
A GENERIC PROTOCOL FOR NETWORK STATE AGGREGATION

Mads Dam and Rolf Stadler

Dept. of Microelectronics and Information Technology, KTH, Stockholm, {stadler,mfd}@imit.kth.se

ABSTRACT

Aggregation functions, which compute global parameters,
such as the sum, minimum or average of local device
variables, are needed for many network monitoring and
management tasks. As networks grow larger and become
more dynamic, it is crucial to compute these functions in
a scalable and robust manner. To this end, we have devel-
oped GAP (Generic Aggregation Protocol), a novel proto-
col that computes aggregates of device variables for net-
work management purposes. GAP supports continuous
estimation of aggregates in a network where local state
variables and the network graph may change. Aggregates
are computed in a decentralized way using an aggregation
tree. We have performed a functional evaluation of GAP
in a simulation environment and have identified configura-
tion choices that potentially allow us to control the perfor-
mance characteristics of the protocol.

1 INTRODUCTION

Network management systems collect state variables from
network devices and process them to perform global con-
trol actions in accordance with management objectives.
Since management is a global operation, management ap-
plications generally involve monitoring global parameters
that are functions of local variables on devices, rather than
monitoring individual variables [3]. For example, one is
interested in the average load of UDP traffic across all
network links, rather than in the load on individual links.
Similarly, one may seek the sum of the SYN packets enter-
ing an organizational network through various gateways,
rather than the number of packets on a each gateway, or the
total number of service requests directed to a distributed
web site, rather than the number of requests each server
processes, etc.

Global parameters used by management applications
are often aggregation functions, such as sum, max and av-
erage of device-level counters. In addition, more complex
aggregation functions, including SQL-style queries have
recently been proposed (cf. [10, 11]).

In traditional management approaches, the aggregation
of local variables from different devices is performed in
a centralized way, whereby an application running on a
management station retrieves state variables from agents
in network devices and performs the aggregation on the
management station. For small and static networks, such
approaches have proved efficient and effective. However,
in the case of large networks and dynamic network envi-
ronments, including sensor and mobile networks, these ap-
proaches have well-known drawbacks with respect to scal-
ability and fault tolerance. A centralized architecture can
lead to a large amount of management traffic exchanged

between the management station and the agents, a high
processing load on the management station, and long ex-
ecution times for management operations, since all these
metrics generally grow linearly with the number of net-
work nodes. Further, the management station is a single
point of failure in a centralized architecture, which makes
engineering a robust system difficult.

The focus of this paper is on a distributed scheme
for computing aggregation functions for network manage-
ment purposes in a scalable and robust manner. Specifi-
cally, we present GAP (Generic Aggregation Protocol), a
novel protocol that allows a management station to con-
tinuously receive an estimate of the current state aggre-
gate Πnwn(t), where wn(t) is the local value associated
with node n at time t, and where multiplication repre-
sents aggregation. We generally use the generic term
weight to represent a state variable on a network node.
Weights can be router loads, sensor data, or traffic statis-
tics. The weights are aggregated by an aggregation func-
tion ∗, which is assumed to be commutative, associative,
and possesses an identity element 1.

We assume that each network device executes the pro-
tocol in a management process, either internally or on an
external, associated device. These management processes
communicate via a network overlay. We refer to this over-
lay as the network graph. A node in this graph is a network
device together with its management process.

Our design goals for GAP are as follows:

• The convergence time, i.e., the time between a weight
change on a node and the time this change is reflected
in the aggregate on the management station, must be
short.

• GAP must be robust with respect to node failures and
recoveries. This means that a weight of a failed node
will be removed from the aggregate until the node
recovers. Also, the weights of new nodes that join
the network, must be reflected in the aggregate, all
within tolerable delays and error margins.

• GAP must provide efficient and scalable operation.
This means that the load on the nodes must be bal-
anced and the number of messages exchanged in the
overlay must be small compared to a centralized ag-
gregation protocol.

GAP is based on a distributed algorithm that builds and
maintains a BFS tree on a network graph, following the ap-
proach of Dolev, Israeli and Moran [4]. GAP uses this tree
to propagate aggregates back to the root, which is the start
node of the protocol. This backpropagation may introduce
spurious errors, but it can be shown that for static networks
(no failures, no node creations) the worst case convergence
time is no worse than the 2ld response time for the wave



propagation based solution where l is the maximal link de-
lay and d the network diameter.

In this paper, we provide a description of GAP (Section
3) and briefly report on a functional evaluation in a simula-
tion environment (Section 4). A more complete functional
evaluation will be included in an extension of this paper.
An evaluation of performance of GAP in terms of conver-
gence times and message overhead is part of our current
work (see Section 5).

2 RELATED WORK

The problem of distributed aggregation has received quite
some attention recently [13]. In the domain of sensor net-
works, Madden et al. [11] use a tree topology maintenance
approach closely related to ours. Their work is geared to-
wards the sensor network setting, and in particular their
protocol mixes in failure detection and MAC layer con-
cerns, such as link quality, which in our approach is kept
separate from the basic aggregation algorithm.

In [5] various difficulties involved in the distributed
computation of aggregates are discussed, and a solution
is proposed which uses hierarchical groups and gossiping.
This work, however, focuses on one-shot distributed func-
tion evaluation in contrast to continuous monitoring. Gos-
siping has been considered as an approach to distributed
aggregation by other authors as well. For instance, [6] de-
scribes a proactive scheme which “pushes” an aggregate
to all nodes in an overlay network using an anti-entropy
scheme. This work, however, assumes properties of the
overlay network (either fully connected or a connected
unbiased random topology) which makes its applicability
as a general solution to the aggregation problem unclear.
Other work dependent on particular forms of overlays in-
clude [7], which uses a DHT-based p2p overlay as a basis
for constructing aggregation trees.

In our earlier work [8, 9], we have introduced a pro-
tocol for distributed state aggregation based on an echo
algorithm. This protocol supports distributed polling of
an aggregate state variable, which is a one-shot operation.
GAP on the other hand, supports continuous estimation of
an aggregate, while local state variables and the network
graph may change. Both protocols use a spanning tree to
incrementally aggregate the local variables.

The paper [3] proposes two algorithms that produce an
event when the threshold of an aggregate function has been
reached. Their solution is based on a centralized architec-
ture. The goal of the algorithms is to reduce the monitor-
ing communication overhead. The main difference to our
work is the objective: While GAP produces a continuous
estimate of a global aggregate function, their algorithms
produce events, when a given threshold of such a function
has been reached.

A particular difficulty which our works shares with most
other approaches based on aggregation trees, is that link
and node utilization increases with decreasing distance to
the root. In this paper this is addressed by imposing a fixed
upper bound on the frequency with which update messages
can be back-propagated. More sophisticated approaches
have been explored by other authors, for instance to im-
pose local thresholds for backpropagation while still aim-

Node Status Level Weight
n1 child 4 312
n2 self 3 411
n3 parent 2 7955
n4 child 4 33
n5 peer 4 567

Figure 1. Sample node table

ing to provide global error guarantees [2]).

3 THE GAP PROTOCOL

Essentially, the GAP protocol is a modified version of the
BFS algorithm of Dolev, Israeli, and Moran [4]. The pro-
tocol of [4] works in coarsely synchronized rounds where
each node exchanges its beliefs concerning the minimum
distance to the root with all of its neightbours and then up-
dates its belief accordingly. Each node also maintains a
pointer to its parent, through which the BFS tree is repre-
sented.

The GAP protocol amends this basic algorithm in a
number of ways:

1. The protocol uses message passing instead of shared
registers.

2. Each node needs to maintain information about its
children in the BFS tree, in order to correctly com-
pute aggregates, and it performs the actual aggrega-
tion.

3. GAP is event-driven. This reduces traffic overhead
at the expense of self-stabilisation, and it introduces
some twists to ensure that topology changes are prop-
erly handled.

3.1 Data Structures
In GAP, each node n maintains a neighbourhood table T

such as the one pictured in fig. 1 containing an entry for
itself and each of its neighbours. In stable state the table
will contain an entry for each live neighbour containing its
identity, its status vis-a-vis the current node (self, parent,
child, or peer), its level in the BFS tree (i.e. distance to
root) as a non-negative integer, and its aggregate weight
(i.e. the aggregate weight of the spanning tree rooted in
that particular node). The exception is self. In that case
the weight field will contain only the weight of the local
node.

Initially, the neighbourhood table of all nodes n except
the root contains a single entry (n, self, l0, w0) where l0
and w0 is some initial level, resp. weight. The initial level
must be a non-negative integer. The initial neighbourhood
table of the root contains in addition the entry

(nroot, parent,−1, wroot)

where nroot is a “virtual root” node id used to receive out-
put and wroot is arbitrary. This virtual root convention en-
sures that the same code can be used for the root as for



other nodes, unlike [4] where the root is hardwired in or-
der to ensure self-stabilization.

3.2 The Execution Model
The protocol executes using asynchronous message pass-
ing. The execution model assumes a set of underlying ser-
vices including failure detection and neighbour discovery,
local weight update, message delivery, and timeout, deliv-
ering their output to the process inqueue as messages of
the form (tag, Arg

1
, ..., Arg

n
). The following five mes-

sage types are considered:

• (fail, n) is delivered upon detecting the failure of
node n.

• (new, n) reports detection of a new neighbour n. At
time of initialisation, the list of known neighbours is
empty, so the first thing done by the protocol after
initialisation will include reporting the initial neigh-
bours.

• (update, n, w, l, p) is the main message, called an
update vector, exchanged between neighbours. This
message tells the receiving node that the BFS tree
rooted in sending node n has aggregate weight w and
that n has the level and parent specified. This mes-
sage is computed in the obvious way from n’s neigh-
bourhood table using the operation upd vector(T ).
Observe that the parent field of the update vector is
defined only when n’s neighbourhood table has more
than one entry.

• (weight, w) is delivered as a result of sampling
the local weight. The frequency and precision with
which this takes place is not further specified.

• (timeout) is delivered upon a timeout.

3.3 Ancillary Functions
The algorithm uses the following ancillary functions:

• newentry(n) returns n and creates a table entry

T (n) = (n, s, l0, w0)

where s = peer, and l0 and w0 are suitable default
values. If the row T (n) already exists, no change is
performed.

• removeentry(n) removes the row T (n), if it ex-
ists.

• updateentry(n, w, l, p) assigns w and l to the
corresponding fields of T (n), if they exist, other-
wise the row is first created. If p = self() then
T (n).Status becomes child. This reflects the situa-
tion where n says that self() is parent. Otherwise, if
T (n).Status = child then T (n).Status becomes peer.

• level(n) returns the level of n in T , if it exists, oth-
erwise the return value is undefined.

• parent() returns the node id n such that
T (Node).Status = parent. If no such node id exists,
a special value nd representing the undefined node is
returned.

• send(n, v) sends the update vector v to the node n.

• broadcast(v) sends v to all known neighbours,
not necessarily in atomic fashion.

3.4 The Algorithm
The main loop of the algorithm is given in pseudocode in
fig. 2. Each loop iteration consists of three phases:

1. Get the next message and update the table accord-
ingly.

2. Update the neighbourhood table to take the newly
received information into account (the operation
restoreTableInvariant).

3. Notify neighbours of state changes as necessary. In
particular, when a new node has been registered, the
update vector must be sent to it to establish con-
nection, and when the update vector is seen to have
changed and sufficient time has lapsed, the new up-
date vector is broadcast to the known neighbours.

Much of the semantics of the GAP protocol is embodied in
the operation restoreTableInvariant. Part of the
tasks of this operation is to ensure a set of basic integrity
properties of the neighbourhood table such as:

• Each node is associated with at most one row.

• Exactly one row has status self, and the node of that
row is self().

• If the table has more than one entry it has a parent.

• The parent has minimal level among all entries in the
neighbourhood table.

• The level of the parent is one less than the level of
self.

In addition an implementation of the
restoreTableInvariant operation may im-
plement some policy which serves to optimize protocol
behaviour in some respect such as:

• Optimization of convergence time, or

• Minimization of overshoot/undershoot after faults, or
during initialisation.

Example policies are:

• Conservative: Once the parenthood relation changes,
all information stored in the neighbourhood table ex-
cept neighbour identities and levels and status of par-
ent and self becomes, in principle, unreliable and
could be forgotten (assigned the undefined value).
This policy will ensure that the aggregate is, in some
reasonable sense, always a lower approximation of
the “real” value.

• Cache-like: All information stored in the neighbor-
hood table, except information concerning self or sta-
tus of parent, is left unchanged. This appears to be a
natural default policy, as it seems to provide a good
compromise between overshoot/undershoot and con-
vergence time.



proc gap() =
... initialize data structures and services ...
Timeout = 0 ;
New = null ;
Vector = updatevector();
... main loop ...
while true do
receive

{new,From} =>
NewNode = newentry(From) ;

| {fail,From} =>
removeentry(From)

| {update,From,Weight,Level,Parent} =>
updateentry(From,Weight,Level,Parent)

| {updatelocal,Weight} =>
updateentry(self(),Weight,level(self()),parent())

| {timeout} => Timeout = 1
end ;
restoreTableInvariant() ;
NewVector = updatevector();
if NewNode != null

{send(NewNode,NewVector); NewNode = null} ;
if NewVector != Vector && Timeout

{ broadcast(NewVector); Vector = NewVector; Timeout = 0 }
od ;

Figure 2. Main loop of algorithm.

• Greedy or adaptive policies: Other policies can be
envisaged such as policies which attempt to pre-
dict changes in neighbour status, such as proactively
changing the status of a peer once its level has seen
to be 2 or more greater than self’s. It is also possible
to adapt the tree topology to MAC layer information
such as link quality, as is done in [11].

4 EXPERIMENTAL EVALUATION

We have implemented GAP on SIMPSON, a network sim-
ulator that allows to study protocols on network graphs [1].
To date, we have performed simulation studies that allow
a functional evaluation of GAP in different scenarios. We
have studied the behavior of GAP during its initialization
phase, during periods of random weight changes on nodes
and during periods of random node failures and recoveries.

In the following, we show the results from two simula-
tion runs using the topology of Tiscali, an ISP in the U.S.,
which has 506 nodes and 750 links. This topology was
obtained from results of the Rocketfuel project [12]. We
chose the overlay topology to be identical to the physical
network topology. The root node was selected near the
center of the network.

For the simulation experiments, the message size was
chosen to be 1KB, the link delay 4ms, the proto-
col overhead 1ms, and the execution delay 1ms. We
ran GAP with a cache-like policy for the operation
restoreTableInvariant (Section 3).

Scenario 1 (Weight change): All weights are initialized
with 10. At t=0, GAP starts initializing in the network
graph. At t=0.1, the root node starts invoking the aggrega-

tion function SUM on GAP. Between 1 sec and 3 sec, 50
randomly selected nodes change their weights to random
values that are uniformly distributed within [0,100].

Scenario 2 (Node failures and recoveries): All weights
are initialized with 10. At t=0, GAP starts initializing in
the network graph. At t=0.1, the root node starts invoking
the aggregation function SUM on GAP. During the first 2
seconds, nodes randomly fail at times that follow a random
exponential distribution with mean 0.01 sec. The recovery
times follow the same distribution.

Figures 3 and 4 show measurements from the simula-
tion runs. In both figures, the curve labeled actual repre-
sents the maximal achievable values for the aggregation
function SUM, i.e., the values an ideal system with in-
finite resources and no communication delay would pro-
duce. The second curve, labeled measured, gives the val-
ues computed by GAP. The difference between the curves
indicates the estimation error.

Figure 3 shows how GAP eventually converges towards
the maximal achievable values, once no further weight
changes occur, i.e., after 3 sec simulation time. The same
behavior can be observed in Figure 4, which shows how
GAP operates in a scenario with node failures and recov-
eries.

Figure 4 illustrates a striking property of the protocol
in form of large undershoots and overshoots of some es-
timated values when compared to the maximum achiev-
able values. We explain this by the fact that node fail-
ures and recoveries involve reconfiguration of the aggre-
gation tree. During the transient phase of reconfigura-
tion, the estimates for the aggregation function will be
wrong. A close inspection shows that estimates during a



5000

5500

6000

6500

7000

7500

1 1.5 2 2.5 3

actual
measured

 
 
 

Figure 3. Actual and estimated (measured) values vs. time for the aggregation function SUM in scenario 1.

transient phase depend on the specific policy for the oper-
ation restoreTableInvariant. We conclude from
this and other experiments that a different policy needs to
be found that minimizes such spikes in the estimation er-
ror. A second insight Figure 4 provides is that node fail-
ures during the initialization phase of GAP significantly
extend the duration of this phase.

The two simulation scenarios described above and many
more not reported in this paper provide experimental proof
that the functional behavior of GAP is as intended: The
protocol initializes correctly on various network topolo-
gies and provides estimates that converge in a short period
of time towards exact values of an aggregation function,
once no further changes in local weights occur. It is robust
with respect to node failures and recoveries in that the es-
timated values converge towards the exact values, once no
further failures and recoveries occur in the network.

5 DISCUSSION

GAP, as defined in this paper, is a generic protocol and thus
not bound to any particular aggregation function. In actual
implementations, the aggregation function can be chosen
at runtime and is then distributed along the aggregation
tree, from the root towards the leaf nodes. Such systems
have been independently proposed by Lim and Stadler [8]
for Internet management and Madden et al. in the context
of sensor networks [11].

While this paper describes the design of GAP and its
functional evaluation, our current work focuses on evalu-
ating the performance characteristics of GAP, specifically
aspects of scalability.

An important issue is to identify configuration choices
that can be used to control the performance of GAP. For
instance, the choice of the overlay topology clearly affects

the performance characteristics of the protocol. While,
for instance, a high degree of connectivity in the over-
lay reduces the depth of the aggregation tree and thus can
shorten the delay for a weight change to be reported to the
root, the same configuration can lead to overload of nodes
close to the root.

A further avenue of investigation is directed towards
identifying trigger functions for weight subscription and
update dissemination in GAP. Triggers can be based on
timers or thresholds related to weights or partial aggre-
gates. One of the interesting problems in this context is:
given a maximum tolerable estimation error, identify trig-
ger functions for all network nodes, such that the num-
ber of messages and the load on the nodes are minimized.
Roussopoulos et al. describe a possible approach in [2].
Acknowledgements This work has been supported by
VINNOVA under the project “Policy-Based Network
Management”. The functional evaluation of GAP has been
performed by Fetahi Wuhib, an M.Sc. candidate at IMIT,
KTH.

REFERENCES

[1] SIMPSON — a SIMple Pattern Simulator fOr Networks.

[2] N. Roussopoulos A. Deligiannakis, Y. Kotidis. Hierarchi-
cal in-network data aggregation with quality guarantees. In
Proc. 9th International Conference on Extending Database
Technology (EDBT), March 2004.

[3] M. Dilman and D. Raz. Efficient reactive monitoring. IEEE
Journal on Selected Areas in Communications (JSAC),
20(4), 2002.

[4] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only read/write atomicity. Dis-
tributed Computing, 7:3–16, 1993.

[5] I. Gupta, R. van Renesse, and K. Birman. Scalable fault-
tolerant aggregation in large process groups. In Proc. Conf.



 
 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.5 1 1.5 2

measured
actual

 
Figure 4. Actual and estimated (measured) values vs. time for the aggregation function SUM in scenario 2.

on Dependable Systems and Networks., pages 433–442,
2001.

[6] Márk Jelasity and Maarten van Steen. Large-scale newscast
computing on the Internet, October 2002.

[7] Ji Li and Dah-Yoh Lim. A robust aggregation tree on dis-
tributed hash tables. In Vineet Sinha, Jacob Eisenstein, and
Tefvik Metin Sezgin, editors, Proceeings of the 2004 Stu-
dent Oxygen Workshop, September 2004.

[8] K. S. Lim and R. Stadler. A navigation pattern for scalable
internet management. In Proc. 7th IFIP/IEEE Int. Symp. on
Integrated Network Management (IM 2001), 2001.

[9] K. S. Lim and R. Stadler. Weaver — realizing a scalable
management paradigm on commodity routers. In Proc. 8th
IFIP/IEEE Int. Symp. on Integrated Network Management
(IM 2003), 2003.

[10] K. S. Lim and R. Stadler. Real-time views of network traffic
using decentralized management. In Proc. 9th IFIP/IEEE
Int. Symp. on Integrated Network Management (IM 2005),
2005.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGggretation service for ad-hoc sensor net-
works. In Proc. 5th Symposium on Operating Systems De-
sign and Implementation, pages 131–146, 2002.

[12] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
topologies with Rocketfuel. In Proc. ACM/SIGCOMM,
2002.

[13] R. van Renesse. The importance of aggregation. In In
(A. Schiper, A.A. Shvatsman, H. Weatherspoon, and B. Y.
Zhao, eds.), Future Directions in Distributed Computing,
Lecture Notes in Computer Science, volume 2584, pages
87–92. Springer-Verlag, 2003.


