Proving Trust in Systems of Second-Order Processes
(Extended Abstract)

Mads Dam
Swedish Institute of Computer Science
S-164 28 Kista, Sweden

Copyright 1998 TEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1997, Kona, Hawaii.

Abstract

We consider the problem of proving correctness
properties for concurrent systems with features such
as higher-order communication and dynamic resource
generation. As examples we consider operational mod-
els of security and authentication protocols based on
the higher-order w-calculus. Key features such as
nonces/time stamps, encryption/decryption, and key
generation are modelled using channel name genera-
tion and second-order process communication. A tem-
poral logic based on the modal u-calculus is used to
express secrecy and authenticity. Extensions include
function space constructions to deal with process input
and output. Contravariant recursion can be dealt with
in two different ways, of which one, an iterative solu-
tion, is discussed in the paper. We propose a predicate
of trust in a monotonically increasing set of channels
as an example, and establish structural decomposition
principles for this predicate for concurrent composi-
tion and local channel declaration. On this basis a type
system for trust inference can be derived quite easily.

1 Introduction

In this paper we consider the problem of proving
correctness properties in semantically very rich mod-
els of concurrent systems with features for communi-
cation of second- and higher-order objects (eg.: code),
and for dynamically generating and communicating
resource names. A long list of recent programming
languages and models, including Java, CML, Facile,
Oz, Actors, Erlang, and the m-calculus, explore these
sorts of features to various extents. Typical of many
applications written in these kinds of languages is that
they are open, designed and intended to operate in en-
vironments that are possibly hostile, and at any rate
only partially known at compile time. An important
task is therefore to protect information and resources
against intrusion, intended or otherwise. Intruders
have at their disposal the full armoury usually consid-
ered in the field of computer security: they can steal

messages, tamper with messages, crack codes, synthe-
size messages, store and replay messages, and much
more. In the presence of higher-order communication
they can even generate programs (viruses) that will
be activated dynamically by the receiving agent. The
question we address is how, in spite of this, we can
prove that a system nonetheless performs correctly.

Key Management Protocols Classical key man-
agement protocols such as the Needham-Schroeder
protocol are examples of programs designed to work
reliably in face of hostile intruders. In this paper we
show how key management protocols can fruitfully be
viewed as higher-order communicating processes and
we show some initial ideas as to how, on this basis,
they can be verified. The idea is best introduced
through a simple example, a modified version of the
corrected version of the Andrew remote RPC protocol
as introduced by Needham, Abadi, and Burrows [6].
This protocol is extremely simple, yet it introduces
all the features needed to account for a whole class of
key management protocols. Initially two participants,
A and B (sometimes called Alice and Bob), share a
private key K,;. The task is to agree on a new ses-
sion key. Using standard notation the protocol can
be described as the exchange between A and B of the
following three message sequence:

1. A B: {N,} k.,
2. B— A:{N,, K]} k..
3. A> B: {NH‘}K;b

In step (1) A transmits the nonce N, to B, signalling
his wish for B to generate a new session key. B re-
sponds, in step (2), by returning the new session key
K!,, along with N, to authenticate the message, both
encrypted using the old key K ;. In step (3), A returns
the nonce N, to B, this time encrypted using the new
key K,, serving as an acknowledgement to B that the
previous message was received and decrypted.

Modelling Key Management Protocols as
Second-Order Processes The protocol involves
the following features:

1. Message passing and data type operations: Given
a (possibly composite) message m it is possible
to communicate m from A to B. It is also possi-
ble, given messages m; and ms, to form the pair
(my,ms).

2. Private key encryption and decryption: Given a
message m and a private key K, we can form
{m}k, m encrypted using key K. Also, given
{m}k and given K we can decrypt to extract the
message m.

3. Key generation: B has the capability of generat-
ing a new private key K ,, by assumption distinct
from any other key known to any other partici-

pant in the exchange, friendly or hostile.

4. Nonce generation. It is possible to generate a
fresh, non-composite piece of information, by as-
sumption distinct from any other such pieces of
information possessed by other participants.

We propose accounting for these features in the fol-
lowing fashion:

e Nonces and keys are names as in the w-calculus
[11]. New names are declared by the binding va.A
introducing a as a new name with scope initially
extending over A but not further. In va.A, a will
by definition be distinct from any other name oc-
curring freely in A. Furthermore it is possible dy-
namically to extend the scope of a by “scope ex-
trusion”, eg. va.b.[a] P which declares a new name
a and immediately passes it to the outside world
along the channel b.

e Encryption is second-order process passing.
Names, hence keys, are channel identifiers. Hence
a message m encrypted using the private key K
can be regarded as an object that can deliver m
to anyone happening to know K. That is, it is a
process with one output port K along which m
is passed to whoever possesses K and is willing
to listen. Thus {m}k is in our notation identi-
fied with the process K.[m]0, the process which
transmits m along K and then terminates.

This suggests using a second-order version of the 7-
calculus as a semantical framework for modelling key
management protocols, and indeed this is what we
propose to do. Of course such models will be highly

idealised: For instance the bit lengths used to rep-
resent nonces and keys are bounded, opening up for
attacks on the encryption/decryption algorithms, and
information can often be extracted from encrypted
messages with very limited knowledge of the keys.
Nonetheless we believe that an idealised modelling of
key management aspects alone can be useful, leav-
ing analysis of actual encryption algorithms to be ad-
dressed by other means, even while recognising that a
really water-tight boundary between the two is not a
reasonable hope.

Nested Encryption and Firewalling One com-
plication needs to be attended to, though. As encryp-
tion can be nested we need to consider process terms
of the shape

P = a.|K;.[K>.[m]0].0] P,

modelling a process passing {{m}x,}x, along a and
then proceeding to act as P'. A process receiving such
a packet and decrypting to extract m would have the
shape

That is, it receives the process X, activates it and
tries to receive from it along K; another process,
X5, which it proceeds to activate, to try and receive
from it m along K. As it stands, however, the =-
calculus has no good way of preventing a third party
from stealing m using K, once () has decrypted using
K. That is, once) has reached the configuration
(K2.[m]0) | (K2.Am.Q'(m)), if an external intruder is
present that may know about K, it will have the ca-
pability of receiving the m without necessarily having
to know K first. Thus decryption is unsafe, contrary
to most reasonable modelling assumptions (cf. [6]).

A good fix is to use a firewalling, or blocking oper-
ator A\a preventing communication along the chan-
nel a between A and its environment. This operator
is well known: It is just the CCS restriction opera-
tor, extended to the w-calculus in the obvious fashion

by allowing state transitions P\a L) just in case

A has the shape A'\a, P LA A', and b, the commu-
nication channel, is distinct from a. This operator
was also considered in the context of higher order pro-
cesses by Thomsen [13]. Using the blocking opera-
tor we can protect m from theft along Ks by putting
(K2.[m]0) | (K2.Am.Q'(m)) inside a K firewall. Ob-
serve that we regard a as free in A\a. Thus communi-
cation of a across the a firewall itself will be perfectly
legitimate.

Specification in Second-Order Temporal Logic
Our aim is to use a second-order temporal logic to
specify desired correctness properties like secrecy and
authenticity. Specifically we suggest using a fragment
of the modal p-calculus extended with first-order fea-
tures for names and name generation, and two arrows
to account for process input and output. The logic
follows quite closely ideas put forward in [3], using a
function arrow ¢ — ¢ for input dependency, and a
second-order arrow (¢ — 1) — v for contextual out-
put dependency. The idea is the following: A process
waiting to input a parameter z to continue acting as
P is written as a lambda-abstraction Az.P. A pro-
cess wanting to output to some receiver the process
(1 to continue acting as (J» is written as the term
[@Q1]Q2, called a process concretion. Sometimes)y
and (o may share a vector of private channel names
d wishing to maintain these connections after ¢); has
been passed to its receiver. Such a process concretion
is written va@.[Q1]Q2. Matching receiver and sender
results in the term Az.P | v@.[Q1]Q2 which is identi-
fied with the term v@d.{Q1/z}P | @2, alpha-converting
the bound names @ as needed to avoid collision with
names free in P. The input arrow expresses the ex-
pected functional dependency: For Az.P to have the
property ¢ — 1t it must be the case that @; has
the property ¢ only if {Q/x}P has the property .
The output arrow expresses dependency upon receiv-
ing context: The process concretion va.[Q1]Qs will
have the property (¢ — 1) — 7 just in case Az.P has
the property ¢ — ¢ only if va.{Q1/x}P | Q2 has the
property v. In [3] we showed how this setting could
be used to achieve an appropriate level of discrimina-
tory power when measured against a strong version of
bisimulation equivalence, and we began investigating
proof principles for these connectives.

Handling Contravariant Recursion Unfortu-
nately contravariant recursion appears indispensable
for formalising the trustedness predicates we have in
mind. We have so far found no way around this dif-
ficulty. The problem is that the Knaster-Tarski fixed
point theorem usually appealed to for least and great-
est fixed point semantics require monotonicity which
fails in the presence of contravariant recursion. In
this extended abstract we abandon the standard fixed
point semantics for an iterative construction. This se-
mantics provides an induction principle which is used
heavily in subsequent proofs. In the full version of the
paper we give also an equivalent fixed point seman-
tics based on intervals. The iterative construction ex-
ploits a continuity property which holds only for the

fragment of the modal pu-calculus lacking least fixed
points and diamonds (existential next-state quanti-
fiers). This, however, is a limited loss in view of the
nature of the properties in which we have primary in-
terest: Matters like secrecy and authenticity would be
expected to have formulations as invariants and not
to use existential computation path quantification.

Proving Trust We then suggest a process predi-
cate expressing trust in a monotonically increasing set
of channels, using contravariant recursion and greatest
fixed points only. The rest of the paper is devoted to
proof principles for this trustedness predicate, and the
proof of trust for a very simple example protocol. The
most involved proof principles concern, as one should
expect, parallel composition and name scoping. Sev-
eral crucial lemmas need to be proved, of which we
highlight two. First we need to show that if P is a
process which respects trust of @, and b does not occur
freely in P, then P will respect the trust of dU{b} (we
usually write @, b as a shorthand). The proof of this is,
as one should expect, a simple inductive argument, us-
ing the induction principle hinted to earlier. However,
we also need a corresponding result for functions, that
if Az.P has the property @ trusted — @ trusted, and
if b does not occur freely in Az.P, then Az.P will also
have the property d@,b trusted — @,b trusted. This
property has a far more intensional character as it has
to do with definability of functions, and the proof is
also much more delicate.

Deriving a Type System Having proved the cru-
cial lemmas for decomposing trust for parallel com-
positions and v declarations we show how we quite
simply can derive a type system for proving assertions
of the shape I' 7 A : b trusted expressing that, un-
der the assumptions I', and in the local context @, A
has the property b trusted.

Related Work The present paper can be viewed as
part of an ongoing trend towards operationally based
accounts of security and authentication protocol. The
closest predecessor of this work is Abadi and Gordon’s
work on the spi calculus [2]. It is the credit of Abadi
and Gordon first to have observed the usefulness of the
m-calculus name scoping discipline for modelling secu-
rity protocol features like nonce and key generation. In
the spi calculus extra operators for encryption and de-
cryption are added to the m-calculus. Properties such
as secrecy and authenticity are accounted for in equa-
tional terms, for instance by reflecting insensitivity of
environments to changes in trusted values. By con-

trast we represent such properties directly, as a logi-
cal formula. Moreover, due to the explicit treatment of
encryption and decryption a rather non-standard ver-
sion of testing equivalence has to be appealed to for the
correctness proofs in [2]. This complication does not
arise in our approach since we reduce encryption and
decryption to more general computational features.

Recently a number of authors have attempted to
use state exploration methods to analyse security pro-
tocols (cf. [10, 9]). In approaches like these the main
difficulty is to faithfully represent protocols and in-
truders as finite state automata. Instead of leaving
intruders undetermined, as in our approach, it be-
comes necessary to state explicitly at every possible
step whether an action is or is not possible, including
history dependencies. Secondly it becomes difficult to
deal with unbounded information, such as protocols
runs that can cause an in principle unbounded num-
ber of nonces, time stamps, or keys to be generated.
For this reason (and for sheer model size considera-
tions, one suspects) work has so far focused on public
key encryption, and on single session establishment
runs.

In another related strand of work a large number of
authors have used static analysis and type systems to
analyse security of information flow, cf. [1, 5, 8, 14].
The scope of these analyses is roughly the same as
ours: They analyse whether security levels are re-
spected during program execution, sometimes strat-
ifying the analysis by eg. distinguishing readers and
writers. As in our work revocation of trust is not
supported. Our contribution to this line of work is
to show how a type system for secure information
flow can quite easily be derived from the very gen-
eral and sound semantical basis that we provide, us-
ing the account of programs as second order m-calculus
processes, and types/properties as interpreted second-
order temporal formulas.

For the full version of the paper we refer the reader
to ftp://ftp.sics.se/pub/fdt/mfd/ptssop.ps.Z.

2 Processes

In this section we give an informal presentation of
the language used to model protocols, and as much of
its operational semantics as is needed to understand
the specification logic and the reasoning of the correct-
ness proofs. Roughly, the process language is a merge
of the m-calculus [11] with the second-order process-
passing calculus presented in [3]. It uses the following
primitive objects:

e Channel names a, b, along with the special label
T, used for invisible, or silent transitions.

e Agent variables z, y.

o Agent constants D. With each constant is asso-
ciated a unique defining equation D = A where
A is an agent according to the definition below.

Agents come in three flavours: Processes which per-
form transitions; abstractions, responsible for name
and agent input; and concretions, responsible for name
and agent output. Process terms are ranged over by P,
@, abstractions by F', concretions by C, and agents in
general by A and B. To each well-formed agent term
is assigned an arity +w or —w, w € {chan, agent}”.
A negative arity indicates the number and position of
channel and agent arguments required for the agent to
become a process term. Positive arities indicate argu-
ments provided as outputs. The null arity is (), and
by convention, +() = () = —().

Processes Processes are agent terms of null arity:
They neither require nor provide parameters to be
able to perform (or refuse) transitions. Agent vari-
ables are (open) process terms; 0 is the terminated
process; P+ () is the process that can choose between
transitions of P and of @Q); a.A is the prefix process
that can perform an a-transition and evolve into A;
P | @ is the parallel composition of P and @; va.P
declares a new name a, local to P (but exportable
to the outside world through subsequent communica-
tions); if @ = b then P else () is the conditional,
often generalised to arbitrary boolean combinations
of name equalities and inequalities; P\a is the block-
ing operator preventing synchronisation on the chan-
nel a; and if D = F and F has arity —chan” then
D(ay,...,ay) is a process term too.

Abstractions We operate with two abstraction con-
structors, one for free input and one for bound output,
similar to the situation in [4]. The free input abstrac-
tion has the shape Aa.A (Az.A) and has arity —chanw
(—agentw) if A is an abstraction term of arity —w or,
if w is empty, A is a process term. The arity of a bound
input abstraction, vAa.A, is calculated similarly.

Concretions Concretions have one of the forms
[a]A, va.[a]A, or va[P]A. The first instance corre-
sponds to the output of the free channel name a, the
second to the output of a local name a, and the third
to the output of a process term P with local names a.
If A is a concretion term of arity +w then [a]A and
va.[a]A both have arity +chanw and va[P]A has arity
+agentw. If w is empty A is again a process term.

The Transition Semantics A standard m-calculus
style semantics can easily be given to the above lan-
guage. We assume a transition relation P = @, and a
family of transition relations P % A. A few examples
suffice to highlight the important points:

e Invisible transitions arise because of communi-
cation. For communication to take place ari-
ties of the resulting abstraction/concretion pair
must match. Thus, e.g. if P, 5 vAb;.F and
Py % vby.[b]C, F has arity —w, and C has ar-
ity 4w, communication can take place. Then,
if F | C = @, the invisible transition P; |
P, 5 Q = vby.{by/b1}Q' is enabled, where we
assume variables to have been alpha-converted
such that confusion does not arise. Similarly,
if , % X\e.F and P, 3 Vb;.[P]C we obtain
P | Py, 5 Q = vby {P/z}Q" where Q' = F | C.

e Similarly, for P; | Py, it is possible that no com-
munication takes place. Thus, eg. if P, = \b.F
and F | P, = Q' then P, | P, % Q = \b0.Q".
Observe again that a-conversion is used to avoid
capture of variables.

e The remaining connectives reflect the intuitions
given above. Thus, for instance, va.A declares
a local name a in A and does not permit a-

transitions to take place. That is, va.P L)
if and only if a # b and P 5 A" and A = va. A'.

3 Example: The Andrew Protocol

The agent Alice below represents one part of the
Andrew protocol as a second-order process using the
ideas outlined in the introduction:

Alice = MK, .in?d.xfer!{data,d}k,, -
Alice(K,p) + AliceSw(K,p)

AliceSw = AK,;.
vN, .xfer!{switch,Ny}x,, -
xfer?z.x |
(AliceSw(Kap) + (Kap?(t, NI KL
if ¢+ = next and N, = N}
then xfer!{ack,No}x/, .
(Alice(K!,) + AliceSw(K,p))
else AliceSw(K,p)))

The complementary agent Bob is left out for brevity.
The definition uses some abbreviations. First

MNTh,... ., To).A 2 [T [T.A

{Ty,... ., T}k K(Ty,...,Ty).0

e

where T4,..., T, ranges over names and processes.

3 3

Secondly we let cI(vy,...,v,).A abbreviate the sum
of all terms of the shape c.(v)Avy. - - .(v)\v,.A where
the v is optional, and requires the lambda to which
it is applied to be a free name abstraction. Observe
that this involves a non-deterministic commitment to
a particular choice of input parameter types and may
thus introduce deadlocks. This can be remedied, but
as we are only interested in properties to hold for all
possible computations the matter is insignificant.

Compared to the “standard” account little has been
changed except that the protocols have been aug-
mented with message tags to handle control flow, and
a data transfer phase, in which input data is received
along a channel in, encrypted and passed from Alice
to Bob, and then output along out. As our aim is
to specify and analyse properties in terms of exter-
nal input-output behaviour some such modification is
necessary, and in most parts it is completely uncon-
troversial. On two counts, however, some discussion
is needed.

Free and Bound Input Our process language pos-
sesses the capability of detecting whether a given ar-
gument occurred freely or bound at the sender. On
the face of it this is clearly an unreasonable assump-
tion: What is received are bit strings and even if some
tag of some sort states the nature of the argument how
is this tag to be trustedI’ On the other hand we need
this distinction in order to know, when a channel pa-
rameter is received along a trusted channel, whether
to extend trust to this new channel or not. Our policy
is simple: new channels communicated along trusted
channels are themselves to be trusted. The argument
of unreasonable expressiveness is countered by the ex-
amples always allowing for both free and bound input,
as is the case above.

Looseness of Specification The data transfer
phases of Alice and Bob consist simply of inputting
a piece of data, encrypting and then transferring it
over the medium, respectively receiving the encrypted
package, decrypting and then outputting. In this re-
spect the model is overspecific: it states explicitly, for
instance, that old session keys are not corrupted. But
this is too strong an assumption as many attacks use
replays with old and corrupted session keys. Rather
one would want to replace Alice by an open specifi-
cation of the shape

Alice = MK, . (F Kgp) ;AliceSw Ky

where F' is a free abstraction variable subject to as-
sumptions such as

e F never reveals its first argument to the outside
world,

e F never reveals secrets received along in, except
when encrypted by K.

4 Process Properties

Our intention is to formulate properties like secrecy
and authenticity as functional and temporal properties
expressing constraints on the input-output behaviour
of the system under consideration. In our example the
system consists of the agents Alice and Bob running in
an unknown (and potentially hostile) environment Z.
Z should be assumed to have access only to channels
and data open to outside intruders. This includes the
channel xfer. The initial value of K,; should be re-
garded as trusted, as should the channels in and out.
Suppose now that ¢ expresses a correctness property
such as secrecy. The overall proof goal can then be
formulated as a sequent of the shape

Z: Yy FvKg.(Alice Ky |Bob Kup) | Z: ¢

where v is the assumption on Z (roughly: that Z does
not know in and out).

Since the intruder Z is already “part of” the global
system which is considered, the correctness property
¢ does not need to speak about process passing: If eg.
secrecy is violated there will be a way for Z to reveal a
secret along a name which is not out, resorting to en-
cryption or other second-order communication only in-
ternally. More general properties which do talk about
second-order communication will be needed once we
arrive at the proofs, however.

Thus a suitable functional + temporal logic for our
purpose will need to talk about names and their iden-
tities, properties of names and processes which are
output, dependencies on names and properties of pro-
cesses being received, in addition to usual safety prop-
erties. Observe, however, that to express the correct-
ness properties we have in mind there is no use for
liveness properties or existential path quantification.
This fact will be quite useful once we come to consider
the semantics. The logic has the following primitives:

ea=ba#b ¢ANY, ¢V, Va.¢, Ja.¢. This is
just first-order logic with equality. We also need
basic operations on finite sets @: set membership
and quantification over finite sets.

e d fresh, new d.¢. The first primitive expresses
that no element of the set @ occurs freely in the
agent being predicated. The second primitive
expresses of an agent A that it is identical to
an agent of the shape vb.A' such that A’ has

the property {l_;/d'}gb. For now we can use the
term “identical” as meaning, roughly, “bisimula-
tion equivalent”. We return to this issue shortly.

e [a]p, [T]¢. These are the universal next-state
quantifiers well-known from modal logic. So [a]¢
will hold of an agent just in case it is a process,
and whatever agent results from the performance
of an a-transition must satisfy ¢.

e a— ¢, a—, ¢, a<+ ¢. These primitives express
name input-output properties. The first expresses
of an agent A that it is an abstraction Aa’.A’, and
that {a/a'} A’ has the property ¢. The second ex-
presses that A is an abstraction vAa’.A’, and that
{a" /a'} A" has the property {a''/a}$ whenever a”
does not occur freely in neither vAa’.A nor ¢ (mi-
nus a). The third expresses the property that A is
a concretion of the shape [a’']A’, that a = o', and
that A’ has the property ¢. A fourth connective
a <, ¢ will be derivable, as new a.a < ¢.

e ¢ = 1, (¢ =) = . These primitives are used
for second-order communication. The function
arrow ¢ — 1 expresses of A that it is identical to
a second-order abstraction Az.A’, and that if P
is a process satisfying ¢, then {P/z} A’ will have
property 1. The second primitive is a contextual
property. It holds of a second-order (process) con-
cretion A of the shape v@.[P]A’ provided that for
any receiving context f with the property ¢ — v,
the process va.(fP) | A’ will have the property ~.
This idea of using a second-order implication to
capture contextual properties of process output
originates with the paper [3].

In addition to these primitives our intention is to allow
properties to be defined by greatest fixed points in the
style familiar from the modal p-calculus (cf. [7] for an
adaptation to the m-calculus). This is quite straight-
forward if we can define the required properties using
covariant recursion only. Unfortunately as yet we only
have solutions that make use of contravariant recur-
sion, and thus we need to address the foundational
problem of making sense of this. This we do in the
subsequent sections. First, however, some syntactical
matters: Recursively defined properties take the shape
(vX(ar,...,an).0)(b1,...,by) (cf. [4]). Alternatively
we use the sugared form X (bq,...,b,) in the context
of a definition of the shape X (aj,...,a,) => ¢. We
require that recursive definitions are guarded in the
sense that all occurrences of X in ¢ must be within
the scope of either a modal operator, or one of the
arrows. A formula ¢ is propositionally closed if ¢ does

not have free occurrences of (parametrised) variables
X.

5 Expressing Trust

The following predicate expresses a property of
trust in a finite set @ of channels. The example is
given for monadic communication only. The general-
isation to polyadic communication is quite easy and
can be found in the full version of the paper.

a trusted =>
[7](@ trusted A)
Vb.[b] (@ trustedV
d trusted_out_after bV
d trusted_in_after b)

1

trusted_out_after b =>
(Je.c < (@ trustedA(cedDbea)))V
(new c.c+ ((bea ,c trusted) A
bega trusted))) V
fresh D new

-
a
-
a

Loy U U

-

¢ trusted — d,d,¢ trusted)
— d,d,C¢ trusted)

vd.d
(@.d,
trusted_in_after b =>
(Ve.e - @ trusted) V
(¢ =, (bedDd,c trusted) A
(b¢ dD>d trusted)) V
(Ve.¢ fresh D d,C trusted — d,¢ trusted))

I8

The idea is quite simple: To show that the process
being predicated respects the trustedness of names in
d we need to consider the various transitions that may
be possible from the initial state and the various types
of continuation agents that may ensue. For instance,
free outputs must be trusted only if the synchroni-
sation channel is, and the continuation must preserve
trust as stated. Bound outputs along trusted channels
cause trust to be extended. For second order input the
process being input must respect the trustedness of @,
evidently. But in addition we must permit that pro-
cess to mention other trusted information of which we
are not yet aware. This information will be “fresh” to
us, and we had better ensure that after input of the
process we respect the trustnedness of both @ and ¢
(as it were).

Observe the two contravariant occurrences of the
trustedness predicate, for the cases of second order
input and output. We see no possibility at present
of avoiding these. Freeness checks, for instance, are
clearly much too inexpressive. On the other hand the
semantics of the modal u-calculus on which the logic
is built rests on the fact that fixed points are required
to be computed of monotone operations only, and in
the presence of contravariant recursion monotonicity

will fail. This issue is addressed extensively in the
full version of the paper where we give two alternative
semantics of the logic, one based on intervals and stan-
dard fixed point semantics, and an iterative semantics.
Here we present only the latter.

6 An Iterative Semantics

Our intention is to compute the semantics of a for-
mula ¢ as the limit of an increasing chain of sets of
agents ||@||" (o), where n € w is an approzimation in-
dex and o is an interpretation of predicate variables as
sets of agents (for simplicity we consider only set vari-
ables). At each iteration step, ||¢]|" (o) will be a set
of agents which is permitted to depend on the behav-
ior of agents only down to a global transition depth
n. To get at this notion we introduce a version of the
simulation preorder.

Definition 1 (Simulation Preorder)

1. Define the preorders <,, inductively by the follow-
ing clauses (where we use f to range over func-
tions from names to abstractions or processes to
abstraction, as appropriate given the context):

(a) P =0 @ holds always.

(b) P <41 Q iff fn(P) = fn(Q) and Q % B
implies P 3 A such that A <,, B.

(c) Adx. Ay =<p+1 Ay As iff for all a (P),
{a/x}Ay = A{a/y}Ay ({P/z}Ar =,
{P/y}As).

(d) [G]Al jn+1 [b]Az iff a = b and Al jn
Ao, va.[a]A; <pn41 vb.[b]As iff for all fresh
¢, {c/a}Ar =, {c/b}As, va.[P]A =<n41
vb.[Q]B iff for all process abstractions Az. A’
for which @ and b are fresh, vd.{P/z}A" |
A=, vb{Q/z}A" | B.

2. A< Biffforalln€ew, A<, B. A~ Biff A< B
and B < A.

3. Let S be a set of agents. Then 1,, S ={B |34 €
S.A <, B}.

Observe that =, being the intersection of a simu-
lation order and its converse, is strictly coarser than
bisimulation equivalence. We can now introduce the
semantics:

1]1° = {A | A an agent}

IXII" (o) =tnt1 o(X)

X1 (@) = 161" ({IvX.6]" (o) / X }o)
16 A 1™ (o) = 111" (o) N 1[9l™* (o)

o v)" (o) = [le]" " (o) U)" (o)

|@ £resh||" ™" (o) = {4 | @N fn(A) = 0}

[new ¢||" " (0) = {A | va.A' <41 A, A" € ||g]]" (o)}

[a]p|" ' (0) ={P| PS5 AD> Ac|g|" (o)}

la = o)™ (o) = {Xb.A | {a/b}A € [|¢]]" (o)}

la =y g™ (o) = {Ab.A | {a'/b}A € |[{d'/a}o|" (o),

a & fn(Ab.A) U (fn(¢) — {a})}

la +)" (o) = {[a]A | A € |¢]|"(0)}

I = ||" (@) = 18] (o) = [[¥]|" (o)

(6 =) = A" (o)

= {va[P]A | YAz A") € ||9]|" (o) = [[¥]]" (o).
va{P[z}A" | A€ |ly]]"(0)}

Observe that guardedness is important for this defini-
tion to make sense. Abbreviate ||¢||" (o) by ||¢||" when
¢ is propositionally closed, and let ||¢|| = (,,c., ¢l

7 The Andrew Protocol: Specification

We adopt the following intuitive account of secrecy:

e Secrecy: A fresh piece of datum (ie. a secret) re-
ceived along in can only be output along a secret
channel.

Our aim is to formalise this as a formula ¢ for which
the following kind of sequent should be established

(1) Z : {in, out} fresh
F (vKap.Alice K,y | Bob Kup) | Z : ¢

Finding such a ¢ is not difficult:

d secret =>
[r](@ secret) A
[in](bound_input D b —, @b secret)
Ve.[c](free_output D Id.d
((ded>Dced) Nd secret))

We use the following two ancillary predicates:

bound_input = a —, true
free output = Ja.a < true

The property ¢ of (1) becomes {in,out} secret.
The specification of secrecy reflects the intuition very
closely. Secrets are either members of the initial value
of @, or they have sometime been input along in as a
fresh name. Observe that only traces of T-transitions,
name inputs along in, or free outputs are considered.
This is admissible as correctness is stated of an open
system: If we accidentally choose a Z which violates
secrecy by, say, passing secret-revealing processes to
the outside world through an unsafe channel, then
there will be another Z which decodes these secret-
revealing processes to pass out the (first-order) secrets
in a manner that will violate the proof goal.

8 Proving Trust

Secrecy is proved using the trusted predicate intro-
duced earlier. Proofs can be found in the full version
of the paper.

Lemma 2 X :d,in trustedt X : d,in secret

The problem of proving secrecy is thus “reduced” to
the problem of proving trust. The point of the trust-
edness predicate is that it lends itself to a structural
analysis. The verification takes the shape of series of
lemmas intended to support this structural analysis.
The most difficult issue is how to deal with parallel
composition. In this case we need to be careful about
the creation of new internal resources. We extend the
sequent notation slightly, following the suggestion of
[4], by writing, eg., X : ¢,V : p FP X | YV : 7y to ex-
press that whenever X satisfies ¢ and Y satlsﬁes P,
then vb.(X | Y) satisfies 7, where the scope of b in-
cludes both ¢ and ¢ (but not). The delicate part of
the trustedness predicate is to deal with the situations
in which the “coverage” of the trust predicate needs
to be modified because trusted channels are given lo-
cal scopes, or because trust needs to be extended to
channels that are currently unknown to the agent be-
ing predicated.

For the proofs we need lemmas of the following sort:

Lemma 3

1. X :d trusted, X : b fresh X : d’,gtrusted

2. For all P, P : () trusted

A consequence of lemma 3 is that P : @ trusted
for any set @ of names that do not occur in P. The
next lemma shows that trusted names can safely be
localised.

Lemma 4 X :a, b trusted ¥ X : @ trusted

For the case of process outputs we also need to con-
sider expanding the set of trusted names to fresh ones
for functions:

Lemma 5 Assume that X d trusted F A
d trusted and b N fn(A) = 0. Assume also that
F B:a,btrusted. Thent {B/X}A:d,b trusted.

The proof of this lemma turns out to be surprisingly
delicate, and requires techniques that are somewhat
different from the quite elementary techniques used
elsewhere in this section. Essentially lemma 5 states
a property which is much more “intensional” than
the corresponding property 3, concerning, as it does,

function definability: All functions in @ trusted —
@ trusted that do not “mention” b can be extended
to functions in @, b trusted — a, b trusted.

Using the stated lemmas we can then proceed to the
first main result, showing that the trustedness predi-
cate is preserved by parallel composition:

Lemma 6
X : d,b trusted,Y
d trusted

Ei,g trusted F' X | Y

9 Deriving a Type System

In this section we show how a type system for in-
ferring judgments of the form I' 7 A : b trusted can
be derived from the results achieved so far. Here T is
a set of hypotheses which are either boolean combina-
tions of name equations or inequations, or of one of the
forms x : @ trusted, or f : @ trusted — @ trusted.
The proof system uses an ancillary relation I' F? A :
¢ fresh to hold if ¢ does not occur freely in VE.A, and
whenever = (f) is a process (function) variable occur-
ring in I' then I' - & : ¢ fresh. For concerns of space
we leave out most rules from the abstract and give just
a few examples.

The inference system include structural rules to
preform case analysis, and to reflect most lemmas of
the previous section, such as:

I'Hb P:@,¢ctrusted
T F% P: @ trusted

TH P:@trusted TF’ P:&fresh
THY P:@,ctrusted

I'A:dtrusted = d trusted '+ A: ¢ fresh
'k A:d,ctrusted — @,C trusted

Secondly a set of term rules are needed to structurally
decompose trust assertions, such as:

TFP 0 : & trusted

'k P:dtrusted TFQ:dtrusted
F'P|Q:dtrusted

' F% A: G trusted
THY v@A: @ trusted

(See below)

T+ A:q trusted c fresh
T Ac.A : @ trusted_in_after d

I'eded cfresh T Fb A d,c trusted
T HP vAc. A : @ trusted_in_after d

The set I in rule NU is computed in the following
way:

I = TU{z:¢éfresh|z mentioned in I'}
U{f:¢fresh| f mentioned in T'}

To terminate proof construction we have the following
rule of unfolding and discharge:

' HY D(dy,...,dy,) : @ trusted]

L F(ey,...,cpn): d trusted

..,Cp) : d trusted

The rule is subject to the sidecondition that T b

D(dy,...,d,) : a trustedis a substitution instance of
L FP D(ci,...,cp) 1 @ trusted, and that the assumed
deduction

TR D(dy,....dy) : @ trusted

T+ F(e1,...,¢p) : @ trusted

is non-trivial in the sense that it includes the appli-
cation of a term rule (cf. similar side conditions in
[7]). The type system is sound. We conjecture that
the system is complete and decidable for the fragment
without blocking. The full version of the paper con-
tains a proof of secrecy of the Andrew protocol using
the type system.

10 Conclusion

We have shown how to represent key management
protocols as second-order processes, how to specify se-
crecy as a higher-order temporal logic formula, how
to give semantics to such a logic in face of contravari-
ant recursion, and how to prove properties of trust in
structural terms.

As an approach to analysing correctness properties
of security and authentication protocols our approach
suffers serious shortcomings which we have not yet re-
solved. First, trust in monotonically increasing sets of
channels is not of huge practical interest. Protocols,
and protocol users, in particular, must be permitted to
revoke trust in resources such as old session keys that
are no longer in use. However, our trust predicate
does not permit this, as it does not reflect the proto-
col features that govern trust revocation (eg. trust in
the current session key can be revoked once a new ses-
sion key has been agreed upon). Observe though that
this problem is shared with other approaches in the
literature to information flow analysis based on type

inference or static analysis. In future work we will
have to investigate more refined versions of the trust
predicate. Also we have not yet considered proofs of
authenticity. Another important aspect is to repre-
sent other encryption primitives such as public-key
encryption and computed keys. Structured channels
as in [10] appear useful and could easily be accomo-
dated. Finally we need to address the correctness of
our representation of encryption, and to what extent
the higher-order model is really necessary and useful.
An alternative could be to reduce to w-calculus proper
as suggested in the full version of [2]. This option
and its relation to our higher-order model would be
worth exploring further. A noteworthy point is that in
the presence of the blocking operator the reduction of
higher-order processes to first-order ones by Sangiorgi
[12] is not applicable. We are currently accumulating
strong evidence to suggest that the reduction from the
second-order calculus with blocking to the first-order
m-calculus with or without blocking while feasible in
principle is very complicated and definitely not suit-
able as a modelling tool.

Acknowledgements

Thanks are due to Martin Abadi, José Luis Vivas,
Alan Mycroft and Dilian Gurov for comments and dis-
cussions on several topics treated here. It is the credit
of Jose-Luis to have observed the need for firewalling
using the blocking operator. Also thanks are due to
one anonymous referee in particular for some very in-
sightful comments. The work was partially supported
by Esprit BRA 8130 LOMAPS and a Swedish Foun-
dation for Strategic Research Junior Individual Grant.
Part of the work was done while visiting CMI, Univer-
sité d’Aix Marseille 1. The full version is available as
ftp://ftp.sics.se/pub/fdt/mfd/ptssop.ps.Z.

References

[1] M. Abadi. Secrecy by typing in security pro-
tocols (draft). Manuscript, Available through
http://www.research.digital.com/SRC/, 1997.

[2] M. Abadi and A. D. Gordon. A calculus for cryp-
tographic protocols: The spi calculus. In Proc.
Jth ACM Conference on Computer and Commu-
nications Security, pages 36—47, 1997. Full ver-
sion available as tech. rep. 414, Univ. Cambridge
Computer Lab.

[3] R. Amadio and M. Dam. Reasoning about higher-
order processes. In Proc. CAAP’95, Lecture
Notes in Computer Science, 915:202-217, 1995.

[4]

[5]

[7]

8]

[10]

R. Amadio and M. Dam. A modal theory of types
for the m-calculus. In Proc. FTRTFT 96, Lecture
Notes in Computer Science, 1135:347-365, 1996.

J.-P. Banéatre, C. Bryce, and D. Le Metayer.
Compile time detection of information flow in se-
quential programs. In Proc. European Symp. on
Research in Computer Security, LNCS 875, pages
55-73, 1994.

M. Burrows, M. Abadi, and R. M. Needham. A
logic of authentication. Proc. Royal Society of
London A, 1989.

M. Dam. Model checking mobile processes. In-
formation and Computation, 129:35-51, 1996.

D. Denning. Certification of programs for secure
information flow. Communications of the ACM,
20:504-513, 1977.

R. Focardi and R. Gorrieri. The compositional
security checker: A tool for the verification of in-
formation flow properties. To appear in I[EEE
Transactions on Software Engineering.

G. Lowe. Breaking and fixing the Needham-
Schroeder public-key authentication protocol.
Proc. TACAS, Lecture Notes in Computer Sci-
ence, 1055:147-166, 1996.

R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes, I and II. Information and
Computation, 100(1):1-40 and 41-77, 1992.

Davide Sangiorgi. From m-calculus to Higher-
Order m-calculus — and back. in Proc. TAP-
SOFT’93 Lecture Notes in Computer Science,
668:151-166, 1993.

B. Thomsen. A calculus of higher order com-
municating systems. In Proc. POPL’89, pages
143-154, 19809.

D. Volpano, G. Smith, and C. Irvine. A sound
type system for secure flow analysis. Journal of
Computer Security, 4:1-21, 1996.

