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Abstract

The combination of first-order epistemic logic with for-
mal cryptography offers a potentially powerful framework
for security protocol verification. In this paper, cryptogra-
phy is modelled using private constants and one-way com-
putable operations, as in the Applied Pi-calculus. To give
the concept of knowledge a computational justification, we
propose a generalized Kripke semantics that uses permuta-
tions on the underlying domain of cryptographic messages
to reflect agents’ limited resources. This interpretation links
the logic tightly to static equivalence, another important
concept of knowledge that has recently been examined in the
security protocol literature, and for which there are strong
computational soundness results. We exhibit an axiomati-
zation which is sound and complete relative to the under-
lying theory of terms, and to an omega-rule for quantifiers.
Besides standard axioms and rules, the axiomatization in-
cludes novel axioms for the interaction between knowledge
and cryptography. As protocol examples we use mixes, a
Crowds-style protocol, and electronic payments. Further-
more, we provide embedding results for BAN and SVO.

1 Introduction

Many goals of cryptographic communication concern
knowledge. Authenticity, for instance, may mean that a re-
ceiver knows the sender of a message, and anonymity may
mean that the sender is unknown to an eavesdropper. In
these contexts, knowledge is used as a semantical rather
than a cognitive concept: The intention is that local inter-
actions (for instance, the local observations of the receiver)
force some global system property (for instance, that the
message has a certain sender).

Knowledge, in this sense, is often tied to the concept of
indistinguishability. This applies, for instance, in security
protocol analysis using some form of observational equiva-
lence (cf. [17]), in multi-agent system semantics using lo-
cal history identity (cf. [16, 27]), and in information flow

theory using low-level observability (cf. [31]). For cryp-
tographic communication the definition of a suitable indis-
tinguishability relation is somewhat delicate. The baseline
is computational indistinguishability in the sense of modern
cryptography (cf. [20]), i.e., the absence of a computation-
ally feasible experiment to tell two ciphertexts apart. On the
other hand, in order to serve as a basis for a useful logic, the
relation should be amenable to formal treatment.

To this end, static equivalence [17] has recently emerged
as a natural starting point. Static equivalence collects cryp-
tographic terms that are visible to an agent (or the envi-
ronment) in a frame, roughly a sequences of terms. Two
framess ands′ are equivalent if they satisfy the same equal-
ity tests. For instance, ifencrypt(s(i), s(j)) = s(k) then
encrypt(s′(i), s′(j)) = s′(k), wheres(i) is thei:th term in
sequences. Static equivalence is parametrized on an under-
lying equational theory of cryptographic terms over a signa-
ture of “feasibly computable” operators. Depending on the
specific choice of theory, strong links between static equiva-
lence and computational indistinguishability can sometimes
be established. Computational soundness, static equiva-
lence implying computational indistinguishability, has re-
cently received particular attention (cf. [1]).

In this paper, we use static equivalence as the basis for
building a program logic. Our first step is the observation
that static equivalence implicitly defines a correspondence
between messages, with messages deduced by the same se-
quence of computations corresponding to each other: Mes-
sageencrypt(s(i), s(j)) at frames corresponds to message
encrypt(s′(i), s′(j)) at frames′, and so on. This corre-
spondence can be lifted to assignmentsV of messages to
variablesx, y, z, ... of a logic: V at s corresponds toV ′

at s′ if V (x) = encrypt(s(i), s(j)) implies thatV ′(x) =
encrypt(s′(i), s′(j)), and so on. Motivated by this observa-
tion, we instantiate the multi-agent system framework [16],
using frames as states and sub-frames as local states.We say
that propertyF is known to agentA at global states under
assignmentV , s, V |= �AF , if and only if s′, V ′ |= F for
all global statess′ and assignmentsV ′ such that agentA’s
local state ins is statically equivalent toA’s local state in



s′, andV atA’s local state ins corresponds toV ′ atA’s lo-
cal state ins′. This idea follows counterpart semantics [24]
by checkingF at s′ under a corresponding assignmentV ′,
rather than under the original assignmentV . This interpre-
tation has a number of interesting properties.

Firstly, our use of counterpart semantics provides a han-
dle on the difficult issue of mathematical omniscience in
epistemic logic. Existing multi-agent system semantics (cf
[5, 21, 30, 32]) follow basic Kripke semantics [9], where
the assignmentV is kept constant as indistinguishable states
are scanned:s, V |= �AF , if and only if s′, V |= F for all
indistinguishable statess′. Assuming mathematical equali-
ties depend only on the assignmentV , and not on the global
states, agents arecryptographically omniscient, i.e., know
all equalities:

t = t′ → �A t = t′ (1)

for any open termst andt′ built from cryptographic opera-
torsf and variablesx. For example,x = decrypt(y, z) →
�Ax = decrypt(y, z) holds even when agentA has not ob-
tained the keyz. Thus, the epistemic modality is vacuous
on cryptographic statements. Various suggestions, based
on explicit knowledge [16], have been made towards ad-
dressing this issue (cf. [6, 22, 25, 28]). However, work
on explicit knowledge abandon Kripke-style semantics, lose
many of the useful logical properties of knowledge, and pro-
vide a very syntactic account of knowledge extraction.

By contrast, we avoid cryptographic omniscience (1)
even though we stay within a Kripke-style semantics and
preserve most logical properties of knowledge. This is
shown by the second result, which is also the main result of
the paper: A sound and complete axiomatization, based on
axioms and rules from standard first-order logic and modal
S5 logic. In addition, the axiomatization includes some
novel axioms for the interaction between knowledge and
cryptography. The first interaction axiom weakens (1):

A deducesx → (y = f(x) → �Ay = f(x))

for each feasibly computable operatorf . The predicate
deducesis Dolev-Yao-style message deduction in the sense
of [17], and is definable in terms of the epistemic modality,
as will be explained below. Another interaction axiom says
that the agent knows a property of non-deduced valuesx
only if this property holds of any non-deduced valuesz:

¬A deducesx, z → �AF → F [z/x]

In order to obtain completeness with respect to any given
theory of abstract cryptography, the axiomatization uses
some infinitary machinery. Firstly, we add as axioms all
equalities and inequalities from the underlying theory of
cryptographic terms. Secondly, we add a second kind of
quantifiers,∀m-quantifiers, with an omega-rule. Intuitively,
the formula∀m.F [m/x] expresses the infinite conjunction

F [M1/x]∧F [M2/x]∧..., whereM1, M2, ... lists all ground
message terms. As explained in section 10, the complete-
ness result significantly improves on our earlier result fora
propositional epistemic logic [12].

The third result is epistemic characterizations of message
deduction and static equivalence. For the former, we obtain
A deducesx ↔ ∃y.�Ay = h(x), whereh is a one-way
hash operator (cf. [2] for a related use of the hash operator).
The logical characterization of static equivalence, whichis
rather immediate, gives added credence to our semantics,
and allows the transfer of computational soundness results,
such as that of [1], to our epistemic logic. It follows, for
instance, that if the same properties are known by agentA
in global statess ands′ thenA’s local states ins ands′ are
computationally indistinguishable.

We illustrate the language in three example protocols,
using mixes, a Crowds style protocol [29], and electronic
payments. Furthermore, we illustrate the axiomatization by
embedding characteristic rules from authentication logics
BAN [10] and SVO [32], including an infinitary weakening
of necessitation appropriate for BAN. The protocol specifi-
cations and the embedding results (as well as the character-
ization of message deduction above) all rely on the absence
of cryptographic omniscience.

All proofs appear in [14].

2 Messages and Static Equivalence

Let f range over a countable setΣ of public, feasi-
bly computable operators, each equipped with an arity.
Let A, B, ... range over a finite, non-empty setA ⊆ Σ
of 0-arity operators, representing public names of distinct
agents; Other 0-arity operators inΣ also represent public
values, “plain texts”. Letc range over a countably infinite
setSECof secret constants, andx, y, z... range over a count-
ably infinite setVARof variables. Message termst are:

t ::= x | c | f(t1, ..., tn)

wheref has arityn. Write VAR(t) for the set of variables
in t. Let M, K, N, ... range over the setT of ground terms
(terms with no occurrences of variables). An abstract model
of cryptography is given as a congruence≡ over ground
terms, typically via an equational theory. The set of mes-
sages is the setT≡ of all equivalence classes with respect to
≡. Overloading notation, we writeM for the equivalence
class[M ]≡, andf for its induced operation on classes.

Example 1 To model pairing and asymmetric encryption,
we assume the least congruence over ground terms satisfy-
ing fst(pair(M, M ′)) ≡ M , snd(pair(M, M ′)) ≡ M ′ and
dec(enc(M, pk(K)), K) ≡ M . Informally, fst/snd picks
out first/second components, pk derives a public key from a
private key, andenc/dec encrypts/decrypts the first argu-
ment using the second as key.



Throughout this paper, we assume that agent names inA
are non-equivalent. In some results, we assume there is a
special unary operatorh ∈ Σ, with h(h(M)) 6≡ M and
such that ifh(M) ≡ h(M ′) thenM ≡ M ′; We call such
an operator ahash operator.

Assume a non-empty, countable setLOC of store loca-
tions. A state (“store”) overLOC is a partial functions from
LOC to T≡. A message is inferable (“deducible”) from a
state if the message is directly given by the state, i.e., be-
longs to the range, or if the message can be obtained from
already inferred messages through somef ∈ Σ.

Definition 1 Inferable(s), the messages inferable froms, is
the least extension of ran(s) closed under allf ∈ Σ.

Constantc need not be inInferable(s), but 0-arityf must.
We introduce a second kind of terms,s-terms:

α ::= l | f(α1, ..., αn)

wherel ∈ dom(s) andf ∈ Σ. Eachs-term represents an
inference path available ats. We extends to a mapping on
s-terms, i.e.,s(f(α1, ..., αn) = f(s(α1), ..., s(αn)). The
following corollary corresponds to proposition 1 in [2].

Corollary 1 Inferable(s) = {s(α) : α ∈ s-terms}.

Two states are statically equivalent if they satisfy the same
equality tests:

Definition 2 Statess ands′ are statically equivalent, writ-
tens ≈ s′, if and only if,dom(s) = dom(s′) and:

s(α) = s(α′) ⇔ s′(α) = s′(α′), all s-termsα, α′

In relation to [17], constantsc correspond to private/fresh
names, statess correspond to frames,Inferable(s) corre-
sponds to message deduction from the frames, ands ≈ s′

is static equivalence between (finite) framess ands′.

3 Indistinguishability under Permutation

To fit in a counterpart semantics, we reformulate static
equivalence in a manner strongly reminiscent of framed
bisimulation [3]. Assumings ≈ s′, the messages(α) at
s corresponds to the messages′(α) at s′ in that both mes-
sages are reached through the same inference path. Moti-
vated by this intuition, we introduce an indistinguishability
∼ between states, which is relativized to a permutationρ
on T≡. Informally, if s ∼ρ s′, then any messageM at s
corresponds toρ(M) ats′. To qualify as a witness for state
indistinguishability, a permutationρ must respect locations
as well as all operations inΣ on inferable messages:

Definition 3 s ∼ρ s′, if and only if,dom(s) = dom(s′)
and:

• ρ ◦ s = s′.

• ρ(f(M)) = f(ρ(M)), if all Mi ∈ Inferable(s).

Lemma 1 If s ∼ρ s′ thenρ(Inferable(s)) = Inferable(s′).

Proposition 1 The following hold:

1. s ∼Id s

2. If s ∼ρ s′ ands′ ∼ρ′

s′′ thens ∼ρ′
◦ρ s′′.

3. If s ∼ρ s′ thens′ ∼ρ−1

s.

Write Inferable(s) for the complement ofInferable(s).
Messages inInferable(s) are anonymous in that every per-
mutation ofInferable(s) is “epistemically possible”:

Corollary 2 Assume a permutationπ on Inferable(s). Ex-
tendπ to a permutationρ onT≡ such thatρ(M) = M for
M ∈ Inferable(s). Then,s ∼ρ s.

A states is normal if s has countably infinite many non-
inferred messages, i.e.,Inferable(s) is countably infinite.
This corresponds to the assumption in [17] that there al-
ways are fresh private names available. In the following
two results, relating∼ to ≈, we assume states are normal.

Lemma 2 s ∼ρ s′ if, and only if,dom(s) = dom(s′) and
ρ(s(α)) = s′(α) for all s-termsα.

Theorem 1 s ≈ s′, if and only if,∃ρ : s ∼ρ s′.

4 Systems and Statements

Multi-Agent System We instantiate the multi-agent sys-
tem framework [16] to our notion of state. A state space is
a non-empty setS of statess overLOC, intuitively the set
of possible states of some underlying program. An agent
projection| assigns a setLOC|A ⊆ LOC of locations ob-
served (accessed) by agentA. The agent projection is lifted
to states:s|A is the restriction ofs to locations inLOC|A.
A multi-agent system, or simply a system, is a structure
S = 〈LOC, S, |〉 of a setLOC of store locations, a state
spaceS and an agent projection|.

Example 2 We model a system where either agentA or
agent B posts a message, but agentC cannot observe
whom. Assume the message congruence from example 1.
Assume two locations: LOC= {sender, post}. The state
space isS = {s : LOC → T≡ | s(sender) ∈ {A, B}}.
AgentC observes only the post location: LOC|C = {post}.
The system isS = 〈LOC, S, |〉.

Inference and indistinguishability naturally relativizeto an
agentA: Inferable(A, s) =df Inferable(s|A); s ∼ρ

A s′, if
and only if,s|A ∼ρ s′|A.



Statements StatementsF ∈ F are defined by:

F ::= t = t′ | p(t1, ..., tn) | ∀x.F | ∀m.F [m/x] |

�AF | F ∧ F ′ | ¬F

whereA ∈ A, x ∈ VAR, p is from a countable setP of
predicates,m is from a countably infinite set of “place hold-
ers”, andF [m/x] is the result of uniformly replacing free
occurrences of variablex by place holderm throughoutF .
Note that a statement may contain unbound variables, but
not unbound place holders.

The language has two types of quantifier, reflecting the
de re/de dictodichotomy familiar from first-order modal
logic [9]. To explain the distinction, say thatA receives
the valueenc(c, c′), where either ofc, c′ may be un-
known to A. Is it then true that “A knows thatA re-
ceivedenc(c, c′)”? Under one interpretation, thede re in-
terpretation, the answer is yes: The value (“bitstring”) de-
noted byenc(c, c′) is known byA to be received. Under
the de dicto interpretation, on the other hand, the state-
ment is about the term “enc(c, c′)” itself. In this case,
the statement might be false: AgentA need not know that
the term used, “enc(c, c′)”, applies to the value received.
In our language, variablesx ∈ VAR refer de re, while
closed termsM ∈ T refer de dicto. To illustrate, thede
re statement∀x.(A receivedx → �AA receivedx) is in-
tuitively valid, while the correspondingde dictostatement∧
M∈T

(A receivedM → �AA receivedM) is intuitively in-

valid. Of course, the latter statement is not part of the lan-
guage, since there are no infinite conjunctions. However,
in our language, the∀m-quantifier is used for such quan-
tification over closed terms: The statement∀m.F [m/x] ex-
presses the conjunction

∧
M∈T

F [M/x]. To highlight their

respective use, we will refer to the∀x-quantifier and the
∀m-quantifier as, respectively, thede requantifier and the
de dictoquantifier. Although we believe that the use of
the dicto quantifier is of independent interest, its motivation
here is mainly technical. To obtain a complete axiomatiza-
tion, we need an axiom stating that each variablex refers
to some messageM . Using thede dictoquantifier, we can
express this grounding by the statement∃m.x = m. In
section 11, we show that thede dictoquantifier cannot be
reduced to thede requantifier.

Interpreted System A predicate interpretationI on a sys-
temS assigns, to each predicatep and states ∈ S, a rela-
tion I(p, s) in T≡ (matching the arity ofp). An interpreted
system based on a systemS = 〈LOC, S, |〉 is a structure
I = 〈LOC, S, |, I〉 whereI is an interpretation onS. In
some examples and propositions, we explicitly introduce
the special unary predicatesA infers and@l, for A ∈ A
and l ∈ LOC. When we do so, we implicitly require that
I(A infers, s) = Inferable(A, s) andI(@l, s) = {s(l)}.

5 Cryptographic Counterpart Semantics

In this section, we interpret the epistemic modality
through a counterpart semantics based on the relativized in-
distinguishability of section 3. Assume an interpreted sys-
temI, and an assignmentV : VAR−→ T≡. Assignments
are extended homomorphically to terms in the usual way,
andV [x 7→ M ] is V except thatx is assignedM .

Definition 4 (Truth)

s, V |=I �AF ⇔ ∀s′ ∈ S : ∀ρ :

s ∼ρ
A s′ ⇒ s′, ρ ◦ V |=I F

s, V |=I t = t′ ⇔ V (t) = V (t′)

s, V |=I p(t1, ..., tn) ⇔ 〈V (t1), ..., V (tn)〉 ∈ I(p, s)

s, V |=I ∀x.F ⇔ ∀M ∈ T≡ : s, V [x 7→ M ] |=I F

s, V |=I ∀m.F [m/x] ⇔ ∀M ∈ T : s, V |=I F [M/x]

For Boolean operators we assume standard truth conditions.
The semantics for the modality follows counterpart seman-
tics in that it checksF at s′ with respect to the correspond-
ing assignmentρ ◦ V instead of the original assignmentV ,
as in basic Kripke semantics. As a result, cryptographic
omniscience (1) fails.

Validity is defined as usual: A statementF is valid in
interpreted systemI, written |=I F , if for all s ∈ S and all
assignmentsV , we haves, V |=I F . StatementF is valid
in systemS, written |=S F , if F is valid in all interpreted
systems based onS. StatementF is valid, in symbols|= F ,
if F is valid in all systems. StatementF is valid at a states,
written s |= F , if s, V |=I F for all assignmentsV and all
interpreted systemsI containings.

Example 3 Consider the interpreted systemI from exam-
ple 2. Since sender6∈ LOC|C, C does not know the sender:
|=I ∀x.(@senderx → ¬�C@senderx). However, since
post∈ LOC|C, C knows (as “bitstring”) what message is
posted: |=I ∀x.(@postx → �C@postx). On the other
hand,C need not know the structure of the posted message:
6|=I ∀m.(@postm → �C@postm). From the former va-
lidity and the latter invalidity, it follows that cryptographic
omniscience (1) fails:6|=I x = M → �Cx = M .

In the following theorem, assume a hash operatorh and
assume that, for eachs ∈ S, there are at least two messages
thatA cannot infer ats, i.e.,|Inferable(A, s)| ≥ 2.

Theorem 2 (Characterization of Inference)
|= A infersx ↔ ∃y.�Ay = h(x)

In theorem 2, recall that the interpretation of predicate
A infers at states is Inferable(A, s). In light of theorem
2, we introduce�A x , read “A knowsx”, as an abbrevia-
tion for the statement∃y.�Ay = h(x). We write�A x for∧
i

�A xi, and we write¬�A x for
∧
i

¬�A xi.



In the following theorem, we assume local statess|A
ands′|A are normal. Moreover, we assume predicatesP
includes@l, for l ∈ LOC.

Theorem 3 (Logical Characterization of≈) The follow-
ing are equivalent:

1. s|A ≈ s′|A.

2. s |= �AF iff s′ |= �AF , for all statementsF .

6 Security Protocol Examples

Mix Consider a mix in the style of [11]. The mix
inputs a sequence of encryptionsenc(M1, pk(K), N1),...,
enc(Ml, pk(K), Nl), wherepk(K) is the mix’s public key,
generated by a secretK, andNi is a random seed. The
mix later outputs the encryption content in random or-
der: Mπ(1), ..., Mπ(l), for some random permutationπ on
{1...l}. A spy should not be able to link inputs to outputs:

mix inputsx ∧ mix outputsy → ¬�spyx containsy (2)

mix inputsx ∧ mix outputsy → ♦spyx containsy (3)

wherex containsy abbreviates∃z.∃z′.x = enc(y, z, z′),
and♦spy abbreviates¬�spy¬. Perhaps, our concern is that
the mix detects, rather than prevents, information leakage,
i..e, whenever the spy determines a link, the mix knows this:

mix inputsx ∧ mix outputsy →

�spyx containsy → �mix�spyx containsy

In [14], we check the above security goals in some in-
terpreted systems which implement the protocol. As ex-
pected, specifications (2) and (3) fail if the implementation
allows input replays, or if it allows inputs of various lengths.
By adding a length-computing operatorlen, with equations
such aslen(enc(M, K, N)) ≡ len(M), the spy is given the
ability to perform length-comparisons.

Crowds We consider a Crowds-style protocol [29], which
allows members of a crowd to communicate without
non-crowd members knowing who is talking to whom.
The agents of a setCrowd share a symmetric keyK.
Crowd memberA sends a messageM anonymously to
crowd memberB, by sending the symmetric encryption
enc(pair(B, M), K) to some random crowd memberC1,
who in turn sends this encryption toB or to a random for-
warderC2, and so on until the encryption reachesB. In ad-
dition to crowd members, there are local spies, who observe
and control the traffic in some part of the network. Receiver
anonymity means that a spy cannot tell the intended desti-
nation of a given messagex:

x is forA → ♦spyx is forB

for crowd membersA andB outside the observation do-
main of spy. Since spies can block messages,x is forA
must be defined in terms ofx’s structure, and not in terms
of wherex eventually ends up:x is forA might abbrevi-
ate∃y.fst(dec(x, y)) = A ∧

∨
B

B sentx. Sender anonymity

means that a spy cannot tell the originator of a message:

A originatedx → ♦spyB originatedx

for crowd membersA andB who are outside the reach of
spy. Although it does not specify knowledge of structure,
this specification relies on the absence of (1), since it speci-
fies what the spy knows of an undecrypted message [14].

Dual Signature Consider a purchasing protocol involving
three parties, a customerC, a merchantM , and a bankB.
To order an itemxi using payment data (credit card number,
etc.) xp, the customer produces a dual signature [26] using
the private signing keyxs:

dual(xi, xp, xs) =df sign(pair(h(xi), h(xp)), xs)

The merchantM receivesdual(xi, xp, xs), xi andh(xp),
while B receivesdual(xi, xp, xs), h(xi) andxp. The dual
signature hides the order itemxi from B, and the payment
dataxp from M , nonetheless the dual signature linksxi to
xp so that their correspondence cannot later be disputed.
We now consider in more detail whatB learns during pro-
tocol execution. Let variablexd = dual(xi, xp, xs) refer to
the dual signature thatC creates in the current run. At the
end of the protocol,B knows that the dual signature was
produced byC ’s private signing key:

�BC signedxd

where C signedxd might abbreviate ∃xs.∃y.xd =
sign(y, xs) ∧ xs sign key ofC. Using h(xi) and xp, the
bank can determine the payment dataxp inside:

�Bxd contains paymentxp

wherexd contains paymentxp abbreviates∃xi.∃xs.xd =
dual(xi, xp, xs). But,B cannot determine the order item:

¬�Bxd contains itemxi

where xd contains itemxi abbreviates∃xp.∃xs.xd =
dual(xi, xp, xs). Finally, B is assured thatM can deter-
mine the order item:

�B∃xi.�Mxd contains itemxi

7 Axiomatization

In table 1, we define a Hilbert-style axiomatization, rel-
ative to a message congruence≡ with a hash operatorh.



First-order
(Insx) ∀x.F → F [y/x] (Insm) ∀m.F [m/x] → F [M/x]
(Boundx) ∀x.F ↔ F , if x is not free inF (Boundm) ∀m.F [m/x] ↔ F , if x is not free inF
(Dist x) ∀x.(F → F ′) → ∀x.F → ∀x.F ′ (Dist m) ∀m.(F [m/x] → F ′[m/x]) → ∀m.F [m/x] → ∀m.F ′[m/x]
(Subst)t = t′ → F [t/x] → F [t′/x], if F has no modality (Inst) ∀x.F → F [t/x], if F has no modality
(Eq) t = t (m x) ∃m.x = m
(Taut)F , if F is truth functional tautology

(Genx)
F

∀x.F
(MP)

F → F ′, F

F ′

Modal S5
(K) �A(F → F ′) → (�AF → �AF ′) (T) �AF → F
(4) �AF → �A�AF (5)¬�AF → �A¬�AF

(Nec)
F

�AF
Knowledge and Cryptography
(�1) �A x → (y = f(x) → �Ay = f(x)) (�2) x = y → �Ax = y
(�3) y = f(x) → �A x → �A y (�4) �AF (x, y) → �Ay → ¬�Ax, z
(�5) ∃x.∃y.x 6= y ∧ ¬�A x, y →

∧
i,j

(xi = xj ↔ zi = zj) → F [z/x]

Omega
(≡) M = M ′, if M ≡ M ′ ( 6≡) M 6= M ′, if M 6≡ M ′

(Genm)
F [M/x], all M ∈ T

∀m.F [m/x]

Figure 1. Axioms and Rules

The first group of axioms and rules is inherited from first-
order logic, and includes a (less standard) axiom connecting
the two kinds of quantifier. The second group is modal S5,
as expected for introspective knowledge. The third group
contains five axioms for the interaction between knowledge
and cryptography. While axiom (�2) is well-known from
first-order modal logic, the other four axioms are novel.
Axiom (�1) reflects the assumption that each operatorf
is feasible to compute. Axiom (�3) states that inferred
messages are closed under operatorsf . Axiom (�4) re-
flects the assumption that non-inferred values are “anony-
mous”: The statement says that the agent knows a property
of some non-inferred valuesx only if this property holds of
any non-inferred valulesz with the same pattern of identi-
ties. More precisely, assumex, y are all variables free in
F . AssumeA infers messagesy but A cannot infer any
of messagesx, z. Assume, finally, thatx andz have the
same pattern of identities. Then,�AF → F [z/x]. Axiom
(�5) reflects the restriction on systems needed for theorem
2, namely that there are at least two messages that agent
A does not infer. In [14], we provide correspondence re-
sults for axioms (�1) and (�4). The fourth group includes
all equalities and inequalities from≡ and an omega-rule
for the de dictoquantifier. Write⊢ F whenF is a deriv-
able theorem. We obtain some standard theorems, such as
Barcan and converse Barcan for both kinds of quantifier,
and unrestricted substitution for variables. Some character-

istic theorems used in our results are:�A x → �A�A x,
¬�A x → �A¬�A x, and ift contains no secret constantc
thenx = t → �A VAR(t) → �Ax = t.

8 Soundness and Completeness

We arrive at the main result. We consider only systems
where|Inferable(A, s)| ≥ 2, for all s ∈ S and allA ∈ A.

Theorem 4 ⊢ F ⇔ |= F

In the rest of this section, we build the completeness con-
struction. The following sections - sections 9 and 10 - can
be read independently. The completeness construction uses
abstract counterpart models, with arbitrary states (“possi-
ble worlds”) w, arbitrary domain of quantification, arbi-
trary accessibility relation−→ρ

A and arbitrary (non-rigid)
interpretation of function symbols. The first step is a stan-
dard canonical Kripke modelK, which is transformed into a
counterpart modelK⋆ by adding some epistemic transitions.
For each transitionw −→A w′ in K, a transitionw −→π

A w′

is added, whereπ is any permutation of non-inferred items
at w, i.e., items satisfying¬�A x at w. Continuing, we
define a morphismd, which morphsK⋆ into a counterpart
modeld(K⋆) with a rigid interpretation of functions sym-
bols f , given by the background message equivalence≡.
Finally, a morphismw transformsd(K⋆) into a counterpart



modelw(d(K⋆)), which is equivalent to an interpreted sys-
tem.

Abstract Counterpart Model We review some basics
from (a variant of) counterpart semantics (cf. [18]). An ab-
stract counterpart model is a structureC = 〈W, D,−→, I〉,
defined as follows. W is a non-empty set of worldsw,
andD is a non-empty domain of objectsd. For A ∈ A,
→A⊆ W × (D −→ D) × W is the epistemic accessi-
bility relation. Informally,w −→ρ

A w′ means thatw and
w′ are indistinguishable forA and eachd ∈ D at w cor-
responds forA to ρ(d) at w′. I is a world-relative in-
terpretation, i.e.,I(c, w) is a member ofD, I(f, w) is an
operation inD matching the arity off , andI(p, w) is a
relation in D matching the arity ofp. Thus, the inter-
pretation off and c is left open, and need not be rigid.
An assignment inC is a functionV : VAR −→ D. As-
signments are extended to arbitrary terms with respect to a
world w as usual:V (x, w) = V (x), V (c, w) = I(c, w),
V (f(t1, ..., tn), w) = I(f, w)(V (t1, w), ..., V (tn, w)).
Truth conditions are as expected:

w, V |=C �AF ⇔ ∀w′ ∈ W : ∀ρ : w −→ρ
A w′ ⇒

w′, ρ ◦ V |=C F

w, V |=C t = t′ ⇔ V (t, w) = V (t′, w)

w, V |=C p(t1, ..., tn) ⇔ 〈V (t1, w), ..., V (tn, w)〉 ∈ I(p, w)

w, V |=C ∀x.F ⇔ ∀d ∈ D : w, V [x 7→ d] |=C F

w, V |=C ∀m.F [m/x] ⇔ ∀M ∈ T : w, V |=C F [M/x]

Any interpreted systemI = 〈LOC, S, |, I〉 determines a
counterpart modelCI = 〈S, T≡,∼, I ′〉, where∼A is de-
fined as in section 4 andI ′(p, s) = I(p, s) andI ′(f, w) = f
andI ′(c, w) = c. We say thatCI is induced byI.

Corollary 3 s, V |=I F iff s, V |=CI
F .

A counterpart modelC is Kripkean if w −→ρ
A w′ implies

thatρ = Id, whereId is identity onD. WhenC is Krip-
kean, we omit the indexId, and writew −→A w′ for the
transitionw −→Id

A w′. We say that substitutions are bijec-
tive in C, if w −→ρ

A w′ impliesρ is a permutation onD.
Assume a counterpart modelC = 〈W, D,−→, I〉. As-

sume a setW ′ of worlds and a domainD′. A morphism
from C to W ′ andD′ is a pairw, d such that:

• w : W −→ W ′ is a bijective map

• dw : D −→ D′ is a bijective map, for eachw ∈ W

The morphismw, d is a domain-morphism, ifW = W ′

andw is identity onW . The morphismw, d is a world-
morphism, ifD = D′ anddw is identity onD. For domain-
morphisms, we leave the identityw implicit. Similarly, for
world-morphisms, we leave the mappingd implicit. Let

w, d be a morphism fromC to W ′ andD′. The application

of w, d onC is wd(C) = 〈W ′, D′ wd
−→, Iwd〉, where

• w(w)
wd
−→

ρ

A w(w′) iff w −→ρ′

A w′ whereρ′ = d−1
w′ ◦

ρ ◦ dw.

• Iwd(o, w(w)) = dw(I(o, w)), o ∈ SEC∪ Σ ∪ P .

Thus, wd(C) is the result of pointwise “relabelling”C
throughw andd.

Lemma 3 w, V |=C F ⇔ w(w), dw ◦ V |=wd(C) F .

Canonical Kripke Model The canonical Kripke model is
built on saturated sets in the usual way [19]. A statementF
is derivable from a setΓ of statements, in symbolsΓ ⊢ F ,
if there is a finite number of statementsF1, ..., Fn ∈ Γ such
that⊢ F1, ..., Fn → F . The setΓ is consistent ifΓ 6⊢ ⊥, and
Γ is maximal consistent if it is consistent and no larger set
is consistent. The setΓ is omega-complete if wheneverΓ ⊢
F [y/x] for all y ∈ VARthenΓ ⊢ ∀x.F and, also, whenever
Γ ⊢ F [M/x] for all M ∈ T thenΓ ⊢ ∀m.F [m/x]. The
set Γ is saturated if it is maximal consistent and omega-
complete.

Given a saturated setw0, the canonical Kripke model
K = 〈W, D,→, I〉 is defined as follows. The setW of
worlds is the set of all saturated sets which containx = y
if and only if w0 containsx = y. The domainD is the set
of equivalence classes|x| = {y : x = y ∈ w0}. The epis-
temic accessibility is given by:w −→A w′ ⇔ w|A ⊆ w′,
wherew|A is {F : �AF ∈ w}. Finally, the interpreta-
tion is defined as follows:I(f, w)(|x1|, ..., |xn|) = |y| iff
(f(x1, ..., xn) = y) ∈ w, andI(c, w) = |y| iff (c = y) ∈
w. The canonical assignmentVK assigns|x| to variablex.

Lemma 4 (Truth Lemma for K) w, VK |=K F ⇔ F ∈ w

Anonymous Non-inferred Items We transformK into
a model where non-inferred items, i.e., items satisfying
¬�A x, are anonymous in the sense that every permuta-
tion of such items is “epistemically possible”. The transfor-
mation relies on axiom (�4). Assume a counterpart model
C = 〈W, D −→, I〉. Write InferableC(A, w) for the set of
items inferred by agentA at worldw, i.e, InferableC(A, w)
is {d ∈ D | w, V [7→ d] |=C �A x}. The anonymization of
C is the modelC⋆ = 〈W, D

⋆
−→, I〉, where

⋆
−→ is the least

extension of−→ such that

w
⋆

−→
ρ

A w′ ⇒ w
⋆

−→
ρ◦π

A w′

for every permutationπ on InferableC(A, w). (π is ex-
tended to the whole domainD in the expected way:π(d) =
d if d ∈ InferableC(A, w).)

Lemma 5 w, V |=K F ⇔ w, V |=K⋆ F .



Rigid Operators We define a domain-morphismd, which
morphsK⋆ into a modeld(K⋆) where operatorsf and con-
stantsc have their intended, rigid denotation, given by the
background equivalence≡. The transformation relies on
axioms (m x), (≡) and (6≡). For eachw ∈ W , we relateD
andT≡ by the relation:dw = {〈|x|, M〉 | x = M ∈ w}.

Lemma 6 d is a morpism fromK⋆ to W andT≡.

Let d(K⋆) = 〈W, T≡,
d

−→, Id〉 be application ofd onK⋆.

Lemma 7 Id(f, w) = f andId(c, w) = c.

Canonical Interpreted System Finally, we define a
world-morphismw, which morphsd(K⋆) into a model
w(d(K⋆)) induced by an interpreted system. The transfor-
mation step relies on axioms (�1) and (�5). We assume the
following set of store locations:LOC = F ∪((D∪F)×A)
(whereD is the domain inK andK⋆). Each agent observes
store locations indexed by itself:LOC|A = (D∪F)×{A}.
The morphismw mapsW to states overLOCdefined by:

1. w(w)(〈|x|, A〉) = dw(|x|), if |x| ∈ InferableK(w, A).

2. w(w)(〈|x|, A〉) = ⊥, if |x| 6∈ InferableK(w, A).

3. w(w)(〈F, A〉) = ⊤, if �A F ∈ w.

4. w(w)(〈F, A〉) = ⊥, if �A F 6∈ w.

5. w(w)(F ) = ⊤, if F ∈ w.

6. w(w)(F ) = ⊥, if F 6∈ w.

where⊥ and⊤ are two non-equivalent 0-arity operators
from Σ. (If there is only one such operator, i.e., the sin-
gle agentA, then let⊥ = A and⊤ = h(A).) Requirements
(3) and (4) onw encode the knowledge statew|A inside the
local statew(w)|A. Requirements (5) and (6) ensure injec-
tivity. Requirements (1) and (2), together with (3) and (4),
ensure that the same permutationsρ are possible between

w(w) andw(w′) in ∼A as betweenw andw′ in
d

−→A:

Lemma 8 w
d

−→
ρ

A w′, if and only if,w(w) ∼ρ
A w(w′).

Let the canonical interpreted system beI = 〈LOC, S, |, I〉,
where S = {w(w) : w ∈ W} and I(p, w(w)) =
{〈M1, ..., Mn〉 | w(w)(p(M1, ..., Mn)) = ⊤}.

Lemma 9 w(d(K⋆)) is induced byI.

By axiom (�5), I satisfies our restriction on systems.

Theorem 5 Every consistent statement is satisfiable in
some interpreted system.

From theorem 5, we get completeness theorem 4.

9 Embedding of BAN and SVO

The BAN Modality We show how to capture the epis-
temic modality from BAN logic [10]. BAN statements
β are propositional, built from closed atomic statements
p(M1, ..., Mn), epistemic modalities and Boolean opera-
tors. (Original BAN includes “idealized” messages, but no
negation. But, these differences are othogonal the our con-
cern here.) Necessitation (Nec) is incompatible with BAN,
since termsM refersde re [12, 13, 14]. We propose that
the following omega-weakening of necessitation is faithful
to BAN:

β[M/c], all M

�A M → �Aβ[M/c]
(WNec)

wherec lists all constant occurring inβ. For instance:

enc(M, K) containsM, all M, K

�A M, K → �A enc(M, K) containsM

In [14], we use ruleWNecto derive BANs message meaning
rule and another characteristic BAN rule. Similar weaken-
ings of necessitation appear in [12, 13, 23]. Define transla-
tion τ from BAN into our logic:

β(M)τ = ∃x.(β(x) ∧
∧

i

xi = Mi)

whereM is a list 〈M1, ..., Mn〉 of all ground terms oc-
curring as arguments to predicates inβ, β(x) is the result
of substitutingxi for Mi, and∃x abbreviates∃x1...∃xn.
For instance,τ translates�A�BA receives enc(M, K) to
∃x.x = enc(M, K) ∧ �A�BA receivesx. Let WNecτ be
theτ -translations ofWNec.

Proposition 2 WNecτ is a derived rule.

The embeddingτ induces a new truth condition:

Proposition 3 The following are equivalent:

• s |=I (�Aβ(M))τ

• ∀s′ ∈ S : ∀ρ : s ∼ρ
A s′ ⇒ s′ |=I β(ρ(M ))τ

Providing a faithful semantics for BAN’s modality has been
a longstanding problem. The truth condition in proposition
3 is, essentially, a generalization to an arbitrary equational
theory of the semantics proposed for BAN in [12, 13].

The SVO Modality Protocol derivations in SVO [32], a
successor to BAN, uses variables (represented as stars:⋆,
⋆x, ⋆y, etc.) to referde reto possibly undecrypted content.
The derivations assume that seeing implies knowledge of



seeing to the extent that the seen message can be decrypted.
For instance, for the equational theory in example 1,

A seesenc(pair(x, x′), pk(z)), A infersz →

�AA seesenc(pair(x, x′), pk(z)) (4)

Seeing introspection principles, such as (4), are not justified
by the proof system in [32], but the authors remark that it
would be straightforward to capture such implications in an
axiom. We propose the following axiom:

A seesT → �A VAR(T ) → �AA seesT (SEE)

where T is any term without constants fromSEC.
The semantics in [32] does not support (4) or SEE. More
generally, the semantics there does not supportde rerefer-
ence of variables. We show, however, that our semantics
fits (4) andSEE. Let SVObe the following assumption:

∀x.(A seesx → �AA seesx) ∧ ∃x.(¬�A x ∧ ¬A seesx)

Trivially, an interpreted systemI satisfies the first conjunct
of SVO if, and only if, ρ(I(A sees, s)) ⊆ I(A sees, s′)
whenevers −→ρ

A s′ in I.

Proposition 4 ⊢ SVO→ SEE and⊢ SVO→ (4).

10 Related Work

In [13] we use a propositional variant of the semantics
presented here to account for BAN, and [12] gives a com-
pleteness result. For the relationship to [13], see proposition
3 and its explanation. The completeness result of this paper
is stronger and much less ad hoc: The logic is richer, we
avoid restriction to finite message spaces (which does not
square well with most formal accounts of cryptography),
we avoid the ad hoc ”internal actions” used in [12] with
no clear computational meaning, and the axiomatization is
much less schematic and does not rely on a specific term
algebra.

In the security literature, there are several semantics for
epistemic logic. Often, the “standard” multi-agent system
semantics [16] is used, with identity as the equivalence on
local states (cf [21, 30]). But in connection with cryp-
tography, identity is clearly inappropriate as equivalence.
This is manifested in counter-intuitive validities such as
∃x.A receivesenc(M, x) → �A∃x.A receivesenc(M, x).
Our semantics is most closely related to the AT-semantics
[4, 5]. The AT semantics, which applies only to symmet-
ric encryption, reduces indistinguishability to identityon
expressions that use a fixed symbol� to represent unde-
cryptable sub-expressions, and thereby loses all information
about undecryptable data, including knowledge that may
have been obtained indirectly, for instance, as a result of the

protocol being executed (cf. the examples in section 6, also
the unsoundness of BAN’s message meaning rule in AT).
We emphasize that thare are no completeness results for
AT-semantics, or its variants (cf. [32]). Moreover, since AT-
semantics, and its variants, follow basic Kripke semantics,
they render agents cryptographically omniscient (1). On the
other hand, approaches based on explicit knowledge avoid
cryptographical omniscience but have other drawbacks, dis-
cussed briefly in section 1. The compositional protocol
logic of Durgin et al [15] uses knowledge only in terms of
Dolev-Yao type message deduction. The role of permuta-
tions in our semantics is slightly reminiscent of [8, 33]. A
version of theorem 3 for an AT-style semantics was pro-
posed by S. Kramer (private correspondence).

The application of epistemic logic to cryptographic pro-
tocol analysis goes back to BAN logic [10]. Our protocol
examples are, more directly, inspired by anonymity speci-
fications in [21] and specifications for the SET protocol in
[7]. We refer to [23] for a comprehensive dictionary of epis-
temic security specifications.

Interaction axiom (�3), and, to a lesser degree, interac-
tion axiom (�1), are reminiscent of BAN-style proof sys-
tems. However, BAN-style proof systems contain only ad
hoc rules specific to concrete predicates.

11 Concluding Remarks

One issue left open by our work is the role of thede dicto
quantifier∀m. We have been unable to obtain completeness
for a compact logic which does not use this quantifier. A
candidate omega-rule is:

x = M → F, all M ∈ T

∀x.F
.

We can show that thede dictoquantifier adds to the expres-
sive power. LetΣ = A = {A}, i.e., let there be only one
public operator, namely the agent identifierA, and let≡ be
identity on ground terms.

Proposition 5 No statement free of thede dictoquantifier
is equivalent to∃m.∃x.x 6= A ∧ �Ax = m.

Our semantics is formulated in a counterpart semantics
framework, although the choice of framework is, to some
extent, a matter of taste. It is possible to reformulate the
semantics in the framework of first-order intensional logic
[9]. In such a framework, variables denote intensions, i.e.,
functions from states to individuals. In our setting, individ-
uals are messages, and intensions are terms built from store
locations and operators, such as thes-terms of section 2.
However, reformulating our logic as a first-order intensional
logic would, it seems, make security specifications more
complex. A statement�AF (x) in our logic translates to,
it seems, something like∃y.x = y ∧A-term(y)∧�AF (y),



whereA-term is a predicate which applies to an intension
if that intension is built from feasibly computable opera-
tors and store locationsA can observe. An additional in-
tensiony is needed, since the intensionx might be built
from store locations not observed byA. As a result, the
translation induces extra nesting of quantifiers and modal-
ities. To illustrate, the statement�B�AF (x) translates to
∃y.x = y∧B-term(y)∧�B∃z.z = y∧A-term(z)∧�AF (z).

The proposed logic is static only: It expresses properties
of states, but not of computations. In the future, we plan to
extend the completeness result to include temporal modal-
ities, and to link to concepts in information flow security,
and to behavioral equivalences for applied pi.
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