
Constrained Delegation

Olav Bandmann�
Swedish Institute of Computer Science (SICS)

Box 1263, SE-164 29 Kista, Sweden
olav@sics.se

Mads Damy
LECS/IMIT, Royal Institute of Technology (KTH)

KTH Electrum 229, SE-164 40 Kista, Sweden
mfd@kth.se

Babak Sadighi Firozabadi�
Swedish Institute of Computer Science (SICS)

Box 1263, SE-164 29 Kista, Sweden
babak@sics.se

Abstract

Sometimes it is useful to be able to separate between the
management of a set of resources, and the access to the re-
sources themselves. Current accounts of delegation do not
allow such distinctions to be easily made, however. We in-
troduce a new model for delegation to address this issue.
The approach is based on the idea of controlling the pos-
sible shapes of delegation chains. We use constraints to
restrict the capabilities at each step of delegation. Con-
straints may reflect e.g. group memberships, timing con-
straints, or dependencies on external data. Regular expres-
sions are used to describe chained constraints. We present
a number of example delegation structures, based on a sce-
nario of collaborating organisations.

1 Introduction

Consider the followingmotivating example: Organisa-
tion A produces some form of electronic documents which
it regards as sensitive for some reason. The documents may
have commercial value, or they may be classified in a mil-
itary sense. OrganisationA wishes to outsource some ad-
ministrative task concerning its IT system to some other or-�Supported by a project grant by Microsoft Research, CambridgeySupported by the Swedish Research Council, grant 281-98-653, “Se-
mantics and Proofs for Programming Languages”

ganisation,B. Included amongB’s tasks will be the assign-
ment of access rights, according to policies established byA. For instance, a user or customer ofA wishing to access
some document should, if the request adheres toA’s poli-
cies, be assigned that right byB. Not included amongB’s
privileges, on the other hand, should be the right to access
the documents for itself.

The natural solution to this problem is to use delega-
tion. A wishes to delegate toB some administrative priv-
ilege over some resource, though not necessarily the privi-
lege to use the resource for itself. In our approach we make
this distinction explicit and we give a formalism for repre-
senting fine-grained delegation of privileges both of access-
level and management-level type as explained in [5].

Acknowledging the danger of muddying further an al-
ready somewhat infected terminology ofdelegation, the
purpose of this paper is to propose a new view of delega-
tion, based on two key ideas:

1. The use of regular expressions to constrain the shape
of delegation trees.

2. The capability of delegators - principals that issue del-
egations - to further refine those constraints as the del-
egation trees are being constructed.

By means of (1) we achieve enough expressiveness to
easily handle our motivating scenario, as well as many more
of a more realistic shape. By means of (2) we make sure
that the expressiveness does not get out of hand — as few

constraints as necessary need be given up front, and as the
delegation tree is gradually built up, new constraints can be
introduced as needed.�� ��U������� ��A?����A0

HHHHj�� ��B?����B0
Figure 1. Example group hierarchy

To illustrate the approach let� be some authorisation,
such as the right to read documentx. Consider the group
hierarchy shown in fig. 1. Here,U is some global group
for the example,A andB are the groups (organisations)
of the motivating example,A0 is the owner ofx, andB0
will be the initial receiver inB of authorisation fromA0.
Being the owner,A0 is expected to possess all delegation
rights concerning�. In our approach this is expressed by a
certificate, or access control entry, of the shaped0 = (A0U�; �; t0)S
where� A0U� is a constraint expressing thatA0 is authorised

to pass on� rights toU in zero or more steps,� t0 is time of issuance� S is issuer (initially left unspecified)

Now,A0 wishes to transfer toB0, a specific subgroup ofB
trusted byA0 for this purpose, the authority to create an or-
ganisation withinB for assigning� privileges to members
of A. This is achieved byA0 issuing the following certifi-
cate: d1 = (B0B�A;�; t1)A0
This certificate is regarded as valid since:

1. It is issued byA0.

2. d0 assigns privileges concerning� to delegate to (re-
finements of)U�

3. B0B�A is a refinement ofU� as a regular language,
given the group hierarchy of fig. 1.

The certificated1 expresses an authorisation forB0, namely
the right to issue new certificates of the shaped2 = (A0; �; t2)B0
whereA0 is some subgroup ofA, or maybe of the shaped3 = (B1B�2A;�; t3)B0
in this way step by step creating, withinB, an organisation
with authority to administer the rights (�) within A.

Observe thatd1 and its derivatives can only be used to
grant� authorisations to members ofA, so if we assume
thatA andB are disjoint, no member ofB can used1 to
grant� to itself.

The objective of this paper is to motivate and introduce
this model of delegation, in the hope it will be seen as con-
tributing a new and interesting mechanism for transferring
authority between organisations in a flexible and control-
lable way.

Although this work is influenced by the work in theTrust
Managementarea (see [2, 1, 8, 7] and [3]), its goal and focus
is somewhat different. In this work, we do not address the
issue of distribution of privileges as it is done in e.g. Sim-
ple Public Key Infrastructure (SPKI) [3]. In our model, we
assume that there is a central authorisation server that ver-
ifies each delegation attempt separately. The focus of this
work is instead on how to decentralise, in a controlled and
verifiable way, the management (administration) of rights.
The authorisation server as a central verifier will approve
delegations as well as access permissions based on earlier
approved delegations and certain global information such
as revocations.

Earlier work on delegation has considered the virtues and
otherwise in imposing controls on the shape of delegation
trees. In [3], in particular, it is argued that, in SPKI, a princi-
pal possessing the right to delegate some permission should
also have the right to delegate that permission to herself.
This issue highlights an important way in which our setup
differs from that of SPKI. In SPKI, authorisations are bound
to public-private key pairs. A principal possessing a delega-
tion right must also have the right to produce a key pair to
which the delegated authorisation is bound. This key pair it
can acquire for itself, of course.

So, if the application at hand requires distinctions to be
made between permissions and the power to create permis-
sions, the SPKI model of binding authorisations to key pairs
must be somehow amended to allow key bindings to be con-
strained, or alternatively some other mechanism, such as
ACL’s, must be used.

In the paper we introduce and motivate the concept of
constrained delegation. The paper focuses squarely on the
handling of delegation trees; we are not concerned with is-
sues of distribution, binding, or enforcement mechanisms.

We give, in section 2, a simple set-based semantical model,
formalising the central notions of delegation chain, chain
constraints, certificate, and authorisation. On this basiswe
establish, in section 3, a soundness result providing a ba-
sic healthiness property for the relationship between delega-
tion chains and certificates. In section 4 we proceed to give
a possible syntactical representation for chain constraints.
The semantical framework imposes few restrictions on the
way this is done. Here one proposal is given, based on a
restricted form of regular expressions. We discuss some is-
sues involved in choosing a good representation and give a
couple of examples, mainly to illustrate the constructions
that are involved. Then, in section 5, a more comprehensive
scenario is discussed based on the idea of a number of na-
tional defence task forces delegating authority to a joint UN
command. In a first reading of the paper it may be worth-
while to skip directly to this section, before going into the
formal definitions. Several issues discussed briefly in the
conclusion are left for future work, including revocation se-
mantics, static and dynamic constraints, and practical reali-
sations.

2 The Formal Model

2.1 Certificates

The fundamental notion is that of aconstraint. In this
paper the nature of constraints is left primitive. For all prac-
tical purposes it suffices to think of constraints as (time-
varying) group membership constraints, as above. So con-
straints will be equipped with a partial order of entailment,
or containment, and there will be a satisfaction relation ex-
plaining when (at what times) a constraint will be satisfied
by a given principal.

Definition 1 (constraint structure) LetP be a set, the set
of principals. We denote the natural numbers byT (as in
time). A constraint structureis a triple (P ; C; j=), whereC
is a partially ordered set, and wherej=� P � T � C is a
relation satisfying8p2P8A;B2C8t2T A � B ^ p j=t A) p j=t B : (1)

The elements ofC are calledconstraints.

The intuitive meaning of the statementp j=t C is that
the principalp satisfies constraintC at time t. Require-
ment (1) is just expressing the fact that ifA � B, thenA
is a more restrictive constraint thanB, independent of the
time t. The intention is thatp j=t C could be considered
as a “stochastic process” with boolean values; at each point
in time the constraintC (“randomly”) defines a subset ofP
satisfying (1).

Group membership conditions is not the only type of
constraints possible. Besides depending on the principal

and the time, constraints could depend on e.g. local and
global data, and the security context in which the principal
is acting. Thus, besides group membership conditions, typ-
ical examples include role occupancy, time, and conditions
on values in different fields in some external database. One
could also allow constraints to contain side effects like e.g.
audit labelling, incrementing of counters, etc.

Constraints, now, are put together in strings,chain con-
straints, to form the basic mechanism for transfer of autho-
risation, as described in the introduction. Initially we donot
commit further to a specific notation for sets of chain con-
straints, and consider just arbitrary languages. We returnto
the issue of notations in section 4.

Definition 2 (chain constraint) Given a constraint struc-
ture (P ; C; j=), the set ofchain constraints, C� (Kleene
star), is defined as the set of all strings over the alphabetC. C� is a partially ordered set. If� = A1A2 : : : Am and� = B1B2 : : : Bn are chain constraints, then� � � if and
only if n = m andAi � Bi for i = 1; : : : m.

The empty string is denoted by", and the length of� 2C� is j�j. Observe that, according to def. 2, the only chain
constraint that is greater or equal, or less or equal, to", is "
itself.

A chain constraint is a way of describing restrictions on a
delegation chain. E.g., the chain constraint� = ABBC 2C� allows delegation chains of length four (= j�j) which
begin with a principal satisfyingA, are continued by two
principals (one after the other) satisfyingB and end with a
principal satisfyingC. Such a delegation chain is said to
satisfythe chain constraint�. When the notion of adele-
gation chainis properly defined in section 3, it will follow
immediately from definition 1 that if a delegation chain sat-
isfies� and� � � , then the delegation chain also satisfies� .

Chain constraints are used to control delegations of au-
thorisations. In this paper, a set ofauthorisationsA is an
(abstract) partially ordered set. If�; � 2 A and� � �,
then the interpretation is that the authorisation� entails the
authorisation�, i.e. if a principal has authorisation�, the
principal also has authorisation�. This will be made pre-
cise in the definition of theauthorisation relation.

Definition 3 (constraint certificate) A constraint certifi-
cate, or just certificate for short, is a four-tupled =(L; �; t; p) whereL � C�; � 2 A; t 2 T [f�1g, andp 2 P . We normally write such ad as (L; �; t)p, and say
thatd is signedor issuedby the principalp. The numbert
is called thetime–stampof the certificate.

The intended meaning of a certificate(L; �; t)p is the
following: at time t the principalp is signing a statement
permitting delegation of the authorisation�, provided that

the resulting delegation chain satisfies the different con-
straints in some chain constraint inL at the future points in
time when the respective delegation steps are made. How
this is done is made precise in the following subsection.

2.2 The Certificate Database

A certificate databaseD is a finite set of certificates that
changes over time. The setDt contains the certificates of
the database at timet and is referred to as thestateof the
database at timet. It is required thatt is strictly greater
than all the time–stamps of the certificates contained inDt
(this will automatically follow from the state change defini-
tions). To avoid trivialities, the database is assumed to be
non–empty at timet = 0. All the certificates inD0 have
time–stampt = �1 and are calledinitial certificates ofD.

The idea is that given a certificate database at some point
in time, a principal may request a state change. A deci-
sion is made, on the basis of the information in the current
state, whether the request is granted or not. If the request is
granted, the database is updated accordingly.

Definition 4 (state change: declare)Given a database
with stateDt, let d = (L; �; t)p be a certificate. The state
changedeclare Dt -de
lare : d Dt+1
is defined as follows: if there exists a certificated0 =(L0; �0; t0)p0 2 Dt such that� � �0 and8!2L9A02C9!02C� ! � !0 ^ A0!0 2 L0 ^ p j=t A0 ;

(2)
then the certificated is accepted andDt+1 = Dt[fdg, oth-
erwiseDt+1 = Dt. If d is accepted, we say thatd is deriv-
ablefromd0 (note that there could be several suchd0:s).

Let us instead consider the question: what certificates
canp declare at timet such that they can be derived fromd0? Sincep must obey the conditions given ind0, p’s au-
thorisation� is bounded by the authorisation�0 given ind0.
Furthermore,p (andp’s set of chain constraintsL) must sat-
isfy the set of chain constraintsL0 given ind0. This amounts
to the following (which is contained in condition (2)):

1. First extract all chain constraints fromL0 having as its
first symbol a constraint that is satisfied byp at timet,
i.e. let L1 = fA0!0 2 L0 j p j=t A0g :

2. Then delete the first symbol (the one corresponding top) from all strings inL1, i.e. letL2 = f!0 j 9A02C A0!0 2 L1g :

This set is the weakest set of chain constraintsp can use
for the delegation, or, put in another way,(L2; �0; t)p is the
most powerful delegationp can derive fromd0.

3. p can now choose to restrictL2 to any subsetL3 � L2.

4. Finally,p can choose to restrict any of the chain con-
straints!0 2 L3 to ! � !0, thus obtainingL4, a valid
set of chain constraints forp’s delegation.

This process can be described in two steps: first extract
the setL2 from L0 and then restrictL2 to the setL4. To
capture these two steps we introduce two notations. We be-
gin with the restriction by defining a preorder on2C� . IfM;N � C�, thenM � N if and only if8!12M9w22N w1 � w2 :
Next we define theextraction operatorE : P � 2C� �T !2C� asE (p;M; t) = f! j 9A2C A! 2M ^ p j=t Ag :
Its clear thatL2 = E (p; L0; t) andL4 � L2 in the pro-
cess description above (items 1-4). We can now rephrase
definition 4 in a more compact form. The certificated =(L; �; t)p is accepted (at timet) if and only if there exists
a certificated0 = (L0; �0; t0)p0 2 Dt such that� � �0 andL � E (p; L0; t).
Example 1 Assume thatp delegates the authorisation� at
time t, using the set of chain constraintsL = fA1A2A3; B1B2B3B4; C1C2; D1D2D3 g ;
by declaring the certificated = (L; �; t)p.

Now, suppose thatq decides to delegate the authorisation�0 � � one step further at timet0 > t. Say thatq satisfiesA1, C1 andD1, but notB1, at timet0. ThenE (q; L; t0) = fA2A3; C2; D2D3 g
is the weakest set of chain constraintsq can derive fromd at time t0. If A02, A03 andC 02 are constraints satisfyingA02 � A2, A03 � A3 andC 02 � C2, thenq could e.g. choose
to restrictE (q; L; t0) toL0 = fA02A03; C 02 g � E (q; L; t0) :
Finally, q (successfully) declares the certificated0 =(L0; �0; t0)q .

We have defined how delegation of an authorisation takes
place. Now we define the result of a delegation chain, i.e.
which principals are possible receivers of the authorisation.

Definition 5 (authorisation relation) Given a certificate
databaseD with constraint structure(P ; C; j=) and autho-
risation setA, we define theauthorisation relationAuth �P �A� T as follows:Auth (p; �; t) is true if and only if there exists a cer-
tificated0 = (L0; �0; t0)p0 in Dt and a chain constraint of
length oneA 2 L0 such thatp j=t A ^ � � �0 : (3)

In this case we say thatp’s authorisation� is derivablefromd0 at timet.
The authorisation relation answers the question: does the

principalp have the authorisation� at timet. The first con-
dition of (3) ensures thatp is permitted as the last principal
in a delegation chain at timet. The second condition en-
sures that the requested authorisation� is entailed by the
authorisation�0 given in the used certificate.

Note that the last constraint in a chain constraint cor-
responds to the principal requesting the authorisation, not
the principal declaring the last delegation step. Also note
that, using the extraction operator, definition 5 could be ex-
pressed as:Auth (p; �; t) is true if and only if there exists a
certificated0 = (L0; �0; t0)p0 in Dt such that" 2 E (p; L0; t) ^ � � �0 :

In example 1 above, any principalr satisfyingC 02 at
time t00 > t0 could enjoy the authorisation�0, since" 2E (r; L0; t00) if and only if r j=t00 C 02.

3 Soundness

To prove soundness of the authorisation relation (and to
make the semantics of the certificates precise) we need to
formalise the concept of a delegation chain. Adelegation
chainof lengthn is a list� = [(p1; �1; t1) ; (p2; �2; t2) ; : : : ; (pn; �n; tn)℄ ;
wherep1; : : : ; pn 2 P , �1; : : : ; �n 2 A andt1; : : : ; tn 2T . The interpretation of� is thatpi delegates authority�i
at time ti to pi+1 for i = 1; : : : ; n � 1, and thatpn has
authorisation�n at timetn.

Given a certificated = (L; �; t)p, we say that the delega-
tion chain� satisfiesthe certificated if all of the following
conditions hold:

1. t < t1 < t2 < : : : < tn
2. � � �1 � �2 � : : : � �n
3. There existA1; : : : ; An 2 C such thatA1 : : : An 2 L

andpi j=ti Ai for i = 1; : : : n.

If � satisfiesd, then� was one of the delegation chainsp in-
tended to permit, since (1) assures that the certificates have
arrived in the correct order, (2) assures that no authorisation
originating fromp’s certificate is more powerful than�, and
(3) assures that there is a chain constraint of lengthn in L
such that each constraint in this chain constraint is satisfied
by the appropriate principal at the relevant time.

Now we are in a position to prove a soundness result,
soundness in the sense that if a principal receives an au-
thorisation, each sub–chain1 of the entire delegation chain
satisfies a corresponding certificate. First we need a lemma.

Lemma 1 Assume the following� Auth (pn; �n; tn).� d = d0 = (L; �; t)p 2 Dt1 .� For all i : 1 � i < n, di = (Li; �i; ti)pi 2 Dti+1 .� Auth (pn; �n; tn) is derivable fromdn�1.� For all i : 1 � i < n, di is derivable fromdi�1.

Then the delegation chain� = [(p1; �1; t1) ; (p2; �2; t2) ; : : : ; (pn; �n; tn)℄
satisfies the certificated.

Proof. SinceAuth (pn; �n; tn) was derived fromdn�1,dn�1 was derived fromdn�2 and so on untild, it fol-
lows immediately from definition 4 and definition 5 thatt < t1 < t2 < : : : < tn and� � �1 � �2 � : : : � �n.

Before we prove the last part, we prove the following
claim. For any!0 2 C�, p0 2 P , L0 � C� andt0 2 T ,f!0g � E (p0; L0; t0)) 9A02C fA0!0g � L0 ^ p0 j=t0 A0 :

(4)
If f!0g � E (p0; L0; t0), then there exists!00 2 E (p0; L0; t0)
such that!0 � !00 by the definition of the preorder. Further-
more, by the definition ofE (p0; L0; t0), there existsA0 2 C
such thatA0!00 2 L0 andp0 j=t0 A0. Since!0 � !00 we getA0!0 � A0!00, and hencefA0!0g � L0. Thus, the claim is
proved.

To streamline the argument, letd0 = d andL0 = L.
We prove the following by induction fromk = n down tok = 1:

There exist Ak; Ak+1; : : : ; An 2 C such thatfAkAk+1 : : : Ang � Lk�1 andpi j=ti Ai for i = k; k +1; : : : ; n.
The assumption thatAuth (pn; �n; tn) was derived fromdn�1 implies thatf"g � E (pn; Ln�1; tn). By (4), there

existsAn 2 C such thatfAng � Ln�1 andpn j=tn An.

1A sub–chainof a delegation chain� is a delegation chain obtained by
deleting an initial segment of�.

Thus, the casek = n is proved. Assuming the induction
hypothesis for somek, 2 � k � n, and using the fact thatdk�1 was derived fromdk�2, we find thatfAkAk+1 : : : Ang � Lk�1 � E (pk�1; Lk�2; tk�1) :
Again, by (4), there existsAk�1 2 C such thatfAk�1Ak : : : Ang � Lk�2 andpk�1 j=tk�1 Ak�1, prov-
ing the induction step.

We have thus proved that there existA1; A2; : : : ; An 2 C
such that fA1A2 : : : Ang � L0 = L
and pi j=ti Ai for i = 1; : : : ; n :
Since fA1A2 : : : Ang � L0 = L, there existB1; B2; : : : ; Bn 2 C such thatB1B2 : : : Bn 2 L andAi � Bi for i = 1; : : : ; n. The definition ofj= implies
thatpi j=ti Bi for i = 1; : : : ; n, proving that the delegation
chain� satisfies the certificated.

Using this lemma we now prove the following soundness
result.

Theorem 1 (soundness)Assume thatAuth (p; �; t). Then
there exists a sequence of certificatesd0 = (L0; �0;�1)p0 2 D0; di = (Li; �i; ti)pi 2 Dti+1
for i = 1; : : : ; n�1 ; wheretn = t, and a delegation chain� = [(p1; �1; t1) ; : : : ; (pn�1; �n�1; tn�1) ; (p; �; t)℄
such that each sub–chain�i = [(pi+1; �i+1; ti+1) ; : : : ; (p; �; t)℄
satisfies the corresponding certificatedi.
Proof. It’s immediate from definition 5 that ifAuth (p; �; t)
holds, then this authorisation can be derived from some cer-
tificated0 2 Dt with time–stampt0. If t0 6= �1, thend0 was
added to the certificate database by the state changedeclare
(cf. def. 4), and hence there exists a certificated00 2 Dt0
with time–stampt00 from whichd0 can be derived. Again,
eithert00 = �1 or d00 can be derived from somed000 2 Dt00 .

This process must terminate since the time–stamps of the
certificates form a strictly decreasing sequence of integers
bounded from below by�1. Assume that this process halts
after n steps. This means that we have reached a certifi-
cate with time–stamp -1. If we index the certificates (and
their contents) as above, we get the sequence of certificatesd0; : : : ; dn�1 such that thedi can be derived from thedi�1,
and whereAuth (p; �; t) can be derived fromdn�1.

The theorem now follows by repeatedly applying
lemma 1 to each sub–chain�i, 0 � i � n � 1.

Note thatcompletenessin this context means that if a
sequence of linked certificates, starting with an initial cer-
tificate, has been declared and all sub–chains of a certain
delegation chain satisfy the corresponding certificates, then
the last tuple in the delegation chain should belong to the re-
lationAuth. But this is immediate since the assumption that
all sub–chains satisfy the corresponding certificates alsoim-
plies that the shortest sub–chain (the one of length 1) sat-
isfies the last certificate in the certificate chain and this is
precisely the definition of theAuth relation. On the other
hand, it is not meaningful to exclude the chain of length one,
since then the principal declaring the last certificate can al-
ways make sure that a particular principal will not receive
the authorisation in question.

4 Regular Chain Constraints

We now turn to the issue of identifying a suitable rep-
resentation for sets of chain constraints. There is consid-
erable scope for variability. The trade-off, as ever, is be-
tween simplicity of expression, algorithmic tractability, and
application needs. The obvious first choice is some suitable
fragment of regular expressions. Richer languages can be
considered too. However, as yet we have found no real use
for expressive power going beyond that of the regular lan-
guages. In fact, the suggestion we make in this section is for
a very simple language which just barely generalises ACL’s
to include a restricted form of Kleene star. Let us say that
a simple regular expression(that defines asimple regular
language) over the alphabetC is an expression of the form:! = Ak11 Ak22 : : : Aknn , whereAi 2 C andki 2 f1; �g fori = 1; : : : ; n. L(!) � C� will denote the language it repre-
sents. A simple regular expression! is said to beinitially
fixed if k1 = 1; this implies that all strings inL(!) begin
with the same symbol (A1 in the notation above). Nothing
in the framework forces to adopt this requirement. How-
ever, we find it reasonable to require that certificates iden-
tify explicitly and uniquely the initial constraint/receiver of
delegation.

When restricted to initially fixed simple regular expres-
sions, the extraction operator becomes very simple to com-
pute:E�p;L(A1Ak22 : : : Aknn); t� =(L(Ak22 : : : Aknn) if p j=t A1;; otherwise

and the result (if not empty) becomes a simple regular
language. To retain this property inductively, we require
that the principal restricting this set of chain constraints, re-
stricts it to aninitially fixed simple regular language.

The rationale for this requirement is (besides to keep
things uniform and simple) that certificates of the form

d = (L(A�!); �; t)p are essentially superfluous, since any
delegation chain satisfyingd has a sub–chain satisfyingd
and satisfyingd0 = (L(!); �; t)p. In particular, ifd was
accepted at timet, thend0 would also have been accepted at
time t. ProvidingA with the right to delegate some author-
ity to ! seems a bit pointless, if at the same time! receives
that authority directly.

The only exception to this argument is if" 2 L(!)
and the sub–chain referred to above is empty. In this
case! is of the form! = A�1A�2 : : : A�n (all exponents
are Kleene stars), including the case! = ". We could
mimic the argument above by replacingd0 above withd0 =(L(A [A1 [: : : [An); �; t)p. The reason the argument
works, in this case, is that any delegation chain (of length� 1) satisfyingd = (L(A�A�1A�2 : : : A�n); �; t)p has a sub–
chain of length onesatisfyingd andd0. Furthermore, as
above, ifd was accepted at timet, thend0 would also have
been accepted at timet.

The problem is thatA [A1 [: : : [An is not asimple
regular expression. This could easily be solved in practice
by, instead of declaring one certificate with chain constraint
setL(A�A�1A�2 : : : A�n), declaringn + 1 certificates having
chain constraint setsL(A1); : : : ;L(An) andL(A), respec-
tively. Formally though, these new certificates might not all
be accepted instead ofd, since we only allowonecertificate
to be declared at any single point in time. A slight modifi-
cation to the state change ‘declare’, namely to allow asetof
(independent) certificates to be declared simultaneously,or
alternatively permit unions of initially fixed regular expres-
sions (see below), would solve this little problem.

Now, given a certificated = �L(AAk11 : : : Aknn); �; t0�q ;
and assuming thatp j=t A (wheret > t0), what sets of
chain constraintsL canp use when declaring a certificated0 = (L; �0; t)q (where�0 � �), given thatd0 should be
derivable fromd?

Since we now are restricting ourselves to initially fixed
simple regular expressions, any such regular languageL
bounded from above byL(Ak11 ; : : : ; Aknn) is permitted as
chain constraint set for the certificated0. This implies thatL has the formL = L(!1 : : : !n) where!1; : : : ; !n are
simple regular expressions,!1 : : : !n is initially fixed, and
where!i has one of the following two forms:

1. If ki = 1, then!i = Bi for someBi 2 C which
satisfiesBi � Ai.

2. If ki = �, then!i = Bli1i1 : : : Bliniini (ni � 0) for someBi1; : : : ; Bini 2 C which all satisfyBij � Ai and
wherelij 2 f1; �g. Note that!i = " if ni = 0.

Typical examples of useful chain constraint sets in-
cludeL(AB�), L(ABB�), L(AB�C), L(ABB�C) and

L(AB�CD�). If we, for example, assume that chain con-
straints only represent group membership, then the (infor-
mal) semantics of these sets could roughly be described as
follows:L(AB�) Any member ofA can be the root of a “manage-

ment tree”, managing the authorisation (by delegation)
within the the groupB, andmembers ofA can enjoy
the authorisation themselves.L(ABB�) Same as the previous item, except that the mem-
bers ofA do not receive the authorisation themselves
(assuming thatA \ B = ;).L(AB�C) Any member ofA can delegate the right to
members ofB to create a management structure
(within B) for managing the authorisation of members
inC, andmembers ofA are also permitted to authorise
members ofC directly. Assuming thatB\C = ;, this
(and also the next item) exemplifies “outsourcing”; the
administration of the authorisation within the groupC
is handled byB, including the right to organise the
work withinB as they see fit.L(ABB�C) Same as the previous item, except that the
members ofA are not permitted to bypass the admin-
istrator groupB.L(AB�CD�) In this example,B andD may be groups in
two different organisations. In this case it may be de-
sirable to constrainA’s delegational powers so that any
administrative structures leading fromA to D must
pass by some particular group,C, of key account man-
agers, or liaison officers.

We finish this section with a larger example and some pos-
sible extensions. The example will exemplify how regular
chain constraint sets can be used to gradually establish man-
agement structures for managing authorisations.

Example 2 To simplify the notation in this example we
will use the names of principals and organisations (=
groups) as constraints with the obvious meaning. Lower–
case letters denote principals and upper–case letters denote
organisations. Principals represented by lower–case letters
belong to the corresponding upper–case organisation. We
will assume that the organisationsB, C, E, andF all are
contained inA, and that the organisationD is contained inC.

Figure 2 depicts a possible delegation tree resulting from
the certificate(pA�; �; t0)r. The labels of the nodes in the
tree represent the principals who are delegating and/or re-
ceiving authorisations. The labels of the edges in the tree
represent the regular chain constraint sets used in declared

B;C;E; F � AD � C a 2 Ab 2 B
 2 Cd 2 De1; e2 2 Ef 2 Fr?pA�p��������� aB�Ca����	bDb?dd
����R

 ?EF �e1?ff

HHHHHHHHjEF � e2���� ����&%'$F
Figure 2. A delegation tree

certificates. Outgoing edges correspond to certificates de-
clared, and incoming edges correspond to delegation pow-
ers/authorisations received. Furthermore, in each delega-
tion step, the authorisation� is (possibly) restricted further
(not shown in the figure).

Now, let us examine a few steps in this delegation tree.
In the second step of the delegation chain,p satisfies the
leftmost constraint inpA�, and hence, can extractA�. The
principalp chooses to restrictA� to aB�C andEF � in the
two certificatesp declares. These restrictions are permitted
sinceL(aB�C) � L(A�) andL(EF �) � L(A�).

The principalse1 and e2 both satisfy the constraintE, and can therefore successfully extractF � from EF �.
In e1’s certificate,F � is restricted tof (permitted, sinceL(f) � L(F �)), thereby authorising the principalf . The
principal e2, on the other hand, decides to build a larger
subtree (which necessarily lives entirely within the organi-
sationF) by restrictingF � in some suitable fashion, and so
on.

The choice of initially fixed simple regular expressions
is somewhat arbitrary. The framework presented in this pa-
per clearly supports more general sets of chain constraints.
Obvious extensions might includeunionsof initially fixed
simple regular expressions and/or notation that enables im-
plicit unions. One could e.g. allow expressions of the
type A1Ak22 : : : Aknn , whereki 2 f1; �g or ki = [i; j℄
for non negative integersi < j. The expressionA[i;j℄ is
then interpreted as a shorthand for the regular expression

Ai [Ai+1 [: : :[Aj . This would allow a principal to flexi-
bly express restrictions on the length of (parts of) delegation
chains in a single certificate (note that this can in principle
be achieved by declaring several certificates).

5 Scenario: Collaborating Organisations

In this section we introduce a specific scenario in order to
illustrate some of the capabilities of constrained delegation,
and the ways they could be used in practice. The scenario is
based on the case of a number of national task forces dele-
gating authority to a common UN high command (UNHC).

Each national task force will have a National Task Force
Command (NTFC) associated with it. For the sake of the
example, letNTFC(S) be theNTFCbelonging to Sweden.
TheNTFCwill be the “owner” of each of the national task
forces in the sense that it will from the outset possess all ad-
ministrative privileges concerning that entity. In particular,
NTFC(S) may have assigned to it free delegational powers
in terms of a certificate
0 = (NTFC(S) any�;NTFC(S)-resources; t0)p
where, most likely,p is the Swedish National High Com-
mand. The first component of
0 is the regular expression
delineating the possible delegation chains (in this case any
such chain must originate in the Swedish National Task
Force Command, and they in turn are empowered to del-
egate authority as they see fit). The second component,

NTFC(S)-resources, indicates the scope of the delegatable
authority in this case, andt0 is the certificate time stamp. So
in this case, the certificate is intended to empowerNTFC(S)
to delegate in any way it sees fit, any authority concerning
its own resources.

First we consider the case whereNTFC(S), using certifi-
cate
0, delegates toUNHC the authority to delegate, in any
number of steps, using UN-affiliated personnel, read access
to some Swedish surveillance information. The correspond-
ing certificate can have the following shape:
1 = (UNHC UNHC-stf� UN-stf; s-info(S); t1)NTFC(S) :
The UN High Command can now use
1 to provide UN
High Command staff (which will be a larger group than
UNHC) with administrative and decentralisable power to
provide UN-affiliated staff with access to Swedish surveil-
lance information. For instance, in the following certificate,
UN High Command staff has received, from UN High Com-
mand, administrative rights to provide operative UN staff
of some nationality, sayC, with access to Swedish surveil-
lance information:
2 = (UNHC-stf op(C); s-info(S); t2)UNHC

UN High Command staff can then use this certificate to sup-
port the following authorisation
3 = (spec-op(C); spec-s-info(S); t3)UNHC-stf

In the process of issuing
3, UN High Command staff
has constrained the scope of operative personnel and access
rights in relation to the certificate
2. Observe that operative
personnel of nationalityC will not by this certificate receive
any delegational powers regarding Swedish surveillance in-
formation.

The second example is intended to illustrate the power
and flexibility obtained when constraints are generalised to
cover not only group affiliation properties, but also more
general constraints related e.g. to time or the holding of
some condition. The intention is thatNTFC(C) might want
to authoriseUNHC to, in an emergency situation, through
administrative channels set up by UN High Command, give
Swedish operative forces some privileges concerning sup-
plies belonging toC. We use a tuple-like notation for con-
junction of constraints, so that e.g.(UNHC-stf; alert) rep-
resents the conjunction of constraints that the issuing prin-
cipal belongs to the groupUNHC-stfand that the condition
alert holds. In this way,NTFC(C) might issue the certifi-
cate(UNHC UN-stf� (UN-stf; alert) op(S); spl(C); t)NTFC(C)
empoweringUNHC to set up an administrative organisa-
tion at will for administering access by Swedish operative

forces toC ’s supplies, but preventing the right to access to
be ultimately granted until an emergency condition holds.
Many variations on such a scheme are possible, including
threshold-like ones where several specific parties must have
taken part in a delegation chain for the operative authority
to be possible to take effect.

6 Conclusion

We have argued that some applications, with outsourc-
ing as an archetypical example, would benefit from a more
fine-grained and flexible control over delegation than cur-
rent models admit. The standard approach to delegation is
binary: Either delegation is possible, and then no substantial
further control over the way it is used is possible, or else no
delegation is permitted. Some authors (cf. [8]) go beyond
this by permitting a fixed upper bound to be imposed on the
depth of delegation chains. We have introduced a model
which permits much finer control over the scope of delega-
tions. The central idea is to introduce (regular) expressions
that constrain the possible shapes of delegation chains, for
aspects such as depth, group/role memberships, timing con-
straints, other constraints depending on the current security
context, or just constraints depending on external data. In
this way it becomes possible to define administrative struc-
tures in a more gradual and uniform way.

Our purpose with this paper has been to introduce and
motivate the basic model. We have not, for instance,
touched upon the issue of revocation. One set of problems
pertaining to the handling of dependencies arise in the con-
text of certificate chaining (cf. [6, 4] for recent work in this
direction). Other issues arise once one starts to admit revo-
cation as a delegatable action: Who should be permitted to
revoke a given certificate, and how should this be reflected
in the delegation logic? Concerning distribution of revoca-
tion information we did not find particular challenges which
are not found equally in other related work, and so we view
this as somewhat orthogonal to the issues discussed here.

Another set of issues which we have not addressed con-
cerns the choice, design, and implementation of computa-
tional models to support constrained delegation. Our inten-
tion has been to keep the basic model as free of bias to-
wards any particular implementation regime as possible. In
principle the constrained delegation model can be applied
to a wide variety of representation and storage architectures
(say: ACL’s, directories, attribute certificates, centralised or
decentralised storage models), as well as enforcement mod-
els (push, pull, or combinations). Key functionality which
will be reported in a forthcoming paper is the efficient repre-
sentation and resolution of constraints, and the management
of delegation chains.
AcknowledgementsThanks are due to Dieter Gollmann of
Microsoft Research, Cambridge, and to Andres Martinelli,

KTH, for many discussions on this and related topics.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.The
Role of Trust Management in Distributed Systems Security.
In Vitek and Jensen, editors,Secure Internet Programming:
Security Issues for Mobile and Distributed Objects. Springer-
Verlag, 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralised Trust
Management. InProceedings of the 17th Symposium on Se-
curity and Privacy, pages 164 – 173, Los Alamitos, 1996.
IEEE Computer Society Press.

[3] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI Certificate Theory, May 1999.
Published online: http://www.ietf.org/internet-drafts/draft-
ietf-spki-cert-theory-0.5.txt.

[4] B. S. Firozabadi and M. Sergot. Revocation Schemes for Del-
egated Authorities. InProceeding of Policy 2002: IEEE 3rd
International Workshop on Policies for Distributed Systems
and Networks. IEEE, June 2002. In press.

[5] B. S. Firozabadi, M. Sergot, and O. Bandmann. Using Au-
thority Certificates to Create Management Structures. InPro-
ceeding of Security Protocols, 9th International Workshop,
Cambridge, UK, April 2001. Springer Verlag. In press.

[6] Å. Hagström, S. Jajodia, F. Parisi.Persicce, and D. Wijesek-
era. Revocation - a Classification. InThe Proceeding of the
14th Computer Security Foundation Workshop. IEEE press,
2001.

[7] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Ac-
cess control meets public key infrastructure, or: Assigning
roles to strangers. InIEEE Symposium on Security and Pri-
vacy, pages 2–14, 2000.

[8] Li, Grosof, and Feigenbaum. A Logic-based Knowledge Rep-
resentation for Authorization with Delegation. InPCSFW:
Proceedings of The 12th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1999.

