing key:

OpCsignedz,

where C'signedz,; might abbreviate Jx;.3y.x4
sign(y, zs) A xssignkey oC. Using h(z;) and z,, the
bank can determine the payment daganside:

Opz4 contains payment,,

where x4 contains payment,, abbreviatesiz;. Jz,.2q
dual(z;, z,, zs). But, B cannot determine the order item:

-Opgx4 contains itemz;

where x4 contains itemz; abbreviates3z,.3xs.24
dual(z;, z,,zs). Finally, B is assured thad/ can deter-
mine the order item:

Op3z;.05 x4 cONtains itemz;

dition to crowd members, there are local spies, who observe

and control the traffic in some part of the network. Receiver

anonymity means that a spy cannot tell the intended desti-

nation of a given message

zisforA — Qgpyxis for B

7 Axiomatization

In table 1, we define a Hilbert-style axiomatization, rel-
ative to a message congruencewith a hash operatok.



First-order

(Insz) Vz.F — Fly/z] (Insm) Vm.F[m/z] — F[M/x]
(Boundz) Vz.F « F, if x is not free inF’ (Boundm) Vm.F[m/x] < F, if  is not free inF’
(Distz) Va.(F — F') —» Va.F — V. F’ (Distm) Ym.(F[m/x] — F'[m/x]) — Ym.F[m/x] — Vm.F'[m/x]
(Subst)t =t — F[t/x] — F[t'/], if F has nomodality (In$)Vz.F — F[t/z], if F has no modality
(Eq)t =t (mz)Imx=m
(Taut) F, if F'is truth functional tautology
/
(Genz) (MP) FoF, F
x. F’
Modal S5
(K) Oa(F — F') — (0aF — OaF") () OaF - F
A OxF — 0O404F (5) OsF — Ox-0uF
(Nec)i
OuF
Knowledge and Cryptography
O 047 — (y = f(T) — Lay = f(T)) (2) =y —Uaz =y
O3)y=f(x) - 0a7 —Uay (O4) OaF(Z,y) — Uay — —-0az, 2
(O5) Jz.Fy.x Ay A-Oax,y = N =2z, < 2z = z;) = F[z/7]
i,j
Omega
(=M =M, if M=M (Z)M + M, if M £ M
F[M/z],al M € T
(Genm) VYm.F[m/x)]

Figure 1. Axioms and Rules

The first group of axioms and rules is inherited from first- istic theorems used in our results aféy x — 4004 x,
order logic, and includes a (less standard) axiom conngctin -4  — 04— 4 x, and ift contains no secret constant
the two kinds of quantifier. The second group is modal S5, thenz = ¢t — 04 VARt) — Oux = t.

as expected for introspective knowledge. The third group

contains five axioms for the interaction between knowledge g goundness and Completeness

and cryptography. While axionil2) is well-known from
first-order modal logic, the other four axioms are novel.
Axiom ([OJ1) reflects the assumption that each opergtor
is feasible to compute. Axiom{3) states that inferred
messages are closed under operajforsAxiom ((J4) re- Theorem4 + F & = F

flects the assumption that non-inferred values are “anony-

mous”: The statement says that the agent knows a property  |n the rest of this section, we build the completeness con-
of some non-inferred valuesonly if this property holds of  struction. The following sections - sections 9 and 10 - can
any non-inferred valules with the same pattern of identi-  be read independently. The completeness construction uses
ties. More precisely, assumgy are all variables free in  abstract counterpart models, with arbitrary states (‘poss
F. AssumeA infers messageg but A cannot infer any  ple worlds”) w, arbitrary domain of quantification, arbi-

of messageg,z. Assume, finally, that andz have the  trary accessibility relation—* and arbitrary (non-rigid)
same pattern of identities. Thed,F — F[z/Z]. Axiom interpretation of function symbols. The first step is a stan-
(15) reflects the restriction on systems needed for theoremdard canonical Kripke modél, which is transformed into a

2, namely that there are at least two messages that agemounterpart modeC* by adding some epistemic transitions.

A does not infer. In [14], we provide correspondence re- For each transitionn — 4 w’ in K, a transitiono —7 w

sults for axioms((J1) and (J4). The fourth group includes  is added, where is any permutation of non-inferred items

all equalities and inequalities fromx and an omega-rule  at w, i.e., items satisfying-[J4 = at w. Continuing, we

for the de dictoquantifier. Write- F' when F' is a deriv- define a morphisna, which morphsC* into a counterpart
able theorem. We obtain some standard theorems, such agmodeld(X*) with a rigid interpretation of functions sym-

Barcan and converse Barcan for both kinds of quantifier, bols f, given by the background message equivaleace
and unrestricted substitution for variables. Some charact Finally, a morphisnw transformsd(K*) into a counterpart

We arrive at the main result. We consider only systems
where|Inferablg A4, s)| > 2, foralls € Sand allA € A.



modelw(d(K*)), which is equivalent to an interpreted sys-

tem.

Abstract Counterpart Model We review some basics

from (a variant of) counterpart semantics (cf. [18]). An ab-

stract counterpart model is a structdre= (W, D, — I,
defined as follows. W is a non-empty set of worlds),
and D is a non-empty domain of objects For A € A,
—4C W x (D — D) x W is the epistemic accessi-
bility relation. Informally,w —*, w’ means thatv and
w’ are indistinguishable foA and eachl € D atw cor-

w, d be a morphism fron¢ to W’ andD’. The application

wd

ofw,donCiswd(C) = (W', D' ==, "), where
o W(w) W—d>f4 w(w') iff w —»’;{ w' wherep’ =d} o
pody.
e "d(o,w(w)) = dy,(I(o,w)), 0 € SECUX UP.

Thus, wd(C) is the result of pointwise “relabellingC
throughw andd.

Lemma3 w,V ¢ F < W(w),dy, oV Ewge) F-

responds forA to p(d) at w’. I is a world-relative in-
terpretation, i.e.[(c,w) is a member ofD, I(f,w) is an
operation inD matching the arity off, andI(p,w) is a
relation in D matching the arity ofp. Thus, the inter-
pretation of f andc is left open, and need not be rigid. if there is a finite number of statemerts, ..., F,, € I" such
An assignment irC is a functionV : VAR — D. As- that Fi,..., F,, — F. Thesefis consistentif’ I/ 1, and
signments are extended to arbitrary terms with respect to al’ is maximal consistent if it is consistent and no larger set
world w as usual:V(z,w) = V(z), V(c,w) = I(c,w), is consistent. The sétis omega-complete if whenevEr-
V(f(tryetn),w) = I(f,w)(V(t1,w), ..., V(tn, w)). Fly/x] for ally € VARthenI |- Vz.F and, also, whenever
Truth conditions are as expected: I' - F[M/z] forall M € T thenl' - Vm.F[m/z]. The
setl is saturated if it is maximal consistent and omega-
complete.

Given a saturated set,, the canonical Kripke model
K = (W,D,—,1I) is defined as follows. The séV of

Canonical Kripke Model  The canonical Kripke model is
built on saturated sets in the usual way [19]. A stateniént
is derivable from a sef of statements, in symbols+ F,

w,VEcOAF & YW eW: Vp:rw—) v =

wi,poV e F

vV t=t < Vt,w) =V({, , . .

w,V = (t, w) (t',w) worlds is the set of all saturated sets which contais y

w, Ve pltr, - ta) & (V(t,w), .., Vs, w)) € I(p, w)if ang only if wy containsz = y. The domainD is the set
w,V e Vol & VdeD:wVizw—d FcF  of equivalence classes| = {y : = = y € wy}. The epis-

temic accessibility is given byw — 4 w’ < w|A C v/,
wherew|A is {F : O4F € w}. Finally, the interpreta-
tion is defined as followsI(f, w)(|z1], ..., |zn]) = |y| iff
(f(x1y.yzn) = y) € w, andI(c,w) = |y| iff (c =y) €
w. The canonical assignmeVit assigngx| to variablez.

w,V Ee Ym.Fim/z] & VM eT:w,V ¢ F[M/z]
Any interpreted systenT = (LOC, S, |,I) determines a
counterpart modef; = (S,7=,~,1I'), where~ 4 is de-
fined as in section 4 anld(p, s) = I(p, s) andI’(f,w) = f

and/’(c,w) = c. We say that’z is induced byZ.
(cu)=c y ’ v Lemma 4 (Truth Lemma for K) w,Vk Ex F & F € w

Corollary 3 s,V =7 Fiff s,V =¢, F.

Anonymous Non-inferred Items We transform/C into

a model where non-inferred items, i.e., items satisfying
-4 x, are anonymous in the sense that every permuta-
tion of such items is “epistemically possible”. The transfo
mation relies on axiom{4). Assume a counterpart model
C = (W,D —,I). Write Inferable. (A, w) for the set of
items inferred by agem at worldw, i.e, Inferable. (A4, w)
is{d € D | w,V[— d] E¢c Oaz}. The anonymization of

C is the modet* = (W, D -, I), where— is the least
extension of— such that

A counterpart modef is Kripkean ifw —; w’ implies
thatp = Id, whereld is identity onD. WhenC is Krip-
kean, we omit the indeXd, and writew — 4 w’ for the
transitionw —1# w’. We say that substitutions are bijec-
tive inC, if w —} v’ impliesp is a permutation o.

Assume a counterpart modél= (W, D,— I). As-
sume a setV’ of worlds and a domaitD’. A morphism
fromC to W’ andD’ is a pairw, d such that:

e W: W — W'is a bijective map

porm

* P ’ * ’
w—7Aw:>w—7A w

e d, : D — D’ is a bijective map, for eacls € W
The morphismw, d is a domain-morphism, iV = W’
andw is identity onW. The morphisnw,d is a world-
morphism, ifD = D’ andd,, is identity onD. For domain-
morphisms, we leave the identity implicit. Similarly, for
world-morphisms, we leave the mappidgimplicit. Let

for every permutationt on Inferable, (A, w). (7 is ex-
tended to the whole domaib in the expected wayt(d) =
dif d € Inferable. (A, w).)

Lemma5 w,V Ex F < w,V =i F.



Rigid Operators We define a domain-morphistawhich
morphskC* into a moded(K*) where operatorg and con-
stantsc have their intended, rigid denotation, given by the
background equivalence. The transformation relies on
axioms (n x), (=) and €&). For eachw € W, we relateD
and7= by the relationd,, = {(|z], M) | x = M € w}.

Lemma 6 d is a morpism fromiC* to W and7-.

Letd(K*) = (W, 7=, -2, I%) be application ofl on K*.

Lemma 7 I9(f,w) = f andI%(c,w) = c.

Canonical Interpreted System Finally, we define a
world-morphismw, which morphsd(X*) into a model
w(d(K*)) induced by an interpreted system. The transfor-
mation step relies on axiomsl{) and (d5). We assume the
following set of store locationd:0C = FU((DUF) x A)
(whereD is the domain inC andK*). Each agent observes
store locations indexed by itselfOC|A = (DUF) x { A}.
The morphisnw mapsiV to states ovet OC defined by:

)((J2], A)) =
|z}, A)) =
FA)) =
F,A)) =

T,if F e w.

1.

g

/\/\/\/\

dy (|z]), if || € Inferable(w, A).
L, if |z| & Inferable. (w, A).
T,if 04 F € w.

1,if04F € w.

/—\ /—\ /i —~ /—\
S

2
3
4. w
5

6. = 1,if F ¢ w.

where L and T are two non-equivalent O-arity operators
from 3. (If there is only one such operator, i.e., the sin-
gle agent4, then letL. = AandT = h(A).) Requirements
(3) and (4) orw encode the knowledge statéA inside the
local statew(w)| A. Requirements (5) and (6) ensure injec-
tivity. Requirements (1) and (2), together with (3) and (4),
ensure that the same permutatignare possible between
w(w) andw(w’) in ~ 4 as betweemw andw’ in A

Lemma 8 w ~%-", «’, if and only ifw(w) ~, w(w’).

Let the canonical interpreted system®be- (LOC, S, |, I),
where S = {w(w) w € W} and I(p,w(w))
{(Mq,.... M) | w(w)(p(My, ..., My,)) = T}.

Lemma 9 w(d(K*)) is induced byZ.

By axiom (15), Z satisfies our restriction on systems.

Theorem 5 Every consistent statement is satisfiable in
some interpreted system.

From theorem 5, we get completeness theorem 4.

9 Embedding of BAN and SVO

The BAN Modality We show how to capture the epis-
temic modality from BAN logic [10]. BAN statements

[ are propositional, built from closed atomic statements
p(Ma, ..., M,,), epistemic modalities and Boolean opera-
tors. (Original BAN includes “idealized” messages, but no
negation. But, these differences are othogonal the our con-
cern here.) Necessitation (Nec) is incompatible with BAN,
since terms\V refersde re[12, 13, 14]. We propose that
the following omega-weakening of necessitation is faithfu
to BAN:

B /4, all M
O M — O8[M/q]

(WNeg

whereg lists all constant occurring ifi. For instance:

enc(M, K) containsM, all M, K
Oa M, K — 04 enc(M, K) containsM

In[14], we use rul&VNedo derive BANs message meaning
rule and another characteristic BAN rule. Similar weaken-
ings of necessitation appear in [12, 13, 23]. Define transla-
tion 7 from BAN into our logic:

where M is a list (M, ..., M,,) of all ground terms oc-
curring as arguments to predicatesdnj(z) is the result
of substitutingz; for M;, and 3z abbreviatesiz;...3x,,.
For instance translated],00p A receivesen@V/, K) to
Jz.x = end M, K) A O 0pAreceives:. Let WNe€ be
the r-translations of/WNec

BM)" =

Proposition 2 WNe¢ is a derived rule.
The embedding induces a new truth condition:

Proposition 3 The following are equivalent:

o sz (Hap(M))

o Vs’ €S:Vp:s~fhs' =5 =1 B(p(M))T

Providing a faithful semantics for BAN’s modality has been
a longstanding problem. The truth condition in proposition
3 is, essentially, a generalization to an arbitrary equatio
theory of the semantics proposed for BAN in [12, 13].

The SVO Modality Protocol derivations in SVO [32], a
successor to BAN, uses variables (represented as stars:
*z, %y, €1C.) to refede reto possibly undecrypted content.
The derivations assume that seeing implies knowledge of



seeing to the extent that the seen message can be decryptegrotocol being executed (cf. the examples in section 6, also

For instance, for the equational theory in example 1, the unsoundness of BAN’s message meaning rule in AT).
We emphasize that thare are no completeness results for
Aseegnc(pair(z,2’), pk(2)), Ainfersz — AT-semantics, or its variants (cf. [32]). Moreover, since A
04 A seesnc(pair(z, '), pk(z)) (4) semantics, and its variants, follow basic Kripke semantics

they render agents cryptographically omniscient (1). @n th
Seeing introspection principles, such as (4), are noffjedti  other hand, approaches based on explicit knowledge avoid
by the proof system in [32], but the authors remark that it cryptographical omniscience but have other drawbacks, dis
would be straightforward to capture such implications in an cussed briefly in section 1. The compositional protocol

axiom. We propose the following axiom: logic of Durgin et al [15] uses knowledge only in terms of
Dolev-Yao type message deduction. The role of permuta-
Aseed’ — O, VART) —» O Aseed” (SEE) tions in our semantics is slightly reminiscent of [8, 33]. A

where T is any term without constants fronSEC version of theorem 3 er an AT-style semantics was pro-
posed by S. Kramer (private correspondence).

The semantics in [32] does not support (4) or SEE. More The application of epistemic logic to cryptographic pro-

enerally, the semantics there does not suppere refer- . .
9 Y. I .__tocol analysis goes back to BAN logic [10]. Our protocol
ence of variables. We show, however, that our semantics

i . S examples are, more directly, inspired by anonymity speci-
fits (4) andSEE Let SVObe the following assumption: fications in [21] and specifications for the SET protocol in

[7]. We refer to [23] for a comprehensive dictionary of epis-

Vr.(Aseest — OygAsees) A Jz.(-04 z A mAsees) , . I
temic security specifications.

Trivially, an interpreted systeff satisfies the first conjunct ~ Interaction axiom((13), and, to a lesser degree, interac-
of SVOIf, and only if, p(I(Aseess)) C I(Aseess’) tion axiom (J1), are reminiscent of BAN-style proof sys-
whenevers —*, ' in . tems. However, BAN-style proof systems contain only ad

hoc rules specific to concrete predicates.
Proposition 4 - SVO— SEE and- SVO— (4).

11 Concluding Remarks
10 Related Work
One issue left open by our work is the role of theedicto

In [13] we use a propositiona| variant of the semantics quantifiel*v’m. We have been unable to obtain Completeness
presented here to account for BAN, and [12] gives a com- for a compact IOgiC which does not use this quantiﬁer. A
pleteness result. For the relationship to [13], see préijposi ~ candidate omega-rule is:

3 and its explanation. The completeness res_ult_ of f[his paper c=M—=F alMeT

is stronger and much less ad hoc: The logic is richer, we .

avoid restriction to finite message spaces (which does not
square well with most formal accounts of cryptography), We can show that thée dictoquantifier adds to the expres-
we avoid the ad hoc "internal actions” used in [12] with Sive power. Le®. = A = {4}, i.e,, let there be only one
no clear computational meaning, and the axiomatization ispublic operator, namely the agent identifiérand let= be
much less schematic and does not rely on a specific termidentity on ground terms.

algebra.

In the security literature, there are several semantics for
epistemic logic. Often, the “standard” multi-agent system
semantics [16] is used, with identity as the equivalence on  Our semantics is formulated in a counterpart semantics
local states (cf [21, 30]). But in connection with cryp- framework, although the choice of framework is, to some
tography, identity is clearly inappropriate as equivakenc extent, a matter of taste. It is possible to reformulate the
This is manifested in counter-intuitive validities such as semantics in the framework of first-order intensional logic
Jz. Areceivesenc(M, x) — Oa3x. Areceivesenc(M, x). [9]. In such a framework, variables denote intensions, i.e.
Our semantics is most closely related to the AT-semanticsfunctions from states to individuals. In our setting, indiv
[4, 5]. The AT semantics, which applies only to symmet- uals are messages, and intensions are terms built from store
ric encryption, reduces indistinguishability to identiy locations and operators, such as theerms of section 2.
expressions that use a fixed symholto represent unde- However, reformulating our logic as a first-order intension
cryptable sub-expressions, and thereby loses all infoomat  logic would, it seems, make security specifications more
about undecryptable data, including knowledge that may complex. A statemerifl, F'(z) in our logic translates to,
have been obtained indirectly, for instance, as a resufitoft it seems, something likéy.x = y A A-term(y) A4 F(y),

Proposition 5 No statement free of thde dictoquantifier
is equivalenttadm.3z.x # A ADax = m.



whereA-termis a predicate which applies to an intension [11] D. L. Chaum. Untraceable electronic mail, return addes,
if that intension is built from feasibly computable opera-
tors and store locationd can observe. An additional in-
tensiony is needed, since the intensianmight be built
from store locations not observed by As a result, the

translation induces extra nesting of quantifiers and modal-

ities. To illustrate, the statementg[4 F'(x) translates to
Jy.x = yAB-term(y)AOpIz.2 = yAA-termz)AO A F(2).

The proposed logic is static only: It expresses properties [14

of states, but not of computations. In the future, we plan to

extend the completeness result to include temporal modal-

ities, and to link to concepts in information flow security,
and to behavioral equivalences for applied pi.
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