A NOTE ON GLOBAL INDUCTION MECHANISMS IN A u-CALCULUS
WITH EXPLICIT APPROXIMATIONS

CHRISTOPH SPRENGER AND MADS DAM

1. INTRODUCTION

The first-order p-calculus [7] provides a useful setting for semi-automatic program verification.
It is expressive enough to encode, from the bottom up, a range of program logics (e.g. LTL, CTL,
CTL*, Hoare Logic) as well as process calculi and programming languages including their data
types and operational semantics. A framework based on this idea is described in [4] and has been
applied to a substantial part of a real concurrent programming language Erlang in the Erlang
Verification Tool [1].

A key aspect in the design of such a framework is proof search, in particular the handling of
fixed point formulas. The standard approach, Park’s fixed point induction rule (cf. [5]), is not
suitable for proof search in practice. An alternative is to admit cyclic proof structures (cf. [6, 10, 3])
and look for sound discharge conditions which will ensure the well-foundedness of the inductive
reasoning. In this paper, we study such discharge conditions in the context of a Gentzen-style
proof system for the first-order p-calculus, which is a variant of previous systems [3, 4, 8, 9]. In
particular, it shares with [3, 4, 8] the technique, first proposed for the modal p-calculus in [3],
of introducing explicit approximation ordinal variables and ordering constraints between them
into the proof system. Discharge conditions then rely on these ordering constraints. The use
of approximation ordinals considerably simplifies earlier treatments (cf. [2]). A simple semantic
condition was proposed in [3] expressing in a natural way the requirement of well-foundedness of
all inductive reasoning. Due to its semantical nature it is not suitable for the purpose of practical
proof. However, it serves as a useful reference to which other, more syntactical conditions may be
compared.

Previous syntactic discharge conditions [3, 4, 8] turn out to be strictly stronger than the semantic
condition. The main contribution of the present paper is the formulation of a syntactic condition
that precisely matches the semantic one. We introduce t¢races which are non-increasing (w.r.t.
the ordering constraints) sequences of dependent ordinal variables running along a path in the
proof structure. They can be seen as a generalisation of the u- and v-traces in [6] to the setting
of explicit approximants. The characterisation result is then obtained by introducing the notion
of progress for traces and by establishing its close correspondence with the semantic notion of
well-foundedness. For practical application we then give an automata-theoretic formulation of our
discharge condition in terms of an inclusion of the languages recognised by two Biichi automata.

Finally, we remark that this work is part of a larger programme aiming at clarifying the relation
between the global, lazy induction mechanism used here and an eager induction discipline as
implemented in a local proof rule for well-founded induction on the ordinals.

2. Logic

The logic we consider augments first-order logic with two fixed point operators, a standard and
an approximated one parametrised by an ordinal variable. Formulas ¢ and abstractions ® x of the
p-calculus over a first-order signature X are inductively defined as follows

puimt=t|-¢| 6V |Ird|bx(H) and By =X | pX (@) | 0 X (@).0

where ¢ ranges over ¥-terms, x over individual variables, x over ordinal variables and X over
predicate variables. Each abstraction ® x has the arity of X which is required to match the lengths
of the vectors T and t of individual variables and terms, respectively. Fixed point abstraction

formation is subject to the usual syntactic monotonicity condition.
1

A model M is a pair (A, p) where A is a first-order X-structure with support set A and p is
an A-environment interpreting each variable according to its type. Formulas are interpreted as
elements of the two-point lattice 2 = {0, 1} and n-ary abstractions as elements of Pred(4") = 24"
the lattice n-ary predicates over A under the pointwise ordering. For first-order formulas the
semantics is as expected. For abstractions and their application we have

X1 = p(X) X @)-¢ll; = w¥ ("X @)l = w0 [l ex @Il = ex]l; (1E5)
where ¥ =)\P.)\E.||¢||;‘[P/X’E/E] : Pred(A™) — Pred(A™), p¥ is the least fixed point of the (mono-
tone) function ¥ and p?(*)¥ is the approximation p(k) of u¥, both defined as usual.

3. PROOF RULES

Sequents of the proof system are of the form I' Fp A, where I and A are finite multi-sets of u-
calculus formulas and O = (|0], <) is a strict partial order on a finite set |O| of ordinal variables.
Following [8] the latter is used to record constraints between ordinal variables. An environment p
respects O if p(1) < p(k) whenever 1 <o k. A sequent I' Fo A is valid if the formula AT — \/ A
is satisfied in all models M = (A4, p), where p respects O.

The proof system extends the standard Gentzen-style rules for first-order logic with the following
rules for the fixed point operators (we omit an ordinal constraint strengthening rule [8] for brevity):

L (p"X(@).0)(t) For A

WD T ax@onres "FIOHO=01U, <o)
L ho ¢luX (@)-6/X, 1/7], A
O P RITRY
) REEEITTO 2 101, 0 = (01U {1, (<o U D)
(NK‘R) o ¢[UK,X(E)-¢/X7 Z/E]a A K <ok

[Fo (1" X(2)-0)D), A

4. DISCHARGE CONDITIONS

A derivation may be stopped at a leaf node N if N is a substitution instance of some node M
in the derivation tree. It is worth noting that M need not lie on the path from the root node to N.
We write N(I' Fo A) to mean that NV is labeled by the sequent I' o A. Given a node M (T Fp A)
and a leaf N(I'" For A'") of a derivation tree and a substitution o, we say that R = (M, N,0) is a
repeat, if 'c C TV, Ac C A’ and Oc C ', where o is order-preserving in the latter inclusion. We
assume that o maps predicate variables to predicate variables. N is called a repeat node and M its
companion. A pre-proof P = (D,R) for T ko A is a derivation tree D whose root node is labeled
by ' Fo A together with a set of repeats R such that each non-axiom leaf of D belongs to exactly
one repeat in R. A path m = Ny---N;--- of P is a (finite or infinite) sequence of nodes of D
starting in the root Ny of D such that for any two successive nodes N; and N;; either (N;, N;y1)
is an edge of D or there is a substitution o such that (N;11,N;,0) € R is a repeat.

Intuitively, each repeat should correspond to the application of an induction hypothesis, but
we need to make sure that the inductive reasoning embodied in each individual repeat and their
combinations is indeed well-founded. This requires a (necessarily global) discharge condition that
identifies the legal proofs. We present three such conditions, the semantical one from [3], a new
syntactical condition as well as its automata-theoretic formulation and establish their equivalence.

Let P = (D,R) be a pre-proof, A a X-structure and II = (Ng,po) - (N, pi) -+ a (finite or
infinite) sequence of pairs of nodes N;(T; ko, A;) of D and A-environments p;. Then II is called
a run of P if Ny is the root of D, each p; respects O; and for each pair (V;, N;y1) either

(1) (Ni,Niy1) is an edge of D and p;41, p; agree on free variables common to N; and N;yq, or
(2) (Nit1,N;y0) € R is a repeat and p;41 = p; 0 0.
The run II is said to follow the path m = Ng -+ N; - --. A pre-proof P for I' F» A satisfies discharge

condition (R-DC) if all runs of P are finite, in which case P is called a proof for ' Fp A.
2

Theorem 1. (Soundness) If there is a proof for ' ko A then T Fo A is valid.

As condition (R-DC) captures the well-foundedness of the reasoning in a pre-proof in a very
natural way, it serves as our reference discharge condition. Due to its semantical nature it is, how-
ever, hardly usable in practical proofs and we therefore introduce an alternative, purely syntactical,
discharge condition.

Let 7 = (No,wp) - -+ (Ng,w;) - - - be a (finite or infinite) sequence of pairs of nodes N;(T'; Fo, A;)
of D and non-empty words w; over the alphabet of ordinal variables. Then 7 is called a trace of
P if w;(j) € |O;] and w;(j + 1) <o, w;(j) for all ¢ and j and for each pair (N;, N;+1) either

(1) (Ni,Niy1) is an edge of D and w;(*) = w;4+1(0), or

(2) (Nix1,N;,0) is a repeat in R and w;(*) = o(w;+1(0)),
where w;(*) denotes the last letter of w;. Intuitively, a trace 7 records a sequence of vertical
dependencies (wj; is a descending chain in O;) and horizontal dependencies (linking O; and O;41
asin (1), (2)) between ordinal variables. So T roughly associates a non-increasing chain of ordinal
variables with (a suffix of) a path. We say that a trace T progresses at position 7 if |w;| > 1 and
that 7 is progressive if it progresses at infinitely many positions. A path 7 of P is said to be
progressive if there is a progressive trace 7 = (No, wo)(N1,w;) - - - such that NgNy - - - is a suffix of
7. Our syntactic discharge condition (T-DC) requires that all infinite paths of P are progressive.
If an infinite path 7 is progressive, as witnessed by some 7, then it cannot be followed by an infinite
run, as respecting the dependencies in 7 would lead to an infinite decreasing chain of ordinals.
Conversely, 7 can be extended to an infinite run if there is no progressive trace following 7. Thus,

Theorem 2. A pre-proof satisfies (R-DC) if and only if it satisfies (T-DC).

We now turn to an automata-theoretic formulation of these conditions, which is more suitable
for the practical application in a proof tool. Let P = (D,R) be a pre-proof. Since O; C O;11
whenever (N;, Nit1) is an edge of D, we may without loss of generality for condition (T-DC) restrict
our attention to the normal traces of P making progress at most at repeat nodes. Based on this
observation we construct two Biichi automata over the alphabet R. Automaton B; recognises
sequences of repeats that are traversed on paths of . Automaton Bs recognises sequences of
repeats that are from some point on connected through the ordinal variables they preserve. More
precisely, let s = RoR; -+ be a sequence of repeats with R; = (M;, N;,0;) and N;(T; Fo, A;).
Then r = ®/(k;, Rj, kj+1)(Kj+1, Rj+1, kj+2)(Kj+2, Rjt2,Kkj43) --- is arun of By on s if j > 0 and
oi(kit1) <o, ki for all i > j. It is accepting if 0;(ki+1) <o, ks for infinitely many i. Note that if
u € L(B;) then r induces a normal trace, which is progressive precisely if r is accepting. Hence,

Theorem 3. A pre-proof satisfies (T-DC) if and only if L(B;) C L(Bs).

REFERENCES

[1] T. Arts, M. Dam, L. Fredlund, and D. Gurov. System description: Verification of distributed Erlang programs.
In Proc. CADE’98, volume 1421 of Lecture Notes in Artificial Intelligence, pages 38-41, 1998.

[2] M. Dam. Proving properties of dynamic process networks. Information and Computation, 140:95-114, 1998.

[3] M. Dam and D. Gurov. p-calculus with explicit points and approximations. In Fized Points in Computer
Science, FICS 2000, 2000.

[4] L. Fredlund. A Framework for Reasoning about Erlang Code. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden, 2001.

[5] D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science, 27:333-354, 1983.

[6] D. Niwiriski and I. Walukiewicz. Games for the u-calculus. Theoretical Computer Science, 163:99-116, 1997.
[7] D. Park. Finiteness is mu-ineffable. Theoretical Computer Science, 3(2):173-181, 1976.

[8] U. Schopp. Formal verification of processes. Master’s thesis, University of Edinburgh, 2001.

[9] U. Schopp and A. Simpson. Verifying temporal properties using explicit approximants: Completeness for

context-free processes. In FOSSACS ’02, Lecture Notes in Computer Science. Springer-Verlag, 2002. to appear.
[10] C. Stirling and D. Walker. Local model checking in the modal p-calculus. Theoretical Computer Science,
89:161-177, 1991.

CHRISTOPH SPRENGER, SWEDISH INSTITUTE OF COMPUTER ScIENCE (SICS), KisTa, SWEDEN
E-mail address: sprenger@sics.se

Mabps DaMm, RovaL INsTITUTE oF TEcHNoLogY (KTH), Kista, SWEDEN
E-mail address: mfd@kth.se

