Fixed points of Biichi automata

Mads Dam*

Department of Computer Science, University of Edinburgh, U.K.

Abstract. We give a new and direct proof of the equivalence between
the linear time p-calculus ¥TL and Biichi automata. Constructions on
automata are given which compute their least and greatest fixed points.
Together with other well-known constructions corresponding to the re-
maining vTL connectives the result is a representation of ¥TL as Biichi
automata which in contrast to previously known constructions is both el-
ementary and compositional. Applications to the problem of completely
axiomatising vTL are discussed.

1 Introduction

The relation between automata as devices for recognising behaviours, and fixed
points, or equations, as means of characterising them is an important recurring
theme in the theory of computation. The w-regular languages provides an exam-
ple of particular interest in concurrency theory. They are characterised on the
one hand by formulas in the linear time p-calculus. This logic, known as vTL,
augments linear time logic by least and greatest fixed points of formally mono-
tone contexts. The w-regular languages are also exactly the languages recognised
by Biichi automata, finite automata applied to words of infinite length. Both #TL
and Biichi automata have had considerable attention as formalisms for specifying
and verifying concurrent programs (c.f. [?, 7, 7, 2, 7, ?]).

We suggest examining the connection between vTL and Biichi automata
further. Biichi automata at present lacks a structural theory which is usable in
practice, for instance for machine implementation or to support equational rea-
soning. The equivalence with S1S, the monadic second-order theory of successor,
is nonelementary [?] and thus offers little concrete assistance. The linear time
p-calculus is potentially much more valuable for this purpose. Fixed points, on
the other hand, can be very troublesome in practical use. Already at the second
level of alternation formulas can become highly unintelligible. Automata can
prove useful aids for visualising fixed point properties.

The value of a compositional, or syntax-directed approach in such an en-
terprise is well documented. Indeed Biichi’s original work on the decidability
of S1S, the monadic second-order theory of one successor [?], gave a compo-
sitional representation of S1S formulas as automata, representing second-order
quantification, in particular, by projection. The present paper can be viewed

* Research supported by SERC grant GR/F 32219. Current address: Swedish Institute
of Computer Science, Box 1263, S-164 28 Kista, Sweden. E-mail: mfd@se.sics.

as an adaptation of Biichi’s work to vTL, by providing representations for the
fixed point quantifiers. That is, given an automaton recognising the language
expressed by the vTL-formula ¢ where ¢ is formally monotone in the variable
X, we produce automata recognising the least and greatest fixed points, uX.¢
and v X.¢ respectively, of the operator AX.¢. Of course only one fixed point con-
struction, for instance for greatest fixed points, is needed due to the equivalence
uX.¢ = wX.—¢[-X/X]. However, the construction for least fixed points gene-
ralises the construction for greatest fixed points in a natural way, and by using
it the need for explicit complementation of Biichi automata can be dispensed
with.

Existing proofs that formulas in ¥TL define w-regular languages give con-
structions of Biichi automata that are either nonelementary because S18S is used
as an intermediate step, or noncompositional. The latter is the case, in particu-
lar, for the automata-theoretic techniques of e.g. [?, ?]. Their approach is global
rather than compositional: The automaton for a formula ¢ is built as the inter-
section of an automaton that checks local model conditions with the complement
of an automaton that checks for non-well-foundedness of a certain regeneration
relation.

The paper is organised as follows: In section 2 we introduce vTL, and in
section 3 we introduce Biichi automata and show how they can be represented
in vTL. This representation is instructive in showing results that do not appear
to be widely known, such as the collapse of the fixed point alternation hierarchy
(on level vu), and the expressive equivalence of the aconjunctive fragment of
vTL with the full language (see [?] for a definition of aconjunctivity). The fixed
point constructions first builds an intermediate automaton with nonstandard
acceptance conditions. This construction is described in section 4, and then in
sections 5 and 6 the constructions for greatest and least fixed points are given.
Finally, in section 7, we discuss the application of our construction to the problem
of completely axiomatising ¥TL. This is of particular interest since automata-
based techniques, despite their success in temporal logic in general, have not so
far proved very useful where axiomatisations are concerned. The axiomatisation
we have in mind is based on Kozen’s axiomatisation of the modal p-calculus
[?]. Using our construction Biichi automata can be viewed as normal forms for
VTL, suggesting a strategy for proving completeness whereby each formula is
proved equivalent to its normal form using only the axioms and rules of inference
provided. We have so far used this strategy successfully to prove completeness
for the aconjunctive fragment. Our approach is related to Siefke’s completeness
result for S1S [?] and to Kozen’s recent completeness result for the algebra of
regular events [?].

2 The Linear Time p-calculus

Formulas ¢, v, v of the linear-time pu-calculus vTL are built from propositional
variables X, Y, Z, boolean connectives — and A, the nexttime operator O, and
the least fixed point operator uX.¢, subject to the formal monotonicity condition

that all free occurrences of X lie in the scope of an even number of negations.
Other connectives are derived in the usual way, and in particular greatest fixed

points are derived by vX.¢ 2 —uX.—¢[-X/X]. Intuitively, least fixed points are
used for eventuality properties, and greatest fixed points for invariants.

Fix a finite set X of propositional variables. A model M assigns to each
variable X € X a subset M(X) C w. Models are extended to arbitrary formulas
with free variables in X in the following way:

M(=¢) = M(9)

Mo A1) = M(¢) N M()
M(0¢) = {i|i+1e M(¢)}
M(pX.¢) = {A Cw | M[X = AJ(¢) € A}

Here M[X + A]is the obvious update of M. There is a bijective correspondence
between models and w-words a over the alphabet 2. The model M determines
the w-word ax : i+ {X | i € M(X)}, and the language defined by ¢ is

L(¢) = {arm |0 € M(¢)}. (1)

Operations on w-words « include the n’th suffiz, ™, and, where n < m, the
n,m-segment, a(n,m) = a(n)---a(m).

3 Biichi Automata

Automata provide an alternative way of defining w-languages. We use a slightly
modified account of Biichi automata, closely related to Alpern and Schneider’s
use of transition predicates [?]. Fix a finite set X of propositional variables.
An atom over ¥ is a pair a = (a*,a”) where a™ and a~ are subsets of ¥.
Intuitively, a transition labelled a is enabled when all members of at are true
and all members of a~ false. The set of all atoms over X' is denoted by At(X).

A Biichi-automaton (over X') is an NFA A = (Q, qo, {ﬂ}aGAt(E),F) where

is the finite set of states, go € @ is the initial state, -=C @ x @ is the transition
relation for each a € At(X), and F C @ is the set of accepting states. We
sometimes write 4(qo) instead of just .4 to emphasize the initial state. Let an
w-word « over alphabet 2% be given. An (infinite) run of A on « is an w-word
IT over @ s.t. I1(0) = qo and for all 7 > 0 there is an atom a € At(X) s.t.
(i) 5 M(i+1),at Ca(i) and a~ Na(i) = (. Finite runs are defined similarly.
An infinite run is successful if some accepting state in F' occurs infinitely often in
it, and A accepts a if a successful run of A on « exists. The language recognised
by Ais L(A) = {a | A accepts a}.

Ezample 1. In all examples here and below formulas are positive in their free
propositional variables. The negative component of atoms can consequently be
omitted.

911pt ®) 911pth
913ptqy

> e

911ptgo
911pt{
911ptqz 911pt{X} 91 tgs

Fig. 1. Biichi automaton A4; for Z V (Y A OX)

911pt{

1. The automaton A; of fig. 1 recognises the language defined by the vTL
formula Z v (Y A OX).

2. The automaton A, of fig. 2 recognises O((O(uY.X V OY)) A Z), equivalent
to the PTL formula O((OFX) A Z).

911pt{ 911pt(2)
911pth 911pt{Z@ 911pt{X}
> e
911ptqo 911ptq1 911ptq2 911ptgs

Fig. 2. Biichi automaton A, for O((O(pY.X V OY)) A Z)

The Biichi automaton A can be represented as a vTL formula fm(.A) in the
following way: Let F4 = {q1,...,¢»} and for each 1 <i < n, let A; be A with F’
replaced by the singleton {¢;}. Then L(A) = i, L(A;) so we can let fm(A) 2
V1<;fm(A;). To represent the A;, states are represented as fixed point formulas,
the unique accepting state as a v-formula and all other states as u-formulas.
Thus the representation, fm,(g), of ¢ is really relative to an environment p C @
keeping track of earlier encountered states, and then fm(A4) = fmg(qo). For each
state g let X, be a distinguished propositional variable. Atoms are dealt with
by defining

0.6 206 A \at AN-X | X €a} 2)
The representation is now defined as follows:
Xy ifgep
fm,(q) = ¢ pXy V{afm,ugey (@) g = ¢'}if ¢ & pand ¢ # g; (3)

vXy. V{afmy(¢) | g ¢'} otherwise

We can assume that every state g has a successor, i.e. that there are a and
q' such that ¢ % ¢' so that only nonempty disjunctions in (3) are needed.
This assumption applies throughout the rest of the paper. The representation is
closely related to the translation of ECTL* into the modal p-calculus of Dam
[?] and can be proved correct in the same way.

Theorem 1. For each Biichi automaton A, L(A) = L(fm(A)). O

4 Intermediate Automata

To derive equivalent Biichi automata from vTL-formulas we give for each con-
nective of vTL a corresponding construction on automata. Each formula can be
put in positive form, generated by

pu=X[=X |1 V|1 A2 |O0¢|vX.g|pX.0

so we only need consider negation applied to propositional variables. It is easy
to produce automata aut(X) and aut(—X) respectively recognising L(X) and
L(=X), and to produce an automaton O.A recognising L(O¢) when A recognises
L(¢). Corresponding to the V is the sum operation A; + .45 which adjoins a new
initial state to the disjoint sum of the statesets of A; and As. Corresponding to
the A is a product automaton A; x A, which accepts when first an accepting
state of A; and then of A, is encountered (c.f. [?]).

Completing this procedure it thus remains to produce automata v X.A and
uX.A for vX.¢ and uX.¢ respectively when A = (Q, qo, {ﬁ}aeAt(Z‘)aF) recog-
nises L(¢$). We assume the following two properties of A:

1. Whenever ¢ = ¢' then X ¢ a~.
2. Whenever gy — ¢ then X € at.

The first property reflects the formal monotonicity requirement of X in ¢ and
is validated by the inductive construction of A from ¢. The second property
ensures that occurrences of X in fm(A) are guarded, i.e. occurs only within the
scope of the nexttime operator O. It is a straightforward matter to modify an
automaton 4 such that property 2 is satisfied without affecting the languages
recognised by the fixed point automata (c.f. [?]).

The key problem in deriving the fixed point automata is to handle transitions
g = ¢ of Athat involve reference to the recursion variable, i.e. such that X € at.
In this situation, as part of a fixed point automaton, ¢ gives rise not only to

¢', but also to a state ¢" for which go < ¢" for some appropriate a’. We use
a subset construction to handle this conjunctive branching of the transition
relation. Given A the procedure detailed below gives an automaton A’, called
an intermediate automaton. The states of A’ are subsets of 0, and the initial state
is the singleton {qo}. For the transition relation there are two cases according
to whether a reference to the recursion variable is needed or not:

1. (X not referenced). Let at = aj U---Ua},a” = a7 U---Ua,,,and X € a™.
(at,a”)
g B¢, . qm=q, then {q1,...,qm} — {d},...,d"}.
2. (X referenced). Let a™ = af U---Ua} 1, a” =a7 U---Ua, 41,0 > 1,
and X € a™. Suppose
a a
@) @ = d,. o am = @,
(af U{X}a,) . (af L u{X}ar) ,
(B) Gmy1 —— Gpyr-Omin T Gy and

Amgn41

(¢) @ — Gmint1-

at.a”)

(
Then {q1,.. ., @mtn} — {d15- - Gngns1}-

Note that — is used for the transition relation in both 4 and A’. Ambiguities
caused by this are resolved by context.

It remains to equip A’ with appropriate acceptance conditions. For this pur-
pose an analysis of the way individual states in A4 are generated along runs of
A’ is required. Let S range over subsets of @ and assume that S = S'. The
successor relation & C S x S’ is determined in the following way: In case 1 we
let qi—bq} only if i = j, and q} is then the direct successor of ¢;. In case 2 we
let g;+q; only if either i = j in which case g} is the direct successor of g;, or
m<i<m+mnandj=m+n+1, in which case q; is the indirect successor of
¢;. Consider a run IT through A" and any word 7 over states of A with the prop-
erty that 7(i) is defined and a member of IT(i) whenever the latter is defined,
and whenever IT(i + 1) is defined then 7 (i) (i + 1) relative to the transition
(i) % IT(i 4+ 1). We call 7 a trail through IT, written as 7 € IT. If w(i + 1)
is the direct successor of 7 (i) for all ¢ for which 7 (i + 1) is defined then 7 is a
direct trail. Note that each run IT and ¢ € II(0) determines a unique direct trail
7 € II, the direct trail from ¢, for which 7(0) = q.

We can now define the acceptance conditions: A trail 7 is successful if 7 is
a direct trail for some i and 7(j) € F for infinitely many j. An infinite run IT
through A’ is p-successful if all # € IT are successful, and it is v-successful if all
7 € I for which 7 is a direct trail for some 4 are successful.

Theorem 2. The following statements are equivalent:

1. 0 € M(vX.fm(A)).
2. There is a v-successful run IT through A" on apy. |

Theorem 3. The following statements are equivalent:

1. 0 € M(pXfm(A)).
2. There is a p-succesful run I through A’ on apq. |

Theorems 2 and 3 are easily proved using e.g. the model characterisations of
[?] or [?].

Ezample 2. 1. The automaton A} of fig. 3 is the intermediate automaton ob-
tained from A; of fig. 1 with respect to the recursion variable X. States
that are not accessible from the initial state have for clarity been removed.
All infinite runs through A/ are v-successful, and only runs that eventually
visits the state {qi1,¢3} are p-successful.

2. Similarly A} of fig 4 is the intermediate automaton obtained from A, of fig.
2 with recursion variable Z. Again inaccessible states have been removed.

. . X .
Runs are v-successful if the transition {qi,q2,q3} {—>} {q1,42,q3} is taken
infinitely often. There are no p-successful runs.

911pt{Z 991110

/{/}Zgllpt{ql 911pt{ qs}
o 911pt{Z

pt{d

911pt{Y /F 911pt{Z}

911pt q2
911pt{Y 9911pt{y}
2,q3}

911pt{

Fig. 3. Intermediate automaton .4

ﬁt@
- 9tiptd 911ptf 911pt{ Mint(ar. o)
911pt{go} 911pt{q:} 911pt{q1,Q2} U o
911pt{X}

Fig. 4. Intermediate automaton A’

5 Greatest Fixed Points

For greatest fixed points Theorem 2 gives rise to a natural idea of resolution of
eventualities. Consider a finite run IT from S; to Ss in A, let ¢ € S; and 7 € IT
be the direct trail from gq. We can view q as resolved at Sy if 7(j) is an accepting
state for some j. Let then pending(IT) be the subset of Sy of states that are not
resolved at Sy. The idea of the rewriting procedure is embodied by the following
easy Lemma:

Lemmad4. An infinite run IT through A’ is v-successful iff there is a node S

and an infinite, strictly increasing sequence jo, j1, - .. such that for all k € w,
1. II(jr) =S, and
2. pending(II(ji, jk+1)) = 0. =

For each node S the automaton A% handles the situation where S is visited
infinitely often by an infinite run through A’'. The desired automaton, vX.A, is
then built as the sum of the A%. The states of each A% are pairs (T',T') where
T is a node, and T' C T. The intention is that T’ is the set of members of T
currently pending. The initial state of A% is the pair ({go}, {go}), and the single
accepting state is the state (9, 0)). The transition relation removes pending states
as they are resolved, so that there will be a run (of length greater than 1) from
(S,0) to (S,0) in A% just in case there is a corresponding run I7 from S to S in
A" for which pending(IT) = §. Formally we let (Ty,T}) % (T, Ts) iff Ty 5 Ty in
A', and either

1. T is nonempty, and Tj is the set of all go € Ty — F such that ¢ is the direct
successor of some ¢; € Ty, or

2. T| is empty, and then T3 is the set of all g € To — F such that go is the
direct successor of some ¢; € Tj.

The correctness of this account is a direct consequence of Lemma 4:

Theorem 5. L(vX.A) = L(rX.fm(A)). O

A pragmatically useful optimisation is that states that are inaccessible from
the initial state, or for which an accepting state is inaccessible, can be removed.
This modification applies in the examples to follow.

Ezample 3. The intermediate automaton Aj of fig. 4 gives the greatest fixed
point automaton vZ. A, of fig. 5. In vTL the language recognised by vZ. A, is
vZ.0((O(uY.XVOY))AZ) equivalent to the PTL formula GOOF X (and indeed
GFX), expressing the fairness related property that X holds infinitely often.

911ptd 911ptQ
911ptpa
911pth . 911pth Q 911pt{X}@ 911pt{ 'Q 911pth
911ptpo 911ptp: 911ptp- 911peps911pt

Fig. 5. Biichi automaton vZ.A»

6 Least Fixed Points

For least fixed points we have additionally to take account of trails that do not
eventually coincide with a direct trail and are consequently unsuccessful. Let S
be any node occurring infinitely often along some infinite run IT through A'.
The crucial observation is that it must be possible to order S in a way which
prevents trails that are not eventually direct.

Lemma6. An infinite run IT through A’ is p-successful iff there is a node S, a
linear order < on S, and an infinite, strictly increasing sequence jo, j1,... such
that for all k € w,

1. I (jx) = S,
2. pending(I1 (jg, jr+1)) = 0, and
3. whenever m € IT and 7(ji, jr+1) is not a direct trail then 7(jrr+1) < 7(jr).

Proof. The if direction is easily checked. For the only-if direction assume that I7
is p-successful. Let S be any node visited infinitely often by IT, and let jo, j1, . . .
be any infinite, strictly increasing sequence of jj such that IT(j;) = S. For any
q € S and k € w there is some k' such that ¢ ¢ pending(I1(ji,jx')), so as S is
finite we can assume both (1) and (2) to be satisfied.

We derive a subsequence and a linear ordering < such that also (3) is satisfied.
The ordering < is obtained by defining inductively a numeration pq, ..., P, of
S. For the base case note that there must be some py € S with the property
that for infinitely many k,

if 7 € IT and 7(ji) = po then 7/* is a direct trail. (4)

For assume this fails to hold. For each ¢ € S there is some k; with the property
that whenever k > k, then there is a # € IT and k' > k such that 7(jx) = ¢
and 7(jk, jrr) is not a direct trail. Let ko be largest among {k, | ¢ € S}. Pick
any py € S. Then we find a ky > ko such that there is a trail mg € IT where
70 (Jko, Jky) 18 not direct, and mq(jr,) = pi. And we find a ky > k¢ such that
there is a trail my € II where m (jk,, jr,) is not direct, and m (jg,) = mo(J,)-
Continuing ad infinitum an unsuccessful trail through I is then pieced together.
This completes the base case. Note that at the end of the base case we can assume
without loss of generality that (4) holds for all k& € w.

Suppose then we have obtained py, ..., p;, and let T; = {pg,...,p;}. f S =T;
we are done. Otherwise there must be some p; 1 € S—T; such that for infinitely
many k,

if 7€ II,7(jx) = pit1, k' > k and 7(jg, jr) is not direct then 7(jx) € Ti. (5)

For if this fails a contradiction is obtained as in the base case. Similarly we can
assume here that (5) holds for all k € w.

We then define < in the obvious way, by letting p; < p; iff i < j. It follows
that (3) above is satisfied, and the proof is complete. |

Reflecting Lemma 6 the automata A% are built as the sum of automata
A’(‘SK) where < is a linear ordering of S. In order to check that < is not violated
each automaton A?S,<) must take into account the states that are accessible
both directly and indirectly. For this purpose we define the sets dir(T;) C S

and ind(Ty) C Sy when T) C S; and S; % S5 in A"

dir(Ty) = {p2 € Sa | Ip1 € T} .ps is the direct successor of p; }
ind(Ty) = {p2 € So | Ip1 € T\.p is the indirect successor of p; }

The states of A% are augmented by mappings f which given any member ¢ of
S produces a pair (T, T") such that T is the subset of the current node which
is directly accessible from the last visit to ¢ in S, and T’ the subset which
is indirectly accessible. The initial state of A?s,<) is the state (S, S, f) where
f maps each ¢ € S into the pair ({¢},#). For the transition relation we let
(51,51, f1) = (Sa, 54, fo) iff

1. (S1,8)) 5 (S2,S%) in A%, and
2. for all ¢ € S, if fi1(q) = (T1,T7) then fo(q) = (dir(Th), dir(77) U ind(Ty) U
ind(77)).

To produce A?S,<) it remains to fix the accepting state. For this purpose say
that a node (S,5’, f) is consistent with < if whenever q € S, f(q) = (T,T") and
q' € T' then ¢' < ¢q. The accepting states of A?S,<) are all states of the form
(S, 0, f) that are consistent with <. The automaton uX.A is then obtained from
A’ by replacing each node S of A" with the sum of A% and A'(S), A’ with initial
state S in place of {go}. Thus runs are allowed to violate the ordering for an
arbitrarily long initial segment. We obtain:

Theorem 7. L(pX.A) = L(pX.fm(A)). O

Example 4. Fig. 6 shows the least fixed point automaton puX.A; resulting from
the intermediate automaton A} of fig. 3. The language recognised by uX.A;
is uX.ZV (Y AOX) in vTL or YUZ in PTL where U is the strong until-
operator that requires Z eventually to hold. The greatest fixed point automaton
vX.A; is obtained by letting in addition the state ps of fig 6 be accepting. The
corresponding property in PTL is YU'Z where U’ is the weak until-operator
that allows Z never to hold.

> e
9

911pt{Z}— @ _) 911pth 911ptps
91Tpt
PP 911pt12 @;)911pt@
IEER
[]

911pt{Y} /rgllpt{Z}

911ptp>
911pt{Y] -Q 911pt{Y}
911ptp4

Fig. 6. Biichi automaton pX.A4;

A potentially useful optimisation of the least fixed point construction is to
introduce a (possibly partial) ranking of members of S such that only orderings <
need be considered which have the property that if ¢;,¢> € S are both ranked,
and ¢ is of strictly smaller rank than ¢o then ¢; < ¢2. The ranking can be
computed in the following way:

1. If ¢ € S has the property that no ¢’ is accessible from ¢ such that ¢’ has an
indirect successor then ¢ has rank 0.
(afU{X}.a7) . .
2. If ¢ —— ¢, ¢ has rank n, and m is maximal such that whenever
g0 3 ¢", af Nay =0 and a] Naf = () then ¢ has rank m, then ¢ has rank
max(n,m) + 1.

7 Applications

Our approach suggests a strategy for obtaining completeness results for ¥TL. A
good candidate for a sound and complete axiomatisation (c.f. [?]) adds to some
suitable standard axiomatisation of boolean logic and the nexttime operator the
axiom @[uX.¢/X] — uX.¢ and the rule of fixed point induction:

From ¢[¢)/X] — o infer uX.¢p — 1.

We write F ¢ if ¢ is provable in an axiomatisation along these lines. Since ¢
and fm(aut(¢)) are semantically equivalent, formulas of the form fm(A) can be
viewed as normal forms for vTL. Completeness then amounts to showing

1. F ¢ = fm(aut(¢)), and
2. if fm(A) is consistent (i.e. i/ =fm(A)) then L(A) # 0.

Of these, 2 is not hard to establish. The proof uses an important Lemma due
to Kozen [?] which is a proof-theoretic correlate of Winskel’s use of relativised
fixed points [?].

Lemma 8. If X is not free in ¢ and ¢ A uX.¢p is consistent then so is ¢ A
P[X/ X (4 A =¢)]. O

Using Lemma 8, 2 can be proved by showing that if fm(A) is consistent then
there must be an accepting state in .4 which is visited infinitely often along some
run. But then it follows that L(A) # 0.

Using structural induction 1 can be reduced to showing

(a) F (<)X — fm(aut((~) X)),

(b) F Ofm(A) — fm(0A),

() Ffm(A1) Vim(Az) = fm(A; + As),
(d) F fm(Al) A fm(AQ) — fm(Al X AQ)
(e) FvX.fm(A) - fm(rX.A), and

(f) F uXtm(A) — fm(pX.A).

Of these we have so far only been able to establish (a)—(e). For the aconjunc-
tive fragment, however, our strategy has been more successful. Aconjunctivity is
a technical condition due to Kozen [?] which, intuitively, disallows conjunctive
branching of the regeneration relation for least fixed point formulas. Since for-
mulas in normal form are aconjunctive, it follows that for ¥TL the aconjunctive
fragment is as expressive as the full language. Completeness for the aconjunctive
fragment follows by showing

(i) If uX.¢ is aconjunctive then so is uX.fm(aut(g)).
(i) If pX .fm(A) is aconjunctive then F pX.fm(A) — fm(uX.A).

Proofs of (i) and (ii) as well as other claims made in this section will be given
in the full version of the paper.

8 Concluding Remarks

We have described a syntax-directed procedure for deriving from each vTL for-
mula ¢ an equivalent Biichi automaton aut(¢). The construction for greatest
fixed points is 20(™ and for least fixed points 2°("*) in the size of A. The over-
all worst-case complexity of the procedure is thus 20(n*) This leaves a small
gap to the lower bound which is 20("1°87) [?]. Both Safra [?] and Klarlund
[?] have obtained essentially optimal procedures for complementing Biichi au-
tomata, and it would be of interest to see if our procedure can be optimised to
achieve a 29("1987) running time. The technical similarities between our work
and Klarlunds suggest that this could well be possible. Certainly this running
time can be achieved if the construction is modified to use greatest fixed point
together with complementation instead of both greatest and least fixed points.

