
On the Secure Implementation of Security Protocols?

Pablo Giambiagi and Mads Dam

Swedish Institute of Computer Science
Box 1263, S-164 49 Kista, Sweden
{pablo,mfd }@sics.se

Abstract. We consider the problem of implementing a security protocol in such
a manner that secrecy of sensitive data is not jeopardized. Implementation is as-
sumed to take place in the context of an API that provides standard cryptography
and communication services. Given a dependency specification, stating how API
methods can produce and consume secret information, we propose an informa-
tion flow property based on the idea of invariance under perturbation, relating
observable changes in output to corresponding changes in input. Besides the in-
formation flow condition itself, the main contributions of the paper are results
relating the admissibility property to a direct flow property in the special case
of programs which branch on secrets only in cases permitted by the dependency
rules. These results are used to derive an unwinding-like theorem, reducing a
behavioral correctness check (strong bisimulation) to an invariant.

1 Introduction

We consider the problem of securely implementing a security protocol given an API
providing standard services for cryptography, communication, key- and buffer man-
agement. In particular we are interested in the problem of confidentiality, that is, to
show that a given protocol implementation which uses standard features for encryption,
random number generation, input-output etc. does not leak confidential information
provided to it, either because of malicious intent, or because of bugs.

Both problems are real. Malicious implementations (Trojans) can leak intercepted
information using anything from simple direct transmission to, e.g., subliminal chan-
nels, power, or timing channels. Bugs can arise because of field values that are wrongly
constructed, mistaken representations, nonces that are reused or generated in pre-
dictable ways, or misused random number generators, to give just a few examples.

Our work starts from the assumption that the protocol and the API is known. The
task, then, is to ensure that confidential data is used at the correct times and in the cor-
rect way by API methods. The constraints must necessarily be quite rigid and detailed.
For instance, a non-constant time API method which is made freely available to be ap-
plied to data containing secrets can immediately be used in conjunction with otherwise
legitimate output to create a timing leak.

? This material is based upon work partially supported by the European Office of Aerospace
Research and Development, Air Force Office of Scientific Research, Air Force Research Lab-
oratory, under Contract No. F61775-01-C0006, and by the European IST project VerifiCard.

Our approach is to formulate a set of rules, which determine the required dependen-
cies between those API method calls that produce and/or consume secrets. An example
of such a dependency rule might be

send(v, outchan)← k := key(Bob) ∧m := receive(inchan) ∧ v := enc(m, k)

indicating that, if upon its last invocation of thereceive method with argumentinchan
the protocol receivedm (and analogously forkey, Bob, andk), then the next invoca-
tion of send with second parameteroutchan must, as its first parameter, receive the
encryption ofm with keyk.

A dependency specification determines an information flow property. The rules de-
termine a required dependency relation between API calls. Assurance, then, must be
given that no other flows involving secrets exist. Our approach to this is based on the
notion of admissibility, introduced first in [4]. The idea is to extract from the depen-
dency specification a set of system perturbation functionsg which will allow a systems
processing a secretv to act as if it is actually processing another value of that secret,v′.
Then, confidentiality is tantamount to showing that system behaviour is invariant under
perturbation, i.e. that

s[g] ∼ s,

where [g] is the system perturbation operator. One problem is that, provided this is
licensed by the dependency rules, secrets actually become visible at the external inter-
face. For this reason, the perturbation operator[g] must be able to identify the appro-
priate cases where this applies, so that internal changes in the choice of secret can be
undone.

The paper has two main contributions. First, we show how the idea can be realized
in the context of a simple sequential imperative language, IMP0. Secondly we establish
results which provide efficient (thought not yet fully automated) verification techniques,
and give credence to the claim that admissibility is a good formalisation of confidential-
ity in this context. In particular, we show that, for the special case of programs which
branch on secrets only in cases permitted by the dependency rules, admissibility can
be reduced to a direct flow property (an invariant) which we call flow compatibility.
Vice versa, we show that under some additional assumptions, flow compatibility can be
reduced to admissibility.

This work clearly has strong links to previous work in the area of information flow
theory and language-based security (cf. [8]). The idea of invariance under perturba-
tion and logical relations underpins most work on secrecy and information flow theory,
though not always very explicitly (cf. [3, 5, 11, 9]). The main point, in contrast e.g. to
work by Volpano [10] is that we make no attempt to address information flow of a
cryptographic program in absolute terms, but are satisfied with controlling the use of
cryptographic primitives according to some external protocol specification. This is ob-
viously a much weaker analysis, but at the same time it reflects well, we believe, the
situation faced by the practical protocol implementor.

The rest of the paper is structured as follows. In Section 2, we present IMP0 and
introduce the main example used in the paper, a rudimentary credit card payment pro-
tocol. In Section 3 we introduce an annotated semantics, used in Section 4 to formalize

Table 1. IMP0: Syntax

Basic values(BVal) b ::= n | a | true | (b1, . . . , bn)

Values(Val) v ::= b | xcpt

Functions(Fun) f ::= pf | h
Expressions(Expr) e ::= v | x | (e1, . . . , en) | f e
Commands(Com) c ::= skip | throw | x := e | c0; c1 | if e then c0 else c1 |

while e do c end | try c0 catch c1

the dependency rules. The notion of flow compatibility is presented in Section 5 to de-
scribe the direct information flow required by a protocol specification. In Section 6 the
main information flow condition, admissibility, is introduced. In Section 7 we state and
prove the unwinding theorem, while in Section 8 we further investigate the relation be-
tween flow compatibility and admissibility. Finally Section 9 concludes with discussion
and related work.

2 A Sequential Imperative Language

In this section we introduce IMP0, the language we use for protocol implementation.
The intention is to formalise the basic functionality of simple protocol implementations
in as uncontroversial a manner as possible.

Table 1 defines the syntax of IMP0, with variablesx ∈ Var, including the anony-
mous variable , primitive function and procedure calls, and primitive data types in-
cluding natural numbers (n ∈ Nat) and channels (a ∈ Chan). The set of primitive
function symbols, ranged over bypf, includes the standard arithmetic and logical op-
erators. Each primitive function is assumed to execute in constant time, regardless of
its arguments. There are also non-primitive (or API) functions, ranged over byh, for
encryption (enc), decryption (dec), extracting a key from a keystore (key), and re-
ceiving resp. sending a value on a channel (receive andsend). To each (primitive or
non-primitive) function symbolf is associated a binary relationf ⊆ Val × Val⊥ so
that∀v ∈ Val. ∃v′ ∈ Val⊥. f(v, v′) (i.e. functions may be non-deterministic, and may
not terminate), andf(xcpt, v) iff v = xcpt (i.e. function invocations propagate ex-
ceptions from arguments to results). Moreover, primitive functions are assumed not to
have local side effects. Communication effects are brought out using transition labels
in the next section.

As a running example we use a greatly simplified version of the 1-Key-Protocol
(1KP), a protocol for electronic payments [2]. This example is chosen because it is
paradigmatic for many simple e-commerce applets which input a collection of data,
some sensitive, some not, performs some cryptographic operations on the data, and
then transmits the result on a public channel. In the full version of the paper [6] we use
a simple declassifier as a second example.

Prog 1 :

while true do

ACQ := receive acq; ORDER := receive order; ACC := receive acc;

try

PKA := key ACQ;

:= send((ACQ,ORDER, enc((ORDER,ACC),PKA)), lookup(merchant))

catch

:= send(“error report”, local)

end
Fig. 1.Payment protocol – sample Customer implementation

2.1 A Simple Payment Protocol

The protocol involves three players: A Customer, a Merchant and an Acquirer (ACQ).
The Customer possesses a credit card account (ACC) with which it places an order to the
Merchant. The Acquirer is a front-end to the existing credit card clearing/authorization
network, that receives payments records from merchants and responds by either accept-
ing or rejecting the request. The Customer is required to encrypt the order and account
information with the Acquirer’s public key before sending them to the Merchant.

Figure 1 shows what a simple implementation of the Customer’s side of the payment
protocol might look like in IMP0. In general, an implementation needs to deal with a
lot more issues than what are explicitly addressed at the protocol specification level.
These include: Initialisation and use of cryptographic services, where and how data is
stored and addressed, communication services, and error handling. Further, in some
applications the protocol implementation may well be bundled with the user interface,
in which case a further set of issues arise.

It may be instructive to also show some of the means available to implementations
wishing to violate confidentiality. For instance, a hostile implementation might embed
account information in the ordering field by replacing line 5 of Figure 1 by

:= send(((ACQ, embed(ORDER,ACC), enc(. . .)), . . .), . . .) ,

or it might try to replace good nonces or keys by bad ones, for instance by replacing the
same line as before by

:= send(((. . . , enc((ORDER,ACC),PKMERCHANT)), . . .), . . .) .

There are many other simple ways of building covert channels, such as timing channels,
for instance by introducing data-dependent delays, either explicitly, or by exploiting
timing properties of library functions.

3 Annotated Semantics

The first challenge is to identify the direct flows and computations on critical data (typ-
ically: secrets, keys, nonces, or time stamps). Once this is accomplished, other tech-

Table 2.Annotated semantics, expressions

σ ` x
τ
−→ σ(x)

σ ` ε
α
−→ ε′

σ ` (. . . , ε, . . .)
α
−→ (. . . , ε′, . . .)

[[w]] = xcpt

σ ` (. . . , w, . . .)
τ
−→ w

σ ` ε
α
−→ ε′

σ ` f ε
α
−→ f ε′

pf([[w]], v)

σ ` pf w
τ
−→ v : pf w

h([[w]], v)

σ ` h w
v := h w
−−−−−−→ v : h w

niques based on non-interference are brought to bear to handle the indirect flows. The
direct flows are tracked using annotations. In particular, we need to identify:

1. The operations that cause critical values to enter the system (such as execution of
receive a for some given value ofa).

2. The operations that are applied to secrets, once they have been input.

To account for this we provide IMP0 with an annotated semantics. Annotations are
intended to reveal how a value has been computed, from its point of entry into the
system. For instance, the annotated value

347 : enc(717 : receive a, 101 : key 533)

is intended to indicate that the value347 was computed by applying the primitive func-
tion enc to the pair(717, 101) for which the left hand component was computed by
evaluatingreceive a, and so on.

Annotated expressions and values are obtained by changing the definition of expres-
sions (resp. values) in Table 1:

Annotated basic values(aBVal) β ::= b | (β1, . . . , βn) | b : ϕ
Annotated values(aVal) w ::= β | xcpt | xcpt : ϕ
Annotated expressions(aExp) ε ::= w | x | (ε1, . . . , εn) | fε
Annotations(Ann) ϕ ::= fw

Annotations are erased using the operation[[w]] which removes annotations in the obvi-
ous way.

Table 2 defines the small-step semantics for expression evaluation. The transition
relation has the shape

σ ` ε α−→ ε′ ,

whereα is an action of the formτ (internal computation step) orv := fw (f is applied
to the annotated valuew resulting in the valuev), andσ is an annotated store, a partial

functionσ ∈ aStore ∆= [Var→ aBVal].
Annotations give only static information in the style “the valuev′ was computed

by evaluatingkey v : receive acq”, but not information concerning which actual

invocations of thekey andreceive functions were involved. However, this information
is vital to the subsequent information flow analysis, and so we introduce a notion of
context to record the last value returned by some given annotated function call (i.e.
annotation).

Definition 1 (Context). A contextis a partial functions : [Ann→ Val].

So, if s is a context thens ϕ is the last value returned by the annotated function callϕ.
Contexts form part of program configurations in the annotated semantics:

Definition 2 (Annotated Configuration).
An annotated configurationis a triple〈c, σ, s〉 wherec is a command,σ ∈ aStore and
s ∈ Context.

The annotated command-level semantics, which derives transitions of the shape

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉, is standard in its treatment of commands and stores. Con-
cerning contexts, ifα is the actionv := ϕ, thens′ is defined ass[v/ϕ]. Details are given
in the full version of the paper [6].

4 Dependency Rules

Our approach to confidentiality is to ensure that the direct flows of information follow
the protocol specification, and then use information flow analysis to protect against
indirect flows. In this section we introduce dependency rules to formalize the permitted,
direct flows.

Definition 3 (Dependency Specification).A dependency specificationis a pairP =
〈S,A〉 whereS ⊆ Ann is a set of annotations, andA is a finite set of clauses of the
form

f e← x1 := f1 e1 ∧ . . . xn := fn en ∧ ψ (1)

where none of the expressionse, e1, . . . , en mention functions or exceptions,ψ is a
boolean expression, and variables inei do not belong to{xi, . . . , xn}.

The intention is thatS represents a set of secret entry points (such as:receive acc),
and that the rules inA represent the required data flow through the program.

A clause in the policy declares a function invocationf e to be admissible if the
conditions to the right of the arrow are satisfied. Conjuncts of the formxi := fi ei are
satisfied if variablexi matches the last input from annotationfi ei. The boolean ex-
pressionψ represents an extra condition that relates the values returned by the different
function invocations. More precisely, let a contexts be given. Avalid substitutionfor
clause (1) is an annotated storeσ such that

1. σ(xi) = s(fi (eiσ)): fi (eiσ) for all i : 1 ≤ i ≤ n ,
2. forx 6= xi (∀i: 1 ≤ i ≤ n), σ(x) has not annotation inS,
3. eval(ψσ) = true .

That is, boolean conditions are true, and the value bound toxi is the last value re-
turned by the annotated function callfi (eiσ). By eσ we mean the annotated expres-
sion (aExpr) that results from substitutingσ(x) for every variablex in e. Notice that
the restrictions onei in Def. 3 guarantee thateiσ is an annotated value. The function
eval just evaluates the annotated boolean expressionψσ in the expected way.

We can now determine whether a particular function invocation is admitted by the
dependency specification.

Definition 4 (Admissible Invocation).Let α be an annotated action of the formv :=
f w. A dependency specificationP = 〈S,A〉 admits annotated actionα in contexts
iff either

1. no annotation inw belongs toS (that is, the output does not depend directly on any
secret annotation), or

2. there is a clausef e ← x1 := f1 e1 ∧ . . . ∧ xn := fn en ∧ b in A and a valid
substitutionσ for this clause such thateσ = w.

If one of these conditions holds we writeP, s ` α ok.

Observe that the concept of admissible action covers both those actions whose exe-
cution is required by the protocol specification, as well as those that do not (explicitly)
involve any sensitive data. In particular, internalτ transitions are always admissible (i.e.
P, s ` τ ok).

Example 1 (Dependency Specification for 1KP Clients).
In the simplified version of the 1KP protocol, the only piece of local information that the
Customer should protect is her account number. Therefore,S = {receive acc}. Nei-
ther the key (which is public), the acquirer’s name, nor the order need to be protected.
The setA contains the clauses:

enc((y, z), k)← x := receive acq ∧ z := receive acc ∧ k := key x

send(u, s)← u := enc((y, z), k)

The first clause expresses when an invocation of the encryption function is admis-
sible. In this example, encryption is used just once in each protocol run, but in general
this might not be so. Moreover, since invocation of the encryption function, as any other
function with a non-constant execution time, could be used to create a timing leak, the
dependency specification does need to say under which circumstances it may be in-
voked, apart from its usage in the main input-output flow.

Notice how the variablesy ands are not bound to the right of the clauses, reflecting
the fact that we do not put any requirement on the format of the order and neither
its destination (since it is intended for transmission in the clear anyway), beyond the
restriction that it should not be used to encode secret information.

Let nowP = 〈S,A〉.

– Let α1 = b1 := receive acq. ThenP, s ` α1 ok for anys since no annotation in
acq belongs toS.

– Let α4 = b4 := enc((b, b2 : receive acc), b3 : key (b1 : receive acq)).
Consider a contexts wheres(receive acq) = b1, s(receive acc) = b2 and
s(key b1 : receive acq) = b3. ThenP, s ` α4 ok since we find the substitu-
tion σ mappingx to b1, z to b2, k to b3 andy to b, validating the condition 4.2.
If on the other hand e.g.s(receive acq) = b5 6= b1 then the condition would be
violated andα4 would not be admissible in the contexts.

As the example show, dependency specifications are very low-level objects. They
are not really meant as external specifications of confidentiality requirements, but rather
as intermediate representations of flow requirements, generated from some more user-
friendly protocol specification once a specific runtime platform has been chosen.

5 Flow Compatibility

Dependency specifications determine, through Definition 4, when a function invocation
is admissible. In this section we tie this to the transition semantics to obtain an account
of the direct information flow required by a dependency specification.

Let the relation
〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉

be the reflexive, transitive closure of the annotated transition relation, i.e. the smallest
relation such that〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉 holds iff eitherc = c′, σ = σ′ ands = s′ or

elsec1, σ1, s1 exists such that〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉 and〈c1, σ1, s1〉
α−→ 〈c′, σ′, s′〉.

Definition 5. Let the dependency specificationP = 〈S,A〉 be given. The command
c ∈ Com is flow compatible withP for initial storeσ and initial contexts, if whenever

〈c, σ, s〉 ⇒ 〈c1, σ1, s1〉
α−→ 〈c2, σ2, s2〉 thenP, s1 ` α ok.

Example 2 (Flow Compatibility for 1KP Client).The commandProg 1 of Figure 1 is
flow compatible with the 1KP client dependency specification of Example 1 above, for
any initial storeσ. This is seen by proving an invariant showing that whenever execution
of Prog 1 reaches one of the send statements ofProg 1 then for suitable choices ofv1,
v2 andv3,

s(receive acq) = v1 = σ(ACQ)
s(receive acc) = v2 = σ((ACC))

s(key x) = v3 = σ(PKA)

If we attempt to use a subliminal channel by replacing line 5 (the first send statement)
of Prog 1by a command such as

:= send((ACQ, embed(ACC,ORDER), enc((ORDER,ACC),PKA)),
lookup(MERCHANT)) ,

then flow compatibility is violated, as expected. On the other hand, the command ob-
tained by adding after the first send statement ofProg 1 the command

if ACC = “some fixed valuev” then send(“FOUND!” , leak channel) else skip

is flow compatible, also as expected, since the indirect leak will not be traced by the
annotation regime.

6 Admissibility

If there is an admissible flow of information from some input, sayreceive acc, to
some output, say,send(. . . , enc((. . . , acc), . . .), . . .) then by perturbing the input, cor-
responding perturbations of the output should result, and only those. In this section we
formalize this idea.

In the context of multilevel security it is by now quite well understood how to model
absence of information flow (from Hi to Lo) as invariance of system behaviour under
perturbation of secret inputs (c.f. [3, 5, 11, 9], see also [1] for application of similar
ideas in the context of protocol analysis). For instance, the intuition supporting Gorrieri
and Focardi’s Generalized Noninterference model is that there should be no observable
difference (i.e. behaviour should be invariant) whether high-level inputs are blocked
or allowed to proceed silently. So the perturbation of high-level inputs, in this case, is
whether or not they take place at all.

Here the situation is somewhat different since the multilevel security model is not
directly applicable: There is no meaningful way to define security levels reflecting the
intended confidentiality policy, not even in the presence of a trusted downgrader. On
the contrary, the task is to characterize the admissible flows from high to low in such
a manner that no trust in the downgrader (i.e. the protocol implementation) will be
required.

The idea is to map a dependency specification to a set of system perturbations. Each
such function is a permutation on actions and configurations which will make a config-
uration containing a secret, sayx, appear to the external world as if it actually contains
another secret, sayx′. If the behaviour of the original and the permuted configuration
are the same, the external world will have no way of telling whether the secret isx or
x′.

At the core of any configuration permutation there is a function permuting values
(e.g.x andx′). This leads to the following definition:

Definition 6 (Value Permutation).A bijectiong: aVal→ aVal is avalue permutation
if it preserves the structure of annotated values:

1. g(v) = v ,
2. g(β1, . . . , βn) = (g(β1), . . . , g(βn)), and
3. g(v : f w) = v′ : f g(w), for some suitable valuev′;

and it preserves the meaning of functions:

4. Supposeg(v : f w) = v′ : f w′ and that there is at least a valueu′ s.t.f([[w′]], u′).
Thenf([[w′]], v′), wheneverf([[w]], v) or @u ∈ Val. f([[w]], u).

We extend value permutations over transition labels and contexts. In the first case,

let g(τ) ∆= τ andg(v := ϕ) ∆= v′ := ϕ′, whereg(v : ϕ) = v′ : ϕ′. For contexts, define

g(s)(f w) ∆= [[g(v′ : f g(w))]], wherev′ = s(f g(w)) .

The following lemma establishes the coherence of the above definitions. It states
that the relation between contextss andg(s) is preserved after the execution of action
v := ϕ, resp.g(v := ϕ).

Lemma 1. If g(v : ϕ) = v′ : ϕ′ theng(s[v/ϕ]) = g(s)[v′/ϕ′].

Not all value permutations are interesting for our purposes. In fact, we are only
interested in those that permute secrets as dictated by a dependency specification.

Definition 7 (Secret Permuter).Assume given a dependency specificationP . A secret
permuter forP is a value permutationg satisfying the following conditions:

1. if f w does not contain annotations inS theng(v : f w) = v : f w ,
2. if f w ∈ S thenf g(w) ∈ S ,
3. if P, s ` α ok thenP, g(s) ` g(α) ok ,
4. if ∃s. P, s ` v := f w ok, then

– g(xcpt : f w) = xcpt : f g(w), and
– f [[w]] ⇑ iff f [[g w]] ⇑, wheref v ⇑ iff @v′ ∈ Val.f(v, v′)

5. g = g−1 .

As expected, a secret permuter affects only secret values. This is implied by the
first condition in Definition 7. According to the second condition, permutations must
also stay within the bounds imposed by setS. Condition (7.3) implies that a secret
permuter must respect the admissibility predicate so that actionsα that are admissible
in a contexts will remain admissible once both the action and the context have been
permuted. On the other hand, if a dependency specification admits a certain function
call f w (admissible invocation), then we assume that it also permits the observation
of f ’s exceptional and terminating behaviour. Thus, if the execution off w raises an
exception (resp. does not terminate), we should not consider those cases wheref g(w)
does not raise an exception (resp. does terminate). This is reflected by condition (7.4).

Finally we impose the requirement thatg be a period 2 permutation (7.5). This
seems natural given the intuition that the role ofg is to interchange values of secrets.
Not only does this requirement help simplify several results, but we conjecture that its
introduction in Def. 7 represents no loss of generality.

The following lemma and proposition further characterize the set of secret per-
muters associated to a dependency specification.

Lemma 2. Letg be a secret permuter. Then

1. g(g(α)) = α , and

2. g(g(s)) = s .

Proposition 1 (Composition of Secret Permuters).Given a dependency specifica-
tion, the set of secret permuters is closed under functional composition.

Example 3 (Secret Permuter for the 1KP Example).Let g exchange values as follows:

212 : receive acc↔ 417 : receive acc
{b, 212}b3 : enc((b, 212 : receive acc), b3 : key b1 : receive acq)↔
{b, 417}b3 : enc((b, 417 : receive acc), b3 : key b1 : receive acq)

where{b}b′ represents a valuev ∈ Val such thatenc((b, b′), v). On all other values,
g acts in accordance with conditions in Defs. 6 and 7. Conditions (6.1)–(6.4) and (7.x,
with x 6= 3) are easily validated. To verify condition (7.3) consider the action

α = {b, 212}b3 := enc((. . . , 212 : receive acc), . . .) .

If P, s ` α ok thens(receive acc) = 212, by Def. 4. To see thatP, g(s) ` g(α) ok
observe that

g(α) = {b, 417}b3 := enc((. . . , 417 : receive acc), . . .)

andg(s)(receive acc) = 417 by the definition ofg(s), so we can indeed conclude that
P, g(s) ` g(α) ok.

We have extended secret permuters over transition labels and contexts. Stores and
commands can equally be permuted. The extension of a secret permuterg over a store
is given by the equationg(σ)(x) = g(σ(x)). For a commandc, defineg(c) to preserve
the structure of the command, down to the level of single annotated values which are
permuted according tog. For example,g(:= enc((b, b2 : receive acc), PKA)) =

:= enc((b, g(b2 : receive acc)), PKA). Commands like these occur naturally dur-
ing the course of expression evaluation, which is governed by a small-step semantics.

The idea now is to compare the behaviour of a given command on a given store and
context with its behaviour where secrets are permuted internally and then restored to
their original values at the external interface, i.e. at the level of actions. For this pur-
pose we introduce a new construct at the command level, perturbationc[g], somewhat
reminiscent of the CCS relabelling operator, with the following transition semantics

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉

〈c[g], σ, s〉 [[g(s, α)]]−−−−−−→ 〈c′[g], σ′, s′〉
(2)

where[[v := f w]] = v := f [[w]], andg(s, α) permutesα only if it is an admissible
invocation (i.e.g(s, α) = g(α), if P, s ` α ok; andg(s, α) = α, otherwise). So a per-
turbed command is executed by applying the secret permuter at the external interface,
and forgetting annotations. The latter point is important since the annotations describe
data flow properties internal to the command at hand; the externally observable be-
haviour should depend only on the functions invoked at the interface, and the values
provided to these functions as arguments.

Notice the use ofg(s, α) in (2). The effect of this condition is that actions are only
affected by the permuter when they are “ok”. Secret input actions are generally always
“ok”, and so in general cause the internal choice of secret to be permuted. Output actions
that are not “ok”, however, are not affected byg(s, α), and so in this case a mismatch
between value input and output may arise.

Thus, if the behaviour of a command is supposed to be invariant under perturbation,
the effect is that it must appear to the external world to behave the same whether or
not a secret permuter is applied to the internal values. This is reflected in the following
definition.

Definition 8 (Admissibility). A commandc ∈ Com is admissible for the storeσ and
contexts, the dependency specificationP , if for all secret permutersg for P :

〈c[I], σ, s〉 ∼ 〈g(c)[g], g(σ), g(s)〉 (3)

whereI is the identity secret permuter and∼ is the standard Park-Milner strong bisim-
ulation equivalence.

Observe that the effect of perturbing a command with the identity secret permuter
is just to erase annotations at the interface, but keeping all values intact.

7 Local Verification Conditions

Applying the definition of admissibility out of the box can be quite cumbersome, since it
is tantamount to searching for, and checking, a bisimulation relation. In case the control
flow is not affected by the choice of secrets one may hope to be able to do better, since
only data-related properties need to be checked. In this section we give such a local
condition.

Definition 9 (Stability for Commands). Let a dependency specificationP be given.
Let4 be the smallest reflexive and transitive relation over commands such that, for all
commandsc0 andc1, c0 4 c0; c1 andc0 4 try c0 catch c1. The commandc ∈ Com
is stableif for all c′ 4 c and for all secret permuterg,

1. if c′ = if β then c2 else c3, then[[β]] = [[g(β)]] ,
2. if c′ = r[ε] andw is a subterm ofε, then[[w]] = xcpt iff [[g(w)]] = xcpt, and
3. if c′ = r[ε] andf w is a subterm ofε, thenf [[w]] ⇑ iff f [[g w]] ⇑ ,

wherer[·] ::= x := · | if · then c0 else c1 .

For stable commands we obtain strong properties concerning the way secret per-
muters can affect the state space.

Lemma 3. Suppose thatc ∈ Com is stable w.r.t. dependency specificationP . Then,

〈c, σ, s〉 α−→ 〈c′, σ′, s′〉 iff 〈g(c), g(σ), g(s)〉 g(α)−−−→ 〈g(c′), g(σ′), g(s′)〉 .

Definition 10 (Stability for Configurations). Let a dependency specification be given.
The configuration〈c, σ, s〉 is stable if whenever〈c, σ, s〉 ⇒ 〈c′, σ′, s′〉, thenc′ is a
stable command.

Theorem 1. If c ∈ Com is flow compatible with dependency specificationP for store
σ and contexts, and〈c, σ, s〉 is stable, thenc is admissible (forσ, s, P and∼).

Theorem 1 does not provide necessary conditions. In fact, there are admissible pro-
grams whose control flowis affected by the perturbations. However, the import of The-
orem 1 is that, in order to verify Admissibility it is sufficient to check that the flow of
control is not affected by the relabelling of secret inputs and of admissible outputs. Fur-
thermore, it suffices to check this for a (smaller) subset of the reachable configurations.

To formalize this, consider a dependency specificationP and an initial configura-
tion 〈c0, σ0, s0〉. For each configuration〈c, σ, s〉 defineg(〈c, σ, s〉) as the con-
figuration that results from applyingg to all three components, i.e.g(〈c, σ, s〉) =
〈g(c), g(σ), g(s)〉. Then assume the existence of a set of program configurations
{ξi}i∈I where0 ∈ I ⊆ N, which satisfies the three properties below:

P1)ξ0 = 〈c0, σ0, s0〉,
P2) for alli ∈ I, if ξi = 〈c, σ, s〉 thenc is a stable command,

P3) for alli ∈ I and for all actionα such thatξi
α−→ q, then

• there is aj ∈ I and a secret permuterg for P such thatq = g(ξj), and
• P, s ` α ok, if ξi = 〈c, σ, s〉 .

Under these conditions, we can use Lemma 3 to prove the following

Theorem 2. Consider a set{ξi}i∈I satisfying conditions P1–P3 as above. Then, for
each reachable configurationξ = 〈c, σ, s〉,

1. there is ani ∈ I and a secret permuterg such thatξ = g(ξi),
2. c is a stable command, and

3. if ξ
α−→ q thenP, s ` α ok .

To conclude, notice that statements 2 and 3 in this theorem imply that〈c0, σ0, s0〉
is admissible, by means of Theorem 1. In the full version of this paper [6], we show
how to apply Theorem 2 to prove thatProg 1 (Fig. 1) is admissible for all initial stores
and contexts.

8 Admissibility vs. Flow Compatibility

In general, admissibility does not imply flow compatibility. At a first glance this may
seem somewhat surprising. The point, however, is that flow compatibility provides a
syntactical tracing of data flow, not a semantical one. Consider for instance the com-
mand

SECRET := receive a1 ;
if SECRET = 0 then := send(SECRET, a2) else := send(0, a2)

in the context of a dependency specificationP = 〈{receive a1}, ∅〉.
This command is clearly admissible forP (for any store and context), but not flow

compatible for quite obvious reasons. However, if the control flow does not permit
branching on secrets, we can show that in fact flow compatibility is implied. For this
purpose some additional assumptions need to be made concerning the domains and
functions involved.

Clearly, if constant functions are allowed there are trivial examples of direct flows
which violate flow compatibility without necessarily violating admissibility.

However, we are able to establish the following result as a partial converse to The-
orem 1.

Lemma 4. Suppose〈c0, σ0, s0〉 is stable and admissible for dependency specification
P . Then for all behaviours

〈c0, σ0, s0〉 ⇒ 〈c1, σ1, s1〉
v := f w−−−−−−→ 〈c2, σ2, s2〉

of minimal length such thatP, s1 6` v := f w ok, the set

{[[g(w)]] | g is a secret permuter}

is finite.

Thus, if we can guarantee infinite variability of the set in Lemma 4 (which we cannot
in general), flow compatibility does indeed follow from admissibility and stability.

9 Discussion and Conclusions

We have studied and presented conditions under which an implementation is guaran-
teed to preserve the confidentiality properties of a protocol. We first determine, using
annotations, the direct flow properties. If all direct dependencies are admitted by the
policy, we use an extension of the admissibility condition introduced first in [4] to de-
tect the presence of any other dependencies. If none are detected we conclude that the
implementation preserves the confidentiality properties of the protocol.

As our main results we establish close relations between the direct and the indirect
dependency analysis in the case of programs which mirror the “only-high-branching-
on-secrets” condition familiar from type-based information flow analyses (cf. [11, 9]).
In fact, in our setting the condition is more precisely cast as “only-permitted-branching-
on-secrets”, since branching on secrets is admissible as long as its “observational con-
tent” is allowed by the dependency rules. The correspondence between the direct and
the indirect dependency analysis provides an “unwinding theorem” which can be ex-
ploited to reduce a behavioral check (in our case: strong bisimulation equivalence) to
an invariant.

One of the main goals of our work is to arrive at information flow analyses which
can control dependencies in a secure way, rather than prevent them altogether, since this
latter property prevents too many useful programs to be handled. Other attempts in this
direction involve the modeling of observers as resource-bounded processes following
well-established techniques in Cryptography (cf. [10]). The scope of approaches such
as this remains very limited, however.

Intransitive noninterference [7] is a generalization of noninterference that admits
downgrading through a trusted downgrader. Although it prevents direct downgrading
(i.e. flows around the downgrader), it does not prevent Trojan Horses from exploit-
ing legal downgrading channels to actively leak secret information. A solution is to
resort to Robust Declassification [12], which provides criteria to determine whether a
downgrader may be exploited by an attacker. Unfortunately, the observation powers of
attackers are too strong in the presence of cryptographic functions, so that the approach
cannot be applied without major changes to our examples.

One important property which our approach does not handle satisfactorily is nonce
freshness. Our formalism has, as yet, no way (except by the introduction of artificial
data dependencies) of introducing constraints such as “x was input aftery”, and thus
we must at present resort to external means for this check.

One worry of more practical concern is the amount of detail needed to be provided
by the dependency rules. It is quite possible that this problem can be managed in re-
stricted contexts such as JavaCard. In general, though, it is not a priori clear how to
ensure that the rules provide enough implementation freedom, nor that they are in fact
correct. It may be that the rules can be produced automatically from abstract protocol
and API specifications, or, alternatively, that they can be synthesized from the given
implementation and then serve as input for a manual correctness check.

References

1. M. Abadi and A. D. Gordon. A Bisimulation Method for Cryptographic Protocols.Nordic
Journal of Computing, 5(4):267–303, 1998.

2. M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik, and
M. Waidner. iKP – a family of secure electronic payment protocols. InFirst USENIX
Workshop on Electronic Commerce, May 1995.

3. E. S. Cohen. Information Transmission in Sequential Programs. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors,Foundations of Secure Computation, pages
297–335. Academic Press, 1978.

4. M. Dam and P. Giambiagi. Confidentiality for Mobile Code: The case of a simple payment
protocol. InProceedings of 13th IEEE Computer Security Foundations Workshop, 2000.

5. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process Algebras.
Journal of Computer Security, 3(1):5–33, 1995.

6. P. Giambiagi and M. Dam. On the Secure Implementation of Security Proto-
cols. Full version, available fromhttp://www.sics.se/fdt/publications/
gd03-secImpl-full.pdf , 2003.

7. A. W. Roscoe and M. H. Goldsmith. What is Intransitive Noninterference? InProceedings
of 12th IEEE Computer Security Foundations Workshop, 1999.

8. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security.IEEE Journal
on Selected Areas in Communications, 21(1), 2003.

9. A. Sabelfeld and D. Sands. A PER Model of Secure Information Flow in Sequential Pro-
grams.Higher-Order and Symbolic Computation, 14(1), 2001.

10. D. Volpano. Secure Introduction of One-Way Functions. InProceedings of 13th IEEE
Computer Security Foundations Workshop, 2000.

11. D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Analysis.
Journal of Computer Security, 4(3):167–187, 1996.

12. S. Zdancewic and A. Myers. Robust Declassification. InProceedings of 14th IEEE Computer
Security Foundations Workshop, 2001.

