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Abstract
We introduce a symmetry reduction technique for
model checking temporal-epistemic properties of
multi-agent systems defined in the mainstream in-
terpreted systems framework. The technique, based
on counterpart semantics, aims to reduce the set
of initial states that need to be considered in a
model. We present theoretical results establishing
that there are neither false positives nor false neg-
atives in the reduced model. We evaluate the tech-
nique by presenting the results of an implementa-
tion tested against two well known applications of
epistemic logic, the muddy children and the dining
cryptographers. The experimental results obtained
confirm that the reduction in model checking time
can be dramatic, thereby allowing for the verifica-
tion of hitherto intractable systems.

1 Introduction
Model checking [Clarke and Emerson, 1982] is a well-
established automated technique for verifying reactive sys-
tems against design requirements expressed in temporal log-
ics. More recently model checking has been extended to
multi-agent systems (MAS) and design requirements speci-
fied in temporal-epistemic logic (cf. [Bordini et al., 2003;
Gammie and van der Meyden, 2004; Nabialek et al., 2004;
Lomuscio et al., 2009; Wooldridge et al., 2002]).

However, a major obstacle to model checking is the so
called state explosion problem: model checking becomes in-
tractable for systems with many agents as the state space that
needs to be constructed grows exponentially in the number
variables used by agents in the system.

Even worse, for many popular applications of epistemic
logic the state space explosion is exasperated by an explo-
sion of initial states; each model includes one initial state for
every possible initial configuration of local states. For ex-
ample, in voting protocols, card games, the muddy children
scenario, and the dining cryptographers protocol, we need
to consider a different initial state for every distribution of
votes/cards/mud/coin tosses and choice of payer. The explo-
sion of initial states leads to an explosion of reachable states.

However, in these applications several agents can be seen
as simple variations of a common generic agent. As a result,

execution traces starting from different initial states might be
the same up to a rearrangement of local states; in other words,
the traces are “symmetric”. Even so, removing some initial
states makes properties of the initial configuration commonly
known: if proposition φ holds in all initial states that remain,
it is common knowledge among agents that initially φ holds.
So, by removing initial states, we obtain unwanted epistemic
validities. A more sophisticated treatment seems required.

In this paper we present a technique for exploiting sym-
metry when model checking temporal-epistemic properties
of multi-agent systems defined in the mainstream interpreted
systems framework [Fagin et al., 1995]. The key idea is to
abstract the standard Kripke semantics into a counterpart se-
mantics [Lewis, 1968] by permuting agent names along the
indistinguishability relation. This allows the initial states to
be reduced by keeping a single representative for a group
of initial states that are equivalent up to the order of local
states. The abstraction is accurate in that the same temporal-
epistemic specifications hold for both the original and the re-
duced models; there are neither false positives nor false neg-
atives in the reduced model. Experimental results show that
the reduction in model checking time can be dramatic.

Related work Abstraction is a family of techniques for
simplifying large models by removing details inessential to
the property to be verified [Clarke et al., 1994]. While ab-
straction of reactive systems for temporal properties is an ac-
tive research area, abstraction for epistemic properties has so
far received little attention. Recently [Dechesne et al., 2008;
Enea and Dima, 2007] abstracts Kripke models for epistemic
logic by approximating the epistemic possibility relation.
However, these models are not computationally grounded
[Wooldridge, 2000], hampering concrete applications. In
[Cohen et al., 2009] interpreted systems are abstracted by col-
lapsing local states and actions of each agent.

Closer to our contribution, component symmetry reduc-
tion is an abstraction technique for temporal logic aiming to
reduce the state space by collapsing system states that are
equivalent up to a reordering of local states into one represen-
tative state [Clarke et al., 1996; Emerson and Sistla, 1996].
Most closely related to our work are the automata-based sym-
metry reduction techniques that annotate the reduced transi-
tion relation with process permutations [Emerson and Sistla,
1995]. The annotation allows processes to be tracked along



the transitions, thereby accommodating atomic propositions
that specify properties of individual processes (and so break
symmetry).

Counterpart semantics has been used before in a compu-
tationally grounded setting for epistemic logic [Cohen and
Dam, 2007], but without any relation to state space reduc-
tion. We could find no attempt in the literature at extending
symmetry reduction to epistemic logic.

Overview of paper The rest of the paper is organized as
follows. In Section 2 we recall definitions for interpreted sys-
tems and the temporal-epistemic specification logic CTLK. In
Section 3 we instantiate (component) symmetry to interpreted
systems and define formula symmetry for CTLK. In Section
4 we present the counterpart semantics used on the reduced
system, and prove that CTLK validity is invariant between
the original and reduced systems. In Section 5 we show how
to detect symmetries. In Section 6 we report on experimental
results. Finally, Section 7 concludes.

2 Interpreted systems and CTLK
We model multi-agent systems in the interpreted systems
framework [Fagin et al., 1995] and express requirements in
the temporal-epistemic logic CTLK [van der Meyden and
Wong, 2003]; this section summarizes the basic definitions.

Consider a set Ag = {1...n} of agents. For each agent
i, assume a non-empty set Li of local states that agent i
can be in, and a non-empty set ACTi of actions that agent
i can perform. Assume also a non-empty set LE of states
for the environment and a non-empty set ACTE of actions.
Let S = L1 × · · · × Ln × LE be the set of all possible
global states and ACT = ACT1 × · · · × ACTn × ACTE
the set of all possible joint actions. For each agent i as-
sume a local protocol Pi : Li −→ 2ACTi selecting actions
depending on the current local state of i, and a local evolu-
tion function ti : ACT × Li −→ Li specifying how agent
i evolves from one local state to another depending on its
action, the actions of the other agents, and the action of the
environment. Analogously, assume an environment protocol
PE : LE −→ 2ACTE , and an environment evolution function
tE : ACT × LE −→ LE . Let P = 〈P1, · · · , Pn, PE〉 be the
joint protocol and t = 〈t1, · · · , tn, tE〉 be the joint evolution
function. Finally, consider a non-empty set I0 ⊆ S of initial
states, and an evaluation function V : S −→ 2A for some
non-empty set A of propositional atoms.

Definition 2.1. An interpreted system is a tuple I =
〈S,ACT, P, t, I0, V 〉 with a global state space S, a joint ac-
tions space ACT , a joint protocol P , a joint evolution func-
tion t, a set I0 of initial states and an evaluation function V .

For any global state g = 〈l1, . . . , ln, lE〉 ∈ S, we write
li(g) for the the local state li of agent i in g, and lE(g) for the
environment state lE in g.

The local protocols and the local evolution functions to-
gether determine how the system of agents proceeds from
one global state to the next. The global transition rela-
tion R ⊆ S × S is such that 〈g, g′〉 ∈ R if and only
if there exists a = 〈a1, . . . , an, aE〉 ∈ ACT such that

tE(a, lE(g)) = lE(g′) and aE ∈ PE(lE(g)), and for all
agent i, ti(a, li(g)) = li(g′) and ai ∈ Pi(li(g)). We assume
throughout the paper that the global transition relation R is
serial, i.e., for every g ∈ S, there is g′ ∈ S such that gRg′.

A path in I is an infinite sequence g0, g1, . . . of global
states in S such that every pair of adjacent states forms a tran-
sition, i.e., gjRgj+1 for all j. The set G of reachable states
in I contains all global states g ∈ S for which there is a path
g0, g1, . . . , g, . . . starting from an initial state g0 ∈ I0.

Intuitively, the local state li(g) contains all the information
available to agent i. We say that g′ ∈ G is epistemically
possible for agent i at g ∈ G, written g ∼i g′, if the local
state of i in g is the local state of i in g′, i.e., li(g) = li(g′).
We refer to [Fagin et al., 1995] for more details.

We consider specifications expressed in the temporal-
epistemic logic CTLK which extends Computation Tree
Logic (CTL) with epistemic modalities.
Definition 2.2. Assume a set Ag = {1..n} of agents i and a
non-empty set A of propositional atoms p. CTLK formulae
are defined by the following BNF expresion:

φ ::= p | ¬φ | φ ∧ φ | Kiφ | EXφ | EGφ | E(φUφ)

The knowledge modality Ki is read “Agent i knows that”,
the quantifier E is read “For some computation path” and the
temporal operators X , G and U are read “In the next state”,
“Always” and “Until” respectively. We assume customary ab-
breviations: Ki encodes the diamond modality ¬Ki¬; AGφ
represents ¬E(trueU ¬φ) (“For all paths, always φ”); AF φ
abbreviates ¬EG¬φ (“For all paths, eventually φ”).

Given an interpreted system I, the modality Ki is inter-
preted by the epistemic possibility relation ∼i as follows:
• (I, g) |= Kiφ iff (I, g′) |= φ for all g′ such that g ∼i g′.

The CTL modalities are interpreted by means of the global
transition relation R in the usual way: (I, g) |= EXφ iff
for some path g0, g1, . . . in I such that g = g0, we have
(I, g1) |= φ; (I, g) |= EGφ iff for some path g0, g1, . . .
in I such that g = g0, we have (I, gi) |= φ for all i ≥ 0;
(I, g) |= E(φUφ′) iff for some path g0, g1, . . . in I such
that g = g0, there is a natural number i such that (I, gi) |= φ′

and (I, gj) |= φ for all 0 ≤ j < i. We write [[φ]] for the
extension of formula φ in I, i.e., the set of reachable states
g ∈ G such that (I, g) |= φ. We say that formula φ is true in
system I, written I |= φ, iff I0 ⊆ [[φ]].
Example 2.3 (Muddy children). [Fagin et al., 1995] A group
of n children have been out playing in the mud, and k of them
now have mud on their forehead. They sit in a circle and see
only the foreheads of other children. Their father announces
“At least one of you is muddy!”, and then asks: “Does any
one of you know whether you are muddy?”. The father re-
peats the question over and over. After each question, the
children answer simultaneously; all children say “I do not
know” until round k when the muddy children say that they
know they are muddy.

The scenario can be modeled as an interpreted system I
(see [Fagin et al., 1995] for details). We would like to verify
by means of a model checker that the children are truthful:∧
i

AG(saysknows(i)↔ (Kimud(i) ∨Ki¬mud(i))) (1)



where the propositional atom saysknows(i) holds if child i
says it knows whether it is muddy.

Example 2.4 (Dining cryptographers). [Chaum, 1988] A
group of n cryptographers share a meal around a circular
table. Either one of them paid for the meal or their employer
did. They would like to make it known if one of them paid
without revealing the identity of the payer (if one of them
did pay). To this end, every cryptographer tosses a coin and
shows the outcome to his right-hand neighbour. Comparing
his own coin to the coin shown to him, each cryptographer
announces if the two coins agree or not; if a cryptographer
paid for the meal, he announces the opposite of what he sees.

The scenario can be modeled as an interpreted system (see
[van der Meyden and Su, 2004] for details). We would like to
verify that no agent i can ever come to know that a particular
other agent j is the payer:∧

i 6=j

AG¬Ki paid(j) (2)

and each agent comes to know whether the employer paid:∧
i

AF (Ki epaid ∨Ki ¬epaid) (3)

3 Symmetry
In this section we instantiate agent (component) symmetry
[Clarke et al., 1996; Emerson and Sistla, 1996] to inter-
preted systems, and generalise formula symmetry [Emerson
and Sistla, 1995] from CTL to CTLK.

Informally, an agent symmetry is an interchange of local
states preserving the behaviors of the system. Formally, a
symmetry, or automorphism, of a set X ⊆ S of global states,
or of a relation X ⊆ S × S between global states, is a bi-
jection π : S −→ S that leaves X unchanged: π(X) = X ,
where π(X) = {π(g) : g ∈ X} if X is a set, and π(X) =
{〈π(g), π(g′)〉 : 〈g, g′〉 ∈ X} if X is a relation. An automor-
phism of the system I is an automorphism of both the global
transition relation R and the set I0 of initial states.

In this paper we consider only agent symmetries, i.e., au-
tomorphisms induced by a reordering of local states in global
states. We identify a reordering of local states with an agent
permutation, i.e., a bijection π : Ag −→ Ag. An agent
permutation π extends naturally to global states by mov-
ing each local state li(g) of agent i to that of agent π(i):
π(g) = 〈lπ−1(1)(g), . . . , lπ−1(n)(g), lE(g)〉. For example,
π(〈A,A,B,B, lE(g)〉) = 〈B,A,A,B, lE(g)〉 if π is the
right-shift permutation defined by π(i) = i+1 modulo 4. The
set Aut(X) of agent permutations that are automorphisms of
X ∈ {R, I0, I} is a group with respect to function composi-
tion, function inverse, and identity. We write Sym(Ag) for
the group of all agent permutations.

In some applications we might want the agent permuta-
tions to act on variables inside the local states being reshuf-
fled: π(g) = 〈π(lπ−1(1)(g)), . . . , π(lπ−1(n)(g)), π(lE(g))〉,
where π(l) is the result of substituting π(i) for i in local state
l. For example, if variable X in local state l stores an agent
identity i, l(X) = i, then π(l)(X) = π(l(X)) = π(i). The
state reduction technique presented in this paper generalises

to symmetries obtained under this finer definition of π(g), but
we only discuss the former definition for ease of presentation
given that the formal results are equivalent.

We assume that propositional atoms have the form p(i),
where p is an agent predicate, and i ∈ Ag? respects the arity
of p. Intuitively, p(i) states that property p holds of agents
i. To reflect this we require that any evaluation function V is
such that:

p(i) ∈ V (g) ⇔ p(π(i)) ∈ V (π(g)) (4)

for any agent permutation π and any states g, π(g) ∈ S. For
example, the interpretation of the unary agent predicate mud
must satisfy: g |= mud(i) if and only if π(g) |= mud(π(i)).

We apply the agent permutation π on formula φ by substi-
tuting π(i) for agent name i inside the formula.
Definition 3.1. π(φ) is defined inductively over φ as follows:
π(p(i)) = p(π(i)), π(φ ∧ φ′) = π(φ) ∧ π(φ′), π(¬φ) =
¬π(φ), π(Ki φ) = Kπ(i)π(φ), π(EX φ) = EX π(φ), etc.

Applying an agent permutation to a CTL formula modifies
only atomic sub-formulae. Here, by contrast, an agent permu-
tation modifies epistemic modalities as well. For example, if
π transposes 1 with 2, i.e., π(1) = 2 and π(2) = 1, then,
π(K1mud(2)) = K2mud(1).

An automorphism of a formula φ is an agent permutation
π such that φ is semantically equivalent to π(φ), i.e., [[φ]] =
[[π(φ)]] in all systems I. For example, an agent permutation
that transposes 1 with 2 is an automorphism of K1mud(2)∧
K2mud(1). Every agent permutation is an automorphism of
specifications (1), (2), and (3) (cf. lemma 5.3). As before, the
set Aut(φ) of automorphisms of φ is a group.

4 Agent symmetry reduction
As highlighted in the introduction, multi-agent systems in
key applications of epistemic logic exhibit considerable agent
symmetry. In this section we present a technique that exploits
agent symmetries to reduce the initial states.

Assume a group Γ ⊆ Aut(I) of symmetries of the system
I. Let I/Γ = 〈S,ACT, P, t, I ′0, V 〉 be the result of replacing
the set I0 of initial states with a minimal I ′0 ⊆ I0 such that
I0 = Γ(I ′0) = {π(g) | π ∈ Γ, g ∈ I ′0}, i.e., the result of leav-
ing a single representative initial state g for each equivalence
class {π(g) | π ∈ Γ} of initial states.
Example 4.1. For the system I of muddy children from Ex-
ample 2.3, we can choose Γ such that I/Sym(Ag) contains
a single initial state where 1 child is muddy, a single initial
state where 2 children are muddy, etc. While I has 2n initial
states, I/Sym(Ag) has only n+ 1 initial states.

We show that the original system I and the reduced system
I/Γ can be seen to validate the same CTLK formulae. To
achieve this invariance, we use a counterpart semantics for
the epistemic modalities in the reduced system I/Γ.

4.1 Abstract semantics
In counterpart semantics [Lewis, 1968] the modal accessibil-
ity relation is indexed by a counterpart relationC which iden-
tifies individuals across states. If a state g′ is accessible from
a state g under a counterpart relation C, then each individual



i at state g has a counterpart ( “equivalent”) individualC(i) at
the accessible state g′; in a sense, the individual i at g “is” the
individual C(i) at g′. Accordingly, a proposition φ(i) about
the individual i is possible at state g, g |= 3φ(i), if the propo-
sition φ(C(i)) about the counterpart individual C(i) holds at
the accessible state g′, g′ |= φ(C(i)).

In the abstract semantics we define below, individuals i are
agents and counterpart relations C are agent permutations.
Definition 4.2. Assume an interpreted system I and a group
Γ of agent permutations. A state g′ ∈ G is (epistemically) ac-
cessible to agent i from state g ∈ G under agent permutation
π ∈ Γ, written g ≈πi g′, if and only if, g ∼i π−1(g′).

Intuitively, if g ≈πi g′ then agent j at state g could, for all
agent i knows, be agent π(j) at g′. Therefore, agent i holds
fact φ(j) as possible at state g if the counterpart fact φ(π(j))
holds at the accessible state g′.
Definition 4.3 (Abstract semantics). Truth of φ at g in in-
terpreted system I under Γ, written (I, g) |=Γ φ, is defined
inductively by:
• (I, g) |=Γ Kiφ iff (I, g′) |=Γ π(φ) for all g′ ∈ G and
π ∈ Γ such that g ≈πi g′

All other cases are unchanged from Section 2.
Note that the abstract semantics involves the counterpart

formula π(φ) at the accessible state g′, rather than the formula
φ itself; the formula π(φ) may have different propositional
atoms as well as different epistemic modalities from φ. Note
also that when Γ contains only the identity permutation, the
abstract semantics coincides with the basic Kripke semantics
of Section 2: (I, g) |= φ, if and only if, (I, g) |={id} φ.
Example 4.4. Consider the system I of muddy children from
Example 2.3. Let I ′ be the result of removing the initial state
g1 where only child 1 is muddy. Observe that under the stan-
dard semantics at the initial state g0 where no child is muddy,
child 1 knows she is not muddy: (I ′, g0) |= K1¬mud(1).
In fact, since we removed initial state g1, the only state
reachable in I ′ which is epistemically possible for child 1
at g0 is g0 itself. By contrast, under the abstract semantics,
child 1 does not know she is not muddy: (I ′, g0) 6|=Sym(Ag)

K1 ¬mud(1). This is seen as follows. By assumption, I ′
contains some initial state g2 where exactly one child, say
child 2, is muddy: g2 |= mud(2). Choose an agent permu-
tation π that transposes 1 and 2. Then, π−1(g2) = g1, i.e.,
g0 ∼1 π

−1(g2), i.e., g0 ≈π1 g2. The claim follows by defini-
tion 4.3, since g2 |= π(mud(1)).

4.2 Reduction theorem
We reach the reduction result by way of two lemmas. Firstly,
applying a system automorphism π on the epistemic relation
for agent i yields the epistemic relation for agent π(i).
Lemma 4.5. If π ∈ Aut(I), then π(∼i) =∼π(i).

Proof. (Sketch) li(g) = li(g′) iff lπ(i)(π(g)) = lπ(i)(π(g′)).
But, g, g′ ∈ G iff π(g), π(g′) ∈ G, since π ∈ Aut(I). Thus,
g ∼i g′, if and only if, π(g) ∼π(i) π(g′).

Secondly, applying a system automorphism π to the exten-
sion of a formula φ produces the extension of π(φ).

Lemma 4.6. If π ∈ Aut(I), then π([[φ]]) = [[π(φ)]].

Proof. (Sketch) We show that (I, g) |= φ, if and only if,
(I, π(g)) |= π(φ), by induction on φ. Base step: From re-
quirement (4). Induction step, temporal modalities: Since
π ∈ Aut(I), gRg′, if and only if, π(g)Rπ(g′). Induction
step, epistemic modalities: From Lemma 4.5.

Theorem 4.7 (Reduction). Let Γ be a subgroup of both
Aut(I) and Aut(φ). Then, I |= φ if and only if I/Γ |=Γ φ.

Proof. (Sketch) Since Γ ⊆ Aut(I) it follows that G =
{π(g) | π ∈ Γ, g ∈ G′} where G and G′ are the sets
of reachable states in I and I/Γ respectively. Therefore,
we can evaluate the epistemic modality in I by scanning
the reduced space G′ and apply agent permutations “on
the fly”, expanding each state g′ into its equivalence class
{π−1(g′) | π ∈ Γ}. So, (I, g) |= Kiφ, if and only if,
∀g′ ∈ G′ : ∀π ∈ Γ : g ∼i π−1(g′) ⇒ (I, π−1(g′)) |= φ.
In fact, by Lemma 4.6, we can replace the test of the prop-
erty φ at π−1(g′) with the test of the counterpart property
π(φ) at g′, and so obtain: (I, g) |= Kiφ, if and only if,
∀g′ ∈ G′ : ∀π ∈ Γ : g ∼i π−1(g′) ⇒ (I, g′) |= π(φ). But
g ∼i π−1(g′) means g ≈πi g′. By induction over φ, therefore,
we obtain: (I, g) |= φ, if and only if, (I/Γ, g) |=Γ φ, for all
g ∈ G′. The theorem follows since Γ ⊆ Aut(φ).

Following Theorem 4.7 we can reduce the initial states be-
fore feeding a system to a model checker.

Example 4.8. Applying Theorem 4.7 to the system I of
muddy children from Example 2.3, I |= (1) if and only if
I/Sym(Ag) |=Sym(Ag) (1).

5 Symmetry detection
To Theorem 4.7, we need to find a group Γ of symmetries of
the system I and of the specification φ. In this section we
show how to compute a group Γ directly from the description
of I and the shape of φ.

Intuitively, system symmetries arise from similarities in the
agents. To exploit this intuition, we extend the notion of sym-
metry to joint protocols and joint evolution functions.

Definition 5.1. An automorphism of the joint protocol P is an
agent permutation π such that Pi = Pπ(i). An automorphism
of the joint evolution function t is an agent permutation π
such that ti(l, a) = tπ(i)(l, π(a)) and tE(l, a) = tE(l, π(a)),
where π(a) = 〈aπ−1(1), . . . , aπ−1(n), aE〉.

It can be checked that the sets Aut(P ) and Aut(t) of au-
tomorphisms of the joint protocol P and the joint evolution
function t are groups.

We can now make precise the intuition that symmetries
arise from similarities in the agents. Any symmetry of the
joint protocol and the joint evolution function is a symmetry
of the global transition relation R.

Lemma 5.2. Aut(P ) ∩Aut(t) ⊆ Aut(R).

Proof. Let 〈g, g′〉 ∈ R and π ∈ Aut(P ) ∩ Aut(t). So
there is a such that ti(a, li(g)) = li(g′) with ai ∈ Pi(li(g)),
and so tπ(i)(π(a), li(g)) = li(g′) with ai ∈ Pπ(i)(li(g)).



So, tπ(i)(π(a), lπ(i)(π(g))) = lπ(i)(π(g′)) with π(a)π(i) ∈
Pπ(i)(lπ(i)(π(g))), i.e., ti(π(a), li(π(g))) = li(π(g′)) and
π(a)i ∈ Pi(li(π(g))), i.e., 〈π(g), π(g′)〉 ∈ R.

Using Lemma 5.2, we can detect automorphisms of the
global transition relation R without constructingR explicitly.

With respect to the detection of formula symmetries we
observe that the specifications we are interested in are often
universal formulae of the form

∧
j

φ(j/i), where i is the tu-

ple of agent names appearing in φ, and j ranges over tuples
of distinct agent names. In other words, universal formulae
either have the form

∧
i

φ(i), or the form
∧
i6=j
φ(i, j), etc. For

example, (1), (2), and (3) are universal. According the fol-
lowing lemma, universal formulae are fully symmetric.

Lemma 5.3. If φ is universal then Aut(φ) = Sym(Ag).

Proof. Since φ is equivalent to
∧
π
π(φ′), for some φ′.

Proposition 5.4 (Detection). Aut(P )∩Aut(t)∩Aut(I0) is
a subgroup of Aut(I) and Aut(φ), if φ is universal.

Proof. From Lemmas 5.2 and 5.3.

So, the group Γ = Aut(P )∩Aut(t)∩Aut(I0) can be used
to form the reduced system I/Γ in Theorem 4.7 when veri-
fying a universal specification φ. Similar results can be ob-
tained for other types of specifications, e.g. existential spec-
ifications of the form

∨
i

φ(i), or semi-universal specifications

of the form
∧
j∈X

φ(j) where X ⊆ Ag is a subset of agents.

6 Experimental results
To show the effectiveness of the proposed reduction
technique, we implemented the abstract semantics from
Section 4.1 on MCMAS [Lomuscio et al., 2009], an
open-source, symbolic model checker for the verification
of temporal-epistemic properties of interpreted systems
described in ISPL. We modified the interpretation of the
epistemic modality in MCMAS as follows:

function computing [[Kiφ]]:
X = ∅
for π in Γ:
X = X ∪ PreImage(≈πi , [[π(φ)]])

return X ∩G
where G is the set of states reachable in the supplied system
(i.e., the reduced system I/Γ). Note that the loop-body com-
putes the extension of π(φ) rather than φ. Of course, when
π, π′ ∈ Γ agree on the agent names in the formula Kiφ, the
loop need not consider both of them. Since the algorithm
may revisit the same sub-formula several times, we store con-
structed extensions in a BDD cache.

We tested our reduction technique on the dining cryptogra-
phers (Example 2.4) and the muddy children (Example 2.3)
on a machine running Linux Fedora 10 x86 64 version with
Intel Core 2 Duo E4500 2.2GHz and 4GB memory. In the
ISPL program for the dining cryptographers, every rotation

(sideways shift π(i) = i + k modulo n, for some k) is an
automorphism of the joint protocol, joint evolution function
and the initial states. By Proposition 5.4 and Theorem 4.7, we
can thus form the ISPL program for a reduced system by re-
quiring (in the program section defining the initial states) that
either agent 1 pays or no agent pays, thereby obtaining a por-
tion 2/(n + 1) of initial states of the original ISPL program.
Verification times (in seconds) for the universal anonymity
specification (2) and different number of cryptographers are
presented in Table 1, showing a linear reduction. The run-
ning time for 11 cryptographers is less than for 10 because
the BDDs generated in the former are more compact. This
is a known feature of symbolic techniques for this example
[Kacprzak et al., 2006].

Table 1: Verification results for the dining cryptographers

Number of Without reduction With reduction
cryptographers States Time States Time

9 15,360 2 3072 1
10 33,792 12 6,144 3
11 73,728 4 12,288 2
12 159,744 13 24,576 7
13 344,064 35 49,152 16
14 737,280 302 98,304 9

In the ISPL program for the muddy children all agent per-
mutations (not only rotations as in the dining cryptographers)
are automorphisms of the joint protocol, joint evolution func-
tion and the initial states. By Proposition 5.4 and Theorem
4.7, we can simplify the program section defining the initial
states by keeping only one initial state from each group of
initial states with the same number of muddy children. Ta-
ble 2 shows the verification times (in seconds) and the BDD
memory usage (in MB) for the universal specification (1); we
obtain an exponential reduction in verification time. How-
ever, the memory consumption is not significantly reduced,
as the reduction generates extra BDDs.

Table 2: Verification results for the muddy children

Number of Without reduction With reduction
Children BDD memory Time BDD memory Time

7 14 2 11 1
8 20 7 13 1
9 22 18 14 3

10 46 50 16 4
11 47 112 27 6
12 56 360 32 9
13 52 305 25 11
14 59 595 29 16
15 87 2602 32 17
16 64 2082 38 37

7 Conclusion
While model checking epistemic logic has received consider-
able attention in the AI community, there has been little work



so far on techniques for tackling the state explosion problem.
But, if model checking for MAS and AI logics is to succeed,
it is essential that attention is dedicated to this.

In this paper we have introduced an agent symmetry re-
duction technique for MAS specified in temporal-epistemic
logic. By means of this technique we abstract the standard in-
terpreted systems semantics into a counterpart semantics, by
permuting agent names along the epistemic accessibility re-
lation. This allows the initial states to be reduced by keeping
a single representative for a group of symmetric initial states.
The abstraction technique is shown to be sound and complete,
i.e., there are neither false positives nor false negatives in the
reduced model.

Experiments with the muddy children and the dining cryp-
tographers show substantial reductions in verification time
under symbolic model checking. The time is reduced by one
to two orders of magnitude for moderate numbers of agents.
Since BDDs are a form of symbolic optimisation, one may
expect even bigger reductions for any implementation on top
of an explicit model checker.

Looking ahead, we intend to transfer the reduction tech-
nique to data symmetry and to automate the symmetry detec-
tion method in Section 5 for ISPL programs. Automation of
symmetry detection is a relatively recent area in mainstream
verification with significant open problems. However, the
very structured nature of ISPL might prove helpful.
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