
Compositional Veri�cation of CCS ProcessesMads Dam and Dilian GurovDept. of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, and SICSAbstract. We present a proof system for verifying CCS processes in themodal �-calculus. Its novelty lies in the generality of the proof judge-ments allowing parametric, and in this way, through a rule for subtermcut, also compositional reasoning, in the complex setting of a logic withrecursion. Another advantage of the proof system is complete separationof the rules of the proof system concerning the logic from the rules en-coding the opartional semantics of CCS, which makes the proof systemeasily adaptable to other languages with a clean transitional semantics.1 IntroductionIn several recent papers [1, 2, 4, 5, 7] proof-theoretical frameworks for composi-tional veri�cation have been put forward based on Gentzen-style sequents ofthe shape � ` �, where the components of � and � are correctness assertionsP : �. Several programming or modelling languages have been considered, includ-ing CCS [4], the �-calculus [2], CHOCS [1], general GSOS-de�nable languages[7], and even a signi�cant core fragment of the [real] programming language Er-lang [5]. An important precursor to the above papers is [8] which used ternarysequents to build compositional proof systems for CCS and SCCS vs. Hennessy-Milner logic [6].The key idea behind using this general form of sequents is that it allowscorrectness properties P : � to be stated and proved in a parametric fashion,i.e., relative to correctness properties of constituents of P , represented by freevariables (parameters). A general rule of subterm cut� ` Q :  ;� �; x :  ` P : �;�� ` P [Q=x] : �;�allows such subterm assumptions to be introduced and used for compositionalveri�cation.It is, however, di�cult to �nd a way of supporting temporal properties withinsuch a framework, especially when expressed in a logic like the modal �-calculus.In [4] the �rst author showed one way of doing this, and built, for the �rst time,a compositional proof system capable of handling general CCS terms, includingthose that create new processes dynamically. In [5] we used a similar, thoughconsiderably improved, approach to address Erlang.In this paper we improve upon previous approaches in two ways. First, fol-lowing an idea by Simpson [7] we fully separate the issue of incorporating the



transitional semantics for P from the general handling of the logic by employingprocess variables and transition assertions of the shape P �! Q. These assertionsprovide a semantically explicit bridge between the transitions of P and the one-step modalities of the logic. Second, to handle the �xed point formulas of thelogic in a simple and yet transparent (semantically explicit?) manner we employ�xed point approximations using ordinal variables, and ordinal constraints ofthe shape �1 < �2. This allows the unfoldings of �xed point formulas in dif-ferent places of a sequent to be related in a manner which reduces proofs towell-founded (ordinal?) induction arguments. The latter take here the form ofglobal discharge rules.The paper is organised as follows. . . .2 LogicFormulas � are generated by the following grammar, where � ranges over a setof ordinal variables, � over a set of actions, and X over a set of propositionalvariables. � ::= � _ � :� h�i� X �X:� (�X:�)�We assume that the sets of actions, ordinal variables, and propositional variablesare countably in�nite and mutually disjoint. An occurrence of a subformula  in� is positive, if  appears in the scope of an even number of negation symbols.Otherwise the occurrence is negative. The formation of least �xed point formulasof one of the shapes �X:� or (�X:�)� is subject to the usual formal monotonicitycondition that occurrences of X in � are positive. We use the symbols U and Vto range over (unindexed) �xed point formulas �X:�.De�nition 1.1. The formula � is propositionally closed if � does not have free ocurrences ofpropositional variables.2. The formula � is pure if � does not have subformulas of the form U�.Observe that standard abbreviations apply, such asfalse = �X:X;� ^  = :(:� _ : );[�]� = :h�i:�;�X:� = :�X::(�[:X=X ]):The semantics is determined in the usual fashion, with indexed formulasreceiving the expected semantics as ordinal approximations. So, we let � be aninterpretation function (environment), mapping ordinal variables to ordinals,and propositional variables to sets of states:k� _  k� = k�k� [ k k�k:�k� = Snk�k�



kh�i�k� = fP j 9Q 2 k�k�:P �! QgkXk� = �(X)k�X:�k� =\fS j S � k�k�[S=X ]gk(�X:�)�k� = 8<:; if �(�) = 0k�k�[k(�X:�)�k�=X; �=�] if �(�) = � + 1Sfk(�X:�)�k�[�=�] j � < �(�)g if �(�) is a limit ordinalThe following easy consequence of the de�nition is used in the proof system tofollow:Theorem 1 (KnasterTarski).k(�X:�)�k� = [�<�(�) k�k�[k(�X:�)�k�=X; �=�]k�X:�k� =[� k(�X:�)�k�[�=�]Observe how this casts the properties U and U� as existential properties:This is useful to motivate the proof rules for �xed point formulas given below.As models are countable, quanti�cation over countable ordinals in Theorem1 su�ces.De�nition 2 (Assertions, Judgements).1. An assertion, A, is an expression of one of the forms E : �, � < �0, orE �! F , where � is a propositionally closed formula.2. The assertion E : � is valid for an interpretation function � (written E j=��), if E� 2 k�k�. The assertion � < �0 is valid for �, if �(�) < �(�0). Theassertion E �! F is valid for �, if E� �! F� is a valid transition.3. A sequent is an expression of the form � ` �, where � and � are sets ofassertions.4. The sequent � ` � is valid (written � j= �), if for all interpretation func-tions �, all assertions in � are valid for � only if some assertion in � isvalid for � as well.An assertion of the shape E : A is called a property assertion, an assertionof the shape � < �0 is called an ordinal constraint, and an assertion of the shapeE �! F is called a transition assertion.3 Proof System: Logical EntailmentWe consider the general problem of proving validity of sequents. As a �rst stopwe consider the subproblem of logical entailment, casting this as the problem ofproving validity of sequents � ` � where all process terms are variables.



Structural Rules We assume the axiom rule, the rule of cut, and weakening:Ax ��;A ` A;�Cut � ` A;� �;A ` �� ` �W-L � ` ��;A ` � W-R � ` �� ` A;�In fact (as in [7]) in the axiom rule A needs only be instantiated to transitionassertions, and then � can be assumed to be empty. Since � and � are sets,structural rules like permutation and contraction are vacuous. We conjecturethat both cut and the weakening rules are admissible.Logical Rules In the following listing we assume that U = �X:�.:-L � ` E : �;��;E : :� ` � :-R �;E : � ` �� ` E : :�;�_-L �;E : � ` � �;E :  ` ��;E : � _  ` � _-R � ` E : �;E :  ;�� ` E : � _  ;�h�i-L �;E �! x; x : � ` ��;E : h�i� ` � fresh(x)h�i-R � ` E �! E0; � � ` E0 : �;�� ` E : h�i�;�U-L �;E : U� ` ��;E : U ` � fresh(�) U-R � ` E : �[U=X ]; �� ` E : U;�U�-L �; �0 < �;E : �[U�0=X ] ` ��;E : U� ` � fresh(�0)U�-R � ` �0 < �;� � ` E : �[U�0=X ]; �� ` E : U�; �The side condition fresh(x) (fresh(�)) is intended to mean that x (�) does notappear freely in the conclusion of the rule.The rules for indexed �xed point formulas are directly motivated by theKnasterTarski theorem. Similarly, the rules for unindexed �xed point formulasare directly motivated by the Knaster-Tarski Theorem. The lack of symmetrybetween the latter two rules is not accidental; their symmetric counterparts arein fact admissable.



Ordinal Constraints Finally, we need to provide rules for reasoning about ordinalconstraints. The following ordinal transitivity rule is su�cient:OrdTr �; �0 < � ` �00 < �0; ��; �0 < � ` �00 < �;�provided ordinal variables and constraints are only being introduced during theproof, but do not appear in the root sequent.4 Well-founded (Ordinal?) InductionProcesses and formulas can be recursive, allowing for proof trees to grow un-boundedly. Intuitively, one would like to terminate an open branch whenever asequent has been reached which is an instance, up to some substitution �, ofsome of its ancestor nodes. A proof structure, all leaf nodes of which are eitheraxioms or such repeats, serves as the basis for well-founded ordinal inductionarguments. A global discharge condition is a su�cient condition for such an ar-gument to go through. The use of ordinal variables and constraints allows suchconditions to be phrased in a clear and semantically transparent way. The mostgeneral view of discharge is presented in game-theoretic terms elsewhere [?]. Inessence, global discharge guarantees, that if one "unfolds\ a proof structure,then for every in�nite branch there is an ordinal variable for which the "depth\of the constraints being accumulated along this branch grows unboundedly [canone phrase this in a nice way?]. Here we present a discharge condition which iseasy to understand and apply, and su�ciently powerful to handle the Example.Two repeat nodes are called related if there is a path connecting these in thegraph obtained by identifying these nodes with the respective nodes of whichthey are instances.De�nition 3. A node labelled � ` � can be discharged with U� and substitution� against an ancestor node labelled � 0 ` �0 if:(i) U� occurs as subformula in � 0 or �0;(ii) �� 2 � whenever � 2 � 0, and �� 2 � whenever � 2 �0;(iii) � ` �� < � is derivable;(iv) assuming the related discharge nodes labelled �1 ` �1 . . .�n ` �n havebeen discharged with U�11 . . .U�nn and �1 . . .�n, there is a linear ordering � onthese nodes including the present node, such that whenever i � j: (a) U�ii occursas subformula in � 0j or �0j , and (b) either �i�j = �i, or �j ` �i�j < �i isderivable.The full version of the paper will explain the discharge mehanism in greaterdetail.5 Proof System: Operational SemanticsCalculus of Communicating Systems CCS processes E are generated by thefollowing grammar, where l ranges over a given set of labels, L over subsets of



this set of labels, � over actions of the shape � , l or l, and x over a set of processvariables. E ::= 0 �:E E +E EjE EnL �x x:EDecomposing PropertiesSubtermCut-R � ` F :  ;� �; x :  ` E : �;�� ` E[F=x] : �;� fresh(x)The symmetric rule SubtermCut-L is derivable.Embedding the Operational Semantics0-L ��; 0 �! x ` ��-L-1 � [E=x] ` �[E=x]�; �:E �! x ` � �-R �� ` �:E �! E;��-L-2 ��; �:E �! x ` � � 6= �+-L � [y=x]; E �! y ` �[y=x] � [z=x]; F �! z ` �[z=x]�;E + F �! x ` �+-R � ` E �! E0; �� ` E + F �! E0; �j-R-1 � ` E �! E0; �� ` EjF �! E0jF;�j-R-2 � ` E l! E0 � ` F l! F 0; �� ` EjF �! E0jF 0; �j-L-1 � [yjF=x]; E l! y ` �[yjF=x] � [Ejz=x]; F l! z ` �[Ejz=x]�;EjF l! x ` �j-L-2 � [y1jF=x]; E �! y1 ` �[y1jF=x]� [Ejy2=x]; F �! y2 ` �[Ejy2=x]� [z1jz2=x]; l1 = l2; E l1! z1; F l2! z2 ` �[z1jz2=x]�;EjF �! x ` �n-L � [ynL=x]; E �! y ` �[ynL=x]�;EnL ` � � 62 L



n-R � ` E �! E0; � � ` � 62 L;�� ` EnL �! E0nL;��x-L � [y=x]; E[�x x:E=x] �! y ` �[y=x]�;�x x:E �! x ` ��x-R � ` E[�x x:E=x] �! E0; �� ` �x x:E �! E0; �Symmetric versions of +-R and j-R-1.6 ExampleConsider a process Counter = fix x: up: (x j down:x)which can alternatingly engage in up and down actions, generating a new copyof itself after each up action. Clearly, in any point in time, regardless how manycounters have already been generated, this system can engage in �nite sequencesof down actions only. This propery can be formalised as the negation of thefollowing formula: � = �X::�Y:: (hupiX _ hdowni:Y )So, we want to prove validity of the sequent` Counter : :�We perform the proof backwards, from this goal sequent towards the axioms,guided by the shape of the formulas and process terms involved. After eliminatingthe negation and approximating � one obtainsCounter : �� ` (1)Continuing in the same straightforward manner we soon arrive at the followingtwo sequents: �0 < �; up: (Counter j down:Counter) down! x ` x :  �0 < �;Counter j down:Counter : ��0 `the �rst of which is an axiom. The second sequent is similar to sequent (1), withthe important di�erence of a new down:Counter component having appeared.This is the point where one would like to perform an inductive argument on thesystem structure, and this can be done using subterm cut. The most importantquestion is what the property of the component being cut is that yields the



overall system property being very�ed. A convenient case is when it is the sameproperty, i.e., when the property being very�ed composes nicely. This is thecase in our example, partly because there is no communication between thecomponents. So, after two applications of subterm cut we obtain the followingthree sequents: �0 < �;Counter : ��0 `�0 < �; down:Counter : ��0 ` x : ��0�0 < �; x j y : ��0 ` x : ��0 ; x : ��0the �rst of which can be directly discharged against (1). The second sequentis easily reduced to an axiom and a discharge node. Handling the remainingsequent is only slightly more involved (it will be considered in more detail in thefull version of the paper).7 ConclusionWe presented a proof system for verifying CCS processes in the modal �-calculus.Its novelty lies in the generality of the proof judgements allowing parametric, andhence through subterm cut also compositional reasoning, in the complex settingof a logic with recursion. Another advantage of the proof system is completeseparation of the rules of the proof system concerning the logic from the rulesencoding the opartional semantics of the process language chosen (here CCS),which makes the proof system easily adaptable to other languages with a cleantransitional semantics.References1. R. Amadio and M. Dam. Reasoning about higher-order processes. In Proc.CAAP'95, Lecture Notes in Computer Science, 915:202{217, 1995.2. R. Amadio and M. Dam. A modal theory of types for the �-calculus. In Proc.FTRTFT'96, Lecture Notes in Computer Science, 1135:347{365, 1996.3. J. Armstrong, R. Virding, C. Wikstr�om, and M. Williams. Concurrent Programmingin Erlang (Second Edition). Prentice-Hall International (UK) Ltd., 1996.4. M. Dam. Proving properties of dynamic process networks. Information and Com-putation, 140:95{114, 1998.5. M. Dam, L.-�a. Fredlund, and D. Gurov. Toward parametric veri�cation of opendistributed systems. To appear in Compositionality: the Signi�cant Di�erence, H.Langmaack, A. Pnueli and W.-P. de Roever (eds.), Springer-Verlag, 1998.6. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.Journal of the ACM, 32:137{162, 1985.7. A. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for anarbitrary GSOS. In Proceedings, Tenth Annual IEEE Symposium on Logic in Com-puter Science, pages 420{430, San Diego, California, 26{29 1995. IEEE ComputerSociety Press.8. C. Stirling. Modal logics for communicating systems. Theoretical Computer Science,49:311{347, 1987.9. C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theo-retical Computer Science, 89:161{177, 1991.


