
Fixed points of B�u
hi automataMads Dam?Department of Computer S
ien
e, University of Edinburgh, U.K.Abstra
t. We give a new and dire
t proof of the equivalen
e betweenthe linear time �-
al
ulus �TL and B�u
hi automata. Constru
tions onautomata are given whi
h 
ompute their least and greatest �xed points.Together with other well-known 
onstru
tions 
orresponding to the re-maining �TL 
onne
tives the result is a representation of �TL as B�u
hiautomata whi
h in 
ontrast to previously known 
onstru
tions is both el-ementary and 
ompositional. Appli
ations to the problem of 
ompletelyaxiomatising �TL are dis
ussed.1 Introdu
tionThe relation between automata as devi
es for re
ognising behaviours, and �xedpoints, or equations, as means of 
hara
terising them is an important re
urringtheme in the theory of 
omputation. The !-regular languages provides an exam-ple of parti
ular interest in 
on
urren
y theory. They are 
hara
terised on theone hand by formulas in the linear time �-
al
ulus. This logi
, known as �TL,augments linear time logi
 by least and greatest �xed points of formally mono-tone 
ontexts. The !-regular languages are also exa
tly the languages re
ognisedby B�u
hi automata, �nite automata applied to words of in�nite length. Both �TLand B�u
hi automata have had 
onsiderable attention as formalisms for spe
ifyingand verifying 
on
urrent programs (
.f. [?, ?, ?, ?, ?, ?℄).We suggest examining the 
onne
tion between �TL and B�u
hi automatafurther. B�u
hi automata at present la
ks a stru
tural theory whi
h is usable inpra
ti
e, for instan
e for ma
hine implementation or to support equational rea-soning. The equivalen
e with S1S, the monadi
 se
ond-order theory of su

essor,is nonelementary [?℄ and thus o�ers little 
on
rete assistan
e. The linear time�-
al
ulus is potentially mu
h more valuable for this purpose. Fixed points, onthe other hand, 
an be very troublesome in pra
ti
al use. Already at the se
ondlevel of alternation formulas 
an be
ome highly unintelligible. Automata 
anprove useful aids for visualising �xed point properties.The value of a 
ompositional, or syntax-dire
ted approa
h in su
h an en-terprise is well do
umented. Indeed B�u
hi's original work on the de
idabilityof S1S, the monadi
 se
ond-order theory of one su

essor [?℄, gave a 
ompo-sitional representation of S1S formulas as automata, representing se
ond-orderquanti�
ation, in parti
ular, by proje
tion. The present paper 
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as an adaptation of B�u
hi's work to �TL, by providing representations for the�xed point quanti�ers. That is, given an automaton re
ognising the languageexpressed by the �TL-formula � where � is formally monotone in the variableX , we produ
e automata re
ognising the least and greatest �xed points, �X:�and �X:� respe
tively, of the operator �X:�. Of 
ourse only one �xed point 
on-stru
tion, for instan
e for greatest �xed points, is needed due to the equivalen
e�X:� � :�X::�[:X=X ℄. However, the 
onstru
tion for least �xed points gene-ralises the 
onstru
tion for greatest �xed points in a natural way, and by usingit the need for expli
it 
omplementation of B�u
hi automata 
an be dispensedwith.Existing proofs that formulas in �TL de�ne !-regular languages give 
on-stru
tions of B�u
hi automata that are either nonelementary be
ause S1S is usedas an intermediate step, or non
ompositional. The latter is the 
ase, in parti
u-lar, for the automata-theoreti
 te
hniques of e.g. [?, ?℄. Their approa
h is globalrather than 
ompositional: The automaton for a formula � is built as the inter-se
tion of an automaton that 
he
ks lo
al model 
onditions with the 
omplementof an automaton that 
he
ks for non-well-foundedness of a 
ertain regenerationrelation.The paper is organised as follows: In se
tion 2 we introdu
e �TL, and inse
tion 3 we introdu
e B�u
hi automata and show how they 
an be representedin �TL. This representation is instru
tive in showing results that do not appearto be widely known, su
h as the 
ollapse of the �xed point alternation hierar
hy(on level ��), and the expressive equivalen
e of the a
onjun
tive fragment of�TL with the full language (see [?℄ for a de�nition of a
onjun
tivity). The �xedpoint 
onstru
tions �rst builds an intermediate automaton with nonstandarda

eptan
e 
onditions. This 
onstru
tion is des
ribed in se
tion 4, and then inse
tions 5 and 6 the 
onstru
tions for greatest and least �xed points are given.Finally, in se
tion 7, we dis
uss the appli
ation of our 
onstru
tion to the problemof 
ompletely axiomatising �TL. This is of parti
ular interest sin
e automata-based te
hniques, despite their su

ess in temporal logi
 in general, have not sofar proved very useful where axiomatisations are 
on
erned. The axiomatisationwe have in mind is based on Kozen's axiomatisation of the modal �-
al
ulus[?℄. Using our 
onstru
tion B�u
hi automata 
an be viewed as normal forms for�TL, suggesting a strategy for proving 
ompleteness whereby ea
h formula isproved equivalent to its normal form using only the axioms and rules of inferen
eprovided. We have so far used this strategy su

essfully to prove 
ompletenessfor the a
onjun
tive fragment. Our approa
h is related to Siefke's 
ompletenessresult for S1S [?℄ and to Kozen's re
ent 
ompleteness result for the algebra ofregular events [?℄.2 The Linear Time �-
al
ulusFormulas �,  , 
 of the linear-time �-
al
ulus �TL are built from propositionalvariables X , Y , Z, boolean 
onne
tives : and ^, the nexttime operator O, andthe least �xed point operator �X:�, subje
t to the formal monotoni
ity 
ondition



that all free o

urren
es of X lie in the s
ope of an even number of negations.Other 
onne
tives are derived in the usual way, and in parti
ular greatest �xedpoints are derived by �X:� �= :�X::�[:X=X ℄. Intuitively, least �xed points areused for eventuality properties, and greatest �xed points for invariants.Fix a �nite set � of propositional variables. A model M assigns to ea
hvariable X 2 � a subsetM(X) � !. Models are extended to arbitrary formulaswith free variables in � in the following way:M(:�) =M(�)M(� ^  ) =M(�) \M( )M(O�) = fi j i+ 1 2M(�)gM(�X:�) = \fA � ! j M[X 7! A℄(�) � AgHereM[X 7! A℄ is the obvious update ofM. There is a bije
tive 
orresponden
ebetween models and !-words � over the alphabet 2�. The modelM determinesthe !-word �M : i 7! fX j i 2M(X)g, and the language de�ned by � isL(�) = f�M j 0 2M(�)g: (1)Operations on !-words � in
lude the n'th suÆx, �n, and, where n � m, then;m-segment, �(n;m) = �(n) � � ��(m).3 B�u
hi AutomataAutomata provide an alternative way of de�ning !-languages. We use a slightlymodi�ed a

ount of B�u
hi automata, 
losely related to Alpern and S
hneider'suse of transition predi
ates [?℄. Fix a �nite set � of propositional variables.An atom over � is a pair a = (a+; a�) where a+ and a� are subsets of �.Intuitively, a transition labelled a is enabled when all members of a+ are trueand all members of a� false. The set of all atoms over � is denoted by At(�).A B�u
hi-automaton (over �) is an NFA A = (Q; q0; f a!ga2At(�); F ) where Qis the �nite set of states, q0 2 Q is the initial state, a!� Q�Q is the transitionrelation for ea
h a 2 At(�), and F � Q is the set of a

epting states. Wesometimes write A(q0) instead of just A to emphasize the initial state. Let an!-word � over alphabet 2� be given. An (in�nite) run of A on � is an !-word� over Q s.t. �(0) = q0 and for all i � 0 there is an atom a 2 At(�) s.t.�(i) a! �(i+1), a+ � �(i) and a�\�(i) = ;. Finite runs are de�ned similarly.An in�nite run is su

essful if some a

epting state in F o

urs in�nitely often init, and A a

epts � if a su

essful run of A on � exists. The language re
ognisedby A is L(A) = f� j A a

epts �g.Example 1. In all examples here and below formulas are positive in their freepropositional variables. The negative 
omponent of atoms 
an 
onsequently beomitted.



911ptq0 911ptq1911ptq2911pt;911ptfXg 911pt;911ptfZg 911ptq3911ptfY gFig. 1. B�u
hi automaton A1 for Z _ (Y ^OX)1. The automaton A1 of �g. 1 re
ognises the language de�ned by the �TLformula Z _ (Y ^OX).2. The automaton A2 of �g. 2 re
ognises O((O(�Y:X _OY )) ^ Z), equivalentto the PTL formula O((OFX) ^ Z).911ptq0 911ptq1 911ptq2 911ptq3911pt; 911ptfZg911pt; 911ptfXg911pt;Fig. 2. B�u
hi automaton A2 for O((O(�Y:X _OY )) ^ Z)The B�u
hi automaton A 
an be represented as a �TL formula fm(A) in thefollowing way: Let FA = fq1; : : : ; qng and for ea
h 1 � i � n, let Ai be A with Frepla
ed by the singleton fqig. Then L(A) = Sn1�i L(Ai) so we 
an let fm(A) �=Wn1�i fm(Ai). To represent the Ai, states are represented as �xed point formulas,the unique a

epting state as a �-formula and all other states as �-formulas.Thus the representation, fm�(q), of q is really relative to an environment � � Qkeeping tra
k of earlier en
ountered states, and then fm(A) = fm;(q0). For ea
hstate q let Xq be a distinguished propositional variable. Atoms are dealt withby de�ning a:� �= O� ^^ a+ ^^f:X j X 2 a�g (2)The representation is now de�ned as follows:fm�(q) =8<:Xq if q 2 ��Xq:Wfa:fm�[fqg(q0) j q a! q0g if q 62 � and q 6= qi�Xq:Wfa:fmfqg(q0) j q a! q0g otherwise (3)We 
an assume that every state q has a su

essor, i.e. that there are a andq0 su
h that q a! q0 so that only nonempty disjun
tions in (3) are needed.This assumption applies throughout the rest of the paper. The representation is
losely related to the translation of ECTL� into the modal �-
al
ulus of Dam[?℄ and 
an be proved 
orre
t in the same way.Theorem1. For ea
h B�u
hi automaton A, L(A) = L(fm(A)). 2



4 Intermediate AutomataTo derive equivalent B�u
hi automata from �TL-formulas we give for ea
h 
on-ne
tive of �TL a 
orresponding 
onstru
tion on automata. Ea
h formula 
an beput in positive form, generated by� ::= X j :X j �1 _ �2 j �1 ^ �2 j O� j �X:� j �X:�so we only need 
onsider negation applied to propositional variables. It is easyto produ
e automata aut(X) and aut(:X) respe
tively re
ognising L(X) andL(:X), and to produ
e an automaton OA re
ognising L(O�) when A re
ognisesL(�). Corresponding to the _ is the sum operation A1+A2 whi
h adjoins a newinitial state to the disjoint sum of the statesets of A1 and A2. Corresponding tothe ^ is a produ
t automaton A1 � A2 whi
h a

epts when �rst an a

eptingstate of A1 and then of A2 is en
ountered (
.f. [?℄).Completing this pro
edure it thus remains to produ
e automata �X:A and�X:A for �X:� and �X:� respe
tively when A = (Q; q0; f a!ga2At(�); F ) re
og-nises L(�). We assume the following two properties of A:1. Whenever q a! q0 then X 62 a�.2. Whenever q0 a! q then X 62 a+.The �rst property re
e
ts the formal monotoni
ity requirement of X in � andis validated by the indu
tive 
onstru
tion of A from �. The se
ond propertyensures that o

urren
es of X in fm(A) are guarded, i.e. o

urs only within thes
ope of the nexttime operator O. It is a straightforward matter to modify anautomaton A su
h that property 2 is satis�ed without a�e
ting the languagesre
ognised by the �xed point automata (
.f. [?℄).The key problem in deriving the �xed point automata is to handle transitionsq a! q0 ofA that involve referen
e to the re
ursion variable, i.e. su
h thatX 2 a+.In this situation, as part of a �xed point automaton, q gives rise not only toq0, but also to a state q00 for whi
h q0 a0! q00 for some appropriate a0. We usea subset 
onstru
tion to handle this 
onjun
tive bran
hing of the transitionrelation. Given A the pro
edure detailed below gives an automaton A0, 
alledan intermediate automaton. The states ofA0 are subsets ofQ, and the initial stateis the singleton fq0g. For the transition relation there are two 
ases a

ordingto whether a referen
e to the re
ursion variable is needed or not:1. (X not referen
ed). Let a+ = a+1 [� � �[a+m, a� = a�1 [� � �[a�m, and X 62 a+.If q1 a1! q01; : : : ; qm am! q0m then fq1; : : : ; qmg (a+;a�)���! fq01; : : : ; q0mg.2. (X referen
ed). Let a+ = a+1 [ � � �[a+m+n+1, a� = a�1 [ � � �[a�m+n+1, n � 1,and X 62 a+. Suppose(a) q1 a1! q01; : : : ; qm am! q0m,(b) qm+1 (a+m+1[fXg;a�m+1)�����! q0m+1; : : : ; qm+n (a+m+n[fXg;a�m+n)�����! q0m+n, and(
) q0 am+n+1���! q0m+n+1.



Then fq1; : : : ; qm+ng (a+;a�)���! fq01; : : : ; q0m+n+1g.Note that! is used for the transition relation in both A and A0. Ambiguities
aused by this are resolved by 
ontext.It remains to equip A0 with appropriate a

eptan
e 
onditions. For this pur-pose an analysis of the way individual states in A are generated along runs ofA0 is required. Let S range over subsets of Q and assume that S a! S0. Thesu

essor relation �� � S � S0 is determined in the following way: In 
ase 1 welet qi��q0j only if i = j, and q0j is then the dire
t su

essor of qi. In 
ase 2 welet qi��q0j only if either i = j in whi
h 
ase q0j is the dire
t su

essor of qi, orm < i � m+ n and j = m+ n+ 1, in whi
h 
ase q0j is the indire
t su

essor ofqi. Consider a run � through A0 and any word � over states of A with the prop-erty that �(i) is de�ned and a member of �(i) whenever the latter is de�ned,and whenever �(i+ 1) is de�ned then �(i)���(i + 1) relative to the transition�(i) a! �(i + 1). We 
all � a trail through � , written as � 2 � . If �(i + 1)is the dire
t su

essor of �(i) for all i for whi
h �(i + 1) is de�ned then � is adire
t trail. Note that ea
h run � and q 2 �(0) determines a unique dire
t trail� 2 � , the dire
t trail from q, for whi
h �(0) = q.We 
an now de�ne the a

eptan
e 
onditions: A trail � is su

essful if �i isa dire
t trail for some i and �(j) 2 F for in�nitely many j. An in�nite run �through A0 is �-su

essful if all � 2 � are su

essful, and it is �-su

essful if all� 2 � for whi
h �i is a dire
t trail for some i are su

essful.Theorem2. The following statements are equivalent:1. 0 2 M(�X:fm(A)).2. There is a �-su

essful run � through A0 on �M. 2Theorem3. The following statements are equivalent:1. 0 2 M(�X:fm(A)).2. There is a �-su

esful run � through A0 on �M. 2Theorems 2 and 3 are easily proved using e.g. the model 
hara
terisations of[?℄ or [?℄.Example 2. 1. The automaton A01 of �g. 3 is the intermediate automaton ob-tained from A1 of �g. 1 with respe
t to the re
ursion variable X . Statesthat are not a

essible from the initial state have for 
larity been removed.All in�nite runs through A01 are �-su

essful, and only runs that eventuallyvisits the state fq1; q3g are �-su

essful.2. Similarly A02 of �g 4 is the intermediate automaton obtained from A2 of �g.2 with re
ursion variable Z. Again ina

essible states have been removed.Runs are �-su

essful if the transition fq1; q2; q3g fXg! fq1; q2; q3g is takenin�nitely often. There are no �-su

essful runs.



911ptfq0g 911ptfq1g911ptfq2g911ptfZg 911pt;911ptfY g 911ptfZg911ptfY g 911ptfZg911pt;911ptfY g911ptfq1; q3g911ptfq2; q3gFig. 3. Intermediate automaton A01911ptfq0g 911ptfq1g 911ptfq1; q2g911pt; 911pt;911pt; 911ptfXg911pt;911ptfXg911ptfq1; q2; q3gFig. 4. Intermediate automaton A025 Greatest Fixed PointsFor greatest �xed points Theorem 2 gives rise to a natural idea of resolution ofeventualities. Consider a �nite run � from S1 to S2 in A0, let q 2 S1 and � 2 �be the dire
t trail from q. We 
an view q as resolved at S2 if �(j) is an a

eptingstate for some j. Let then pending(�) be the subset of S1 of states that are notresolved at S2. The idea of the rewriting pro
edure is embodied by the followingeasy Lemma:Lemma4. An in�nite run � through A0 is �-su

essful i� there is a node Sand an in�nite, stri
tly in
reasing sequen
e j0; j1; : : : su
h that for all k 2 !,1. �(jk) = S, and2. pending(�(jk; jk+1)) = ;. 2For ea
h node S the automaton A�S handles the situation where S is visitedin�nitely often by an in�nite run through A0. The desired automaton, �X:A, isthen built as the sum of the A�S . The states of ea
h A�S are pairs (T; T 0) whereT is a node, and T 0 � T . The intention is that T 0 is the set of members of T
urrently pending. The initial state of A�S is the pair (fq0g; fq0g), and the singlea

epting state is the state (S; ;). The transition relation removes pending statesas they are resolved, so that there will be a run (of length greater than 1) from(S; ;) to (S; ;) in A�S just in 
ase there is a 
orresponding run � from S to S inA0 for whi
h pending(�) = ;. Formally we let (T1; T 01) a! (T2; T 02) i� T1 a! T2 inA0, and either1. T 01 is nonempty, and T 02 is the set of all q2 2 T2�F su
h that q2 is the dire
tsu

essor of some q1 2 T 01, or2. T 01 is empty, and then T 02 is the set of all q2 2 T2 � F su
h that q2 is thedire
t su

essor of some q1 2 T1.The 
orre
tness of this a

ount is a dire
t 
onsequen
e of Lemma 4:



Theorem5. L(�X:A) = L(�X:fm(A)). 2A pragmati
ally useful optimisation is that states that are ina

essible fromthe initial state, or for whi
h an a

epting state is ina

essible, 
an be removed.This modi�
ation applies in the examples to follow.Example 3. The intermediate automaton A02 of �g. 4 gives the greatest �xedpoint automaton �Z:A2 of �g. 5. In �TL the language re
ognised by �Z:A2 is�Z:O((O(�Y:X_OY ))^Z) equivalent to the PTL formula GOOFX (and indeedGFX), expressing the fairness related property that X holds in�nitely often.911ptp0 911ptp1 911ptp2 911ptp4911ptp3911pt; 911pt; 911pt;911ptfXg 911pt;911ptfXg911ptfXg 911pt;Fig. 5. B�u
hi automaton �Z:A26 Least Fixed PointsFor least �xed points we have additionally to take a

ount of trails that do noteventually 
oin
ide with a dire
t trail and are 
onsequently unsu

essful. Let Sbe any node o

urring in�nitely often along some in�nite run � through A0.The 
ru
ial observation is that it must be possible to order S in a way whi
hprevents trails that are not eventually dire
t.Lemma6. An in�nite run � through A0 is �-su

essful i� there is a node S, alinear order < on S, and an in�nite, stri
tly in
reasing sequen
e j0; j1; : : : su
hthat for all k 2 !,1. �(jk) = S,2. pending(�(jk ; jk+1)) = ;, and3. whenever � 2 � and �(jk ; jk+1) is not a dire
t trail then �(jk+1) < �(jk).Proof. The if dire
tion is easily 
he
ked. For the only-if dire
tion assume that �is �-su

essful. Let S be any node visited in�nitely often by � , and let j0; j1; : : :be any in�nite, stri
tly in
reasing sequen
e of jk su
h that �(jk) = S. For anyq 2 S and k 2 ! there is some k0 su
h that q 62 pending(�(jk ; jk0)), so as S is�nite we 
an assume both (1) and (2) to be satis�ed.We derive a subsequen
e and a linear ordering< su
h that also (3) is satis�ed.The ordering < is obtained by de�ning indu
tively a numeration p0; : : : ; pm ofS. For the base 
ase note that there must be some p0 2 S with the propertythat for in�nitely many k,if � 2 � and �(jk) = p0 then �jk is a dire
t trail. (4)



For assume this fails to hold. For ea
h q 2 S there is some kq with the propertythat whenever k � kq then there is a � 2 � and k0 > k su
h that �(jk) = qand �(jk ; jk0) is not a dire
t trail. Let k0 be largest among fkq j q 2 Sg. Pi
kany p00 2 S. Then we �nd a k1 > k0 su
h that there is a trail �0 2 � where�0(jk0 ; jk1) is not dire
t, and �0(jk0) = p00. And we �nd a k2 > k1 su
h thatthere is a trail �1 2 � where �1(jk1 ; jk2) is not dire
t, and �1(jk1 ) = �0(jk1).Continuing ad in�nitum an unsu

essful trail through � is then pie
ed together.This 
ompletes the base 
ase. Note that at the end of the base 
ase we 
an assumewithout loss of generality that (4) holds for all k 2 !.Suppose then we have obtained p0; : : : ; pi, and let Ti = fp0; : : : ; pig. If S = Tiwe are done. Otherwise there must be some pi+1 2 S�Ti su
h that for in�nitelymany k,if � 2 �; �(jk) = pi+1; k0 > k and �(jk; jk0 ) is not dire
t then �(jk0 ) 2 Ti: (5)For if this fails a 
ontradi
tion is obtained as in the base 
ase. Similarly we 
anassume here that (5) holds for all k 2 !.We then de�ne < in the obvious way, by letting pi < pj i� i < j. It followsthat (3) above is satis�ed, and the proof is 
omplete. utRe
e
ting Lemma 6 the automata A�S are built as the sum of automataA�(S;<) where < is a linear ordering of S. In order to 
he
k that < is not violatedea
h automaton A�(S;<) must take into a

ount the states that are a

essibleboth dire
tly and indire
tly. For this purpose we de�ne the sets dir(T1) � S2and ind(T1) � S2 when T1 � S1 and S1 a! S2 in A0:dir(T1) = fp2 2 S2 j 9p1 2 T1:p2 is the dire
t su

essor of p1gind(T1) = fp2 2 S2 j 9p1 2 T1:p2 is the indire
t su

essor of p1gThe states of A�S are augmented by mappings f whi
h given any member q ofS produ
es a pair (T; T 0) su
h that T is the subset of the 
urrent node whi
his dire
tly a

essible from the last visit to q in S, and T 0 the subset whi
his indire
tly a

essible. The initial state of A�(S;<) is the state (S; S; f) wheref maps ea
h q 2 S into the pair (fqg; ;). For the transition relation we let(S1; S01; f1) a! (S2; S02; f2) i�1. (S1; S01) a! (S2; S02) in A�S , and2. for all q 2 S, if f1(q) = (T1; T 01) then f2(q) = (dir(T1); dir(T 01) [ ind(T1) [ind(T 01)).To produ
e A�(S;<) it remains to �x the a

epting state. For this purpose saythat a node (S; S0; f) is 
onsistent with < if whenever q 2 S, f(q) = (T; T 0) andq0 2 T 0 then q0 < q. The a

epting states of A�(S;<) are all states of the form(S; ;; f) that are 
onsistent with <. The automaton �X:A is then obtained fromA0 by repla
ing ea
h node S of A0 with the sum of A�S and A0(S), A0 with initialstate S in pla
e of fq0g. Thus runs are allowed to violate the ordering for anarbitrarily long initial segment. We obtain:



Theorem7. L(�X:A) = L(�X:fm(A)). 2Example 4. Fig. 6 shows the least �xed point automaton �X:A1 resulting fromthe intermediate automaton A01 of �g. 3. The language re
ognised by �X:A1is �X:Z _ (Y ^ OX) in �TL or Y UZ in PTL where U is the strong until-operator that requires Z eventually to hold. The greatest �xed point automaton�X:A1 is obtained by letting in addition the state p4 of �g 6 be a

epting. The
orresponding property in PTL is Y U 0Z where U 0 is the weak until-operatorthat allows Z never to hold.
911ptp0 911ptp1911ptp2 911ptp3911ptp4

911ptfZg 911pt;911ptfY g 911ptfZg 911pt;911ptfY g 911ptfZg911ptfY gFig. 6. B�u
hi automaton �X:A1A potentially useful optimisation of the least �xed point 
onstru
tion is tointrodu
e a (possibly partial) ranking of members of S su
h that only orderings<need be 
onsidered whi
h have the property that if q1; q2 2 S are both ranked,and q1 is of stri
tly smaller rank than q2 then q1 < q2. The ranking 
an be
omputed in the following way:1. If q 2 S has the property that no q0 is a

essible from q su
h that q0 has anindire
t su

essor then q has rank 0.2. If q (a+1 [fXg;a�1 )�����! q0, q0 has rank n, and m is maximal su
h that wheneverq0 a2! q00, a+1 \ a�2 = ; and a�1 \ a+2 = ; then q00 has rank m, then q has rankmax(n;m) + 1.7 Appli
ationsOur approa
h suggests a strategy for obtaining 
ompleteness results for �TL. Agood 
andidate for a sound and 
omplete axiomatisation (
.f. [?℄) adds to somesuitable standard axiomatisation of boolean logi
 and the nexttime operator theaxiom �[�X:�=X ℄! �X:� and the rule of �xed point indu
tion:From �[ =X ℄!  infer �X:�!  .We write ` � if � is provable in an axiomatisation along these lines. Sin
e �and fm(aut(�)) are semanti
ally equivalent, formulas of the form fm(A) 
an beviewed as normal forms for �TL. Completeness then amounts to showing



1. ` �! fm(aut(�)), and2. if fm(A) is 
onsistent (i.e. 6` :fm(A)) then L(A) 6= ;.Of these, 2 is not hard to establish. The proof uses an important Lemma dueto Kozen [?℄ whi
h is a proof-theoreti
 
orrelate of Winskel's use of relativised�xed points [?℄.Lemma8. If X is not free in � and � ^ �X: is 
onsistent then so is � ^ [X=�X:( ^ :�)℄. utUsing Lemma 8, 2 
an be proved by showing that if fm(A) is 
onsistent thenthere must be an a

epting state in A whi
h is visited in�nitely often along somerun. But then it follows that L(A) 6= ;.Using stru
tural indu
tion 1 
an be redu
ed to showing(a) ` (:)X ! fm(aut((:)X)),(b) ` Ofm(A)! fm(OA),(
) ` fm(A1) _ fm(A2)! fm(A1 +A2),(d) ` fm(A1) ^ fm(A2)! fm(A1 �A2),(e) ` �X:fm(A)! fm(�X:A), and(f) ` �X:fm(A)! fm(�X:A).Of these we have so far only been able to establish (a){(e). For the a
onjun
-tive fragment, however, our strategy has been more su

essful. A
onjun
tivity isa te
hni
al 
ondition due to Kozen [?℄ whi
h, intuitively, disallows 
onjun
tivebran
hing of the regeneration relation for least �xed point formulas. Sin
e for-mulas in normal form are a
onjun
tive, it follows that for �TL the a
onjun
tivefragment is as expressive as the full language. Completeness for the a
onjun
tivefragment follows by showing(i) If �X:� is a
onjun
tive then so is �X:fm(aut(�)).(ii) If �X:fm(A) is a
onjun
tive then ` �X:fm(A)! fm(�X:A).Proofs of (i) and (ii) as well as other 
laims made in this se
tion will be givenin the full version of the paper.8 Con
luding RemarksWe have des
ribed a syntax-dire
ted pro
edure for deriving from ea
h �TL for-mula � an equivalent B�u
hi automaton aut(�). The 
onstru
tion for greatest�xed points is 2O(n) and for least �xed points 2O(n2) in the size of A. The over-all worst-
ase 
omplexity of the pro
edure is thus 2O(n2). This leaves a smallgap to the lower bound whi
h is 2O(n�logn) [?℄. Both Safra [?℄ and Klarlund[?℄ have obtained essentially optimal pro
edures for 
omplementing B�u
hi au-tomata, and it would be of interest to see if our pro
edure 
an be optimised toa
hieve a 2O(n�logn) running time. The te
hni
al similarities between our workand Klarlunds suggest that this 
ould well be possible. Certainly this runningtime 
an be a
hieved if the 
onstru
tion is modi�ed to use greatest �xed pointtogether with 
omplementation instead of both greatest and least �xed points.


