Decidability and Proof Systemsfor Language-Based
Noninterference Relations*

Mads Dam

Dept. of Microelectronics and Information Technology, KTHectrum 229, SE-164 40 Kista, Sweden.
mfd@kth.se

Abstract

Noninterference is the basic semantical condition used¢ount
for confidentiality and integrity-related properties iogramming
languages. There appears to be an at least implicit beligfien
programming languages community that partial approachesd
on type systems or other static analysis techniques aressege
for noninterference analyses to be tractable. In this pageshow
that this belief is not necessarily true. We focus on theamoti
of strong low bisimulation proposed by Sabelfeld and Sakids.
show that, relative to a decidable expression theory, gttow
bisimulation is decidable for a simple parallel while-laage, and
we give a sound and relatively complete proof system fowvdegi
noninterference assertions. The completeness proof gasvan
effective proof search strategy. Moreover, we show thatmom
alternative noninterference relations based on tracegat-output
relations are undecidable. The first part of the paper isicastms
of multi-level security. In the second part of the paper wesgelize
the setting to accommodate a form of intransitive interfeee We
discuss the model and show how the decidability and prodérys
results generalize to this richer setting.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guage¥ Formal Definitions and Theory—semantics; F.3.bg-
ics and Meanings of PrograrhsSpecifying and Verifying and Rea-
soning about Programs—mechanical verification; K.6Vaif-
agement of Computing and Information Sysfensecurity and
Protection

General Terms Security, Theory, Verification.

Keywords Multi-Level Security, Information Flow, Noninterfer-
ence, Language-Based Security, Intransitive Nonintenies.

1. Introduction

Noninterference is the basic semantical condition useatount
for confidentiality and integrity-related properties iogramming
languages. Most often the concept is studied in the setfingutii-
level security [4, 11] with data assigned levels in a seguaittice,
such that levels higher in the lattice correspond to dataigtier

*Work supported by the Swedish Research Council

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11-13, 2006, Charleston, South Carolina, USA.
Copyright(© 2006 ACM [to be supplied)]. . . $5.00.

sensitivity. The question which noninterference aims tevar is
one ofinformation flow A flow of information from a higher level

in the security lattice to a lower one could breach confidgityj
and a flow from a lower level to a higher one might indicate a
breach of integrity. In the area of language-based secundtyin-
terference is of basic importance, since it provides theskagantic
criterion by which the soundness of analysis methods musvéle
uated.

A number of noninterference conditions have been propased i
the literature (cf. [28] for a survey). A common trait is thrin-
interference should capture the idea that variability dad# lev-
els higher in the security lattice should not cause vaiitgtof be-
haviour which is noticeable at lower levels in the latticelatge
number of attempts have been made to capture this idea, diepen
ing on parameters such as the system/execution model,vebser
power of observation, and the richness of the security mdetel
instance:

¢ The trace-based model, starting with Goguen-Meseguennoni
terference [18]), see also [21], requires that the set degys
traces is closed under permutation of higher level actioitis w
lower level ones.

e Various relational models, with Volpano, Smith, and Insne
type-based reconstruction of Denning and Denning’s aaksi
information flow analysis [36, 12] as the canonical example,
characterizes information flow in terms of equivalence -rela
tions: If a programP is started with different initial stores;
ando2, and ifo; ando» contain the same low-level visible data,
o1 ~1 02, thenthe final states;, o after execution of> must
also be low-level equivalent; ~, 5.

e A natural generalization of the relational model in the et
of concurrency is to introduce a relation of low-level egént
behaviour on intermediate states, and characterize abs#nc
information flow as preservation of this relation under exec
tion, in the style of bisimulation equivalence. This ideaised
in a large number of recent papers (cf. [31, 30, 5, 17, 13, 14,
23]), and it is related to the use of so-called unwinding ¢ond
tions in the context of Goguen-Meseguer-style noninterfee.

Our focus is on the decidability and axiomatizability prdjes of
these noninterference relations. Specifically we show, foata
simple parallel while-language, relative to a decidablst-farder
theory of expressions, the Sabelfeld-Sands notion of gtiow
noninterference [31] is decidable. This result is of ins¢rgince
there has been an at least implicitly stated belief in them-
ming languages community that partial approaches baseypen t
systems or other static analysis techniques are necessanpti-
interference to be tractable. Our results show that thistisiaces-
sarily so. We also give a sound and relatively complete psyef
tem for proving noninterference assertions, and we showads p

of the relative completeness proof that proof search isddéde.

Complementing this result we also show that other noniaterfce
relations are undecidable. Specifically we show this for ddu
and Castellani’s noninterference relation, but the argurapplies

equally to other flow-sensitive noninterference relatisnsh as
Volpano-Smith-Irvine (VSI) noninterference.

The notion of strong low bisimulation is very fine-grained.
The idea is that two control statdd and P, can be regarded as
behaving identically to a low-level observer, if whenewerx, o2
and P; in stateo; can perform a single computation step to the
configuration(Py, o7) then P, should be able to mimick this step
from o2 to a configuration, say(P;,o5) such thatP; and P;
continues to behave identically to a low level observer, aad
that o} ando’ have the same low-level content; ~; o5 (and
vice versa). This stepwise quantification over low-levalieglent
stores means that programs become distinguishable evbard t
are no sequential traces that motivate this, i.e. the diefini$ flow-
insensitive. An example is the program

l:=0;ifl = 1then!l:= h elsenoop

which in a sequential setting is perfectly secure, sinceptigitive
arm of the conditional will never be taken. In a concurrelttiisg,
however, the program is insecure, since an attacking threghit
interfere with the assignment to

Besides decidability, this security condition has a numifer
attractive properties. As shown in [30] the relation is cosip
tional with respect to a range of simple program construats,
cluding parallel composition. This does not apply in theecaé
most other noninterference relations, such as that of Boamid
Castellani. Moreover, strong links have recently beenbéisteed
to more systems-oriented models of noninterference. Spalty it
has been shown that strong low bisimulation and a timingitiea
version of the relation P-BNDC of Focardi and Rossi [14] cades
[15].

We add to the language a mechanism for dynamically chang-
ing the security level of identifiers. Such mechanisms aueial
for noninterference to be useful in many practical situsjoas
has been pointed out in a number of recent papers (cf. [32, 7, 9
37, 20, 22, 23, 26]). The main challenges posed by dynaryicall
changing levels are first to capture precisely the conditiamder
which a specific level changing operation should be alloveegot
through, and secondly to determine the end-to-end sequirity-
erties which a given level-changing policy delivers. In et pa-
per [32] Sabelfeld and Sands have classified mechanismsyfor d
namic information regrading along several dimensions: &Vimn-
formation is regraded, “who” is authorized to perform thgresl-
ing, “where” (in terms of program points and actions) theaging
is allowed to take place, and “when” information is allowedbe
regraded. In this paper we concentrate on the “where” dirnans
The aim is to ensure that information regrading actions are c
fined to program points and operations for which those astioe
specifically allowed. To illustrate the range of concernsined
we give some examples:

e Explicit downgrading actions such as the downgrading assig
ment [! := h] of Mantel and Sands [23]. In this case the
intention is that the assignment represents an explicigy p
mitted flow from a higher level to a lower level in the secu-
rity lattice. This is an example of antransitive flow: It may
thatdom(z:) < dom(z2) < dom(zs) in the security lattice,
also thatdom(z2) ~» dom(z:) (direct flows fromdom(zz)
to dom(z,) are permitted) andom(zs) ~~ dom(zz), but not
dom(z3) ~ dom(z1).

¢ Explicit level changing operations such as operations tedo
grade an identifier from high to low, or to upgrade an identifie

from low to high. This type of operation is useful when secu-
rity of the level change operation is supported by some eater
mechanism such as an access control system, a reference mon-
itor, or a trusted downgrading agent. As an example it might b
safe to upgrade parts of an APDU (Application Protocol Data
Unit) received by a smart card during the personalizaticasph

by relying on an external access control mechanism to guaran
tee that the smart card is attached to an authorized cardmread

Operations that allow the security lattice to change under e
cution, by dynamically introducing new security levels ane
moving them again.

The approach we propose in this paper is designed to harelle th
former two of these three types of dynamic regrading. Dywcaftyi
changing the security lattice is outside the scope of thikkwbhe
latter problem has been examined recently by Boudol and $/ato
[6].

The paper is organized as follows: We start by introducing ob
ject automata and use these to give semantics to a simpliéepara
while language. In section 3 and 4 we recall the notion ofrgtro
low bisimilarity from [31], and in section 5 we prove decidléip.

In section 6 we prove undecidability of the noninterferenogon
of Boudol and Castellani (here called “flat bisimulation’edio its
non-lifted quantification over stores). In sections 7 ante8proof
system is introduced, and soundness and relative compkstdas
proved. Then in section 9 we turn to dynamically changingisgc
levels, and present our generalization of strong low biitnon.
This generalization is closely related, though subtlyetéht from
the corresponding notion by Mantel and Sands [23]. In sect®
the decidability, proof system, soundness, and relativeptete-
ness results of sections 5, 7 and 8 are extended to strongnityna
low bisimulation. Finally, in section 11 we conclude, dissue-
lated work, and give pointers to future work.

2. Object Automata

We use a standard state-based model of program executied bas
on transition systems with a mutable store.

Identifiers, Values, Control States, and StoreShe following

denumerable sets are primitivielentifiersz, y,z € Ide, values

v € Val, and control statess € S. A storeis an assignment
o : lde — Val of values to identifiersg[z — v] is the result
of updatingo by assigning to x.

States and Transitions An object automatord consists of a set
of statesof the form(s, o), atransition relation—, and aninitial
state (so,00). As usual we write(s,0) — (s’,0’) whenever
((s,0),(s',0')) € —; in that case(s, o) is the pre-state and
(s',0') is the post-state If the setS is finite we say that the
corresponding object automatorfiisite control

Parallel While Programs Standard examples of object automata
are based on parallel while programfisc P using the syntax

r:=F
a|stop | Pi; P2 | if E'then P; else P,
| whileEdoP|P| P.

Expressiond’ range over some fixed first-order thedtyanda is a
primitive command. At this point the only primitive commanalre
assignments. Later we add primitive commands that dyndiyica
control the level assignment. We useop as abbreviation of the
assignmentr := z for some fixed, arbitrary:. This is justified
since the transition semantics assumed below makes assigsam
atomic. The setde(E) is the finite set of identifiers occurring in
E. For a stores, o(E) is the value ofF in o, andE1 =~ FEs is

e
P

(congy =L o) 2 (Ge) @ =0
(ASSICN —— = T5op oo (B)/2])
(s201) — P;(Sj Z)) = E?ZQ))
(ConD-1) e 5(@53) — (P,0)
(ConD-2) (if E then 5&25,% —(Q,0)
(WHILE-D) il £ do P, a(;(ﬁ)(é;owh”e’f do o)
(WHILE-2) —iRiTe B di)(lbg)a:) - (stop,)
(PaR-1) —p II(Qv % ((P’ [22)
(PAR-2) —p II(Qv g EP I Q) o’)

Figure 1. Transition semantics for parallel while language

expression equality, i.&71 =~ Esiffforall o,0(FE1) = o(E-2). Let
L C|deand letL Nlde(E) = {1, ...,z }. Define the property
dep(E, L) =
dz1, ... Jyn-Elyr/z1, .. yn/an] 2 E .

The intention is thatlep(F, L) iff there is flow of information from
the identifiers inL to E.

yTny Y1y v e

Transition Semantics The transition semantics, shown in Figure
1, uses a structural congruence relatiofior ease of presentation.
A congruenceis any equivalence relation which is preserved by
the constructs oP. The specific relatioee is the least congruence
such that

stop; P = P;stop=stop || P=P || stop=P.

3. Strong A-Security

We assume that identifiers are partitioned into clabggsandlow,
corresponding to their confidentiality levels. The resalts easily
generalized to richer security lattices. The leftef Iderepresents
the set of low identifiers. For now the partitioning into highd
low identifiers is assumed to be fixed, but later it will be aiml to
change. Two stores;; andos, areA-equivalento; =, o, if for
allz € A, 01(x) = o2(2).

Noninterference is a reflection of the idea that to be seaure i
a multi-level setting, there should be no way that variap#git the
level of high data can influence behaviour at the low levekr€h
are a number of ways in which this idea can be formalized in a
language-based setting. In this paper our starting pobakelfeld
and Sands notion of strong low bisimulation [31, 30].

DEFINITION 1 (StrongA-Bisimulation). A relation R on control
states is astrongA-bisimulationif R is symmetric, and whenever
s1Rss then for alloy ~a o9, if (s1,01) — (s1,01) then there
are sh, o5 such that(sz, 02) — (sh,03), s1Rsh, ando] ~a 5.
The relation=, of strongA-bisimulation equivalencis the largest
strong A-bisimulation relation.

We leave the check that, exists and is identical to

(J{R| Ris astrong\-bisimulation}

to the reader. Below we often refer 8, as justA-bisimilarity,
for short, or strong low bisimilarity, depending on conteXhe
standard property of bisimulation-like security definitso that=,
is a partial equivalence relation (a “per”, a binary relatishich
is symmetric and transitive, but not necessarily reflexiiegasily
verified (cf. [31]).

The usual self-bisimilarity condition is applied on the eflie
elements, by defining:

DEFINITION 2 (StrongA-Security). The states is strongly A-
secureif s 4 s.

This security condition is very strong.df =2, s, then no variation

in the high parts of a store can cause a low observer to distihg
s1 from sz, even when running in an arbitrary, possibly hostile,
concurrent environment which:

e can read and write arbitrary low identifiers,
¢ has knowledge of the code under execution, and
e can count execution steps.
Thus, for instance,
l=0;ifl=1thenl:=hedsel:=1

will be insecure, due to the quantification over stores in ¢Ef,
even if in a sequential setting only the harmlelse branch will be
executed. In a concurrent context, however, this quartidicaver
intermediate stores is in fact quite reasonable, sinceutixerof
other threads may cause arbitrary low interference.

The version of strond\-security studied in [30, 27] strengthens
def. 1 by also requiring preservation of the the number ofact
threads. This is motivated by an attack model where thekatac
has the additional capability of controlling the schedulére re-
sulting notion of strong\-bisimulation is shown in [27] to be the
most inclusive indistinguishability-based noninterfege relation
which is scheduler-independent and preserved under glacatin-
position. Below we concentrate on the weaker definition vapo
and point out how the constructions can be adapted to accmod
the stronger definition of [27].

4. Examples

In this section we give a series of small program examplelu® i

trate the relationship between strongsecurity and other nonin-
terference relations in the literature, and to demonsttaeadded

scope of a semantical analysis of noninterference in celat a

type-based one.

ExXAMPLE 1. We give a few examples of while-programs that are
secure, respectively insecure, according to def. 2.

1.ifh=0thenl:=06dsel:=1
This program is insecure. We may hawe ~, o2 even if
o1(h) = 0 # o2(h). But the post-states of the transitions will
then be incomparable with respect4g,.
2. whileh >0doh:=h—1
The program is insecure since the number of transitions exe-
cutable depends on the initial value fof
3.1:=h1:=0
This program is insecure, since stores =~ o2 can be found
such thatoi [o1(h) /1] %A o2[o2(h)/1].
.if h = 0then (I;h) else (I; A')
In this example and elsewhere we usk, I; (h, h’, h;) etc. as
generic examples of low (high) assignments of the form, e.qg.
[:=1(h:= h'). The program is secure, sinégh =2, [; b’ for
all high assignments, h’.
5. (if h = 0then h; := 1 elsestop); loop stop
In this example we udeop P as an abbreviation of the com-

mandwhile z = x do P. The program is secure since both
branches of the conditional are followed by an infinite semee
of transitions that do not affect the low part of the store.

. (if h = 0 then h, elsestop) || loop h2
The program is secure, essentially sinee || loop ha A
loop hs.

. (if h = 0then (h1;1) ese (I; h3)) ||
(if h # 0 then (I; ha) ese (hs;1))
The program is secure. Consider two initial storasando. If
o1 and o2 agree on the assignment tothen the bisimulation
check is trivial. If not, the positive arm of the first condital
is matched to the negative arm of the second conditional, and
vice versa.

The examples highlight some important distinctions bottwben
different approches to noninterference in the literatamed be-
tween secure typable and secure untypable programs.

Examples 1.1 and 2 are standard examples of indirect informa
tion leaks.

Example 1.3 illustrates the flow insensitivity of strong
security, contrasting to the flow-sensitivity of the morarstard,
sequential accounts such as VSI noninterference.

Example 1.4 is secure but untypable in the type system of VSI
since the latter prohibits low commands in the context othig
branching. It is, however, typable in the type system of Agat
There, an external check is used to ensure that the two beanch
of the conditional aré\-bisimilar in the context of high branching.
This renders the high branching harmless with respect toolow
servers. In an example based on RSA, Agat has demonstrated ho
his approach allows timing leaks to be effectively prevantt.
One consequence of the results reported in this paper, idehe
cidability of Agat’s type system for the while-language sintered
in this paper (which, up to minor details, is an extension gats
language).

Finally, 1.5-7 are examples of programs that are secure dy th
global nature of thé\-security condition, but which will be rejected
by most local analyses, including type-based ones. Obgbate
the stronger security definition of [27] rejects the equenaleh, ||
loop he = loop he since the latter definition is sensitive to the
number of threads.

If we extend the language by jumps it is easy to come up with
examples of unstructured programs that will in general irequ
semantical methods to provk-secure. One somewhat artificial
example is the following variation of example 1.4:

if h = 0then goto PC; else
loop (1:=0;h:=1;PCy: 1 :=0;h:=2)

5. Decidability

In this section we show decidability of stromgbisimilarity, first
for general object automata, and then for parallel whilegpams.

DeriNITION 3 (Effective Separability)An object automato is
effectively separabléf given control states, s, s2, s5 € S and
setA C Ide it is decidable if there are stores , o, o2 such that

1. (s1,01) — (s1,01)
2. 01 XA 02
3. whenevetss, o2) — (s5,03) thenoy % 5.

THEOREM1. For finite-control, effectively separable object au-
tomata, strong\-bisimilarity is decidable.

PrROOF We construct an effective, strictly decreasing, maximal
sequence of relationBy D R1 O --- D Ry from Ry = S x S
such that

1. R, is a strongA-bisimulation.

2. If Ris any other strong\-bisimulation, thenkR C R,,.

Sincen is bounded byRy| = |S|?, this is sufficient to etablish the
theorem. Suppose we have construcigd Suppose we can find
s1, 82 € S such thats; R;s2, and such that the following condition
holds:

(*) There iss} € S and storegr1, o, o2 such that
" (81701) - (8,170'/1)'
" g9 R\ 01, and

= for all s5, 05, if (s2,02) — (s5,0%) then eithelws %A of
orﬁ(s’lRis’z).

We then let
Ri+1 - R’L \ {(81732)7 (82781)} .

If no such pair(s1, s2) can be found then the sequence is complete.

We need to verify that condition (*) is decidable. Note first
that, by finite control, it suffices to check (*) for each chmiof
control statessi, s’ s2, s5. But then the condition (s} R;s5) is
independent of the choice of, in (*) so effective separability can
be applied. We then need to verify conditions 1. and 2. above.

CLAIM 1. R, is a strongA-bisimulation

PROOF (of claim) Suppose thati R,s2, 01 =~ o2, and that
(s1,01) — (s2,02). By condition (*) it must be the case that
s, 0% can be found such thdsz, 02) — (s5,0%), s1Rnsy and
o1 /A 0%, sincen is maximal. O

CLaim 2. If R C S x S'is a strongA-bisimulation, therR C R,,.

PROOF (of claim) Supposes: Rs2. We proveR C R; for all

i : 0 < i < n. The base case is trivial. For the induction step,
if —=(s1Ri+152) then we finds; € S ando1,01,02 such that
(s1,01) — (s1,01) andos =~ o1, but whenever(sz, 02) —
(sh,0%) then eithersy %4 o} or =(s] R;s3). SinceR is a strong
bisimulation, we know that somé&, anda’ can be found such that
(s2,02) — (s5,0%), 01 ~a 03, ands) Rs5. But this contradicts
the induction hypothesis. O

This concludes the proof of theorem 1. O

To prove decidability for parallel while-programs, defihe te-
lation ~4 on assignments as the symmetric closure of the follow-
ing clauses (wherd; ~, FE- abbreviates the condition: for all
o1 A 02, 01(E1) = 02(E)):

1. If a; isthe assignment := E1, a is the assignment := E-,
andFEy = Eo thenag ~a az

2. If o is the assignment; := F1, az is the assignment, :=
Es,xz1 € A, z2 € A, andE; = x1 thena; ~x as

3. If oy is the assignment; := E; andas is the assignment
x9 = Fo, xr1,T2 ¢ A, thenal ~A Q2.

Notice that~, is an effective relation when the expression theory
£ is decidable, since the relatiesy is expressible irf.

LEMMA 1. a1 =p oo iff an ~a ao.

PrROOFObserve first that if either of the three conditions holdnthe
a1 A ag. Conversely letvy = x1 := E; be given, and assume
that:c1 e A If ay = T2 := Fo and:cg c A, if FEi #‘«A FEs then
a1 Fa ag. If x2 ¢ Aand By % x; then we find a store such
thato (E1) # o(z1), but theno[o(E1) /1] %A oo (E2)/z2], SO
a1 %A az. This covers the cases and the proof. O

THEOREM?2. For parallel while-programs, i€ is decidable then
S0 is strongA-bisimilarity.

PrROOF We need to show that object automata for parallel while

programs are finite control, and that they are effectivepasable.
For finite control first, letP > P’ iff there areo, o', o such that
(P,o) — (P',0’). It suffices to show that the séP’ | P >* P’}
is finite up to structural congrueneg, and that we can effectively
find a set of canonical representatives of each congruenss.clo
see that it is finite, define the measyf on P in the following
way:

ez :=FE|=2
e |stop| =1
* [P;Q[=|P|+Q
o [if Ethen Pelse@| = |P|+ |Q| + 1
e whileEdoP|=|P|+2
o [P Q=1P|-|Q
If [P)= is the congruence class Bfunder= it is sufficient to show
that
Q= Pe"Q} <|P|. @)
The proof of (1) is by induction on the structure Bf For instance,
to show (1) for the cas® = while E do P; it is sufficient to
observe thaP >* Q iff Q has the form eithestop, or P, or P[; P
whereP; >* P;.
For effective separability note first that each pajP’ such that
P > P’ determines exactly one of the ruless&igN, COND-1,
COND-2, WHILE-1, or WHILE-2 which is used in the derivation
of a transition(P, o) — (P’,¢"), for anyo, o’. This is easily seen
by induction on the structure d@?. In case the rule is ASIGN let
label(P, P’) be the reduced assignment= E. In the other four
cases lefabel(P, P’) be z := z for some arbitraryz. Assume
then given the program termi,, P;, P», P; such thatP; > P/
and P> > P;, and letA C Ide. Let a; = label(P;, P{) and
as = label(Pz, P3). The result then follows by Lemma 1. O

Observe that the proofs of theorems 1 and 2 are quite geradic a

could be adapted without much trouble, e.g. to bytecodealiages.
They are also easy to adapt to the security condition of [27#Eb
quiring preservation of the number of threads. For time dexity,

if n is the cost of checking condition (*) for given, s, s2, s5, and

m is the number of control states, the overall time completaty
checking strong\-bisimilarity is O(m®*n). For the case of parallel
while-programsymn is exponential in the size of the input program,
due to state space explosion, anwill normally be at least single
exponential, cf. the case of boolean expressions.

6. Flat Bismulation

It is instructive to compare strong-bisimulation to the notion
of (T, £)-bisimulation introduced by Boudol and Castellani [5].
The difference between stron§-bisimulation and Boudol and
Castellani’s bisimulation is that the unwinding conditiomn the
latter is cast in terms of configurations whereas the forméfted

to control states. For this reason we also in this paper tefer
Boudol-Castellani bisimulation as “flat” bisimulation.

DEFINITION 4 (Flat Bisimulation).The relationR on configura-
tions is astrong flatA-bisimulationif R is symmetric, and when-
ever(si, o1)R(s2,02) then

1. g1 A 02

2.if (s1,01) — (s1,01) then (s2,02) — (s3,0%) for some
sh, 05 such that(s], o) R(s5,05).

The relation~,, strong flat A-bisimulation equivalencgeis the

largest strong flat\-bisimulation relation. The relation-, is lifted

to control states by ~, ss iff for all 01,02, if 01 &A o2 then

(8170'1) A (82,0’2).

Again it is easy to see that, exists. We first note that stronfy
equivalence is strictly finer than strong flat equivalence.

PROPOSITIONL. 25 Gy

PrROOF C: We show that ifR is a strongA-bisimulation then the
relation

R'((81701)7 (8270'2)) iff s1Rso andal A 02

is a strong flat bisimulation. To show this lgt, 1) — (s1,01).
We obtain directly thafss,02) — (s5,03) such thatsy Rs, and
ol m~a o3, hence(sy, o1) R (sh, 05) which is what needs to be
shown.

C: Lets; be the program: := y; y := x ands; the “residualy :=
x. LetA = {y} and let(s,01)R’ (s',02) iff s = s’ € {s1,52}
and o1 =~a o2. The relationR’ is a strong flat bisimulation,
since if (s,01) — (s’,01) then (s,02) — (s',0%) such that
s',01)R' (s',03). Thus,s ~4 s. On the other hands %4 s.
To see this, assume that R s; and thatR is a A-bisimulation.
Then we would need to obtain that R s> as well. But this is
impossible. To see this, let; (y) = o2(y) andoi(z) # o2(z).
Thenoy = o2. If (s2,01) — (s5,01) thenoi(y) = o1(z).
But whenevel(ss, 02) — (s5,0%) thenos(y) = o2(z) # o1(y)-
Hencess R s2 is impossible, and so isR s. O

The problem with flat bisimulation, as pointed out in [5], aind
contrast to strong\-bisimulation, is that flat bisimulation is not
preserved under parallel composition. This is due to theipiisy
of interference (in the classical concurrent programmaigss). An
example is the progranw := y;y := z) | = := 2. Each of
the component processes:= y;y := x andz := z are flat
bisimulation secure foh = {y}, but their parallel composition is
not, as is easily checked. This phenomenon does not ariseyeg
in the case of strong.-bisimulation, due to the lifted unwinding
condition. Another major distinction between the two bisiation
notions is the decidability properties.

THEOREM3. Strong flatA-bisimulation equivalence on parallel
while programs is undecidable.

PrROOF(Sketch) LetP be an arbitrary while program, let y, z €
Idebe variables not mentioned i, and letA = {z}. We construct
the programP’ = P | P> || Ps such thath, = z :=

1; (whilex # 0 do stop); z := y, P = while0 = 0 do stop,

P; = P;z := 0. We claim thatP’ ~, P’ iff P does not terminate
on any initial assignment (which is an undecidable problef)
see this, ifP does not terminate on any initial assignment then the
relation

{(Q.0),(Q",0") eR(P) | o =a o'}

is a strong flat bisimulation where

R(P) ={(Q,0) |30".(P,0) =" (Q,0)}.

Conversely ifP does terminate on some initial assignment then a
strong flatA-bisimulation relation will have to match the assign-
mentz := y of P; for arbitrary initial assignments tg which is
impossible. O

The same construction can be used to show undecidabilitthef o
noninterference conditions, including various variarft¥apano-
Smith style noninterference [36, 33], in both strong and kvea
versions, using the terminology of Milner [25].

7. Proof System

In this section we give a sound and relatively complete psysf
tem for strongA-bisimilarity for parallel while programs. Existing
information flow type systems (c.f. [36, 19, 31, 30, 5, 33, BB,

use type assertions of the shaBe: A where P is a single pro-
gram term and\ represents the level, here the set of low identi-
fiers. This formulation has well-known shortcomings in thse of
high branching. As an example it is not possible to reduce tgr-
rectness for a conditional such idish = 0 then P else Q to type
correctness of? and @), since low assignments iR or @, even if

P andQ are type correct by themselves, can be used to leak the
branch conditior, = 0. The normal, quite restrictive, approach
is to completely prohibit low observable actions in the scopa
high branch (cf. [36]). Various proposals have been madddwa
more programs to be typed, including Agat's suggestion qoire
bisimilarity of both arms of the conditional [1].

Judgments Our proposal is to replace type assertions of the form
P : A with more general judgments of the forth: A whereT"

is a finite set of program terms. The intuition is thHais the set
of control states that are possible at some given point afieian,
given the initial uncertainty in the values of high identi§ieWe use
standard sequent-type notation for judgments and so veitg,
I,P : Afor"U {P} : A.If ajudgmentl’ : A is valid, it
should not be possible for a low observer to tell any two (jodgs
identical) members df apart, since that might indicate unlicensed
information flow. Thus, a judgmerit : A will be valid, = T : A,

if P =), @Q wheneverP,@Q € A. In particular, if= IT" : A
and P € T then P is strongly A-secure. This representation of

(P,o) — (P',0')

OfL Porg.a - 7]
S Qo) — (@)
O%2 PorQ.0)— (@)
| MERGE (P.0) = (P, o)

PLQo)—FQ0)

Figure 2. Transition rules for choice and left merge

=21 =T2 = T2

Py (P2; P3) = (P1; P2); Ps

Pyor (Pyor Ps) = (Pyor P2)or Ps

Pior P,=Por P,

Por P=P

ssopor P=P sop || P = stop P stop=P

goal states using sets allows us to reduce a judgment such as

if h = 0then P else@ : A (whereh ¢ A) to the judgment
P Q:A.

Approach The proof system we present is essentially a tableau
system with a coinductive termination condition. Each prgaal

T" : Ais reduced, using the tableau rules or the structural cengru
ence relation, until itis in a speciplefix form where each member

of I has the form{«; P) or Q. If the proof goal is valid, such a re-
duction should be possible in such a way that all the prefixage
well-behaved with respect to the level assignmenin the sense
that either all thex's are assignments to high identifiers, or else they
are allidenticalassignments of a low expression to a low identifier.
If either of these two cases hold the transition can be tateadch
member ofl’, and the tableau elaboration process continues. For
termination, the tableau system is, besides the local teduailes
which reduce a tableau node: A to a (small, finite) set of sub-
sidiary tableau nodes, equipped with a rule of dischargés fiie

of discharge is a simple loop detection condition: If a leafi@

is seen to have been already elaborated at an earlier nodhe of t
tableau construction process, the leaf node is closed mydinting

a back arc.

A firstissue is how to allow nodes to be reduced to prefix form.
Most cases, except parallel composition, are straightoadwFor
parallel composition, the issue is how to reduce a proof gbal
the formIT', P || @ : A. A partial solution would be to exploit
the congruential properties 6f5 under parallel composition to at
least allow the reduction ¢fP || Q} : A to subgoal§ P} : A and
{@} : A. First, however, this approach is not easily generalized to
sequentd” : A where|I'| > 1, and secondly the approach would
be essentially incomplete, as shown e.g. by example 1.6vdues
not lend itself as easily to a compositional analysis.

Our solution uses a construgit (left merge) in addition to
nondeterministic choiceo() to incrementally eliminatd, in a way
which is reminiscent of the interleaving law of CCS. The &ition
rules for these constructs are shown in figure 2. The advardag
the left merge operator in this context is that it allows théuction
to prefix form to proceed more easily, since for program teofns
the formP || @, P is forced to perform the first transition. It
also allows an easy reduction of the general parallel coitipos

Figure 3. Extended structural congruence rules

by validating the reduction of', P || Q
LPLQor(QI P):A

Reduction Contexts and Structural CongruenceThe full tableau
system is somewhat complicated by the need to nest seduentia
composition and left merge. This problem is addressed biyrérs
fining the structural congruence relation, and, secongiyadzling
the concept of a reduction context, to allow the tableausrtibe
consider program terms placed in the “active position” ditaary
sequential or left merge compositions.

For the structural congruence relation we extenbly the rules
shown in fig. 3. This extension is mainly a convenience tonato
more compact presentation of the tableau system below. les r
in figure 3 are safe in the sense thaPif= Q thenP =, Q, for
any setA, where=, is defined using the original rules of section
2. We state the following easy decidability result withoragf.

: A to the subgoal

PROPOSITION2. Structural congruence oR is decidable. O

A reduction contexis an expression of the form
Cll==T11 1 (CLEP) L Q-

An extended reduction context ™[], allows choice at the outer-
most level:

CTa=Cl]or Q.
For eachP ¢ P defineC'l[P] inductively by:
Pl = P
(ClPLP) L Q) PPy Q

The important property of reduction contexts is the follogi
LEMMA 2. If (C[P],0) — (Q,c") and P # stop then there is a
P’ such that(P, 0) — (P’,¢’) and@Q = Cl[P"].

ProoOFInduction on the structure @f/-]. O

C’{'[stop]w.wCJ'L[stop] :A Q1,...,Qn: A _
HIGHASSNC Cilz1 := FiJor Q1,...,Chlzn := EyJOr Qn : A ({o, e} N A =0)
I I . . _
Lowassne _Cr[stopl. . Cn[stop]: A Q... Qu:A ¢\ and-deg B,)

Cl[l‘ = E] or Q1,...

,Crlz:=E]or Qn: A

CONGC ?:giﬁ (P=Q) STOPC m HIGHCONDC F}?;TE?%%&%;EZZ%?}AA
onconpe LCBPL A ORI gy)
Tusconoe IR (o) Fasecowe OB ()
e L0 00 Lutle P dor 0 ey A
o, LIl bdo A 1O A (g)
TRUEWHILEC L', C"[noop; P; while £ do P : A (EF#0) FALSEWHILEC I, C* [noop] : A (E=0)

[,CTwhileEdoP]: A

F7C+[P1 |_|_ Pz] or CJr[Pz I_l_ Pl] A
F7C+[P1 H Pz] : A

PARC

(P1, P, £ stop)

[,CTwhileEdoP]: A

F,C+[P1] or C+[P2] A
F7C+[P1 or PQ] A

ORC (Py, P, # stop)

Figure4. Tableau system for stronfg-bisimilarity: Local rules

Tableau System The local tableau rules are shown on figure 4.
Other rules such as those for sequential composition areathés:

I, P P |_|_ StOp:A
F,P1;P22A

I,ClPi; (Po; P) | Q) : A
L, C[(P; P2); PLQI:A

LEMMA 3 (Local Soundness)f I" : A is provable using the rules
in figure 4 then=T": A.

ProoFWe show that each of the rules of figure 4 preserve validity.
CONGC: Since=C=22,.

HIGHASSNC: Suppose{zi,...,z»,} N A = @, and assume
C[stop] 221 € [stop] andQ; 2z Q; wheneveri, j € [1,..., 7).

We show thaCL[:cZ = EL] or Qz =A C’j[mj = EJ‘] or Qj. So
assume that; ~a o, and that(Ci[z; = E;] or Qs,04) —
(Q;,01). By Lemma 2, eithenQ;,o;) — (Qj,0;) or Q;
C)[stop] ando?, = o4[0i(E;) /z:]. In either case we fin@; ando?;
such tha®} = Q}, o; =4 o}, and(Cjlz; := Ej] or Qj,05) —
(Q5,0%).

LOJWAJSSNCZ This case is similar to the previous one, except that
here the assumptions € A and—dep(E, A) are used to ensure
thatai[ai(E)/:c] XA Oj [O'J(E)/CC]

HiGHCOoNDC: It suffices to show that i =, C*[noop; P] and

P =2, C*[noop; P;] thenP =, C1[if E then P, else P]. The
argument is straightforward.

PARC: It is sufficient to show thaCt[P; || P.] or CT[P: ||

Pi] = CT[P1 || P2]) wheneverP; # stop and P, # stop. This

is straigthforward.

The remaining cases are instances of cases already treated.

SEQLC

SEQ2C

Rule of Discharge The proof system is completed by adding a
single coinductive rule of discharge, for loop detectioheTule

of discharge works as follows. L&k be a multiset of judgments
I : A’ each labelling an undischarged naden a proof tree with

root noden, labelledI’ : A. The assumption occurrenté : A’ is
dischargeablefor such a proof tree, if” = I', A’ = A, and the
path fromn to @’ in the proof tree passes the left branch of one of
the proof rules HGHASSNC or LOWA SSNC. If this is the case we
say tham’ is adischarged leafandm its companion We write this
rule in standard natural deduction style as

[:A]

r:A

DiscH T A

(T” : A is dischargeable

The complete tableau system thus consists of the local mles
figure 4 together with the rule BCcH, andA + T' : A denotes
the existence of a proof df : A from the set of undischarged
assumption occurrences in this system. In particulat; T' : A
denotes derivability where all assumptions are discharged

EXAMPLE 2. For the sake of the example lét abbreviate the
conditional if h = 0 then h; else stop. We give a proof of the
judgment

if || loop ha : A 2
First, (2) is reduced usinARC and CONGC to
(if |L loop h2) or (loop he || if) : A, 3)
and then using RUEWHILEC, HIGHCONDC (and CONGC) to
((noop; h1) || loop he) or ((noop; he;loop hs) || if),
(noop || loop hs) or ((noop; ha;loop ha) || if) : A. (4)
By HIGHASSNC, (4) is reduced to the following two subgoals:
hi || loop hz, stop || loop A2 : A (5)
(noop; he;loop hs) || if, (noop; he;loop ha) || if: A (6)

Subgoal (5) is further reduced BARC, TRUEWHILEC, CONGC,
andHIGHA SSNC to the two subgoals:

loop ha, he;loop he : A
(h2;loop h2) || hi, he;loop he : A

@)
8)

We proceed to reduce (8) as before obtaining two further salsy

9)
(10

Note that even if (9) is equal to (7) up @oNGC, (9) cannot (yet)

be discharged, since the two nodes are not connected by a pat
in the tableau. However, (10) can be rewritten usgNGC such
that it becomes dischargable against (5), since the two s@de
connected by a path which traverses the left branchiiHA s-

SNC (in the derivation of (10) from (8)). Proofs of the remaining
(easy) proof goals are omitted.

stop || (hz;lo0p h2),loop ha : A
loop hs || hi,loop kg : A

8. Soundnessand Relative Completeness
THEOREM4 (Soundness)if HT': Athen=T": A.

ProoF(Sketch) Define the relatioR by PRQ justin caseP, Q €
T such thafl” : A labels some node in a proof of some judgment

T'o : Ap. Since all paths from a companion node to a leaf node must

pass the left hand branch of a node labelledMA SSNC or HIGH-
ASSNC, it may be assumed that the same also applies to all path
fromm to a discharged leaf. We show thais aA-bisimulation. To
this end suppose that ~x o2 and that(P,o1) — (P’,01). We
show that(Q, o2) — (Q’, 05) for someQ’, o5 such thatP’RQ’.
Suppose now that is obtained by an application ofdwA SSNC.
ThenP has the fornC;[z := E] or P; and@ has the fornC;[z :=

E] or Q;. By lemma 2, eitherP’ = C’Z“ [stop] or (P;,01) —
(P', o1). Inthe first case we obtain thé®, o) — (CJ“ [stop], o).

Moreover,C,L!| [stop] R CJ'.' [stop] by construction, and; =4 o.
The second case is concluded by the induction hypotheséscdse
for HIGHASSNC is similar. The remaining cases @ H included)
are straightforward. One example is sufficient to typify #igu-
ment. If 7 is obtained by an application ofIHHCONDC so that
P = Cjfif Ethen P;; else P; 2] or P; andoy(E) # 0, either
(noop; Pi1,01) — (P',01) or (P, 01) — (Pi,01). Qs either

in T, or @ = P. In the former case we are immediately done by
the induction hypothesis. The latter case is resolved dipgron
whethero, (E) = 0 or not. The details are left to the reader. O

THEOREM5 (Relative Completenessior decidable expression
theoriesE, if ="' : Athen-T: A

PROOF (Sketch) Assume given an arbitrary valid judgmé&nt A.
We first show how to construct proof segmenfor I : A, a
(non-recursive) proof tree with roat labelled byI" : A, possibly
involving a set of unproved leaf nodes. Each such leaf nddeas
the property that the path fromton’ traverses the left hand branch
of one the rules bwAsSsSNC or HIGHASSNC. WriteT' = T if
such a path exists.

For the construction note first that, using@€GC together with
the rules for conditionals, while, parallel, and choicé naémbers
of I' can be assumed to have the fo@f[Pi] or --- or C,[Py]
such that theP; are eithera, stop, P;1; Pi2, ofr P1 || Pi2.
The case forP; = stop andC;[] not the identity context is elim-
inated using=, specifically the congruencessop; P = P;stop
and stop; stop = stop, andstop || P = stop. The case for
sequential composition is eliminated yassociativity, and the
case of left merge is eliminated by rewriting: || P2 =
P;1;8top || PBs2. Thus, all members of' can be assumed to
have the form eithelC[a:] or --- or Cplan] or stop. Note

now that these two cases are incompatible, since A is valid
and all transformations using: preserve validity. Thus, either
I' = {stop} or stop ¢ I'. In the former case the proof construction
is completed using ®PC. In the latter case ldtf have the form
Q1,...,Qm. Sincel’ : A is valid, using the semilattice proper-
ties of or andstop under=, each@; can be written in the form
Cijlaia]or -« or Csnlasn] wheren is fixed, such that for all
j:1<j5<n, Cl"j [stop], . . CJ',U[stop] : Ais valid. Reflecting
this, the case is completed bysequential applications of either
LOWASSNC or HIGHASSNC. This step uses a case analysis simi-
plar to the one in the proof of Theorem 2, using the property itha

—dep(E,A) andE ~ E’ thenE ~ E'.

FacT 1. The segment construction procedure terminates and pro-
duces a proof segment. O

The complete proof search procedure iterates the segmestteo-
tion procedure, and terminates each branch as soon as &efrul
discharge becomes applicable. To prove termination we g$e a
sure construction. Define

U C|n(F) ’

cl(T) =

and letcl,, be determined by the following conditions:
1. stop € clp(T")
S 2. Cla] € cln(T") impliesC!l[stop] € clp41(T)
3. C[if Ethen P, else P,] € cl,(T") implies
C[noop; P11, C[noop; Pz] € clp41(T)
4. C|while E do P] € cl,,(T") implies
C[noop], C[noop; P;while E do P] € cl,+1(T")
.CIP1 || P.] € cly(T') implies C[Py || P],C[P> |L
P1] C[P1],C[P2] S C|n+1(1—‘)
6. C[Py or P3] € cl,(T) impliesC[P1], C[P2] € Clpt1(T)
7.C[P | Q] € cln (), P # P1; P, for any Py, P, € P implies

C[P;stop || Q] € Clos1(T)

8. C[stop; P || Q] € cl,(T") impliesC[P || Q] € clp+1(T)

9. C[(P1; P»); Ps] € ¢l () impliesC[Pr; (Ps; P3)] € clpta(T)
Say thatl’ = P4, ..., P, is A-generatedif eachP;, 1 < i < n,

can be writtenP; ; or --- or P; ., such thatP;; € A for all
j: 1< 37 < my and say that the set C P is closed if

A = cl(A).

LEMMA 4. If T is A-generated for some closed séandT" = T
thenI is A-generated.

[
9!
[
[

PROOFBY inspecting the segment construction procedure. [

It is thus sufficient to prove thatl(A) is finite whenA is. To this
end we define a measufB|z whereB is a set of terms ifP such
that|P|p = 0if P € B,and ifP ¢ B then:

|P || Qls (IPlz+1)-(IQz +1)
PLQls = IPIQls
|ifEthenPleIseP2|B = |P1|B—|—|P2|B—|—2
|whileEdoP|g = |Plg+2
lalp = 1
|stoplz = 0
|Pi; P2\ |Pi|B + |P2|B
|Pyor Px|p |Pi|B + |P2|B + 1

Clearly, all closure conditions are non-increasing, indaese that
if P € cl,p1(T) \ clo(T) then |P|pusoy < |Q|s for some

Q € cl,(T"). Moreover, the only non-decreasing conditions are
conditions 2, 7, 8 and 9. It is, however, easy to see that tioese
conditions can only be applied consecutively a finite nunddfer
times before one of the other, strictly decreasing, comaitimust
be applied. This is sufficient to complete the terminatiquarent,
and thus the proof of theorem 5.

Complexity The tableau construction algorithm gives an alterna-
tive to the decision procedure of theorem 1. ThedéfP}) is
single exponential in the size of P in the worst case. This gives
a double exponential bound on the size of judgments and hence
triple exponential bound on the size of the tableau. Thisasse
than the single exponential bound for the decision proeediir
section 5. However, the tableau construction algorithmikisly

to explore only a small part of the potential state space ac{pr
tice. Moreover there is potential for savings. By restrigtattention

to sequential programs one exponential is cut from the warse
complexity. A more intelligent handling of sharing may cobther
exponential. In practice it is thus far from clear that theedi al-
gorithm of section 5 will always outperform the proof seabelsed
algorithm of this section, in spite of its asymptotic supsty.

9. Dynamic Security Levels

StrongA-bisimulation, along with other notions of noninterferenc
we have been able to identify in the literature, assumestia st
signment of security levels to identifiers. In many situasiGuch
a static level assignment is either not available, or it ismean-
ingful, because some form of dynamic upgrading or downgigdi
needs to be explicitly supported. In this section we liftélssump-
tion of a static level assignment, and adapt the securityidiefn
accordingly. The main challenge in doing so is to identifyizable
mechanism that allows the s&tof low identifiers in the definition
of strongA-bisimilarity to change while preserving the desired end-
to-end information flow properties.

Localized Level Change PoliciesThere is a wide spectrum of
possible approaches (cf. [32] for a recent survey). Her,aim
is to model information release policies in the style ofansitive
noninterference [23, 6, 26, 22] where declassification ¢uired
to be localized to specific program points and operationsnbu
constraints are imposed on the nature of information agtuet
leased (the “where”-dimension of [32]). In other words, thezi-
sion whether a downgrading af from high level to low at some
given program execution point should be permitted or notkho
not depend on the information actually held:byt that point, but
only on whether the operation or principal invoked to perfahe
downgrading is actually authorized for this. This type ofigois
in constrast to more fine-grained information release pdim the
style of admissible interference [17], the declassificatigpes of
[7] or [20], or the delimited release model of Sabelfeld angeké
[29].

Approach To accomodate level changing operations we augment
the syntax ofP with primitive operations: such that now

ax=z:=F|a|
Three examples are considered in this paper:

e downz) and up(z) are used for identifier downgrading and
upgrading, respectively.

¢ [z := y] is a regrading assignment [23] which acts as a normal
assignment, but is always authorized to go through, regssdl
of the current levels aof andy.

Other examples can easily be conceived, such as a “panic” op-

eration that upgrades all identifiers to high, a “publicizedera-
tion which downgrades all high identifiers to low, or a coratial

downgrade operation which lets the levelzobe governed by the
value of another identifier, sagw... Another variant would be a
timed downgrade operation that automatically downgradéden-
tifier once a certain time interval has lapsed, or once sonmg (e
cryptographic) operation has been performed a sufficienthaun
of times. In the conclusion we comment on our frameworkstgbil
to handle these types of operation.

To each level operatiorn is associated the pre-post rela-
tion ||a||(o,0’). Specifically, fora = down(z) or a up(x),
lall(o,0") iff o = o, and||[x := y]||(0,0") = ||z == y||(c, o).
The transition rule is then the obvious one:
lall(o,0")

(a,0) — (stop,)

(Lvir)

r:=FE
—

For uniformity of notation we write(P, o) (P, 0" if
(P,o) — (P',¢") by elaborating either the assignment= F,
or a conditional or while command, and then= E = noop.

In order to capture the effect of level operations on thelleve
assignment we associate to each primitive operatiand each set

A the following two (effective) operations:

e posiA, «), thepost-setis the set of low identifiers in the post-
state which should depend only on the value of low identifiers
in the pre-state.

e upd(A, o), thelevel updateris the set of low identifiers in the
post-state after “administrative” level changes (upgrgsior
downgradings) have been completed.

The distinction between thpost and upd operations is a little
subtle. The post-set is needed to provide a way for high-dae
to become available at low level in connection with a peritt
downgrade operation. For instance, for the regrading aswmgt
x := y], even ifo1 = o2, Whenz is low andy is high the
stores resulting from the regrading assignmentz := o1 (y)] and
o2[z := o2(y)], areA-equivalent only whear1 (y) = o2(y). Thus,
to allow the regrading assignment to go through, a suitatiéypted
version of A-bisimulation must, in the post-state, amend the/set
by removing from it the target of the regrading assignment. In
this case we thus define:

post o= 3)) = { 4\)

On the other hand, after executing the regrading assignthent
security levels should remain unchanged, whence

Upd(A, [:= y]) = A

The identifier regrading operationg(z) and down(x) are sim-
pler. These cases do not involve interferent informatiow,flanly
update of the level assignment in the poststate, so that:

ifxelyd&A,
otherwise

pos(A,up(x)) = A
upd(A,up(z)) = A\ {z}

pos(A,downz)) = A
updA,downz)) = AU{z}

Finally, whenc« is an ordinary assignment := E, pos{A, z :=
E) = upd(A,z := E) = A. That is, an assignment:= E is not
allowed to directly copy information from high level to lowuel
(post{ A,z := E) = A), and after executing the assignment=
E the level assignment remains unchanggati(A, = := E) = A).

Strong DynamicA-Bisimulation We next generalize strong-
bisimulation to dynamic security levels. Since the privgttransi-
tion labels now have observable effects in terms of levehgka
it now becomes necessary to reflect this in the generaliztdi-de
tion. For this purpose say that the labelanda’ areA-compatible

a =, o, if the level changing effects ef anda’ are the same for
A, i.e.pos(A, a) = pos{A, o) andupd(A, @) = upd(A, o).

DEFINITION 5 (Strong Dynamid\-Bisimulation). Let an indexed
family R = {Ra}acide Of binary relations on control states be
given. The familyR is a strong dynamicA-bisimulation if each
relation R, is symmetric, and whenever Ra s2 then for all
o2, if (s1,01) —% (sh,0}) then there ares), o
such that(SQ,O'Q) 22, (SIQ,O'é), o] =A 2, U{ ~posiA,a) O'é,
and si Rypga 1) S2. The control states; and sz are strongly
dynamicA-bisimilar, s; 224 A so, if there is a strong dynamid-
bisimulation Ry such thats; Ra s2 , and say that the state is
strongly dynamic\-secureif s 24 A s.

01 A

Again we normally refer to strong dynamic-bisimulation as just
dynamicA-bisimulation. As before we easily see thaj 4 is itself

a dynamicA-bisimulation, and that it is a per. Since the definition
now is a bit more complex, we prove the latter statement.

PrROPOSITION3. For each set\, the relation=, » is a per.

PROOFIf R, is a dynamicA-bisimulation then trivially so isRXl.
Assume thatR; and R are both dynamic\-bisimulations. We
show that the famil{ Rx | Ra = Ria o R2.a} is also a dy-
namic A-bisimulation (whereo is relational composition). Sup-
posesi Rass, (s1,01) el (s1,01) ando1 =4 o2. By the def-
inition of R we find s2 such thats; Ri As2R2,a83. SinceR; is
a dynamicA- bisimulation we find(sz, 02) —2» (sh,0%) such
thatan =a a2, 01 Rposta,ag) 02 andsy Rypdia,ag) S2- Then,
since R» is a dynamicA-bisimulation, and since: =~ o2 we
find (83,0’2) =3, (8{370';/;) such thatas =5 ao, O’é ~posiA,as)
o5 and sy Rypda,a,) S3- BY the requirements fopostand upd
we obtain thatpos{A, 1) = pos(A,az) and updA,a1) =
upd(A, a2), from where we can conclude thaf ~posta,a) 03
ands} Rypga,a,) 55 as desired. O

Trivially we also obtain that dynamid-bisimilarity is a general-
ization of A-bisimilarity, for the special case whereis constant
(the conservativity property of [32]).

EXAMPLE 3.

1. [l1 = h]; l2 = l1
The program is secure. The assignment;tis harmless since
l1 is removed from the sét when evaluating the post-set, and
it is reinstated by the level updater.

2. [li:==hl;la:=h

This program is insecure since the second assignment copies

directly into A.

3. dowr(h);l:=h
The program is secure since, after downgradingbecomes
low.

4.if h =0then hy := 1 elseup(l)
The program is insecure since we findAasuch thath; :=
1 ZA up(1).

5. Uqh); lo i =11
The program is insecure sinée is high after upgrading (even
if, in a purely sequential environment, the valuel pfmmedi-
ately after the upgrade is known).

6. if h = 0then [l := hi] dse [l := ha]:
This program is secure since the actighs= hi] and[l := hy]
are A-compatible for allA, and whenever; =, o2 then
0’1[0’1(h)/l] ’\N-‘A\{l} Uz[UQ(h)/l].

Example 3.6 shows the key point where our definition diffeosr
that of Mantel and Sands [23]. They argue that the progranx.of e
3.6 should be rejected since it leaks not only the value air k. at
the prescribed control points, but also information abgun this

sense the declassifications in ex. 3.6 are not localizedaGraunt
is weaker: At the point of declassificatidm, or k2 may or may not
contain the bith = 0, the policy does not specify which, neither
how that bit was derived. As in Rushby’s account of intramsit
noninterference [26] we make the implicit worst case assiomp
that once one high bit is leaked, all bits are, since nothiimgl
the leaked high bit to any particular piece of informatiory. tBis
intuition, an indirect flow such as that of 3.6 would be astiegte
as the direct flow ithy := (h = 0); [l := h1]orhy := (h =0) ||

[l = h1]

Interestingly, the discrepancy with the Mantel and Sands-se
rity condition is localized to just this feature: Other thaamples,
none of their results are affected by replacing their sécdefini-
tion by our notion of dynamic\-security (and adapting the other
definitions accordingly).

In this connection it is important, though, to make sure afr d
inition makes sense also when the security lattice is litegond
the standard two-point lattice. A concern might be the examp

if t = 0then [l := hy] else [l := ho] (1)

wheret belongs to a third security level (top secret) above high.
In this case the security definition would be amended by rai
dynamicA-security not only where\ is the set of low identifiers,
but also where itis the set of identifiers that are high orweRince

in the latter case the post and update functions on downggadi
commandg! := h] would leaveA unchanged, the program (11)
would be immediately rejected.

10. Decidability and Relative Completeness

In this section we adapt the decidability and relative catgiess
results fromA-bisimilarity to dynamicA-bisimilarity. Proofs are
adaptations of the corresponding proofs in sections 5 and 8.

DEFINITION 6 (Effective Post-Separability)lhe object automa-
ton A is effectively post-separahlé givensi, s, s2,s5 € S and
A C Ide it is decidable if there is a transition label; and stores
01,04, 02 such that

1. (s1,01) =5 (s, 01)

2. g1 A 02

3. whenever(sz, 02) —2» (sh,0%) then eithera; #a az, or
U{ ”fépostA,al) Ué-

THEOREM®G. Let an object automatort be given. IfA is finite-
control and effectively post-separable then strong dywcaru
bisimilarity is decidable.

PROOFWe construct a pointwise decreasing chain

R= {Ri,A}1gign,Aglde

of families, similar to the chailRy O --- D R, in the proof of
theorem 1. Condition (*) in the proof of theorem 1 is now regld
by the following:

(**) There is s} € S, labela; and control stores, o7, o2 such

that (s1,01) —% (s},01) andoz ~a o1, but whenever
(52,02) =2 (sh, ob) then eithery %4 s, ah #posta,ag) 01
or =(s1 R upd(a,a1)52)-
The result now follows from effective post-separabilityinghe
proof of theorem 1. O

To extend the proof of decidability for parallel while-pragns
to strong dynamicA-bisimilarity we extend the relation-, of
section 5 by the symmetric closure of the following clauses:

4. If oy andae are both signals and; =4 a3 thena; ~4 as.

5. If o is a signal,pos{A, 1) updA,a1) = A, a2 is a
regrading assignmefit := y], z ¢ A thena; ~a as.

6. If oy is a signal,post(A, a1) updA, 1) = A, az is an
assignment: := E,z € A, andE ~ x thena; ~a as.

7. If ay is a signal,pos{A, 1) = updA,a1) = A, az is an
assignment := E, xz ¢ A thenay ~a aq.

8. If a1, a2 are identical regrading assignmetis := y] then
a1 ~YA 2.

9. If an, ap are regrading assignments, respectiiely := Ei]
and[zs := E»], andz1,z2 € A, thenas ~a as.

10. If a1 is a regrading assignmefit := y|, z,y € A, az is an

assignment := E andy ~ E thena; ~a a2

11. If a4 is a regrading assignmept; := y|, x ¢ A, andas is an

assignments := F, z2 € A, thena; ~a as.

Observe thatv, continues to be effective with these extensions.
The proof of the correctness lemma fer, is a straightforward
case analysis and left out.

LEMMA 5. aq 24a a2 iff a1 ~a a2 with the extended definition
of ~A. O

THEOREM 7. For parallel while-programs, if€ is decidable then
S0 is strong dynamid.-bisimilarity.

PrRoOF The non-trivial task is to show effective post-separapilit
As in the proof of theorem 2, assume given program tefns
P{, P, P; such thatP, > P{ and P, > P;, and setA. Let
a; = label(Py, P)) andas = label(P, P;) and the result follows

by Lemma 5. O
For the tableau system it is sufficient to add the following twles:
[0t o] : A
AcTC T,C[as] A Q1 ~A 02
CMDC C’{'[stop],...,C’,'l[stop] supdA,a) Qr,...,Qn: A

Cila]or Q1,...,Crla]or Qn : A
Letk4 ' : Aif T" : A is provable in the extended tableau system,
and let=; " : AisT : A is correspondingly valid. Soundness and
relative completeness is proved by minor adaptations optbefs
of theorems 4 and 5. We leave out the details.

THEOREMS8 (Soundness and relative completeneHsy.; " : A
then=,; T' : A, and if for decidable expression theorié€s if
Eq4T: Athen-T: A. O

11. Discussion

We have demonstrated that decidability results and sound an
(relative) complete axiomatizations are possible in theaaof
language-based security. We have also specifically prdvatgp-
port to Sabelfeld and Sands notion of strong low bisimutags
an interesting and tractable model for noninterferencetrasting
with the undecidability results that apply in the case okaotfiow-
sensitive noninterference relations based on executaes: trees,
or pre-post relations such as [36, 5]. Moreover we have [megpo
a generalization of strong low noninterference which cacoac
modate dynamically changing security levels in a spiritikinto
intransitive noninterference [23, 6, 26, 22].

An interesting application of our results is likely to be sety
analysis of low-level code. Current work in this area (cf.43, 16])
is based on the idea of reconstructing a structured contwl ift
order to apply a typed-based analysis. Such a reconstnuatiib
often not be possible, however, and an approach such asased b
on bisimulation checking is likely to be simpler and moreustb

Our results are constrained by two key assumptions, finite co
trol, and effective separability. The finite control asstimpis tan-
tamount to assuming that the set of global control pointsitefup
to structural congruence, and effectively computables hbids for
the parallel while language considered here, but it doebaldtfor
languages where the number of spawned processes is notdzhund
or for languages with richer control structures, e.g. lambadlcu-
lus. It is of interest to identify decidable classes that ggdmd fi-
nite control, and to identify safe approximations for theeahen
decidability is lost. The issue of decidable classes idylilte be
linked to corresponding decidability results for procdgehra, e.g.
BPP decidability [8] for the case of unbounded process ieat

The other assumption, effective separability, concerrsdee
ability of the underlying expression theory. This seemg/ vea-
sonable in practice. In fact, to be meaningful, timing-g#rese-
curity properties such as strong low security require thimitive
state transitions (which includes expression evaluatteps are
executable in constant time: Any discrepancy can immelgidie
used by an attacker to create a timing channel.

A couple of other recent papers go beyond typability for
checking noninterference. Terauchi and Aiken [34] use #l& s
composition approach introduced by Darvas, Hahnle andiSan
[10] to reduce noninterference to a safety problem, patéinti
checkable by an automated safety analysis tool. Amtoft [&h-
troduce a separation-like logic to specify flow propertiesemuen-
tial pointer programs. They also give an algorithm which emd
some conditions compute strongest postconditions in tbgic,
thus obtaining a completeness result. Both papers addegsers-
tial programs only, under flow-sensitive definitions of imf@tion
flow, and it is unclear if and how they scale to threaded progta

Turning to frameworks for dynamically changing security-le
els, the paper [32] point out four common semantic requirgme
which declassification mechanisms in their opinion shoufabsrt.
These are:

e Semantic consistency: If two programs are semanticallyvequ
alent then they should satisfy the same security properties

e Conservativity: Security definitions should be weakeniofis
noninterference.

e Monotonicity of release: Adding declassifications shoutd n
make a secure program insecure.

e Occlusion: The presence of declassification should not mask
other information leaks.

Of these properties, monotonicity of release fails for owdsd

if the term “declassification” is taken to include upgradings
well, since most secure programs can be made insecure by some
where upgrading some low identifier. The remaining threeireg
ments are all validated by our definition of strong dynamic
bisimulation.

The model for dynamically changing security levels is nat ye
as rich as we would want. For instance it is perfectly possibl
to conceive of more general settings in which level changag m
depend on, and affect, the state. In this casepbst and upd
operations will depend on an entire transition, rather fluahthe
transition label. As an example consider a specialized doading
command where another identifier, dayv,, is used to determine
the level of the identifiex. We would then get:

POSKA, (s1,01) <2 (s2,0)) =

A\ A{z} if o1(low,) = 0andos(low;) = 1,
A\ {z} if oa(low,) =0,
A otherwise

() AU if o2(low,) =1
upd(A, (s1,01) —> (s2,02)) = { A\ {{‘:}} Otﬁégwise)
If is high in the prestatddw, = 0) and low in the post-state,
x should be removed from the post-set to allow high varigbitit
filter through to the low level. On the other handzifis high in

the post-stater should also be removed from the post-set, now to

allow high variability to filter through ta: as a high identifier.
In the present framework where the integrity lofv, cannot
be protected such an extension appears to be of marginetsite

Also we have not yet been able to extend our decidability and

completeness results to this richer setting. For praétycabwever,
this kind of extension would appear to be important.

Further ahead we plan to use a similar approach as the one
we have used for dynamic levels to support more fine-grained

information flow control in the style of admissible interdece
[9, 17].

Acknowledgments
Thanks to Dave Sands for helpful comments.

References

[1] J. Agat. Transforming out timing leaks. Iroceedings of the
27th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPRLpages 40-53, Boston, MA,
January 2000. ACM.

[2] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic forammation
flow analysis of pointer programs. Proc. POPL'06 ACM, 2006.

[3] Gilles Barthe and Tamara Rezk. Non-interference forra-jike

—

language. IrProc. ACM SIGPLAN International Workshop on Types

in Languages Design and Implementation (TLpages 103-112.
ACM, 2005.

D.E. Bell and L.J. LaPadula. Secure computer systemsfiddn
exposition and MULTICS interpretation. Technical ReporT R4
2997, Mitre Corp., Bedford, Mass., USA, June 1976.

[5] G.Boudol and I. Castellani. Noninterference for coment programs
and thread system3heor. Comput. S¢i281(1-2):109-130, 2002.

[6] G. Boudol and A. Matos. on declassification and the natidsure
policy. In Proc. Computer Security Foundations Workshpages
226-240, 2005.

[7] S. Chong and A. C. Myers. Security policies for downgregi In
Proc. ACM Conference on Computer and Communications Sgcuri
pages 198-209, 2004.

[8] Saren Christensen, Yoram Hirshfeld, and Faron MollésirBulation
equivalence is decidable for basic parallel processesPrdm.
CONCUR’93 volume 715 ofLecture Notes in Computer Science
pages 143-157. Springer, 1993.

[9] M. Dam and P. Giambiagi. Confidentiality for mobile codghe
case of a simple payment protocol. Rtoc. Computer Security
Foundations Workshomages 233—-244, 2000.

[10] A. Darvas, R. Hahnle, and D. Sands. A theorem proving ambroa
to analysis of secure information flow. Rroc. Second International
Conference on Security in Pervasive Computinglume 3450 of
Lecture Notes in Computer Scienpages 193-209. Springer, 2005.

[4

fla.ar

[11] D. E. Denning. A lattice model of secure information flow
Communications of the ACM9(5):236-243, 1976.

[12] D. E. Denning and P. J. Denning. Certification of progsdor secure
information flow. Communications of the ACN20(7):504-513, July
1977.

[13] R. Focardi and R. Gorrieri. A classification of secugtyperties for
process algebradournal of Computer Securit(1):5-33, 1995.

[14] R. Focardi and S. Rossi. Information flow security in dgric
contexts. InProc. 15th Computer Security Foundations Workshop
pages 307-319, 2002.

[15] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging largpsaased and
process calculi security. IRroc. FoSSaCSages 299-315, 2005.

[16] Samir Genaim and Fausto Spoto. Information flow analfmi java
bytecode. InProc. VMCAI'05 volume 3385 ofLecture Notes in
Computer Sciencgages 346—-362. Springer, 2005.

[17] P. Giambiagi and M. Dam. On the secure implementatiosecfirity
protocols.Sci.Comput. Program50(1-3):73-99, 2004.

[18] J.A. Goguen and J. Meseguer. Security policies andrigcuodels.
In Proceedings of the 1982 IEEE Symposium on Security anddriva
pages 11-20, Oakland, CA, 1982.

[19] N. Heintze and J. G. Riecke. The SLam Calculus: Programgnvith
secrecy and integrity. IRroc. POPL'98 pages 365-377, 1998.

[20] P. Li and S. Zdancewic. Downgrading policies and retaxe
noninterference. IProc. POPL'05 pages 158-170, 2005.

[21] H. Mantel. Possibilistic definitions of security — arsambly kit —.
In Proc. Computer Security Foundations Workshpages 185-199,
2000.

[22] H. Mantel. Information flow control and applications #idging a
gap. InProc. FME pages 153-172, 2001.

[23] H. Mantel and D. Sands. Controlled declassificationedasn
intransitive noninterference. roc. APLASpages 129-145, 2004.

[24] Ricardo Medel, Adriana B. Compagnoni, and Eduardo BonA
typed assembly language for non-interference. Piac. Italian
Conference on Theoretical Computer Scieneglume 3701 of
Lecture Notes in Computer Scienpages 360-374. Springer, 2005.

[25] Robin Milner. Communication and concurrenciyrentice-Hall, 1989.

[26] J. Rushby. Noninterference, transitivity, and chdsuoatrol security
policies. Technical Report CSL-92-2, Stanford Researstitirie,
1992.

[27] A. Sabelfeld. Confidentiality for multithreaded pragns via
bisimulation. InProc. A. Ershov 5th International Conference on
Perspectives of System Informafieslume 2890 ot_ecture Notes in
Computer Scien¢gpages 260-274. Springer, 2003.

[28] A. Sabelfeld and A. C. Myers. Language-Based Infororafrlow
Security. |IEEE Journal on Selected Areas in Communicatjons
21(1):1-15, January 2003.

[29] A. Sabelfeld and A. C. Myers. A model for delimited infoation
release. InProc. International Symposium on Software Security
volume 3233 olecture Notes in Computer Scienpages 174-191.
Springer, 2003.

[30] A. Sabelfeld and D. Sands. Probabilistic noninterfeee for
multi-threaded programs. IRroc. Computer Security Foundations
Workshop pages 200-214, 2000.

[31] A. Sabelfeld and D. Sands. A PER model of secure infoigngtow
in sequential programsHigher-Order and Symbolic Computation
14(1):59-91, 2001.

[32] A. Sabelfeld and D. Sands. Dimensions and principledenfiassi-
fication. InProc. 18th Computer Security Foundations Workshop
pages 255-269, 2005.

[33] G. Smith and D. Volpano. Secure information flow in a mtiiteaded
imperative language. IRroc. POPL'98 pages 355-364, 1998.

[34] Tachio Terauchi and Alexander Aiken. Secure informratilow as a
safety problem. IrProc. SAS'0O5volume 3672 ofecture Notes in
Computer Scien¢gpages 352—-367. Springer, 2005.

[35] D. Volpano and G. Smith. Probabilistic noninterferenio a
concurrent language. Proceedings of 11th IEEE Computer Security
Foundations Workshgmpages 34-43, Rockport, MA, June 1998.

[36] D. Volpano, G. Smith, and C. Irvine. A sound type systemsfecure
flow analysis.Journal of Computer Security(3):167-187, 1996.

[37] L. Zheng and A. C. Myers. Dynamic security labels andintarfer-
ence. InProc. 2nd IFIP TC1 WG1.7 Workshop on Formal Aspects in
Security and Trust (FASTpages 27-40, 2004.

