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Abstract

In this paper we study the problem of verifying general temporal and
functional properties of mobile and dynamic process networks, cast in
terms of the pi-calculus. Much of the expressive power of this calculus
derives from the combination of name generation and communication (to
handle mobility) with dynamic process creation. In the paper we intro-
duce the 7-p-calculus, an extension of the modal mu-calculus with name
equality, inequality, first-order universal and existential quantification, and
primitives for name input and output as an appropriate temporal logic for
the pi-calculus. A compositional proof system is given with the scope of
verifying dynamic networks of pi-calculus agents against properties speci-
fied in this logic. The proof system consists of a local part based, roughly,
on the classical sequent calculus extended with data structures for private
names, and rules to support process structure dependent reasoning. In ad-
dition the proof system contains a rule of discharge to close well-founded
cycles in the proof graph. The proof system is shown to be sound in
general and weakly complete for the non-recursive fragment of the spec-
ification logic. We also obtain a weak completeness result for recursive
formulas against finite-control calculus processes. Two examples are con-
sidered. The first example is based on Milner’s encoding of data types
into the pi-calculus, specifically the natural numbers. This encoding is
interesting from the point of view of verification, since it makes essential
use of all the distinguishing features of the pi-calculus, including dynamic
process creation. Corresponding to the encoding of natural numbers into
the m-calculus we propose an encoding of the type of natural numbers into
the m-p-calculus and establish some type correctness properties. As the
second example we consider a garbage-collecting unbounded buffer (which
dynamically create and destroy buffer cells) and show how to establish
absence of spurious output of such a system.

1 Introduction

In this paper we study the problem of verifying general temporal and functional
properties of mobile and dynamic process networks. In such a network processes
can be created, and process interconnection topology can be modified during
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execution. Mobility is often achieved by a mechanism for generating inter-
process links, and passing them between processes. For instance, in the m-
calculus [12] links are primitive names of communication channels, and in the
programming language Erlang [3] links serve as both communication channels
and process identifiers. The combination of mobility with dynamic creation of
processes is very powerful. For the case of m-calculus this is witnessed by the
encodings into the 7-calculus of, e.g., data types, functions, objects, and higher-
order processes [10, 11, 19, 16]. But it is also a power which is used extensively
in everyday programming practice, to dynamically set up data and process
structures, to adapt applications and systems to change in their environments,
to support fault tolerance and code replacement in running systems, to name
just a few scenarios (cf. [3]).

The cost of this power is the unbounded and essential growth of state spaces
as processes compute, rendering analyses by global state space exploration in
general impossible. An alternative which was explored in [5] for CCS is to take
a compositional, proof-based approach. In this paper we extend this approach
to the m-calculus and show how a compositional proof system can be built with
the scope of verifying quite general properties of w-calculus processes.

It is important to note that this is an ambitious and difficult task. There
are few approaches to verification around that can deal satisfactorily with this
kind of problem even in settings that are computationally simpler than that of
the m-calculus. We do not claim to give the definite answer to this problem
in this paper — much more work will be required before stable methods and
criteria for measuring their usefulness have been found. What we do claim,
however, is to present one possible approach that does, according to some set of
criteria (soundness, weak forms of completeness, non-trivial examples) address
and adequately solve the problem.

The investigation is cast in terms of judgments of the form I' - E : ¢ where
FE is an open 7-calculus term, ¢ is a general temporal formula, I is a sequence of
assumptions governing agent variables free in E., and s is a set of channel names
local to E. Verification in such a setting must be inherently compositional, since
the behaviour of FE is defined only up to properties of its constituent parts, as
determined by I". Temporal specifications are given in an extension of the modal
p-calculus with name equality, inequality, first-order universal and existential
quantification, and primitives for name input and output along the lines of [4].
We present a proof system for judgments which is sound and weakly complete
for recursion-free formulas, and for general formulas we show that the proof
system is sound in general and weakly complete for finite control processes. As
the CCS-based proof system of [5] the proof system consists of a (rather large)
number of proof rules that account, roughly, for the modal fragment, plus a
single rule of discharge to handle fixed points.

We illustrate the use and scope of the proof system by means of two ex-
amples. First an example based on Milner’s encoding of data types into the
m-calculus shows how the type of natural numbers can be encoded. While we
have no inherent interest in the natural numbers the example is of interest
since it exercises all important aspects of both the m-calculus (dynamic process
creation, name generation, scope extrusion, and communication), and of the



temporal logic (fixed points, alternation, quantification, equality and inequal-
ity, input and output). Moreover, it illustrates well an important point of the
proof system, namely its capacity to uniformly prove properties pertaining to
infinite collections of essentially distinct agents. Finally the example is sur-
prisingly subtle: It is not at all trivial to arrive at a suitable encoding of the
property of “representing a natural number”, let alone to formally prove type
correctness properties such as those we consider.

As a second example we consider bounded and (in particular) unbounded
buffers and show, as the main example, absence of spurious output from an
unbounded directional buffer which is “garbage-collecting” in the sense that
buffer elements which become empty are terminated.

The chosen setting for the m-calculus is introduced in section 2. We work
with a largely standard version of the polyadic m-calculus [10], using recursive
process definitions and incorporating a standard conditional. We then proceed
to introduce the “m-p-calculus”, a version of first-order p-calculus in the style of
Park [14], extended with 7-calculus-specific primitives. In section 4 we present a
few example specifications, notably some examples of specifications addressing
basic buffer properties (order preservation, absence of spurious output, absence
of message loss) and a formalisation of the “type of natural numbers”. Then
we proceed to present the modal fragment of the proof system, the shape of
judgments, their semantics, and the proof rules along with a few example deriva-
tions. The modal fragment of the proof system is grouped naturally into several
collections of rules. Some (the logical rules, governing the first-order connec-
tives) are largely standard. Others (the structural rules and — to a slightly less
extent — the rules for equality and inequality) are somewhat interesting in the
way private names are handled. Two further collections of rules are the rules
for transition modalities and the rules for modalities reflecting name input and
output, the io-modalities. The modal fragment of the proof system is shown to
be sound and weakly complete in section 6. We then proceed to consider fixed
points. In section 7 the semantics and proof rules for fixed point formulas is
introduced. The handling of fixed points follows a novel approach, introduced
first in [6]. This approach exploits approximation ordinals in an explicit way
paving the way for a logical account which is far simpler and more elegant than
the story given in [5]. The proof rules are grouped in two: First is a collection
of local rules, providing support for fixed point unfolding, and introduction and
unfolding of approximated formulas. The second and final part of the proof sys-
tem consists of a single rule of discharge, providing, roughly, a formal correlate
of well-founded induction. In section 8, then, we go on to prove a weak form of
completeness, by reducing proofs in a “global”, model-checking oriented version
of the proof system which is known to be complete, to proofs in the composi-
tional system. Section 9 and 10, then contains verification examples pertaining
to the natural number and buffer examples and section 11, finally, contains
our conclusions and pointers for future work. Proofs of the main completeness
results have been deferred to appendices.



2 Preliminaries on the pi-calculus

In this section we introduce the m-calculus, its syntax and operational semantics.

Syntax Assume denumerable sets of agent (abstraction) identifiers D and of
(channel) names a,b,c € G. We use a to denote vectors ay,...,a,. Processes
P,Q € P along with abstractions, A € A, and concretions, C' € C, are generated
by the following abstract syntax:

P u= 0|P+P|r.P|aA|aC|P|P|ifa=bthen P else P
va.P | D(a)

A = (a)A|P

C u= (a)C|ua.C|P

The notation is largely standard. We use a standard if-then-else notation for the
conditional in place of the matching/mismatching notations [a = b|P and [a #
b]P more common in 7-calculus contexts. This is to avoid excessive proliferation
of the “box” notation which is used later also for one of the modal operators.

Agents are interpreted relative to an environment which determines, for
each agent identifier D, a defining equation D(a) 2 P. An alternative to such
recursive definitions is to use the “bang” operator !P, easily definable by the
identity !P = P |!P. It is also possible, though a little more involved, to derive
recursively defined processes using the “bang”.

Binding The calculus has two binding operators:
e Abstractions (a)A binds a in A
e Restrictions va.P (va.C) binds a in P (in C).

Agent expressions are considered only up to renaming of bound names. fn(P),
bn(P), and n(P) are the free names, bound names, and names (free or bound)
of P, respectively. We use P{ay/by,...,ay,/by}, or in vectorized form, P{&/i)},
as the notation for uniform and simultaneous substitution, here of names.
Actions An action, a, is either the internal action 7, an input action a(?)), or
an output action of the shape vb.a(¢) where b C ¢ and a ¢ b. Actions are used
as derived notation, by the clauses

a(by,...,b)).P 2 a(by)-(bp)P

vby. - wbyacy) - (cm)P

>l

vby,...,bp.a{ci,...,cp).P
By means of the identifications

vavb.C = vbva.C
va{b)C = (bjra.C (if a #b)
avb.C = vba.C (iffa#b)



it is possible to rewrite each process a.A or @.C into one of the shape a.P. Given
the binding conventions, the functions fn, bn and n are extended to actions in
the obvious way.

Transition Semantics The intended semantics is quite well known from CCS
[9] and the original w-calculus papers [12]:

e ( is the inert process, incapable of performing transitions.

e P+(Q is the CCS choice construction: A transition of P+ () is a transition
of either P or of Q.

e «.P is an agent offering just one transition, labelled with «, with P as
the resulting next state.

e Actions of the shape 7 represent internal, or unobservable, actions. Ac-

tions of the shape a(b) represents input actions, and actions of the shape
vb.a(c¢) represents output actions.

¢ In the case a = vb.@.(b) the process concerned is emitting a private name
b to the receiver, causing the scope of that b to be extruded, i.e. extended,
possibly involving alpha conversions, to encompass the receiving process.

e P | @ is parallel composition offering the transitions of P and @ sep-
arately, as well as internal transitions arising from (synchronous) com-
munication between P and (). Communications cause input and output
actions to be matched.

e if v; = vy then P; else P is the conditional.
e va.P declares a new name a to be used by P.

e D(a) is invocation of the process defined by D.
Example 2.1 The agent D defined by
D(a) = (vb).a(b).b(c).D(c)

is a recursive agent, parametrised on a, which declares a new local name b which
is passed along a to the environment whereupon a name c can be received along
b, resulting in the agent D(c).

The transition rules are given in Table 1. The table does not include symmetric
versions of the rules SuMm, CoM, and PAR. Those should be assumed. Since
terms are identified up to alpha-conversion many side conditions intending to
prevent confusion of scope can be avoided.

Example 2.2 Let P = a(b).P; and Q = vc.a(c)Qi. Up to choice of bound
names there are three transitions enabled from P | @, namely

« P1QY (P{d/b} | Q)
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Ip = D(a) =P
b S P@=D)

Table 1: Transition rules

e P1Q" S (P | Qi{d/c}), and
e P|Q N vd.(P1{d/b} | Q1{d/c})

We conclude the section by introducing the two running examples of the paper.

Example 2.3 (Buffers) A 1-place buffer reads a name from an input port i
and delivers it to an output port o:

Buf(i,0) = i(a).0{a). Buf (i, 0). (1)

Inductively, if Buf,, (Buf,,) is an ni-place (no-place) buffer abstraction similar
to Buf, then

Buf p, 15, (i, 0) = vm.(Buf p, (i, m) | Buf, (m, o)) (2)

is an ni + ne-place buffer abstraction. Unbounded buffers need to be able to
allocate new buffer cells dynamically:

Buf (i,0) = i(a).vm.(Buf (i,m) | o(a). Buf (m, 0)). (3)

Whenever a data item is input by Buf a new buffer cell is allocated, never to
be deallocated. This is clearly wasteful. We may also consider an unbounded
buffer with reclaimable cells, organised as a linked list as shown in fig. 1. The
main component is the buffer cell BufCell(o,d,n;,n,) which holds the value d
and waits to either output d along o and then terminate and communicate o
and n, “upstream” along m,, or else receive a new output port o' and a new
“down-link” n' along n:

BufCell(o,d,n;,n;) = o(d).n{o,n,).0 +n,(0',n).BufCell(d', d,n;,n) (4)



m-1 m
—=  StartCell BufCell |<—— ++++ <—— BufCell |=——

B B o

Figure 1: Buffer with reclaimable cells

Start cells are responsible for the creation of buffer cells:

StartCell(i,o,n) = i(d).vo .wn'.(StartCell(i,o',n") | BufCell(o,d,n',n)) +
n(o’,n').StartCell (3,0, n')

A “garbage collecting” unbounded buffer then consists initially of just a start
cell:
GCBuf (i, 0) = vn.StartCell(i,0,n) (5)

Example 2.4 (Natural Numbers) We consider an encoding of natural num-
bers based on Milner’s encoding of data types in the polyadic w-calculus (cf.
[10]). The idea is to represent a natural number “located” at a name n as a
process which expects two names, say s and z, along n, and then proceed to
either synchronize on z to signal to the receiver that the “value” of n is 0, or
else to output the location n’ of another natural number along s to signal that
the value of n is n' + 1.
Define the constants ZERO and SUCC in the following way:

ZERO(n) = n(s,2).z().0
SUCC(n,m) = mf(s,z).35(n).0.
Given a location n, ZERO(n) inputs two names along n to attempt an output
along the second of the two, the “zero” channel. Similarly, SUCC(n,m) re-
ceives two names along m to attempt an output along the first, the “successor”

channel, passing along it the location of n. Thus we can represent, eg., the
natural number 1 as the agent

ONE(one) = vzero.(SUCC (zero,one) | ZERO(zero)).

A variety of operations on naturals can be defined, including addition, multi-
plication, and as a very basic one the “copying” operation

COPY (n,m) = wvsi.vz1.n(s1,z1).
s1(n1).vmy.(SUCC(my, m) | COPY (ny1,my))

that turns a natural at location n into a natural at location m. Addition can
be defined as follows:

ADD(ny,no,m) = wvs1.v21.101{s1,21)-(21().COPY (na,m)) +
(sl(nn).uml.(SUCC(ml,m) | ADD(nH,ng,ml)))



3 A m-p-Calculus

In this section we introduce the logic which we use for specifying properties of
agents. The logic is a first-order version of the modal p-calculus extended with
operations that describe input/output behaviour.

Syntax Assume a denumerable set of predicate variables X. Formulas ¢, €
F in the m-p-calculus are generated in the following way:

¢ = a=bla#b|Vap|Iap|srg|oVve|<l>¢][l)d
la—¢la+¢|va— ¢|va ¢|X@) | (vX(@)-$)O) | (uX(@).4) (D)

In this grammar we use [ to range over names, a, and co-names, a, and we
use [, to range over names, co-names, and 7. A monadic formula is one with
strict alternation between “transition” modalities (of the shape <I>¢ or [l]¢)
and “i0” modalities (of the shape a — ¢, a < ¢, va — ¢, or va < ¢), where
we also require that any outermost modal operator be a transition modality.

The Connectives The language is based on a first-order modal p-calculus
with name equality and inequality, universal and existential name quantifica-
tion, boolean connectives “and” (A) and “or” (V), modal operators </> and
[[], and (parametrised) least () and greatest (v) fixed points. A modal formula
is a formula in the fragment with neither fixed points nor predicate variables.
An elementary formula is a formula in the first-order language of equality (over
names). It is often convenient to treat elementary formulas differently from
other formulas as they do not depend on the agent being predicated.

The connectives a —, a <, va —, and va < are used for input, free output,
input of a fresh name, and bound output, respectively. For instance, a — ¢
predicates an abstraction and is taken to mean that, when applied to the name
a, the resulting agent satisfies ¢. Observe that a is not bound in a — ¢.
Similarly a < ¢ predicates a concretion term, and states that the term is of
the shape (b)¢ such that a and b are equal and ¢ holds of the continuation.
For bound outputs the operation ra < ¢ is used. The operation va — ¢
was introduced in a slightly different shape in [1]. This connective predicates
abstractions and means that whenever the agent being predicated inputs a
name ¢ which is fresh then ¢ holds of the continuation. Both the modalities
va — ¢ and va < ¢ bind a in ¢. The syntax presented here divorces handling of
transition labels, or subjects, from handling of the parameters, or objects. An
alternative which we return to in more detail below, is to devise connectives in
the style of those used by Milner et al [13] which combine the two, in modalities
which reflect action capabilities more directly.

Example 3.1 The formula
(vX (a).<a>vb «+ [b]Vc.c — X(c))(a)

expresses of an agent that it can perform a bound output of a b along channel
a. After this whenever a c is received along b the continuation satisfies X (c).



Bindings, Sentences We use o to range over {v, u}, and (/) to range over the
modalities <!> and [/]. Formulas are considered only up to alpha-renaming of
bound predicate and name variables. Name binders are the first-order quanti-
fiers, the bound output connective, and the fixed point operators. For instance,
in (vX(a).¢)(b), names in b occur freely and names in @ bind their occurrences
in ¢. We can without loss of generality assume that fixed point formulas do
not contain free names. A sentence is a formula that do not contain free occur-
rences of predicate variables. Unless otherwise specified we restrict attention
to sentences.

Predicate and Name Interpretations Names serve a double role, both
as constants (two distinct names occurring freely at the top level of a process
term are regarded as distinct) and as variables (since names can be bound and
instantiated). A name interpretation is a mapping 1 : G — G which assigns
names (as values) to names (as variables). We require of name interpretations
n that G — range(n) is an infinite set. A name b € G is said to be fresh for n if
b & range(n), and n{b/a} is the update of  that maps a to b and otherwise acts
as 1. Let vb.n = n{b/b}, and if s = {a1,...,a,} then vs.n = va;.---.vay.n.
Observe that the operation vb.— is generally only applied to n for which b is
fresh. Name interpretations are extended to actions by the clause n(7) = 7.

Predicate variables depend for their semantics upon a list of argument names
and a name interpretation. Thus, a predicate variable interpretation can be
taken to be a mapping p(X)(n,a) C P. Maps f : (n,a) — S C P are ordered
by < defined as subset containment lifted pointwise to functions.

Semantics, Validity The semantics is given in terms of a mapping ||¢||pn C
‘P where p is a predicate variable interpretation and 7 is a name interpretation.
The definition of ||-|| is given in table 2. In the clauses for bound input and
bound output the notation ¢ fresh means that ¢ does not occur freely in neither
A nor ¢, and c is fresh for 1. For sentences ¢ the p is immaterial, and we
abbreviate A € ||¢||pn by A € ||¢||n. Sometimes we write |=, A : ¢ in place
of A € ||p|ln. A sentence ¢ is said to be walid if ||¢p||n = P for all name
interpretations 7. Sentences ¢ and 1) are equivalent, written ¢ = 1, if for all
n. lglln = ¢l

The clauses for the modal operators lead to derived notation for the transi-
tion relation:

rs@mo it PYq

PE b By it PUE" g
We can thus simplify the transition modality clauses in the following style:
|<a>@llpn = {P € P |3c, A.P 5 A.c=n(a), and A € |¢]lpn}.

Abbreviations We introduce the following derived forms:

T &2 Ya.a = a 1 & Ya.a # a



lla = bllpn
lla # bl|pn

[IVa.¢llpn

[3a.¢llpn

ll¢ Allpn
ll¢ v llpn

I<7>dllpn
l|<a>a||lpn

l|<@>gllpm

ll[T]ollom
ll[a]@llpn
ll[@ellpn

lla = llpn

lla + dllpn

lva = ¢llpn

lva < ¢llpn

X (@)llon

(v X (@)-6)(B)llon
(X (@).9)(5)]lpn

{A e PUAUC | n(a) =n(b)}
{AePUAUC|n(a) #n(b)}

(M{ligllpn{v/a} | b€ G}
ULligllpn{v/a} | b€ G}

ll#llpm O [[2] pn
ll#llpm U ||| pn
{PeP|3Q.P5Qand Q € ||¢|lpn}
(PeP|3chQ.PY Q c=na),and 5)Q € |¢]om}
(PeP|Tb,c by, QP "5 Qc=n(a),

and vbi.(0:)Q € [|6]lpn}

{P € P|VQ.P 5 Q implies Q € ||¢||on}

- (b i . .
(PeP|V¥ebQ,PY Q, c=nla) implies (5)Q € |¢]lpn}

(PeP|VE, e b 0.P 5 0,
¢ = 1(a) implies vby.(b2)Q € ||¢]lpn}
{®)A] A{n(a)/b} € |l9llpn}
{{0)C | n(a) =band C € ||¢]|pn}
{(B)A | Ve.c fresh implies A{e/b} € ||llp(ve.n)}
{(vh.(B)C | Fe.c fresh and  C{c/b} € ||pllonic/al}
p(X)(n,a)
(W{f 1 £ <MDOP0,0), (M(F)(n,é) = llellp{ f/ X In{é/a})
(M{f | M(f) < f}(n,b), (M as above)

Table 2: Formula semantics

10



isP 2 [T]T
isA 2 VYaa—T 1sCf 2 JaaeT isCh 2 vae T

Observe that isP holds of processes, isA of (non-trivial) abstractions, isCf of
free outputs and isCh of bound outputs. Let S range over these four “typing
formulas”. Two typing formulas are said to be complementary if one of them is
1sA and the other either sCf or isCb.

An alternative to the definitions of T and L is to set T 2 (vX().X())() and

similarly L 2 (X ().X())(). These definitions are easily shown to be equivalent
to the original ones in the proof system below.

The logic is closed under negation, as we can define the operation — by the
usual De-Morgan rules plus:

—<a>¢p ([a]=¢p) V isA V isCfV isCh
Slalg = (<a>—¢) VisAV isCfV isCh
—(a—=¢) = (a— —¢)VisPVisCfVisCh
—(a+¢) = (Fba#bANb<+ T)V(a+ —¢)VisPVisAVisCh
—(va— ¢) = (va— —¢)VisPVisCfVisCh
—(va+ ¢) = (va+ —¢)VisPVisAV isCf

With classical negation a number of standard abbreviations like ¢ D 1) = =V
becomes available (but observe that recursion variables can in general only be
negated an even number of times). There would in principle be no problem
in taking negation as primitive. We choose not to do so, mainly as a matter
of convenience, as otherwise the proof rules, which are cluttered up enough as
they stand, would become even harder to read.

m-Calculus Modalities Comparing with earlier attempts to define modal
and temporal logics for the m-calculus we consider first the modal logic of Milner,
Parrow, and Walker [13]. Their basic modalities are rendered in our framework

as follows:
<ab>¢ = <a>b <+ ¢
<ab>¢ = <a>b— ¢
<a(b)>¢ = <a>vb < ¢
<ab)>¢ 2 <a>3bb— ¢
<a(b)>¢p 2 <a>Vbb—
<a(b)>"¢ = Vb.<a>b— ¢

We refer to these operators as the “MPW modalities”. We leave aside the issue
of whether a reduction in the other direction exists (of modal monadic formulas
to formulas in the logic of [13]). Trivially this is not so since the logic of [13]
lacks a modality for bound input. With the addition of such a modality the
matter is less easily resolved, however.

11



Other logics for m-calculus have been proposed in work by Milner [10], Dam
[4], and Amadio and Dam [1]. In [10] dependent sum and product constructions
were proposed, used also in [4]:

Ya.¢ 2 (Fa.a « @) V (va + ¢)
Vap 2 Vaa— ¢
Fa.¢p 2 Fa.a— ¢

We use “primed” versions of the quantifiers here so as not to confuse with the
standard first-order quantifiers. Observe that, even in the absence of bound
input modalities, the logics of [10, 4] are strictly less expressive than that of
[13] as the former does not separate free and bound output. The modalities of
[1], finally, are easily derivable as well. We leave out the details.

Logical Characterisation An important property of a modal logic such as
the one considered here is its capability to separate models. In [13] it was
shown that the MPW modalities could be used to characterise a particular,
quite strong, process equivalence called late bisimulation equivalence (cf. [12]).

Definition 3.2 (Late Bisimulation Equivalence) A binary relation R on
P is a late simulation if PyRP, implies:

1. If P, % Q; and « is not an input action then there is some Qs such that
Py % Q2 and Q1RQs.

2. If P “® Q1 then for some Q2, P, “® Q2 and for all & Q1{¢/b}RQ2{/b}.

The relation R is a late bisimulation if both R and R~1 are late simulations.
Py and P, are late bisimilar, P, ~ Py, if PyRP, for some late bisimulation R.

In the second clause of definition (3.2) the arities of vectors b and & are
required to coincide. Observe that the simplicity of the definition, both for
input and output actions, relies heavily on alpha-conversion to avoid accidental
capture of bound names.

Other equivalences appear in the w-calculus literature. FEarly bisimulation
([12]) is strictly weaker than late bisimulation. It is obtained by swapping the
quantifications over (2 and ¢ in clause 2 of definition (3.2). Open bisimula-
tion [15] is strictly stronger than late bisimulation and requires the bisimula-
tion relation to be closed under substitution. Ground bisimulation, finally, is
standard (CCS) bisimulation equivalence [9] applied to the m-calculus. Thus
ground bisimulation avoids quantification entirely in its defining clauses, and
it is strictly weaker than early bisimulation equivalence. For a substantially
constrained version of the w-calculus, eliminating the conditional, matching (a
conditional of the special form if a = b then P else 0), and continuation under
output prefix, it can be shown, however, that all four equivalences coincide [15].

We obtain the following logical characterisation result:

12



Proposition 3.3 (Logical Characterisation) Two processes P and @ are
late bisimilar if and only if for all sentences ¢ and all name interpretations 1,

=y P ¢ implies |=, Q : ¢.

PRrROOF: In [13] the logical characterisation result is proved for the logic con-
structed using equations, inequations, conjunction, disjunction, and the MPW
modalities. The adaptation of this result to the present setting is easy and left
out. It thus suffices to show that all formulas in our language respect bisim-
ulation equivalence in the sense that if |=, P : ¢ and P ~ Q then |=, Q : ¢
as well. To cater for fixed points the assertion need to be generalised: Say a
predicate interpretation p respects ~ if whenever P € p(X)(n,a) and P ~ Q
then @ € p(X)(n,a) too. We show by induction in the structure of ¢ that if
p respects ~, P € ||¢|lpn, and P ~ @Q then Q € ||¢||pn. The details of this
induction are not difficult and left to the reader. O

By constraining the nesting of transition and io modalities a similar char-
acterisation of early bisimulation can be given. In effect the formation of the
late input MPW modality <a(b)>" needs to be prevented, as shown by [13].

4 Example Specifications

In this section we give some examples of agent properties that can be specified
using the above logic.

Example 4.1 (Weak modalities) One can easily derive modalities which are
insensitive to the number of initial 7-transitions.

<<>>¢ 2 uX.pV<r>X

<<I>>¢ B <<>><i>¢
e 2 vX.Alr)X
e = (Mg

Example 4.2 (Wildcard input and output) Often one wishes to ignore the
identity of names being input or output:

-—=¢ = Va.a— ¢
¢ = (Fa.a+ P)Vva+ ¢

This definition presupposes that a does not appear freely in ¢.

Example 4.3 (Buffer properties) We consider some properties one might
like to impose of a m-calculus buffer taking input along the channel ¢ and pro-
ducing output to the channel o. The formulas in this example are due to
Joachim Parrow (personal communication).
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e Order preservation (of first data item).

FirstOut(i,o,d) =
(rX(d).[7]X(d) A Va.
([@l(a = o A d < true)) A
([al(a =i A~ X(d))))(d)

OrdPres(i,o0) =
v X.[T]X AVe.
(ejlc=0N_+ X)) A
([e)(c =i AYd.d = FirstOut(i,0,d)))
The idea is quite simple: OrdPres(i,0) holds until something (the d) is
input along 7. Then FirstOut(i,o0,d) takes effect. This fixed point holds

invariantly (along 7 and i transitions) until something is output. That
something must be d.

e No spurious output. Consider the following formula:

NoSpuOut'(i,0,a) =
(v X (b).[T] X (b) A Ve.
([ellc=0AN ((vd < X (b)) V(Id.d #bAX(D))))) A
([ellc=iAVd.d— (b=dV X(b)))))(a)
NoSpuOut(i,o0) = Va.NoSpuOut'(i,0,a)
The formula expresses, roughly, that an a must be input before it can
be output. Observe that in the context of the w-calculus this gives an

operational meaning to the notion of authenticity: it can be trusted that
information emitted on o really was received along 1.

e No lost input.

EvOut(i,0,a) =
(uX (b).(<T>TV<o>T V<i>T) A[1]X(b) AVe.
([e]lle=0A (vec+ X (b)) V (Fe.c+ X(b)) V(b T)))) A
([el(e =i A-— X(b))))(a)

NoLostInput(i,0) =
vX.[T]X AVe.
(elle=0N_+ X)) A
([e](c =i AVa.a — X A EvOut(i, 0,a)))

For NoLostInput(i,0) X must hold invariantly, and whenever an a is in-
put then EvOut(i,0,a) holds. The latter property expresses that some
transition is enabled, and whatever transition is taken (among 7, 7 and
0), either the transition was an output of a along o or else EvOut(i, 0, a)
continues to hold. However, since we use a least fixed point eventually
the former case must hold, so a is eventually output.

14



Example 4.4 (Natural Numbers) We wish to define the property Nat(n)
of “possessing a natural number object located at n”. Keeping in mind the
concrete representations of example 2.4, Nat(n) should be expected to hold of
a process P under the following circumstances:

It should be possible to force P to synchronize along n, if not immediately
then after an initial number of 7 steps.

No sequence of 7-labelled steps can disable an n-transition.
All n-transitions take two arguments.

Whenever fresh names s and z are provided along n the following prop-
erties will hold:

At least one outgoing synchronisation along s or z is possible, but not
both.

Only unary outgoing synchronisations along s, or along z are possible.
No sequence of internal steps can disable an s- or z-transition.
Whenever a z transition takes place, the result is a process.

Whenever an s-transition takes place a new name is output, serving as
the location for the “predecessor of n”.

We do not claim that these points unambiguously pin down the intended be-
haviour of “a natural number object” — in fact most of the points above leave
room for debate. Resolving this we formalize the intuition in the m-p-calculus.

We describe the behaviour of natural number objects as a state machine
wrapped inside a least fixed point reflecting the well-foundedness property of
natural numbers. We propose the following definition:

Naty(n, P) = py.<<n>>T A

[T]Y A
Vo.[b](b=nAvs — vz — ¢(s,2)) A
Vb.[b] L

Nat1(X)(s, 2) 2 PZ—(<<5>>T A <<LZ>>T) A
(K<E>>TV<<Z>>T) A
[T]Z A
Vb.[b] L A

Vb.[b]((b=2z N isP)V (b= s Avm + X(m)))

11>

Nat uX(n).Nato(n, Naty (X)) (6)

The definition uses higher-order parameters in a manner which goes beyond
the syntax as presented in the start of this section. However, at the expense
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of a more monolithic and less readable notation it is quite easy to rewrite the
definition to eliminate the higher-order abbreviations.

The idea of the definition is the following: We describe the behaviour of a
natural number object as a sort of state machine formalizing a sort of natural
number protocol. The state machine has two states, Naty and Nat,. Outside the
state description is a least fixed point, used to reflect progress of entire protocol
runs. The description of each state must bring out what actions are enabled,
and how, and it must describe, since it will be used in a compositional manner,
for each type of action, what the effect of performing such an action will be. In
several case studies we have performed over the years we have found this sort
of abstract state description very useful for proving properties of infinite state
systems, and more examples will be given toward the end of this paper.

Now, suppose that P possesses a natural number object located at n. Then
n is enabled and can be supplied with first a fresh s and then a fresh z. If
n is supplied with a z or an s which is not fresh we can say little about the
behaviour of the resulting system, as unintended internal communications can
result. This is an important point, and it is the main reason why we have
chosen to include fresh input as a primitive. Continuing the protocol either
s or z is offered, but not both. If z is offered the result is a process and the
protocol is terminated. If s is offered a new location m is output, and the agent
will continue to behave as a natural number object located at m. Moreover,
because of the least fixed point, the first option must eventually be selected, so
the natural number object is ensured to be well-founded.

The natural number type given here is a candidate for the type of “one-
shot”, or ephemeral natural numbers. Expressing a property such as “n is the
location of a natural number object from now until some future event takes
place” is an easy embedding of Nat into an invariant. Many variations on
the definition of Nat are possible. For instance we might not insist on well-
foundedness, or Nat might be permitted to diverge.

5 Proof System, Modal Fragment

A closed correctness assertion is an assertion of the shape - P : ¢ where P
is an arbitrary process and ¢ is a m-p-calculus sentence. For certain so-called
finite-control agents that refrain from creating new processes dynamically (by
avoiding parallel compositions in recursive contexts, or the replication operator)
the problem of deciding validity of closed correctness assertions is decidable [4].
This is due to the fact that, up to choice of names and a little garbage collec-
tion, the state spaces of finite-control agents are finite [4]. Many interesting
agents, however, fall outside the class of finite-control agents, including the
natural number agents of example 2.4 and the unbounded buffers of example
2.3, because processes are created dynamically. In fact it is just this dynamic
process creation capability that in conjunction with the capability of creating
and communicating new names gives the m-calculus its remarkable expressive
power, and it is also the feature that makes verification difficult.
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Limits of Global State Exploration Approaches to verification which
merely chase transitions and global states are unlikely to be very successful
in proving interesting properties of non-finite-control agents. Consider for in-
stance the unbounded buffer Buf of example 2.3. A temporal property that
depends on Buf being continually able to input new data items will give rise to
an unbounded state space quite trivially, as each input action gives rise to the
creation of a new component process. But it may also be that despite being
non-finite-control the state space is in fact bounded. As an example we may
consider any process of the shape

P,(b) = va,.COPY (an,b) | van—1.--- | vag.SUCC (ag,a1) | ZERO(ay) (7)

which can only perform a bounded number of actions despite the dynamic
process creation involved in the definition of COPY. However, the interesting
correctness property of COPY is less the collection of n facts that (for instance)
vb.(COPY (b,c) | P,(b)) represents a natural number located at ¢, but rather
the fact that COPY is type correct, ie. that for any x which represents a natural
number located at b, vb.(COPY (b, c) | ) represents a natural number located
at c. But this latter assertion is not a closed correctness assertion, and it is not
within the scope of model checking techniques such as that of [4] that explore
global state spaces since the agent expression being predicated is open.

Open Correctness Assertions We thus need to address more general open
correctness assertions that allow correctness properties P : ¢ to be made condi-
tional upon properties of the parameters of P (such as: x represents a natural
number located at b). This can give a handle on dynamic process creation in
the following way: Suppose the goal is to prove a correctness assertion of the
shape

FP: . (8)

Assume that P involves dynamic process creation and that through a number
of steps the proof goal (8) is “reduced” to one the shape

FPIQ:d (9)

For instance P may be the agent Buf ¢ o of example 2.3. The idea now is to
apply a cut, guessing a property - to hold of P, and then reduce (9) to the
proof goals

FP:y (10)

and

ziykz|Q: (11)
representing the assertion that ¢ holds on z | @) conditional upon «y holding on
z. Say, for instance, that we can choose 7 = ¢ which turns out to be the case
in many examples. Then the proof goal (10) is an instance of (8) and it may
consequently be that the subgoal (10) for this reason can be discharged. If in
turn @ does not involve dynamic process creation the problem (of dealing with
this feature) may have been resolved, and if it does we will want to iterate the
approach, keeping in mind that we now have to deal with more general open
correctness assertions.
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5.1 Basic Judgments

In [5] this idea was worked out for CCS. A delicate issue in generalising the
approach to the w-calculus is how to deal with private names, name generation,
and scope extrusion. In general one will wish to verify properties of a process
va.P(z) relative to a property 1 of z. 1 must be allowed to depend on a,
Consider for instance the property that vb.(COPY b ¢ | x) is a natural number
located at ¢ given that z is a natural number located at b. But if we take alpha-
conversion for granted then vb.(COPY b ¢ | z) should be indistinguishable from
vt .(COPY b c| z) provided no name clashes arise, and the dependency upon b
is lost. We thus need a mechanism to “freeze” b to extend its scope to cover also
formulas to the left of the turnstile. In [1] we suggested annotating the turnstile
with a “restriction set” s for this purpose. We are following this suggestion here.
Thus judgments take the more general form x : 1 F* P : ¢ where s is a finite
set of names with a scope extending over both P and v, but not over ¢. In
fact a very similar annotation was introduced already by Stirling [18]. Here,
however, the annotation has a somewhat deeper function, due to the richer
name discipline of the w-calculus.

Term variables and open terms Before defining formally the notion of
judgment and its semantics observe that we need to extend the basic syntax of
the m-calculus to open terms. We use z, y, and z as term variables (to range
over processes, abstractions, and concretions). Terms in P, A, or C may from
now on be open, i.e. involve term variables. A closed term will be a term which
does not contain term variables (but it may contain free names). We use E to
range over P U AUC.

The consideration of open terms also leads us to extend the 7-calculus syntax
slightly, by allowing the parallel composition operator to be applied not only
to processes but also to abstractions and concretions (cf. [10]). This is done by
rewriting (where symmetric versions are assumed to be added implicitly):

-, -,

((0)A) [P — (b)(A]P)
{a)C) | P — Vc_i.(c_é)(CLP)
(vei.(é3)C) — véi.(A{c3/b} | C)

-,

(
((b)A4)

We assume that symmetric versions of these rewrite rules are added implicitly,
and appeal to alpha-conversion to prevent variable capture as ever.

Vel
|

Definition 5.1 (Basic Judgments, Validity) A basic judgment is an ex-
pression of the form
THE:A (12)

where

1. T'={z1:¢1,...,2pn : ¢} is a finite set (of assumptions) such that the ¢;
are sentences, 1 <1 <n,

2. s =4ay,...,ax} is a finite set of names, the restriction set,
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3. A={11,...,1n} is a finite set of sentences, and
4. FE is an open term.

An agent variable x occurs freely in I' F° E : A if either x occurs freely in E or
I" contains an assumption on z, ie. an assumption of the shape z : ¢.

For the semantics name interpretations n are extended to general substitu-
tions by mapping both names to names and term variables to closed terms. In
doing so the sets of names and of term variables are assumed to be distinct.
We can then extend vs.n to substitutions by restricting 1 to names. Then, the
judgment I' ¥ E : A is wvalid (or true, written I' |=° E : A) if for all substitu-
tions 7, if |=y5. n(z;) : ¢; for all i : 1 <4 < n, then =, vs.(En) : ¢; for some
j:l1<g<m.

Notation For sets such as I', s, and A we use a standard sequence-like no-
tation, writing eg. I',z1 : ¢1,22 : ¢2 in place of T'U {z1 : ¢1,22 = o},
or I' +0 4 : A1,As in place of T F' A : Ay UA,. For a basic judgment
Cyz:¢pF° E: A, if ¢ is elementary (so that the holding of ¢ does not depend
on z), we allow the judgment to be abbreviated by I'; ¢ F° E : A.

Restrictions Sets and Scoping The point already made concerning scope
of restriction sets deserves to be reiterated. Observe that in a judgment of the
shape z : ¢ F* E : ¢ both ¢, E and v may mention a. Let n be an arbitrary
name interpretation, and suppose that =, 17(z) : ¢. Then occurrences of a
in ¢ refer, because of the use of the name interpretation va.n, to occurrences
of a in n(z). Moreover, no other name occurring in ¢ can be confused with
a in n(z). In forming va.(En) the a’s in E and the a’s in n(z) are identified
(they are equal). An a occurring in 1), on the other hand, can, through 7, be
identified with or distinguished from any name occurring freely in va.(En), but
in that agent a itself is bound. So the scope of @ in z : ¢ F* E : 1) extends to
E and ¢, but not to 1. This is reflected in the proof system below by the rule
(ALPHA).

5.2 A Proof System for the Modal Fragment

We now turn to the problem of proving validity of basic judgments, restricting
attention for now to the modal fragment. A proof system will consist of a
number of clearly discernible parts:

1. A group of structural rules governing aspects like the introduction and
use of assumptions.

2. A group of logical rules to deal with connectives like conjunction, disjunc-
tion, and the quantifiers.

3. A group of rules for name equality and inequality.

4. A group of rules for the process modalities <a> and [a].
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5. A group of rules for the input/output modalities a — ¢, a < ¢, va — ¢
and va < ¢.

The first three groups of rules are based on a standard sequent-style formalisa-
tion of first-order logic with equality. The adaptation is not completely trivial,
however, due to the presence of agent terms and variables, and restriction sets.
An important and delicate issue concerns the choice of rules to include as primi-
tive. Our strategy here is to include only rules that are needed in a completeness
argument, but it is probably useful to bear in mind that this is far less clearcut
and definitive a criterion than may be thought at first glance, and other less
tangible criteria like “elegance”, or “orthogonality” are important too in the
detailed formulation of rules.
We go through each group of rules in turn.

5.3 Structural Rules

We first have a minimal set of rules for introducing and applying assumptions,
namely the identity, weakening, and the cut, bearing in mind that in general
these rules are affected by the presence of restriction sets:

M) T,z:pF0z: ¢ A

' E:A (W-R) ' E:A
Lz:9pF E: A ' E:y, A

(W-1)

Asthe T, s, and A are sets no rules for contraction and permutation are needed.
We comment on the need for weakening later. The cut rule comes in three
flavours. The first, (CuT-1), is essential to accomodate reasoning on agent
structure and it is not in general eliminable.

I,sfreshFOP:¢ T,z:¢pF E:A
TF E{P/z}: A (zgl)

(Cut-1)

We here introduce two new pieces of shorthand, writing « ¢ I for the condition
that I' does not contain an assumption on z, and s fresh for an elementary
formula expressing that all names in s are distinct from each other, and from
any name occurring in I" or A.

To illustrate the complications involved in the first cut rule assume that
the judgments I', s fresh FOP:¢pand I,z : ¢ 5 E: A are valid, and that a
substitution 7 is given such that all assumptions in I" are validated for the name
interpretation vs.n. The substitution vs.n validates also the condition s fresh,
so we can conclude that |=,s, Pn: ¢. Now z does not occur in I' so 1 can be
extended to the substitution n' = n{Pn/x} = {P/x}n which validates both T
and z : ¢ for the restriction set s. But then =, vs.(E{P/z})n) : A as required.

The second cut rule will be needed when we come to consider logical fixed
points and discharge by loop termination by providing garbage collection of
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restrictions that are no longer used. For the modal fragment, however, (CUT-
2) is admissible, as can be seen from the completeness proof below.

I,sy fresht* E:¢p T,x:dpF2z:A

(Cur-2) T2 5 A

(x € T,51Nsy =0)

Here s fresh is used in the sense of requiring also names in s to be distinct from
names in ;. To see the soundness of this rule assume I, sy fresh =1 E : ¢,
[,z:¢ E%2 24, and s1 N sy = 0. Let n be given such that n(z;) is a process
for all 7 : 1 <4 < n.. Assume that n(x) € ||¢;||(vs1.vs2.n) whenever z = z;.
By the first assumption, vs;.(Pn) € ||¢||(vse.n). But then vsp.vs;.(Pn) =
vs1.v89.(Pn) € ||¥||n as desired.

The third cut rule is the following:

T E:¢gA Ty:gF0y:A
' E:A

(Cut-3)

where y does not occur in I'. For the modal fragment (CUT-3) is admissible.
We conjecture that this is not so in general. However for s = () the rule (CuT-
3) is derivable quite easily using the logical rules introduced in the following
section.

Finally we need the following rule to reflect the scoping rule for restriction

sets:
I'oc %9 Eo: A

(ALPHA) —F 57 A

where 0 : s — G is injective, the range of o is disjoint from (fn(I') U fn(E) U
fn(A))—s, and the postfixing of o is the extension of o to agents, restriction sets,
and assumption sets I'. Other substitution rules such as injective substitutions
of unrestricted names, or of term variables, are admissible.

5.4 Logical Rules

As a first approximation we require standard rules for introducing elementary
connectives to the left and to the right.

Dz:p,z:ypF°E: A ' E:¢,A TH E: ¢, A

WY T ogrer B B T E:gpAp A
(va) e ;sf :¢Av " £5$E :Q/)AH e
(FR) g :qﬁ(ﬁ\’/wz/;,AA
w0 REMIEES o IS
Gy DEIOPEIA e gy LB é{b/a)A

T,z:3a¢F E:A TH E:3Ja.¢.A
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In the rules V-r and 3-L we use a fresh as a shorthand for the condition that
a is not free in the conclusion judgment and, in the case of 3-L, neither does a
occur in s.

Since the logic is closed under classical negation we further need rules e.g. to
reflect that contradictory assumptions can be made governing the same agent
variable. We suggest the following two rules, left and right dilemma:

Fz:¢F E:A Tx:—-¢FH E: A
s E:A

(D-1)

TH E:¢,A TH E:-¢ A

(D-x) T &: A

Two further rules are needed to reflect the fact that elementary formulas do
not depend on the agent term being predicated:

T,y:pH E: A THE:¢

EL) o orea P T,

where both rules require that ¢ is elementary.

Lemma 5.2 The following rules are derivable:

HOz: ¢, A N Tz:gpH0z: A
Tz:¢F0z: A THO z:—¢, A

PRrOOF: Easy derivations using weakening and dilemma. O

5.5 Rules for Equality and Inequality

For equality and inequality we suggest four axioms and one rule of inference.
The four axioms, first, express the following properties:

1. Names are equal to themselves.
2. Even possibly restricted names are equal to themselves.

3. A name can not be identified with a name in the restriction set unless it
is textually identical.

4. There are infinitely many names.

The addition is a rule of substitution of equals for equals.

(RBFL) 5 e = a A
S W ETI=NAp:
(Newl) < —prag.a @7
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(INFTY)

TH E:BbbFa A Ab#an, A

T{b/c} F* E{b/c} : A{b/c} (a,b ¢ s)
[{a/cha=bF E{a/c}: Mafc)

(SuBST)

To see the soundness of (NEW1) observe that it can not simultaneously be the
case that =,5.a. (%) : @ = b and that a and b are distinct names. Observe
also that the rule (IRR) is needed only for a € s. We note the derivability of a
number of useful proof rules.

Lemma 5.3 The following rules are derivable:

(EQ-I)

Fa=bF E:a=0A (a,b ¢ s)

(ELEM-T) (¢ elementary, fn(¢) N's = ()

T,¢F° E: ¢, A

r{v/a} F* E{b/a} : A{b/a}
' E:a#bA (a,b ¢ 5)

' E:b=a,A
' E:a=0A

(INEQ)

(Sym1)

(TR) ' E:a=bA TH E:b=c A
' E:a=cA

' E:a#bA
' E:b#a,A

I'ME:a#2bA TH E:b=cA
' E:a#cA

(Sym2)

(Di1sT)

PRrOOF: (EQ-I): Use (SuBsT) and (REFL).

(ELEM-I): Use EQ-I) and the dilemma rules along with the logical rules and
structural induction in ¢.

(INEQ): Use (D-L), weakening, (ELEM-I), and (SUBST).

(Sym1): This case is slightly more delicate than the previous ones. We prove
' E :b=a,A given a proof of I' V°* E : a = b, A. First observe that
I'F5 a=b,b=a,A by weakening. Then observe that I' F0 b = b, A so that
I,a=>bF)b=a,A by (SUBST). Then the proof is complete by (CUT-3).

The remaining derivations are easy exercises. O
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5.6 Rules for Transition Modalities

We then arrive at the rules for the modalitites </> and [l]. Proof goals in this
case have the following shape:

T E: ()¢ (13)

where (1) is used as a wildcard ranging over </> and [l]. Observe that this
shape is not quite as general as we would wish it to be. Rather we would
want to permit sets of modal formulas to the right of the turnstile instead of
the single formula permitted here. The restricted format (13) is chosen for the
following reasons:

1. Modal proof rules for more general multi-conclusioned judgments would
become unduly complicated.

2. The restricted format suffices for both the examples and the weak com-
pleteness results which we present here.

The transition capabilities of E in (13) are determined by the structure
of E according the operational semantics given earlier, and according to the
assumptions made in I' on variables occurring freely in E. As the operational
semantics is determined by induction in the structure of F it is hardly surprising
that in general the number of rules governing proof goals of the shape I' H° E :
(@)1, .., (a)p, depends on the number of primitive operators, and for each
operator, the number of operational semantics rules of section 2 determining
its behaviour.

We then proceed by induction in the structure of the right hand agent term
being predicated to give rules that show how (typically modal, but in some
cases quite general) properties of an agent with a specific outermost connective
can be inferred in terms of properties of its immediate constituents.

Term Variables The case for E a variable corresponds to the monotonicity
rule familiar from sequent-style formalisations of modal logic:

Fvy:¢vx:¢17"'vy:¢n "syii/h;---ﬂﬁm
Tox:<l;>¢,x: [l])p1, ...,z [l ]on F5x: <>, ..., <>,

(<l7>-MON)

Fay:(bl:"'ay:(bn Fsy:d}:d}l:"':wm
Tox: [l )1, ...,z [I)on B2 [I 0, <>, .., <>y,

For both rules we require that y ¢ I". With this proviso the rules are clearly
sound.

([l+]-MON)

Nil

([17]-N1L) W
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Summation

I'E P <l >

<l;>-PLUS TF5 P 1 Py <l.>g.A (1€ {1,2})

iy LTI Lo

Prefixing
((r)-ma0) ESZS.PP::(i)qﬁ (F-AeT) Ty g g
(I-m2v) T g () 5o s
A o WY T

L

([[-AcT) Fraﬁitfy[f; ]f (as & 5)

In the two last rules the notation a is used to indicate overbarring which is
optional in the sense that either both transition labels indicated are overbarred,
or else none is.

The rule ([/]-ACT) reveals where (ALPHA) is required: To show % a.A : [a] L
(which is a valid judgment for any A) first we need to use (ALPHA) to rename the
restricted a, then use ([I]-ACT) to reduce to a goal of the shape b=a -0 A: L,
which is then resolved by (NEw1).

Parallel Composition The rules for parallel composition are shown on ta-
ble 3. The rule (</>-PAR) comes with a symmetric version. All rules for | are
marked * indicating that they are subject to the side-condition that = and y
are fresh (ie. do not appear free in the conclusion judgment), and the typing
formulas S; and Sy (where they appear) are complementary. The typing for-
mulas have the important role of matching input and output. This is evident
in the rule (<7>-PAR). In ([7]-PAR) the role is implicit: The rule requires an
ancillary rule schema

I'HE:S TH E:S
(AR) F|—5F¢ (517&82)

to ensure that inputs are matched with outputs of the proper sort.

To see the soundness of eg. (<7>-PAR) assume that the antecedents of that
rule are valid. Assume also that a substitution 7 is given such that |=,,., n(z;) :
¢;i for all i : 1 < i <n. Then |= En : <I>¢ and = Fn: <I>t. Thus En and

F'n are processes, and there are E' and F’ such that En L B and Fn Ny 3
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(<I>-PAR)™:

T.s fresh O F:isP T.,s fresh FO E:<i>¢ T,x:¢pF x| F:vy

TH E|F:<l>

(<T>-PAR)™:

I,s fresh FO E: <i>¢ T,s fresh FO F : <I>1)

T,s fresh,z: ¢ F0 2 : 8

T, s fresh,y: dp+O y: Sy

Fx:dpy: Y a|ly:y

FTHE|F: <>y

([l]-PAR)*:

T,s fresh FO E :isP T, s fresh O F : isP
L,s fresh FO E: [Ny ---
L., s fresh FO F 2 [lapy ---

Toz:gr,...,x:pp x| Fiy Tiy:,...

I, s fresh FO B [[]n
I, s fresh FO P . [thm

THE|F: [y

([7]-PAR)*:

s fresh FO E:isP T,s fresh -

T, s fresh O E :[7]¢11

L.s fresh FO F: [r ]1/)171

T, s fresh FO B : Vb.[blda -
T, s fresh FO B : Vb.[bl$31 - -
I, s fresh H) F :Vb.[blypgy ---
T,s fresh FO F 2 Vb.[D)hs - -
T FPa | Fy
Doy :thra, oy rm P E|y:y

F,$3¢1,1,---,

F,.’L‘:gﬁg’l,...,{L‘ . ¢2,n2,fb : ’iSA,y:Z/)g,l,...
Loz oo, ...,z pap,, v iisAdyhsy,...
F7$:¢3,1a"'7$ : ¢3,n3ax : iSCf,yil/)Q,l,---
Doz, .., @30y, 7 15C0b,y t1hay, ...

O F:isP
- T, s fresh FO E 2 [1]¢h1 .,
T, s fresh FO F 2 [7]4p1 m,
T, s fresh FO E : Vb.[b]do.n,
T, s fresh FO B : Vb.[0]$3 14

T, s fresh FO F 2 Vb.[b]3b2.m,
T, s fresh FO F 2 Vb.[0)1)3,ms

IHSE|F:[r]y

Table 3: Proof rules for parallel composition vs. transition modalities
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Moreover we can assume that £’ and F’ have complementary arities by the
third and fourth antecedents. Moreover, =4, vs.(z | yn{E'/z}{F'/y}) : 7.
But then =, 5, E | F': <7>7 as desired.

The rule ([7]-PAR) is at first sight ridiculously complex. On closer inspec-
tion, however, we argue that the rule merely brings out the quite complex
modal behaviour of 7-calculus parallel composition, and thus the complexity is
inherent in the problem rather than due to the specificities of our formalisation.
This is not to say that simpler formulations can not be found. In fact this may
very well be possible, for instance by appealing directly to the operational se-
mantics transition relation in a way which we have chosen not to do. However,
we do believe quite strongly that a truly compositional and modal analysis of
m-calculus parallel composition will have to perform the sort of quite convoluted
case analysis brought out by the ([7]-PAR) rule.

Conditional
La=bP:¢ Ta#bHQ:¢
(ConD) L if a =b then P else Q : ¢
Restriction
I E:¢
(NEW2) I va.E: ¢ (a fresh)
Identifiers
S _‘ g .
(Frx) LEPW/Aé poap

T D®b): ¢

Of these final three rules the rule (NEW2) is the least trivial. Assume that a
is fresh for I' F* va.E : ¢, and that I' =% E : ¢. Let 1 be given such that
n(z) € ||¢il|(vs.n) whenever z = z;. Pick now a b which is fresh and not in free
in any n(z;). Let 0'(z;) = n(z){b/a}. Then n'(x) € ||¢;||(vb.vs.n), so, by the
assumption, and substituting b uniformly for a, vs.vb.En’ € ||¢||n. But then
vs.(va.E)n € ||¢p|ln too.

Of all the rules for process modalities clearly the rule ([7]-PAR) is the most
complex. It is nonetheless quite intuitive. To prove a property of the shape
[T]¢ of a parallel composition A | B we have to describe in sufficient detail, by
formulas ¢; ; and 4); ;, the properties of A and B after a transition has been
performed. For almost all a, ¢2 ;(a) and )9 j(a) will be false. The formulas ¢;
and 1); ; have to be shown to hold for A or B in the prescribed fashion, and they
have to be shown to compose in the correct way, given that synchronisations
must result in agents of complementary types.

Many variations can be played on the formulation of these rules. As an
example we consider a version of ([/]-PAR) given in [5] (for CCS, so typing
formulas and restriction sets were not needed there).
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Proposition 5.4 The following rule is derivable where = and y do not occur
free in I':

Dox:dr,y: o Foa|y:y
([1]-PAR) Dozidoy:ihi Faoly:y
F,IL‘ : ¢1 A [l]¢23y : Z/)l /\[l]'(/)Q oz | y: [l]’y

PrOOF: The proof goal is

Toz: gy ANl]da,y = s Ao B2 | y - [1]y. (14)

We get the following list of 6 subgoals:

T,s fresh,z : g1 Ao,y 2 9h1 A[lJpo O 2 - isP (15)
T, s fresh,z : ¢y A2,y : by Alllipa FO y (16)
L. s fresh,z : ¢y A [,y : iy AlJpg FO [ ]¢2 (17)
L., s fresh,z : ¢y A [,y = b A[l]pe FO 4 [[]eho (18)
Loz : gy ANl]da,y i by A[l]aha, 2" c po 52’ |y iy (19)
Uoz: oy ANl]da,y oy Al b,y s FS x|y oy (20)

To prove (15) and (16) we use a few logical and equational rules along with
([l-]-MON). Subgoals (17) and (18) are trivial. To prove (19) and (20) apply
weakening to eliminate the “old” version of z (or y), and then apply (A-L) to
arrive at the subgoal T',z" : ¢o,y : 901 F* 2’ | y : [7]y (for (19)) as desired.

A small but important difference between the rules ([/]-PAR’) and ([/]-PAR)
is that in ([/]-PAR) (as elsewhere) we permit multiple assumptions on term
variables. This is inessential for the modal fragment (the version with multiple
assumptions can easily be derived), but when we come to consider recursive
formulas the distinction will turn out to be more significant.

5.7 Rules for Input/Output Modalities

Except for two rules needed for conversion between the free and bound input
modalities, the rules for input and output modalities follow the pattern estab-
lished for the process modalities in the previous section. As there introduced
variables like x and y below are subject to the side condition that they do not
appear in I'.

Term Variables The rules for term variables are shown on table 4. The
side-condition a fresh in (¥ —-MON) and (v <—-MON) means, as before, that a
does not occur freely in the conclusion, nor is a a member of s.

The most delicate of the motonicity rules is (v <—-MON). To see that it
is sound assume for simplicity that I' is empty. Let n and C be given such
that =5, C @ va < ¢; for all i € {1,...,n}. Then C can be written as
vb.[b]C’, and [=pewsqy C'{c/b} : ¢i{c/a} for all i where c is fresh. Assume that
TPl Py ESC P, . Then z 2 ¢r{c/a},...,x : ¢p{c/a} E**
z : {c/a} too, since ¢ was fresh. Thus =, vcrs.C'{c/b} : {c/a}, showing
that =, vs.vb.[b]C" : va < 1) as required.
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(—-MON):
Fx:dr,...,x:ppFPx i)y, ..., ¢,

z:a—>¢1,...;0:a > P x:a—=>Y1,...,a = Py (a &)
(+-MON):
Fx:dr,...,x: o FP i)y, ..., Y, (a ¢ s)
Tx:a+¢1,....;0:a+ PP x:a <+ Y1,...,a + Py
(v —-MON):
Fx:dr,...,x: o F5zidhr, ..., 0,
fresh
x:va— ¢1,....x:va— ¢ F> x:va — YP1,...,va — Py, (a fresh)
(v <—-MON):
Cox:dr,...,x:dp F5% i 4hq, ..., 0 (a fresh)

Fx:va+ ¢1,....,x:va+ ¢, F> x:va < ,...,va < P,
Table 4: Monotonicity rules for io-modalities
Parallel Composition The rules for parallel composition are shown on table
5.

Input

Ta=bF A: ¢

N Ao 4

(a fresh,b & s)

[,a fresh 5 A : ¢{a/b}

(v =) L' (a)A:vb— ¢

(a fresh)

In the context of a rule such as (v —-IN) we use a fresh as abbreviation of the
formula A{a # ¢ | ¢ not fresh}.

Output
(—-ouT) ' C:ia=b TH C:¢
i L' (a)C : b+ ¢
(v +-ouT) Ho:¢

' (a)C :va «+ ¢

Input Modality Conversion Falling a little outside the patterns so far es-
tablished we also need rule to convert between the free and bound input modal-
ities:

(v —-—-CONV) (a & fn(T))

Tz:va—¢Flz:a— ¢

(—-v —-CONV) (a & fn('))

Tz:a—¢dFlz:va— ¢
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(—-PAR):

T,s fresh O F : isP
[,s fresh O E:a— ¢q,...,T,s fresht0 E:a — ¢,
T,2:¢1,....z:¢p 3| Firy (a ¢ s)
P E|F:a—vy

(+-PAR):

I,s fresh O F : isP
T,s fresh FO E:a <« ¢1,...,T,s fresh FO E :a + ¢,
Dox:dr,...,z:ppFo x| Frry (a ¢ s)
F'FE|F:a<+~y

(v —-PAR):

T,s fresh O F : isP
I,s fresh 0 E:va — ¢q,...,T,s fresh tO E :va — ¢,

T,z 1yesz:pp oz | Finy (a fresh)
' E|F:va—vy
(v <—-PAR):
I,s fresh O F : isP
T,s fresh FO E :va « ¢y,...,T,s fresh FO E : va ¢, fresh
Lox:dr,..,z:ppFo x| Frry (a fresh)
PH E|F:va+ vy
(—-<—-PAR):
I,s fresh FO E:a — ¢q,...,T,s fresh O E :a — ¢,
[,s fresh O Fia«y,....T.s fresh FO F 2 a
| A NP A SO T 1 T T 1 ey e I T
'FE|F:vy
(v —-v <—-PAR):
[,s fresh 0 E:va — ¢q,...,T,s fresh tO E :va — ¢,
T,s fresh FO F :va < apy,..., T, s fresh FO F : va < iy, (a fresh)

Fam:¢17"'1x:¢nay:'(/)11'-'ay:'(/)m|_s’ax|y:’7
' A|B:y

Table 5: Rules for parallel composition vs. io-modalities
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As an example we show how to derive a rule matching bound output with
free input.

Proposition 5.5 The following rule is derivable:

(—-v +—-com)
I,s fresh -0 A:Va.a — ¢1,...,T,s fresh 0 A :Va.a — ¢,
T, s fresh -0 C :va <« 9q,...,T,s fresh =0 C : va < ¥,

Dox:dr,eocsx:bpyy i1,y o F5% x|y y
' A|C: vy

(a fresh)

PRrROOF: From the antecedents concerning A first fresh a’s are introduced using
(V-R), and then the resulting free inputs are converted to bound inputs using
(—-v —-CONV), so that (v —-v <—-COM) can be used to yield the result.

5.8 Examples

In this section we give a first little more substantial proof example. More proof
examples are given later.

Example 5.6 Consider the processes

P = aub.(b)b(c).0
Q a(d).d{d).0

In P | Q first b is passed as a private name from P to () along a, then b is
returned along itself back to P again. Clearly the judgment

FP|Q:<r><r>[1]L (21)
is valid. First CuT-1 is applied. Let

STOP = |[r]Ll AVa.[a]Ll AVa.|a]L
1 = <a>vbh<+ <b>Ve.c — STOP
$o = <a>Vd.d — <d>d +— STOP

Using CUT-1 twice we can reduce (21) to the following three subgoals:

FP: gy (22)
FQ: ¢ (23)
Ty x|y <r><r>[T]L (24)

To prove (22) first apply (</>-AcT) and (REFL) to reduce to
Fvb.(b)b(c).0 : vb +— <b>Ve.c — STOP (25)
and then using (NEwW2) and (v <—-0UT) to

Fb(c).0 : <b>Ve.c — STOP (26)
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A few more steps in a similar vein suffices to complete the proof of (22), and
the proof of (23) is similar. To prove (24) we first reduce to the following list
of subgoals

¢,y po bz <a>vb +— <b>Ve.c - STOP

Tid,y: P by <a>Vd.d — <d>d « STOP
TP,y po, 1’ 1 Vb <b>Ve.c — STOP & o' @ isCh
T,y po,y Vdd — <d>d + STOP -y : isA

1,y Po, ' vb < <b>Ve.c — STOP,y' :Vd.d — <d>d < STOP
Fa' |y <r>[7]L (31)

using (<7>-PAR). The first two subgoals are just instances of (I). For (29)
we just need to use the monotonicity rule (v <—-MON), and for (30) the rules
(V-R), (W-R), (V-L), (V-R), and (—-MON). Finally, for (31), we first use (V-L)
to get

Ty, 2t vb e <b>Vee — STOP,y : d — <d>d < STOP
Fa' |y <r>[r]L (32)
where d is fresh, and then, using (v —-—-CONV) along with (Cut-1), to

vyt x i vb & <b>Ve.e = STOP,y' : -y :vd = <d>d < STOP
Fa' |y <r>[1]L (33)

which is reduced, by (v —-v «+—-COM), to

Ty, x s <b>Ve.e = STOP,y = -+ 4" : <b>b < STOP
Fa' |y <r>[r]L (34)

along with two goals resolved immediately by (I). Proceeding, we use (<7>-
PAR) to reduce to

coox" :Ve.e = STOP,--- 4" : b« STOP &+ 2" | " : [7] L. (35)
We now use (V-L) and (—-+—-COM) to reduce to
cooy " STOP, - y™ . STOPF 2" | 4" 7] L. (36)

which is resolved very easily using ([7]-PAR) and some elementary reasoning.

Variable Naming Observe that, because of the shape of the rules, proofs
tend to introduce long sequences of variables like z,z',z", 2" in the example
above. It is very often the case that, once transitions or input-output actions
are taken (in the form of an application of a modal or an input-output rule),
old variables can immediately be forgotten using weakening. In the examples
that follow, for this reason we often identify variables like z and z’, assuming
implicitly that when z’ is introduced, assumptions concerning z are immediately
forgotten about, whence 2’ can be renamed to z.

32



6 Soundness and Completeness for the Modal Frag-
ment

Before pushing on to add rules of discharge that allow interesting recursive

properties to be proved we pause to establish soundness and completeness for

the modal fragment. Proofs in this section have been deferred to appendix

A. Soundness of the most delicate rules was shown as the proof system was
presented, so here we can just state soundness as a fact.

Proposition 6.1 (Soundness, Modal Fragment) If I' F° E : A in the
proof system of section 5 then I' =° E : A. O

Concerning completeness we consider this only in a rather weak form, namely
that if ' =° E : ¢ where I is elementary (i.e. all formulas in I" are elementary)
then I' ¥ E : ¢ is provable. We first introduce some basic tools.

Definition 6.2 Let ) be a partition and N a finite set of names.

1. hyp(n, N) denotes a sequence of the form x; : ¢1,..., T, : ¢, where each
¢; has the form a = b or a # b with a,b € N, and where a = b (a # b) is
in hyp(n, N) ifand only if n =a =0 (n Ea #b).

2. Let I' =z : 91,..., 2y, : ¢, where all 1; are elementary. Then n = T if
and only if n |=1); for alli: 1 <i < mn.

We can now show the following property that deals with the first-order part.

Proposition 6.3 Let N include the set of non-fresh names of I' 5 E : ¢.
1. If ¢ is boolean then hyp(n, N) =° E : ¢ if and only if hyp(n,N) F° E : ¢.

2.0 5 E : ¢ if and only if hyp(vs.m,N) 5 E : ¢ for all n such that
vsnE=T. |

From this point onwards we shall not be very explicit about the handling of
elementary connectives. We prove completeness via a kind of “Decomposition
Lemma” allowing us to decompose a goal into subgoals for subagents.

Lemma 6.4 (Decomposition) Let N include fn(E{E1/z1,...,E,/zn}), fn(s),
and fn(¢p). Suppose E{Ei/x1,...,E,/xyn} is closed, and suppose ¢ is non-
recursive. Let I' = hyp(vs.n, N). IfT' =° E{E1/z1,...,Ey/xy} : ¢ then there
are ¢1,...,¢n of modal depth not exceeding that of ¢ such that

1. foralli:1<i<n,T,s fresh =" E; : ¢;, and
2.0 x1:¢1,...,xn P F° E 2 . O

Theorem 6.5 (Completeness, Modal Fragment) Suppose that T' =° E :
A, T is boolean, and all formulas in A are non-recursive. Then I' - F : A. O
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7 Proof Rules for Recursive Formulas

We now proceed to address fixed points. All approaches to analysis or veri-
fication of p-calculus relies at some level on approximation ordinals and well-
founded induction, using the Knaster-Tarski Fixed Point Theorem. So indeed
does ours. In some cases when fixed point formulas are unfolded it is possible to
determine suitable approximation ordinals which provide progress measures to-
wards satisfaction. This applies, in particular, when unfolding least fixed point
formulas to the left of the turnstile, and when unfolding greatest fixed point
formulas to the right. Approximation ordinals are reflected explicitly in the
proof system, by specific ordinal variables. This provides a simple framework
for dealing with a variety of complications including alternation of fixed points
and, more importantly in fact, a number of complications related to fixed point
interference which we explain below.

The material in this section is based on corresponding material in the pa-
per [6]. For this reason, proofs of some theorems have been left out of this
presentation.

Ordinal Approximations Soundness of fixed point induction relies on the
well-known iterative characterisation where least and greatest fixed points are
“computed” as iterative limits of their ordinal approximations. Let k range over
ordinal variables. Name interpretations are extended to map ordinal variables
to ordinals. Let U,V range over fixed point formula abstractions of the form
0X(@).¢. New formulas are introduced of the shape U* and k < x’. Ordinal
inequalities have their obvious semantics, and k < k' abbreviates k < k' VK = K’
as usual. For approximated fixed point abstractions suppose first that U =
0X(d@).¢ and 0 = v. Then

) PUAUC, ) (n(k) = 0)
1T ®)1(p:m) = § 18I (e{IIU=I/ X} n{n(k) —1/k,b/d}), (n(k) succ. ord.)
NLITE@)(psn') | (%)}, (n(k) limit ord.)

where the condition (x) is that 1'(k) < n(k) and whenever z # k then n'(z) =
n(z). Dually, if o = pu:

) 0. @ =0)
I0~@) (1) = § NSl ANT™ /X bnn(e) — 1/, B/a}).  (n(s) suce. ord.)
BT @)oY | ()}, (1(s) limit ord.)

with the same side condition (*) as above. We get the following basic mono-
tonicity properties of ordinal approximations:

Proposition 7.1 Suppose that n(x) < n'(k) and whenever © # k then n'(z) =
n(z).

1. If U is a greatest fixed point abstraction then

1T @) (0" S 1T*@B)]l(p,m)

34



2. If U is a least fized point abstraction then
1T ®)ll(p,m) S U (B) (o> ')

PRrOOF: By wellfounded induction. O

Moreover, and most importantly, we get the following straightforward applica-
tion of the well-known Knaster-Tarski fixed point theorem.

Theorem 7.2 (Knaster-Tarski) Suppose that U = 0 X (d).¢. Then

- _ N{IIUE B (p, n{ce/k}) | @ an ordinal}, if o =v
01 = { S sl | o o), o=

As the intended model is countable the quantification in theorem 7.2 can be
restricted to countable ordinals.

7.1 Rules for Fixed Point Unfolding and Approximation

The main rules to reason locally about fixed point formulas are the unfolding
rules. These come in four flavours, according to whether the fixed point ab-
straction concerned has already been approximated or not, and to the nature
and position of the fixed point relative to the turnstile.

. K S .
(APPRX — L) Le:U (j))k £ A U lfp, & fresh
Lz:Ub)F E: A
(APPRX — R) LeB:U @’A U gfp, k fresh

T E:U(®b),A

T,z:¢{U/X,b/a}F E: A .
(UNF—1—1) ’$F¢:c{:(/](l§)l/—C:}E:A U= oX(d).0

(UNF—R—1) a l_SFEI—:S(Z{[:JI/])(%)b/Aa}’ = U=o0X(a).¢

F,$:¢{UK1/X’5/6}’HI <KkFSE:A B
UNF—L—2 a U= ux(a o
( ) Doz :U%b)F* E: A pX(d@).¢, k1 fres

S . K1 7=
(Unp—nr—2) o <nP B:QQUD/Xb/GHA ;v (@) b fresh
I E:U%(b), A

. K1 7= S .
(UNF—L — 3) F,x./£1</<53¢{0; [X.bjajr* B A U =vX(a).¢, k1 fresh
T,z:U0)F E:A

T'H E:ry <k A{U /X, bjd}, A .
UNF—-R—-3 = U= puX(a).¢, k1 fresh
( ) T B A $X (@), 1 fres
The first unfolding rules, (UNF — L — 1) and (UNF — R — 1), are the expected
unfolding rules. These rules are always used when unfolding least fixed point

formulas occurring to the right of the turnstile, or, dually, greatest fixed point
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formulas occurring to the left. In these cases the proof task is an existential
one, to identify some approximation ordinal making the statement true, which
the first unfolding rules merely serve to delay. On the other hand, in the case of
least fixed point formulas occurring to the left of the turnstile, or greatest fixed
point formulas occurring to the right, the task is a universal one, suggesting
well-founded induction as a suitable proof strategy. The approximation rules,
(APPRX — L) and (APPRX — R), serve to introduce ordinal variables for this
purpose. Having introduced ordinal variables they need to decremented as
approximated formulas are unfolded. This is the purpose of the second pair of
unfolding rules, (UNF — L — 2) and (UNF — R — 2).

Now, since ordinal approximations are introduced at only certain positions
in a judgment (to the left for least fixed points and to the right for greatest ones),
if the positions of approximated formulas would be unaffected by the local proof
rules, the six rules so far discussed would have been sufficient. Unfortunately,
due to the cut rules, this is not so. Consider for instance the following (quite
typical) application of the process cut rule:

r0Q:us T,z:U"+0 p.U*»
' H0 P{Q/z} : U*

In this example U may be a greatest fixed point formula which, through some
earlier application of (APPRX-R) has been assigned the ordinal variable x. The
second antecedent has U” occurring to the left of the turnstile. The third pair
of unfolding rules are needed to handle this situation.

In addition to the above 8 rules it is useful also to add versions of the
identity rules reflecting the monotonicity properties of ordinal approximations,
prop. 7.1:

'k <&k

IdMon1 . — U 1f
N T U 0z U (0), A P

T'Fe>kK
T,z:U0b) 0 z: U (), A

[dMon2 U gip

Additionally a set of elementary rules are needed to support reasoning about
well-orderings, including transitivity and irreflexivity of <. These rules are left
out of the presentation. For the soundness proof (which is uncontroversial) we
refer to [6].

Theorem 7.3 The rules (APPRX-L), (APPRX-R), (UNF-L-1), (UNF-R-1), (UNF-
L-2), (UNF-R-2), (UNF-L-3), (UNF-R-3), [dMonl, and IdMon2 are sound. O

7.2 Rule of Discharge

In addition to the local rules for unfolding and approximating fixed point for-
mulas, a rule is needed for discharging valid induction hypothesis instances.
The fundamental problem in devising such a rule is that fixed points may in-
terfere as proofs are elaborated. The problem is illustrated in figure 2. The
formula U is assumed to be a least fixed point formula, and the formula V' is
a greatest fixed point formula. The node labelled * can be interpreted locally
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[xUkkeck | EVR] xUkk<k | EVR]™

x UK. E:vK
Figure 2: Fixed point interference

as an instance of an induction hypothesis, using induction on x, and the node
labelled xx similarly uses induction on x’. However, for the node * there is
no information as to the relationship between x} and «’, and similarly for the
node xx there is nothing relating ) and «’. This easily happens in practice,
viz. the examples below. The problem is that in this case the unfolding of fixed
points interfere: With the information provided we are unable to cast the proof
as a proof by well-founded induction with the nodes * and *x corresponding
to applications of an inductive hypothesis for the simple reason that such an
argument would be unsound. On the other hand, if we knew at node *x, say,
that ko < kK, such a casting would exist, as nested induction first on x and then
in k'

That this problem indeed arises in practice is illustrated by the following
two examples. The first example shows where discharge should fail because of
fixed point interference.

Example 7.4 Consider the proof goal
z:vZy 2o T2y Na)Zy FO z : pZs.wZy.[7)Zy AVa.[a] Zs (37)

The assumption states (in the absence of name passing which is not needed to
illustrate the problems) that any infinite sequence of transitions labelled 7 or
a can only contain a finite number of consecutive transitions labelled a, while
the conclusion states that any infinite sequence of transitions labelled 7 or a
can only contain a finite number of a transitions, never mind if consecutive or
not. Thus (37) is false. We attempt to build a proof for (37) to see where the
construction breaks down.
Let us introduce the following abbreviations:

U = vZi.uZy.7|Z1 N [a)Zs
Us puZs.[TIUL A [a] Zo
Us wZs.vZy 1| Zs N a]Zs
Uy = vZy[t]Z4 A[a]Us
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We start by refining (37) to the subgoal
U2 0 g Uk (38)

using the rules (UNF-L-1), (UNF-R-1), (APPRX-L) and (APPRX-R). Continu-
ing a few steps further (by unfolding the fixed point formulas and treating the
conjunctions on the left and on the right) we obtain the two subgoals

x: [1)U, x : [a]U;é,I{’Q < Ko,k < kg FO 2 [T]Uf“ (39)
x: [1)U, x - [a]U;IQ,ﬁ’Q < ko, khy < Ky FO z 2 [a]Us (40)

Subgoal (39) is refined via rule Mon2 to
x':Ul,x:[a]Uglz,ﬁ'2</§g,/<;ﬁl<n4 -0 m':Uf21 (41)
and after unfolding U; using (UNF-L-1) and then approximating we arrive at
x':U;g,x:[a]U;é,ﬁ'2<nz,nﬁl<ﬁ4 Y x':Ufi‘. (42)

This judgment we might hope to be able to discharge against (38) by induction
on k4. By the same token when we refine (40) to

T [T]Ul,x':U;IQ,H'Q < kg, Ky < rig FU m':UfZ (43)

we would expect to be able to discharge against (38) inductively on k9. This
does not work, however, since derivation of (42) from (38) fails to preserve the
induction variable k9 needed for (43), and vice versa, k4 is not preserved along
the path from (38) to (43).

Secondly we give an example showing where discharge should succeed.
Example 7.5 Consider the (reversed) proof goal
z: pZy.wZa 12 Na)Zy FO z 2 vZs.uZy.[7)Zs A [a) Zy (44)

stating that if all infinite sequences of transitions labelled 7 or a can only
contain a finite number of a transitions, then these infinite sequences of 7 or a
transitions can only contain finite sequences of consecutive a transitions. This
goal is clearly valid.

The abbreviations we shall use are:

U = wuZyvZy[t|Zs N\ a]Zy
Uy = vZs.[7]75 AU
Us = vZ3.uZs|1]Z3 N\ la)Zy
Ui = uZi[rUS Aa)Z4

First we apply rules (APPRX-L), (APPRX-R), (UNF-L-2) and (UNF-R-2) to
reduce (44) to the subgoal

x:Us, K| < K1, K3 < K3 FO 2.0, (45)
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Continuing in much the same way as in the preceding example we arrive at the
two subgoals

x’:Uz,m:[a]Ufll,ﬁ’l < ki, Ky < k3 FO m’:U;g (46)
T [T]UQ,x':Ufll,ﬁ'l < k1, kb < k3 FO 2 Uy (47)
These subgoals are refined, using (UNF-R-2) and (UNF-L-2) respectively, to

x' Uy x: [a]Ufll,/{'l < Ki,Kky < K3,k < Ky FO 2 MZ4.[T]U§I?’/ A la]Z4 (48)
x: 1)U, 2’ : vZs.[T] Zo N [a]Uflll,/-e’l < ki, Kb < k3, kY < k) FO 2! Uy (49)

In this case it is safe to discharge both judgments against (45), since the un-
folding of Us does not interfere with that of Uy.

The Rule of Discharge There are two key task in providing a sound and
generally applicable rule of discharge:

e The first task is to ensure that each discharged node determines a “pro-
gressing cycle” in the proof structure: That is, that the node determines
a cycle, and that along that cycle some ordinal variable is decreased in a
recursive manner.

e The second task is to ensure that progress required for the safe discharge
of one node can not be undone by cycles induced by the discharge of
some other node. Or in other words, in traversing cycles induced by
node discharge critical progress ordinals belonging to other cycles must
be regenerated.

It would be possible to use games to completely characterize the conditions
under which discharge is safe. Such a game-based characterisation, however,
would be too global a condition to be very useful for proof construction (which
is the main aim of the work reported here), and it is often helpful to trade a
complete, but global, rule for an incomplete one which is more local. Other
versions of a rule of discharge than the one presented here can be devised, cf.
[7] for an example applied to CCS. The present rule of discharge is based on
[6].

The rule of discharge relies on some fixed, but arbitrary linear ordering < on
fixed point formula abstractions U. Assuming such a single fixed linear ordering
can be too restrictive when recursive proof structures are independent. For the
purpose of the examples and theorems of the rest of the paper this is, however,
not a problem. Below we briefly discuss ways of relaxing the construction to
allow the linear ordering to be built incrementally.

Below we define the critical notions of regeneration, progress, and discharge.
We use v to range over proof structure nodes. Discharge is applied when facing
a proof goal v, which is unelaborated (no rule has been applied to that node),
such that, below v, we find some already elaborated node vy such that v, is
in a sense an instance of vy. This requires names and term variables present
in v; to be interpreted as names in v,. This is what the substitution 7 of the
following definition serves to achieve.
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Definition 7.6 (Regeneration, Progress, Discharge) Let II = vq,...,v,
be a path such that v, is not elaborated. Suppose that v; is labelled by I'; %
E;:A;jforalli:1<i<n.

1. The path IT is regenerative for U and the name interpretation 7, if when-
ever there is a k; such that U"i is a subformula of I'; (A;) then there are

also Ki,...,Ki—1,Kit1,---,kn such that for all j : 1 < j < n, U% is a
subformula of T'; (A;), and T; F0 k; < x;_;. Moreover we require that
(k1) = Kn.

2. The path II is progressive for U and 7 if we can find k1, ..., s, such that:
(a) For alli:1 < i< mn,U* is a subformula of T; (4;), and I'; FO ; <
Ki—1.
(b) (k1) = kn.
(c) For some i:1<i<mn,I} FO k; < Ki_q.

3. The node v, can be discharged against the node vy if we can find some U
and substitution 7 such that:

(a) TI is regenerative for all U’ < U and 7.

(b) II is progressive for U and 7.

()

(d) For all assumptions z : ¢ in I'y, T, FO 25 : ¢, and all assertions ¢
in Ay then 3 : ¢ FO 3 : A,,.

E, = Ein and s, = s17.

In this case we term v,, a discharge node and vy its companion node.

In this definition we are being slightly sloppy with our use of U’s: Really we
are identifying fixed point formula abstractions up to ordinal approximations
except where they are explicitly stated.

Condition 7.6 first states that discharge can take place on an unelaborated
node if we find some ancestral node which is “more general” (condition 7.6.3.c
and d) than the node v,, being discharged, provided that the cycle thus induced
satisfies the regeneration and progress constraints given. Observe that an effi-
cient approximation of condition 7.6.3.d would be to test for membership, ie.
sn:¢n €'y and ¢n € A, respectively. With this condition the name interpre-
tation n becomes extendable to a substitution making I'y F%1 E; : Ay identical
to a weakened version of 'y, 57 E,, : A,,.

There does not appear to be any obvious way in which the equality con-
straint 7.6.3.c on restriction sets can be eased. Instead the second cut rule
(CuT-2) must be used to explicitly garbage-collect unused names as proof elab-
oration proceeds.

The progress condition, 7.6.2, requires the existence of a cycle on an ordinal
variable such that, along the cycle, the value associated to that ordinal variable
is somewhere strictly decreased.

Finally, the regeneration condition, 7.6.1, is the condition required to en-
sure that progress cycles on formulas V' with “higher priority” (smaller in the
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ordering <) than the formula U currently being considered can not be undone
when the cycles are nested.

Concerning the examples, it is quite easy to verify that for Example 7.4 no
linearisation of the fixed point formulas can be devised such that the nodes (41)
and (42) can be discharged. On the other hand, for Example 7.5, any linear
ordering which (up to approximation ordinals) has Uy < Us will do.

Observe that the linear ordering on fixed point formula abstractions can be
chosen quite freely. One might expect some correlation between position in the
linear ordering and depth of alternation, viz. example 7.5 above. In practice
this is in fact a good guide to choosing a suitable linear ordering. However,
as we show, we do not need to require such a correlation a priori. Moreover
one can construct examples, using cut’s, of proofs for which the above rule of
thumb does not work.

Now, the compositional proof system is obtained by adding the proof rules
for fixed points, including the rule of discharge, to the local rules of section
5. We write I' 5, E : A if the judgment I' -° E : A is provable in the
compositional proof system. For the proof of soundness of this proof system we
refer the reader to [6],

Theorem 7.7 (Soundness, Compositional Proof System) If I' F} E :
A thenT 5 E: A. O

8 Finite Control Completeness

We then turn to the issue of completeness and consider generalisations of the
completeness result (Theorem 6.5) to recursive formulas. The generalisation of
Theorem 6.5 which we seek is to general formulas and finite control processes.

Definition 8.1 (Finite Control Agent) Say that an agent term F uses the
agent identifier D, if either D occurs in E or else D occurs in the body of an
identifier D’ such that F uses D’. A finite control agent is a closed agent term
E such that the parallel operator | does not occur in the body of any identifier
used by E.

The notion of finite control process is a direct generalisation of the notion
of finite state process in the case of CCS. Completeness for finite state (CCS)
processes vs a compositional proof system related to the proof system considered
here was proved in [5]. However, the details of that formalisation, in particular
the rule of discharge, was quite different from the proof system presented here.

To prove completeness for finite control processes we formulate a model
checker, an alternative, non-compositional proof system and show that whichever
judgment is provable using the model checker is also provable in the proof
system presented in the preceding sections. Model checkers based on non-
compositional proof systems such as the one we go on to present have been
considered and proved complete for finite control processes several times over
[4, 1]. Similar techniques can be used to prove completeness of the present
version.
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Definition 8.2 (Model checking judgments) A model checking judgment
is a judgment of the form I' - E : ¢ for which all formulas in I' are elementary
and for which F is of finite control.

We define a proof system to apply to model checking judgments. The proof

system consists of all rules defining the compositional proof system (restricted to

model checking judgments) excluding the transition and io modality rules. That

is, the proof system includes the structural rules (which due to the restriction to

model checking judgments become rather standard, for instance the first two cut

rules become superfluous), the logical rules, and the rules equality/inequality.
The transition rules are replaced by the following two schemes:

(Poss) If for all  such that n |= I' there is an E such that Pp U g
and I' F E : ¢ has been inferred, infer then I' - P : <l,>¢

(NEC) IfT'F E: ¢ has been inferred for all E such that Pp “U B and
n =T, infer then '+ P : [I;]¢

together with the rules (—-IN), (v —-IN), (+—-0UT), and

T,a fresh+ C : ¢{a/b}
I'Fra{a)C:vb+ ¢

(v +—-ouT’) (a fresh)
The rule of discharge applies to the model checker without modification. In
effect the conditions in this case degenerate to those of the model checker pre-
sented in [4]. Observe that the rules (Poss) and (NEC) are infinitary due to the
quantification over name interpretations. Name interpretations are only signifi-
cant, however, up to the names that are not fresh (of which there is only a finite
supply). Write I' Fp;¢c E : ¢ if there is a model checker proof of I' F E : ¢.

We state soundness and completeness of the model checker proof system
without proof:

Theorem 8.3 (Soundness and Completeness of Model Checker) For all
model checking judgments U E : ¢, 'Fpyro E 2 ¢ if and only if T = E: ¢. O

One main obstacle in proving the completeness result we seek is that we need
to devise a strategy for choosing cut-formulas in order to apply the dynamic
rules in the compositional proof system. There are many ways of doing this. In
practice one normally takes a lazy approach and just introduces a logical vari-
able to stand for the required cut formula, and then gradually instantiate this
variable as the need arises. In fact such a strategy may be quite efficient and it
is moreover well suited for parallel or distributed implementations. Here, how-
ever, we choose a non-lazy approach instead, mainly because it makes the proof
easier. Because processes are assumed not to contain | in recursively defined
contexts in turns out that such processes can be characterised completely up to
(in this case strong late) bisimulation equivalence by a so-called characteristic
formula. We have already shown this to be the case for a related w-calculus
logic in earlier work [1]. Assume that P is a finite control process. Assume for
each well-formed process term () and name interpretation 7 a unique formula
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variable Xq ;. Let vis range over sequences of pairs of process terms and name
interpretations (those pairs that have already been visited once in constructing
the characteristic formula). The formula Char(P,n,vis) is the characteristic
formula for P, given name interpretation 1 and visited list vis:

Xy if (,1) € vis
Char(12.1,vis) = { vXr A, #(<l>) AN 9(1L]) otherwise

Here, ¢(<l,;>) describes the potential transitions possible from P assuming 7,
and ¢([l;]) describes the property “necessarily” holding in the continuation:

(<l,>) = N{<lz>Char(E,n,(P,n) :: vis) | Py g E}

¢(-]) = [1:)\/{Char(B,n, (P.n) :: vis) | Pn™ B}

For abstraction and concretions we define:
Char((a)A,n,vis) = Va.a — \/{a = b A Char(A{b/a},n,vis) | b € fn((a)Ad)} V
(/\{a #b|be fn((a)A)} AN Char(A,va.n,vis))
Char({a)C,n,vis) = a < Char(C,n,vis)
Char(va.{a)C,n,vis) = va + Char(C,va.n,vis)
Abbreviate Char(E,n,e) by Char(E,n).
Observe that only finite conjunctions and disjunctions are used in the defi-
nition of Char. Thus, the only reasons why Char(E,n,vis) could be ill-defined
would be if the computation of Char(E,n,vis) failed to terminate, and this

could easily happen if care is not taken when choosing names of bound vari-
ables. However, if we adopt the conventions that

1. names are linearly ordered, and every time a variable is bound it is chosen
to be minimal in the ordering, and

2. va.FE is identified with E whenever a does not appear freely in FE,

then it can be shown that Char(E,n,vis) is in fact well-defined using the tech-
niques of e.g. [4] or [1]. Here we just state this as a fact.

Proposition 8.4 Suppose that P is a finite control process. Then Char(P,n)
is well-defined. O

For the completeness proof we need to resort to the following correctness prop-
erty for characteristic formulas. We leave out the proof of this quite easy lemma.
A similar result was proved in [1]. In the statement of this lemma and for the
remainder of this section we abbreviate hyp(n, N) by hyp(n) where the set N
is any set of names including those free in the judgment under consideration.

Lemma 8.5 For all finite control processes P and partitions 1,

hyp(n) Fae P2 Char(P,n)
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Before embarking on the main completeness result we need one further lemma,
used to pass from results concerning terms with substitutions to results con-
cerning open terms governed by assumptions.

Lemma 8.6 For all finite control processes P and partitions 0, if hyp(n) Fume
P : ¢ then hyp(n),z : Char(P,n) Fc z : ¢.

PROOF: (Hint) The compositional proof mimicks the model checker proof by
appealing to the monotonicity rules. O

The proof of the finite control completeness theorem is deferred to appendix B.

Theorem 8.7 If T Fyc E: ¢ then T FY E : ¢, O

In view of theorem 8.3, completeness for finite control processes is then a direct
corollary:

Corollary 8.8 (Finite Control Completeness) For all model checking judg-
mentsFl—E:A,z'fI’|:E:AthenI’|—8E:A. O

9 Natural Numbers

In this section we consider the specification of Nat given in section 4, and show
how one can use the proof systems to formally demonstrate that the operations
(of ZERO, SUCC, COPY, and ADD) satisfy the desired properties. Observe
that while ZERO and SUCC are very simple static processes, COPY and ADD
are not.

Proposition 9.1 The following judgments are derivable:
1. +9 ZERO(n) : Nat(n)
2. = : Nat(n) F& SUCC(n,m) | z : Nat(m)
3. z: Nat(n) F& COPY(n,m) | z : Nat(m)

4. z: Nat(ni),y : Nat(no) F&" ADD(ny,n2,m) | z | y : Nat(m) O

We concentrate in this section on giving an outline proof of (3), proving (2)
along the way. The proof of (1) is quite straightforward, and the proof of (4) is
a variation on the theme.

The main problem which the proof (of (3)) has to face is process creation
in the definition of COPY. That is, the continuation of COPY{(n,m) contains
a term of the shape vm,.(SUCC(myi,m) | COPY(ny,m1)). To deal with this
we use a process cut, replacing each of the subprocesses SUCC(mi,m) and
COPY(ni,my1) by abstract state-oriented descriptions, and continue proving
correctness based on those.
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Finding an appropriate cut formula for SUCC is easy:

Succo(n,m,¢d) = <m>TA
[T]L A
Vo.[b](b=m Avs = vz — $(n,s)) A

Vb.[5] L

Succy(n,s) = <S>TA
[T]L A
Vb.[b] L A

Vb.[b](b = s An <+ STOP
Succ(n,m) = Succo(n,m, Succy)
The correctness of Succ is easily proved:

Proposition 9.2
1. I—g SUCC(n,m) : Succ(n, m)
2. = : Nat(n),y : Succ(n,m) F& y | z : Nat(m) 0

Observe that this establishes proposition 9.1.2 by means of a process cut.

The next step is to find a cut formula for COPY. Our intention is to define
a property characterising, to a sufficiently precise degree, the behaviour of a
process term of the shape

vmy.(SUCC(my,m) | vme.SUCC(mg,my) | --- | COPY(n,my)---) (50)

Again we use a state machine-oriented style of specification. The machine being
predicated will, as (50) have two components, each with a two-state behaviour,
namely a component corresponding to the successor processes, and a component
corresponding to the copy process. Each of these component can to a large
extent execute concurrently. We thus propose the following definition of the
cut formula Geopy (generalized copy) as a greatest fixed point formula:

Geopygo(n,m) = <n>T A[T]LA
Vo.[b](b =m Avs — vz — Geopy o(n,s,2)) A

Vb.[b](b = n Avsy < vz < Geopypq(m, s1,21))

Geopyy o(n,8,2) = <5>TA<A>T A[T]LA
Vb.[b]L A
Vo.[0]((b = s A vmy + Geopyg o(n,m1)) vV
(b=mnAvsy « vz + Geopy, (s, 2,51,21)))
Geopyy,(m,s1,21) = <z1>T A<s1>TA[T]LA
Vb.[b]((b = z1 A Nat(m)) V

(b= s1 Avny — Geopygg(n1,m)) V

45



(b=mAvs — vz — Geopy, (s, 2,51, 21)))
Geopyy 1(8,2,81,21) = <5>TA<z>T A<s1>T A[1]LA
Vb.[b]((b = 21 A Naty(Nat)(s, z)) V
(

b= s1 Avng — Geopy, o(n1,8,2))) A
Vo.[b](b = s Avmy < Geopyp (M1, s1,21))
The definition of Gcopy is given in equational terms. However, the definition

is easily rewritten as a proper greatest fixed point formula. The correctness of
Gcopy is reflected by the following proposition:

Proposition 9.3

1. x: Succ(my,m),y : Geopypo(n,m1) F&* x|y Geopyg o(n, m)

2. I—g COPY(n,m) : Geopygo(n,m)
8. x: Nat(n),y : Geopygo(n,m) =" y | z : Nat(m) O

The formal proof of proposition 9.3 is quite sizable though (since we have
identified the cut formulas) routine and likely to be mechanizable. Observe that
the proof of 9.3.2 uses 9.3.1 through two process cuts. Finally proposition 9.1.3
is a direct corollary of proposition 9.3.2 and 9.3.3 using a process cut.

It may be worthwhile to make clear that we do not intend to advocate the
use m-calculus or m-p-calculus representations of data types in actual practice.
There are much simpler accounts of data types around useful for practical pro-
gramming and specification. What the example serves to illustrate, however,
is that while fairly trivial as a data type, as processes executing in parallel, -
calculus representations of data type embody a simple sort of mobility protocol
the behaviour and correctness of which is not trivial. Observe in this connection
also that we achieve genuinely more than the corresponding type correctness
results of [10] which are, in effect, results in the meta theory of the 7-calculus
whereas here the reasoning has been “internalised” using the 7-pu-calculus proof
system.

10 Buffers

In this section we consider buffer properties in the style of example 4.3. Con-
sider for instance the formula NoSpuOut(i,0) describing absence of spurious
output. Our task in this section is to show that NoSpuOui(i,o) holds of the
unbounded garbage-collecting buffer GCBuf(i,0). As usual, since GCBuf(i,0)
creates processes dynamically, we use process cut’s using cut-formulas which
reflect a state machine-like behaviour. First, for start cells define:

Sc(i,o,n,a) = [1]8c(i,0,m,a) A
Vb.[b]((b=1AVdd = d=aV Sc(i,o,n,a)) V
(b=nAVd,n'i=0ddVi=n'V
o = n' — Se(i, o ,n',a))) A
Vo.[b](b =0 A 3d.d <+ d # a A Sc(i,0,n,a))
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and then for buffer cells define

Be(o,d,ny,n,) = [T]LA
Vo.[b](b=n, AVo',n'i =0 Vi=n'V
o —n' — Be(d,d,n;,n')) A
Vb.[b](b = o A d < Bei(o,ny,n;))

Bei(o,ny,ny) = [7]LA
Vb.[b]L A

Vb.[b](b=n; Ao < n, < STOP

It is a straightforward task to translate the above equational property descrip-
tions into proper greatest fixed point formulas. This task is left to the reader.
The main lemmas and the final correctness property (item 5) is stated in the
following proposition:

Proposition 10.1

. l—g BufCell(o,d,n;,n,) : Be(o,d,ng,ny,)

~

2. i#o,1#n,d#a,z : Sc(i,o',n',a),y : Be(o,d,n',n) l—(é’nl z|y:Sc(i,o,n,a)
3. 1#0,i#n l—g StartCell(i,0,n) : Sc(i,0,n,a)

4. x:Sc(i,o,m,a) l—g z : NoSpuOut (i,0,a)

5. 1#o0 l—g G CBuf(i,0) : NoSpuOut(i, 0)

Most of these items are proved in a straightforward manner. The exception,
if any, is 10.1.2. The goal-directed proof starts with the desired judgment:

i#0,i#n, d#a,x:Sc(i,0',n' a),y:Bc(o,d,n',n) l—g’n’ z|y:Sc(i,o,n,a). (51)

We start by approximating and unfolding the right hand side fixed point, then
introducing the conjunctions to the right. The result is the following three
subgoals:

i;«éo,---,x:---,y:---l—oci’",$|y:[T]Sc(i,o,n,a) (52)
i#0, iy FOY |y VB (b =i A )V (b=nA--)) (53)
i#0, iy FO |y VBB =0A ) (54)

First, for (52), we observe that 7-steps of each of x or y give immediately cause
for discharge. Furthermore, no communication between x and y is enabled: z
may input along ¢ or n’, but ¥ may only output along o — neither of these
can be identified given the assumption and the restriction set. Also z may
only output along o’ but ¥ may only input along n — again these can not be
identified. Thus we can dispense with subgoal (52).
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Then, for subgoal (53), there are two possibilities for input, along i and
along n (and these are known to be distinct channels). First, in the case of
input along i the subgoal is (after some initial reasoning steps) reduced to

i#o0,---,x:d=aV Sc(i,o',n',a),y : Bc(o,d,n’,n)
l—(é’nl z|y:d=aV Sc(i,o,n,a) (55)

which is resolved almost immediately. Second, in the case of input along n the
subgoal is reduced to

i#d" i #£n" -z Sc(i,o,n' a),y : Be(o”,d,n',n")

I—OC”", z|y:Sc(i,o,n", a) (56)

which can be discharged against the top-level goal (proposition 10.1.2).
For subgoal (54), then, we need to consider output along o. We obtain the
following reduced subgoal:

i#o,---,x: Sc(i,o',n',a),y : Bei(o,n',n) (57)
I—Z:’", z|y: Sc(i,o,n,a). (58)

Again we need to approximate and unfold the right hand-side formula, and
consider each case of action type in turn. This analysis is simpler than the
one we've already done except for the situation characteristic of Bey of out-
putting along (in this case) n’ to z. The result (after enacting the reductions
corresponding to this scenario) in this case is a subgoal of the shape

i#o0,--+,x:8¢c(i,o,n,a),y: STOP*+ x|y : Sc(i,o,n,a) (59)

which is an instance of a generally (and easily) provable fact, that parallel
composition with the STOP process does not affect behaviour. We can thus
regard absence of spurious output for our garbage-collecting unbounded buffer
as proved.

11 Conclusion

Earlier work on modal and temporal logic and the m-calculus includes [13], [4]
and [1]. The work by Milner, Parrow and Walker did not consider temporal
connectives. In [4] we attempted an automated, model checking approach re-
stricted to finite control processes. In [1] we reconsidered the model checking
problem and also gave a proof system, however for non-recursive formulas only.
Also in the present paper the details are very different: the temporal logic is
somewhat different, the proof system is cleaner, and we use a symbolic approach
which is essential for efficiency in practical applications.

There are several important lines of enquiry for future work. The first con-
cerns the practical applicability of the proof system. The sheer number of rules
involved in the proof system may seem disheartening. On the other hand most
rules are actually very intuitive — given the number and nature of the basic
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process and formula connectives there are just a lot of cases to be considered.
Thus, for any given judgment, only a small and easily comprehensible collection
of rules are actually applicable. Moreover by far the large majority of proof steps
are entirely mechanical, and only at very specific places (choice points, cut’s,
applications of the (DILEMMA) rule) is intelligence required. Thus the proof
system is much better geared to computer aided tools than to pen-and-paper.
At SICS we are currently extending the work reported here to a core fragment
of Ericsson’s Erlang programming language [3] including features such as asyn-
chronous buffered communication, data types such as natural numbers, lists,
atoms, pairing and process identifiers (pid’s), dynamic pid creation, process
spawning, sequential composition, pattern matching.

An equally important and related line of enquiry concerns the source of in-
completeness of the proof system. Intuitively the key problem is that in proving
properties of a parallel composition one must guess properties of the compo-
nents. But it is not always possible to find such properties as it may very well
be the case that P | @ has a property like divergence (the capability of perform-
ing an infinite sequence of internal computation steps) because P and @ have
properties (context-free, context-sensitive, or beyond) that are inexpressible in
our logic. It has sometimes been argued that this problem makes the entire
problem of devising compositional proof systems a futile one. We do not at all
subscribe to this view, however. Compositionality should not be viewed as an
all-or-nothing matter, rather, compositionality is a useful tool, to be brought
to bear when warranted by the specific situation. But: is expressiveness the
only source of incompleteness? If this is the case we ought to be able to prove
completeness, or maybe even decidability, for judgments like

Tz:g,y: o x|y:y. (60)

If it is not we would still like to ask whether derivability of judgments like (60)
is decidable as this would have obvious implications for the utility of our ap-
proach. Results like these would be particularly important as we as yet only
have examples such as the ones given to bring out our intuition that the princi-
ples we are exploring are essential improvements upon those basing themselves
solely on global state exploration (including, for instance, the approach of [2]).
For observe that the completeness results for finite control agents established
here only suffice to show that the power of our compositional proof system is
not worse than what one can achieve using much simpler global approaches
such as [4].

Other issues concern the fundamentals of the proof system. The rules of
discharge needs better motivation than the one we are giving here. Really one
should view the discharge conditions given here as finitary approximations of
conditions applying to infinite proof structures, leading to automata based char-
acterisations. Even the shape of the local rules themselves, as well as the choice
of logical connectives is open to debate. Why do we choose some connectives
over others? Certainly the private input modality considered in [1] is potentially
very valuable in applications. Does it make sense to devise a separate logical
connective for restriction? Concerning the shape of basic judgments, how im-
portant is the use of the relativized turnstile? We use restriction sets in the style
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of [1] (and [18]) in order not to violate alpha-convertibility, even in the presence
of free process variables. On the other hand, expecting alpha-convertibility of
open terms may be unreasonable and counterintuitive, and by abandoning this
requirement judgments, and hence the entire proof system, may be simplified
rather considerably.

Further, we need to obtain characterisations of expressiveness along the
lines explored for the modal p-calculus itself by a number of authors, e.g. [8].
Concerning the choice of proof rules better completeness and decidability results
will give much sharper handles on the kind of rules that should be admitted. A
promising approach is to embed directly into the proof system the operational
semantics proof rules in the style suggested by Simpson [17] for Hennessy-Milner
logic (without fixed points). First investigations in this direction for CCS and
the modal p-calculus are reported in [7]. Progress in this direction would be
useful to remove some apparent arbitrariness in our choice of process calculus.
Really we should expect to be able to construct similar logics and proof systems
for whichever versions of w-calculus, or other calculus for that matter, one
might want to come up with. Not all logics or proof systems would be equally
attractive, and indeed some effort has been put into the choice of a version of
the m-calculus which remains both faithful to the original m-calculus, while at
the same time permitting as orthogonal treatments of the different modalities
as possible. In particular we have chosen to avoid the issue of sorting. In our
calculus local deadlocks may arise in case the number of arguments in sending
and receiving actions does not match. What the deeper relations should be
between sorting (and more generally types and static analysis techniques), and
semantically based proof systems as the ones we consider here, however, is
outside the scope of this paper.
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Appendix A. Proofs for Section 6

Proposition 6.3 Let N include the set of non-fresh names of I' F° E : ¢.

1. If ¢ is elementary then hyp(n,N) |=° E : ¢ if and only if hyp(n, N) F*
E: ¢.

2.T v E : ¢ if and only if hyp(vsm,N) 5 E : ¢ for all n such that
vs.a E=T.

PROOF: (1) If: Use soundness. Only-if: By induction on the structure of ¢.
Let ¢ = Va.p. Reduce hyp(n, N) F* E : Ya.ip to hyp(n, N) +* E : ¢p{b/a} where
b¢ N by (V-r). Using (D-L) this is reduced, using elementary reasoning, to
the set of judgments hyp(n', N U {b}) +* E : 4{b/a} where 7’ is required to
agree with n on N. But each element in this set is provable by the induction
hypothesis. Let then ¢ = Ja.ip. Since hyp(n,N) E=° E : ¢ we find a b € G
such that hyp(n, N) =° E : ¢»{b/a}. Either b can be chosen in N in which case
hyp(n, N) F* E : ¢{b/a} by the ind. hyp. so that hyp(n,N) F* E : ¢ by (I-r),
or else hyp(vb.n, N U {b}) |=* E : ¢{b/a} in which case hyp(vb.n, N U {b}) I-*
E : {b/a}, thus also hyp(vb.n, N U {b}) F* E : ¢ by (3-R). But then

hyp(naN)am:(b#al)/\"'/\(b#an) l_sE:¢
too (by definition (6.2)), and then
hyp(n,N),z : 3b.(b £ ar) N---AN(b#ap) F° E: ¢.

But then it suffices to use (INFTY) and (Cut-1) to prove hyp(n,N) F* E : ¢
as desired. The remaining cases are quite easy.

(2) By induction on the complexity of I.

I'=(). If-° E': ¢ then hyp(vs.n, N) -* E : ¢ by (W-L). In the other direction
use (D-L).

I' =T,z : Va.ip. Suppose first that I' =° E : ¢ and vs.n = T'. Reduce the goal
hyp(vs.n, N) F° E : ¢ to the two subgoals

hyp(vs.n, N) FO z : Va.¢p (61)
hyp(vs.n,N),z :Vaap 5 E : ¢ (62)

The second subgoal is easily dealt with using (CuT-1) and the induction hy-
pothesis by showing that hyp(vs.n, N) FO 4 : v whenever y : 7 is a hy-
pothesis in . The first subgoal is proved first using (V-R) to reduce to
hyp(vs.y,N) O z : ¢{b/a} and then by (D-L) to all goals of the form
hyp(vs.n', NU{b}) FO z : 4p{b/a} where n/ agrees with on N. Using the induc-
tion hypothesis this can be reduced to the single goal I,z : p{a1/a},...,zp :
V{am/a}, myi1 : Y{b/a} FU z : {b/a} which is directly provable by (I) and
(E-L). Conversely we need to show I' F* E : ¢ from the assumption that
hyp(vs.n, N) F* E : ¢ whenever vs.n |=T. First reduce I' ¥ E : ¢ to

Iz :VYaip,..., 2y :Vap F° E: ¢
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where N = {ay,...,an}. Using (CUT-1) and (INFTY) this is reduced to
I, 2y :Yaap,...,zq :Vaah, zyy1 :Yarp ATbbF# a1 A~ ANb# ap H° E : ¢.
Now, by (3-L) and (V-L) this is reduced to
.z :Vaap,...,xn :Vaap, zprr : P{bja} Ab# a1 A~ ANbFap F* E: ¢
where b is fresh, and then using (CUT-1) and (3-r) finally to

M 2y :VYaap, ..., 2y :Vaah, zyyq 2 Ibap{b/ay NbF ar A+~ ANb#ap F° E : ¢.
(63)
But observe that vs.p | T if and only if vs.y E TV, 2y : Vaah,...,z, :
Va.p, Tpe1 : Fbap{b/a} Nb # a1 A--- AN b # a, whence the result follows by
the induction hypothesis.
The remaining cases are left for the reader. O

Lemma 6.4 (Decomposition) Let N include fn(E{E1/z1,...,Ey/zy}), fn(s),
and fo(p), suppose E{Ei/x1,...,E,/z,} is closed, and suppose ¢ is non-
recursive. Let I' = hyp(vs.n,N). If T' =% E{E1/x1,...,Ep/zn} 1 ¢ then there
are ¢1,...,¢n of modal depth not exceeding that of ¢ such that

1. foralli:1<i<n,T,s fresh =0 E; : ¢;, and
2.0y :¢1,...;xn PP E i @

PROOF: Assume the preconditions of the Lemma hold. The proof is by induc-
tion on the modal depth of ¢, then structure of F, and then structure of ¢.
The first-order connectives can be dealt with in a generic manner.

¢ = 1. Contradiction.

¢p=a=>b Let ¢ =T foralli:1 <3 <n. We obtain I', s fresh |:() E; : ¢,
and I'yzy : ¢1,..., 2, : ¢ F° E : ¢ by elementary reasoning and proposition
6.3.1. The cases for ¢ an inequation a # b or ¢ = T are similar.

p =1 Vipg. For j =1orj=2TE E{E/zi,...,E,/z,} : ;. By the
induction hypothesis we find ¢1, ..., ¢, (of sufficiently small modal depth) such
that T',s fresh =0 E; : ¢ foralli:1<i<n,and T,z : ¢1,..., %0 : ¢ F° E
j. Then we are done by V-R.

¢ = Va.yp. Suppose that a is not in N. We obtain I' =° E{E1/z1,...,E,/zp} :
1. By the induction hypothesis we find appropriate 1, ...,, such that

T,s fresh =0 B :opy  (Vi:1<i<n)
Dyzy iy, zp i F5 E o o)

Let ¢; = Ya.1);. Since a was chosen not in N, T' F0 E; : ¢;, and by the V-rules,
Doz i1, xn: ¢ F° E ¢ too. The case for A is similar.

¢ = Ja.yp. We find a b such that I' |=* E{E,/z1,...,E,/zs} : {b/a}, thus by
the induction hypothesis we find (appropriate) ¢1, . . ., ¢, such that T FO E; : ¢
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foralli, and I, 21 : ¢1,..., 2y : ¢ F° E 2 4. Then, by (F-R), [ z1 : ¢p1,...,2p ¢
¢n F° E : ¢ and we are done.

Secondly we can deal with some process connectives in a generic manner
too:

E = if a = b then F else Fy. Assume a,b ¢ s. Assume ' |=°* E : a = b
(other case is symmetric). Then I' = Fy : ¢. By the 2nd level induction
hypothesis we find ¢1,...,¢, such that I',s fresh ):() E; : ¢; for all 7, and
Dozt p1yeoo o F% F1 2 ¢p. Since I' F* F} : a = b by proposition 6.3.1,
by (W-L) also I',z1 : ¢1,...,2p : ¢y F° F1 : a = b. Then we use (COND)
along with elementary reasoning to conclude I';x1 : ¢1,...,2n : ¢ F° E : ¢
as desired. Let then (e.g.) a € s and a # b. We obtain that I' =° F; : ¢
since in the context s, ¢ and b can not be identified. We then use the 2nd
level induction hypothesis to find ¢, ..., ¢, such that I',s fresh =0 E; : ¢;
and T,y @ ¢1,...,2p t ¢ F° Fy 1 ¢ By (W-L), T,y @ @1y, Zp ¢ Py y -
a# bk Fy: ¢,and by (NEWL), I'yzy : @1, T Py i a =bF5 Fy @ @,
so by (ConD), I'yz1 : ¢1,...,%n : ¢y F° E : ¢ as desired. Remaining is the
case for a = b and a € s. In that case we obtain I' |=* F} : ¢ so by the 2nd
level induction hypothesis we find ¢1,...,¢, such that ', s fresh ):() E; : ¢;
and D,xy 2 @1,z t pp B2 FL 2. By (W-L), Ty i 1y ee oy 2 Gy i a =
b+* Fy: ¢, and by (IRR), [',z1 : ¢1,...,%n : Pp,y : a # b5 Fy: ¢. Thus
Dz i1, ..., xn - P % E - ¢ as desired.

E = va.F. We obtain I' =% F : ¢, so by the 2nd level induction hypothesis
we find ¢1,..., ¢, such that T, (s,a) fresh =0 E; : ¢; for all 4, and T,z :
DLy oy Tyt P FOC F 2, thus Ty @ ..o 2y 2 o F5 va.F @ ¢ by (NEW2).
Moreover, I, s fresh ):() E; : ¢; too since a is fresh.

For the remaining connectives we proceed by induction first on modal depth
and then on agent structure.

¢ = <[>1p. We continue by induction on the structure of F.
e F =0. Contradiction.

o L =F+F. I' E° Fj: <a> for j =1 or j = 2. By the 2nd
level induction hypothesis find ¢1,..., ¢, of desired properties. Then
I',s fresh |:O E;:¢;forall i, and I',z1 : ¢1,...,2, 1 ¢ F° E . <a>1p by
(<l>-PLUS).

o £ = 1.F. Contradiction.

e E=I!"F. Inthiscase ' E* F:l=1"and ' E* F : 1. By the outer level
induction hypothesis and (</>-ACT) we are then done.

e £ =F | F5. Assume F; AN Fl and T' =% F| | Fy : ¢ (the other case
is symmetrical). By the outer level induction hypothesis we find ], 1%
such that T',s fresh =0 F/ : ot, T',s fresh =0 Fy : o, and T,y :
i, yo + Wy 5oy | yg tp. Let iy = <>} and ¢y = 5. We obtain
T,s fresh =0 Fy 2 oy, T, s fresh =0 Fy @ apy, and T,y : oy, y0 ¢ o H°
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y1 | y2 + <I>® by (<I>-PAR) and some elementary reasoning. Now
use the 2nd level induction hypothesis to find ¢j1,...,¢jn, j € {1,2},
such that T, s fresh |20 E; : ¢;; for all i and j, and T, 21 : ¢j1,...,%p
Gjns s fresh =0 Fj 2 ap;. Let then ¢; = ¢y A2, and the result is obtained
using elementary reasoning and some cuts.

e E = )\a.F and E = [a]F. Contradiction.

e E =z. Since E{ai/z1,...,an/zy} is closed, z = x, for some k: 1 < k <
n. We can then proceed by induction on the structure of Fy.

¢ = <7>1). Given the previous case, and observing that all rules relevant to the
<I> modality have correlates for <7>, the only subcase warranting attention

is the case for E = F| | Fy. Assume first that Fy = vb.(b)F] and Fy % (c)F}

such that E 5 vb.(F! | (Fi{b/c})), and T' |=° vb.(Fl(F5{b/c})) : 4. Then

T =% F{(F3{b/c}) : 1. By the outer induction hypothesis we find 1} and
such that (since b is fresh)

T, (s,b) fresh =0 F{ -, T, (s,b) fresh =0 F} : b, (64)

Doyr i,y s b {b/c} F0 g1 L yo 2 4. (65)

Let o1 = <a>(vb < o)) and by = <a>vb — 9. Then T',s fresh [0 Fj : 1h;,

and the goal we need to show is

Coyr c 9, y2 t o FPyn | yo 0 <7>0h. (66)

Use (<7>-PAR) to reduce this to the subgoals

T,y1: vb < ), ys : o, s fresh FO yy = isCh (67)
T,y1: b1, yo b, s fresh FO gy 1 isA (68)
Ty cvb P, ya : vb— b H5 yp | yo = 1. (69)

The first two subgoals are quite trivial, and 69 is resolved by (v —-v <—-COM)
to reduce to

Fayl : Q[)’layQ : ,()/)é |_S7b n | Y2 : I(z/) (70)
Use then (V-L) and (NEW1) to obtain the subgoal
Toyn 1 y2 9 By [ ya ¢ (71)

which is proved (65). The other case, where the communication between Fj
and Fjy is free, is similar and left for the reader.

¢ = [l]yp. Similar to the case for <a>.

¢ = [t]ip. We consider only the case for E = F; | F,. We identify formulas
1,19, b3, Yy for Fy such that T, s fresh O Fy : o A[r]epg AVa.[a]ips AVa.[@]ibs,
and similarly formulas v, y2,73,v4 for Fo such that I',s fresh ):() Fy vy A
[T]y2 AVa.[a]ys AVa.[a]ys, such that the premises of ([7]-PAR) become derivable.
So, assume first that E{Ei/z1,...,E,/z,}(vsm) = F so that T &5 F : 4.
There are six cases of interest:
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1. Fi(vs.n) = F{ such that F = F! | Fy(vs.n).

2. Fi(vs.n) 5 (b)F! and Fy(vs.n) % (c)F) such that F = F/ | (F3{b/c}).

3. Fi(vsn) = vb.(b)F! and Fy(vsn) % (c)F} such that F = vb.(F/ |
(Fa{b/c}))-

Cases (4)—(6) are symmetric to the above. In case (1) we find, using the outer
level induction hypothesis, 1) (F) and «(F) such that T',s fresh =0 F! : o(F),
. s fresh =0 Fy i y(F), and T, y; : Y(F),y2 : v(F) F* y1 | y2 : 4. In case (2) we
find ¢(F) and (F) such that T',s fresh =0 F! : o(F), T, s fresh =0 Fi{b/c} :
Y(F), and T',y; : (F),y2 : v(F) F° y1 | y2 : 9. In case (3) we find ¢(F) and
v(F) such that T',s fresh =0 F! : (F), T,s fresh =0 F3{b/c} : v(F), and
Ly (F),y2 : ¥(F) F° vbyy | y2 : ¢. In the symmetric cases ¢(F') and ~(F)
are identified similarly. Define now

1 = N{W(FL|Fy) | Fa(vsn) 5 Fy}
vy = VW | B) | Fi(vsn) 5 Fi}
vy = (isA D \V{ALD = w(Fi{b/c} | F3) | Fa(vsn) 5 (b)F3} | Fi(vs.) 5 () F{})
A(isA D \J{N\{vb = p(wb.F{{b/c} | F3{b/d}) |
Fy(vs.a) % vd(d)Fy} | Fi(vsa) % (0)F{})
v = (is0f D \VAALD « ¥(F] | Fy{b/c}) | Fa(vsm) = (e)F3} | Fi(vs.) 5 (b)F{})
AisCb O \[{ A\ {vb « $p(wb.(Fi{b/d} | F3{b/c})) | Fa(vs.n) = (c)Fy} |
Fi(vs.n) 5 vd.(d)F})
where b fresh abbreviates the conjunction of inequations b # ¢ for all ¢ that
occurs freely in F. The formulas vy, ..., 73 are defined symmetrically. We need
to show that T, s fresh =0 Fy : ¢ A [T]thy AVa.[a]hs AVa.[@]hs. Each conjunct

is considered separately. The first two are quite easy and left aside. For the
third we need to show, e.g., that

T, s fresh =0 (¢)Fl :isA D V{A\{vb — ¢(vb.Fi{b/c} | Fi{b/d}) |
Fy(vsm) % vd (d)F3} | Fi(vsn) % (c)FI}.
This is reduced to

T, s fresh =0 (¢)F] : Vb.b — b fresh D (vb.Fi{b/c} | F3{b/d})

for all F} such that Fy(vs.n) 2 vd.(d)F}. So assume Fh(vs.n) % vd.(d)F).
Assuming b fresh we then need to show

T, s fresh =0 Fi{b/c} : (vb.Fl{b/c} | F3{b/d})

but this follows by the induction hypothesis. The remaining conjuncts of 3
and 4are verified similarly.
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We also need to show

T, y1 s 1 A[T]paAVa.alpsAVa.[@la, yo = viA[T]yaAVa.[a]ysAVa.[a]ys F° ya | ya = [T]4.

By ([7]-PAR) we need to show the following:

Doyr s,y 2 B2yn [ ya o9 (72)
Doy spo,yp s B2yn | ya o9 (73)
Toyr : s, y1 : isA, g9t Ya,y2 1 isCfFS y1 | ya = (74)
Toyr s, y1 : isA,y2 : Ya,y2 : isCO S yy | ya ) (75)
Lyyrt g, yr 1 isCliya 1 s, y2 1 1sAE yy [ yg 19 (76)
Lyy1 ciha,yr 1 isCbyyo 23,92 1 isAFS yn | y2 19 (77)

along with a few other subgoals which are easily proven from the assumptions.
To show (72) use first (V-L) and then (A-L) to reduce to a goal of the form
Coyr : (Fy | Fy),ya = y(Fy | F3) F° y1 | y2 : 4 which is provable by the
induction hypothesis. (73) is proved similarly. To show (75) reduce the goal,
using elementary reasoning, to a subgoal of the form

L,y1 s VIA{vd — (Fi{b/c} | Fy) | Fa(vs.n) = (b)F3} |
Fi(vs.n) % (o) Fi},
y2 : VAN < ~(F1 | F3{b/c}) | Fi(vs.n) = (o) F{} | Fa(vs.n) = vd.(b)F3}
FSyp | yg o 1.

To show this let Fy(vs.n) = (c)F and Fy(vs.n) % vd.(d)F3, and, using (V-L),
we have to show

T,y : A{Vb.b = b fresh D p(FI{b/c} | F}) | Fa(vs.n) > (b)F3},
y2 : N{vb < y(F{ | F3{b/c}) | Fi(vs.n) = (c)F{}
g1 [ ya 4.

This is then reduced, using (A-L) to
Loyr:vb = p(Fi{b/c} | Fy),ya s vb = y(FY | F3{b/c}) F y1 | y2: b
which is in turn reduced, using (v —-v +—-COM), to

Loy s p(F1{b/c} | F)syz : y(FY | Fy{b/e}) F* yi | yz 2 4

which is provable by the induction hypothesis. Now it just remains, using the
2nd level induction hypothesis, and observing that modal depth has not in-
creased, to identify the desired ¢1, ..., ¢, and to put the desired proof together
using (CuT-1). This is routine.

¢ = a — 1. Again we proceed by induction on agent structure.

e First we deal in one blow with any £ which is not an abstraction since
these cases are contradictory. The remaining cases are:
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e /= Fy | Fy. The only relevant case is when Fj is an abstraction and F;
is a process (or symmetrically). We can write Fy as (b)F]. Then I' °
F/{a/b} | F5 : 9. Since F{{a/b} is of smaller size than E the 2nd level
induction hypothesis applies to produce 1,9 such that I',s fresh ):()
Fi{a/b} : ¢y and T, s fresh =0 Fy : 4po NisP, and T, gy : 1,y : thy AisP °
y1 | y2 : . Now s fresh =0 Fy :a — ¢y and T,y 2 a — ¥,y ¢
o NisP 1y | y2 : @ — 1 as desired, by (—-PAR) and a little elementary
reasoning.

e £E=(b)F. Then I" * F{E/z1,...,E,/xy,a/b} : ¢ so by the 2nd level
induction hypothesis we find ¢1,..., ¢, such that I',s fresh ):() E;: ¢;
for all 4, and I', 21 : ¢1,..., 2y : ¢ F° F{a/b} : 1. Then we are done by
(—-IN).

e £ = z. In this case £ = z; and we can proceed by induction in the
structure of Ej.

¢ =a<+ Y, p=va<+ P, or ¢ =va — 1. Similar to previous case. O

99



Appendix B. Proof of Theorem 8.7

Theorem 8.7 IfI'Fyc E: ¢ then' o E : ¢.

PROOF: Observe first that it is safe to assume that, up to names that are not
fresh, I' determines a unique 7 such that n = I'. If this is not the case then
the dilemma rules apply on both sides to reduce the problem to a number of
problems that do possess this property. Now, since 7 is uniquely determined
we might as well assume that 7 is the identity on names. Let then 7 be the
substitution {Ey/z1,..., Ey/z,}. Consider a model checker node v labelled

I'Fvs.En: ¢, (78)

where the variables z1,...,x, occurs linearly in £. The aim is to produce a
proof tree of ')A ¥ E : ¢ where A = z1 : C(Ey1,n),...,x, : C(Ey,n), and
show that, for the tree constructed from the root model checker node, all non-
axiom leaves can be discharged. The proof is by induction on the number of
occurrences of | in E7, and then following the structure of the model checker
proof. Most subcases of the base and inductive steps for the outer induction
are common so we proceed directly to a case analysis on the structure of the
model checker proof.

Suppose first that v is an axiom leaf, i.e. an instance of (I), (REFL), (IRR),
(NEw1), (INFTY), or (NEC) (where, in the last case, there is no E’ such that

En LN E'). In this case we obtain I' ¥, En : ¢ by theorem 6.5.

Leaves that are discharged are not considered until later.

So, assume that v is an internal node. We consider each possible rule in
turn. There is nothing to do until we get to the rules that are unique to the
model checker proof system.

(Poss) Assume that ¢ = <l;>¢' and that the model checker rule application
infers T' - vs.En : <l,>¢' by showing that there is an E’ such that vs.En LNy 5
and I - E' : ¢'. Observe that E’ will have the form vs.E"”. We proceed by

induction on size of inference that vs.En % B’ and then by cases on FE.

1. E is a variable z;. In this case vs.E; -3 E' and we obtain (by lemma 8.6)
that T, A F5, E : .

2. (Sum). Let E = Fy + F». Ifvs.En 5 B then vs.Fjn LNy for j =1 or
J = 2, and then by the innermost induction hypothesis, I'y A & Fj : ¢,
so by (<l;>-pLUS), ', A i E ¢,

3. (PRE). Let E = [,.F. In this case ' - vs.Fp : ¢/, so by the (2nd or
3rd) level induction hypothesis, I', A F¢, F : ¢/, whence by ((7)-TAU) or
(<I>-AcT),T,AFL E = ¢

4. (PAR). Let E = F; | F». Assume for simplicity that s = () and that the
inference of En '3 E' has the shape

Fin 5 F|
(Fi | o)y = Fi | (Fan)
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(such that E' = F{ | (Fan)). To build up the proof tree from the node
LA E ¢ first apply (CuT-1) to reduce to the following two subgoals:

O, A RO Fy 2 Char(Fyn,n) (79)
I,A,z: Char(Fin,n) FO z | Fy : ¢ (80)

Now, by lemma 8.5 we know that I' Fy;e Fin : Char(Fin,n) and so, by
the outermost induction hypothesis,

' A F¢ Fy : Char(Fin,n) (81)

too. Thus only (80) is left. By unfolding the lhs fixed point, and by
introducing A to the left (80) is reduced to

U, A,z : <m>Char(F},n) FO z | Fy : ¢ (82)
which in turn is reduced to
T, A,z : Char(Fl,n) FO 2| Fy: ¢f (83)

along with the subgoal T, A +0 F, : isP which is proved by theorem 6.5.
The goal (83) stands in the desired relation to the model checker node
EE:¢.

The remaining cases for (Par) are easily proved in a similar fashion.

. (CoM) — free communication. Let E = F} | F». Again we assume that
s = () and that the inference of En 'y B’ has the shape

Fin 5 (0F] Fon S (d)F}
En 5 F | (F3{b/d})

such that [, = 7. First use Lemma 8.5 to obtain

I' Fare Fin : Char(Fin,n) (84)
I' Fare Fon o Char(Fan,n) (85)

Let

P1 = Char((b)Fy,n)
o = Char((d)Fy,n).

The goal is to prove
DAY By By s <> (86)

Use two cuts to reduce to

[LARD By <@y (87)
LAY By o <a>ip, (88)
D, A yr : <@>h1, Y9 0 <a>hg O Y1 | Yo : <m>¢. (89)
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Subgoals (87) and (88) are obtained, as before, by the outermost induction
hypothesis. By (<7>-PAR), (89) is reduced to the subgoal

T, A y1 1,40 9o FO gy [ & (90)

We are now almost done except that the communication needs to be
completed. Observe that

1 = b+ Char(Fy,n) (91)
o = Vd.d— \/{d = e A Char(E{e/d},n) | e € fn((d)F3)} v (92)
(/\{d # e | e € fu((d)F3)} A Char(Fy, vd.n)) (93)

We now reduce (90), using (V-L), to
DAy p,ye b= \{b=e -}V () 0y [ga:g)  (99)
and then, by (—-<+—-com) and boolean reasoning, to
L, A y1 : Char(FY,n),y2 : Char(F3{b/d}, (vb.)n) FV g1 | = &' (95)

where the vb is present in the case b is provably distinct from all free
names in (d)Fy. If the vb is absent we are done immediately, and if not
we only have to observe that Char(Fj,vb.n) = Char(F5,n), and we are
done.

. (Com) — bound communication. Let E = F; | F;. Assume again that
s = () and that the inference of En = E' has the shape

Fin 5 vb.(0)F!  Fon > (d)F}

En < vb.(EY | (Ey{b/d}))

The proof follows the previous subcase quite closely. Let

Y1 = Char(vb.(b)F|,n)

¢ = Char((d)F3,n).
The goal T, A FO Fy | Fo : <t>¢' is reduced, using two cuts and the
outermost induction hypothesis to a judgment of the form (89). As the
previous subcase this is further reduced to a subgoal of the form (90).

Observe now that
Y1 = vb < Char(F|,n) (96)

while )2 is unchanged from (92). Now, instead of using (—-<--coMm) we
use (—-v «—-COM) (observe that we can use alpha-conversion to identify
the bound b in 1y with the bound d in ;) to reduce the current goal to
the following:

[, A, y; : Char(F{{d/b},vd.n),ys : \/{d =eA---}V (/\{d F#el|-}PAN--)
oy |y g (97)
and then further, using boolean reasoning, to
T, A,y : Char(F{{d/b},vd.n),ys : Char(F5,vd.n) Fyi | y2: ¢ (98)

which is the required result.
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7. (RES), (OPEN). Let E = va.F and assume that the inference of En LNy

has the shape
Fnls p
Enl
where I, # a and I, # @, and where E' = va.F’. The reduction is simple,

of T,A+0 va.F: ¢ to T,AF* F: ¢ using (NEW2).

" l

8. (Ip). Let E = D(b) and assume that the inference of En — E' has the
shape

Po{b)at 5 B
Enl E

because D(a) 2 P. 1In this case the reduction is straightforward from
(FIx).

This completes the case for ¢ a diamond formula. The case for ¢ a box formula
is quite similar, as are the cases for input/output. These cases are therefore
omitted. We thus need to pay attention to the proper discharge of hypotheses.
These, however, are dealt with quite simply by observing that, as the struc-
ture of the model checker proof, and in particular the pattern of unfoldings of
greatest fixed point formulas, is reflected in the structure of the compositional
proof system proof, and in particular leaves discharged in the former proof will
correspond to leaves that can be discharged in the latter. O
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