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ABSTRACT propositional linear logic [8] (our choice of modalities

bear no relation to those in [8]). To obtain completeness

We show that the operation of relativising propertieg, e free algebra, however, we have to add a number of
with respect to parallel environments often employed {5 axioms as well as introduce a kind of intuitionistic

obtaining compositionality in theories for concurrtenCyegation. In addition we show the safety testing preorder
corresponds to a notion of (contraction—free) relevapy o characterized by the logic, in the sense that this

deduction. We propose to consider program 10gics Uhq the ordering induced by the logic, when interpreting
which this notion of deduction is internalized by meang, ., /1as directly over processes, coincide.

of the corresponding implication. The idea is carried

through for safety properties of a simple system of

SCCS-type synchronuous processes with an internal ENVIRONMENT RELATIVIZATION AS
choice operator. We present two completeness results; LINEAR CONSEQUENCE

first for a modal extension of positive propositional linea . .
P prop onsider the problem of “structured model checking”

logic w.r.t. the equational class of algebras containireg t h tisfacti lationle & bet
safety testing quotient of our process system as its frvevgere we have a satisfaction relatigni= @, between

member, and secondly for the free algebra itself. processeg and formulas®, and suppose there is an
’ operation- of parallel composition of processes. It is

hard to concieve of a operatian which is tractable and

. . licences interesting deductions of the form
A central problem in successfully applying modal and i q h
temporal logics to the development and verification of " P @ andg =V thenp-q = 2O V.

concurrent programs is somehow to obtain compo$ronsequently properties of concurrent programs are
tionality. We must be able to compose and decomposgually proved either by analyzing outin terms of
properties in accordance with model structure [5,22p0re primitive process combinators, resulting in “state
In the context of parallel composition this is oftergxplosion” problems, or by “chasing derivations” using
done by some form of “environment relativization” [cfthe satisfaction conditions for formulas. In either case
1,5,12,14,19,20] by appealing to potential computatioG®mpositionality is lost.

rather than actual ones, and by indexing w.r.t. propertiesA proposal towards solving this problem is to in-
of parallel environments. troduce, as in [20,22], a doubly indexed turnstife},

Logically, context relativization amounts to the deperfl€fined by
dency of properties on assumptions about the environ- @,V ' T iff wheneverp = ®, ¢ = ¥ then
ment, a dependency admitting basic rules of deduction p-qET.

such as reflexivity and cut. In fact the proper notion of syppose we generalize this to allow arbitrary finite,
deduction is arelevantone [3,7]; once an assumption isyonempty sequences on the left hand sidé=6f(using
introduced, it must beoI used in deriYing the COECIES??; d, etc. to denote sequences, extendiagointwise):
We propose to consider program logics in which this =, , .. _ e = _

notiopn ol? deduction istnternzlizgdby ad?jing to the logic ® [= I iff for all p, if p = ® then[[(p) = T,
an operation of (relevant) implication. We illustrate thi¥/nere I1(p1,...,pn) denotes, say(p: - (... (pn-1 -
idea by offering a clean logical account of a simple syépn)) -.)), form > 1.

tem of SCCS-type synchronous processes [16], following Then =" will satisfy

the suggestion of [11] to let logical properties governi. Reflexivity: ® ' ®,

the choice of process combinators. When taken with thé. Permutation:® =’ T only if ¥ ='T', ¥ a

safety testing notion of equivalence of [6], the system permutation of®,

coincides with the free algebra in an equational class. Cut: ® =’ ¥ and©, ¥, A ='T only if

of algebras complete for a modal extension of positive ®,0,A E'T,



as in fact =" will for any commutative, associativeFor ap € P let st(p) = {0 | p — o}. The transition

operation.. relation between stable terms and processes is standard:
So it makes sense to think ¢f’ as a consequence i, 1 51,

relation. In fact=" will be a linear consequence relation ijj, a(p) 2 p, and

[8,2] in the sense that it will fail i. 0 %p 72 qonyifo-r%p.q.

lv. Contraction:®, W, W |=" T only if @, W ='T', and  pefine the family of predicatesan «, for o € Act, by o
v. Weakening® |='I" only if &, W |="T. can « iff there is ap s.t.c % p. Clearly, if o can «, then
Let us be slightly more bold and assume an identity, « is unique, and so is the s.t.c = p. Let o/a denote
for - (for instancel will be NIL in CCS [15], and in this p, whenever it is defined. Saycan « iff for some
TCSP [4], when is [|(][[), 1 will be RUN(STOP)). Then 4 ¢ st(p) o can a, p live iff for all o € st(p) there is
it is natural to stipulate thaff[(c) = 1, for ¢ the empty ana s.t.o can o, andp/a = {p’ | Jo € st(p).c = p'}.
sequence. This means thal="T' iff 1 =T Processes are identified according to the set of poten-
Now the proposal is to consider logics in which thigial outcomes, when running them with a test [6]; an
' is internalized, in the sense that there is an operatigutcome being either failure or success, depending on
—, of linear implication, s.td, ¥ |=' T'iff ® =" ¥ — T'.  whether or not the test is brought to termination. This
One can show that = ¥ — T iff for all ¢, if ¢ = W then notion of equivalence (in fact its safety part, see below)
p-q = T'. So the propertyy — T tells us something is closely related to the failure set model introduced in
about the behaviour of elements asontexts — one [4]. There are finer (i.e. more discriminating) notions
could read¥? — T' e.g. as “in everyl-context,I™. of equivalence, notably the observational equivalence of
The logic we have thus defined is in fact the imf15,10]. These, however, will not in general admit the
plicative fragment of linear logic [8], and the modelistribution laws desirable in the present context.
and notion of satisfaction is but a slight variation of Testst € T are finitely branching tree€) € T, and
the semilattice models of relevance logics of [21}—thgyr T finite and nonempty and < T for all i € I then
semilattice operation being idempotent, whidk not in ey ait; € T. Sets of outcomes are distinguished in
general. two different ways, according to whether or not they are
In the remainder of the paper we pursue the idea in sometimes successful and 2. never unsuccessful. This
detail, by building a logic for a concrete system of simplgiea is formalized by the “may” and “must” notions of

processes. test acceptance, defined by
i. p may 0 for all p € P, and
SYNCHRONOUS PROCESSES WITH p may > ,c;agt; iff p— o for someo € ¥ s.t.
INTERNAL CHOICE o can «; ando/a; may t; for somei € I.

_ _ _ ii. p must0 forall pe P, and forl (),
Consider the following simple language of procegses pmust ¥, agt; iff for all o € %, if p— o then

P, wherea € Act, a set of actions: o can a; for somei, and for alli € I, if
pi=0[1|lap)|pdq|pr-q o can «; theno/o; must t;.
where @ is internal choice; and synchronous parallel. \we then define the testing approximation relatioss,
We assume Act to be structured—forming an abeliggr ; {1,2,3}, by
group with unite, as in [16], such that the simultaneous ; ,, < iff for all ¢ € T', p may ¢ only if ¢ may ¢,
occurrence of actions can be accounted for. ii. p 22 q iff for all t € T, p must ¢ only if ¢ must ¢,
In order to capture internal nondeterminism in g; <. = < A<,

synchronous setting, we split up the notion of reductiqpet ~y = =i N =y, fori € {1,2,3). We refer to<,
—1 - 1 -] ) <y . -

'T;J tg?sgl Oft stab|l|2|ngza2d 75 erforming acttl?jnz, if] s the livenessand <9 as thesafety preorder. These
[ b] able | €Mmsg € & = 77, are generated by epreorders can be characterized recursively much like the
subprocess lahguage weak equivalence of [13]. LeP,Q,... (A) range over

cu=0[1|alp)]|o-a, finite, nonempty subsets @ (Act). Extend <;,<, to
and the stabilization relation;, is the least s.t. setsP,Q by definingP may t (P must ) iff for some
i. 0—=0, p € P (forallp € P)pmayt (p mustt). SayP must A
i 1 —1, iff P must >° .4 a0, and extend the notionsan, live
ii. a(p) — a(p), and -/« to setsP, @ in the obvious way. Now define,
v. p—oonlyifp®q—ocandqdp— o, and like for observational equivalence [15], the decreasing

V. p—o,q—Tonlyifp-q—o-71. chains{C; ;. },>0,ic{1,2y Of relations by



i. PCioQ,P Ty Q forall P,Q. y (y < z)iff @&y = x. Note that if A is a safety

ii. PCyp Q iff for all a, if P can o then or liveness algebra, a. is redundant. Idgtdenote the
Q can o and P/a Ty, Q/ 0. class of all synchronous algebras, andC,) the class
iii. PCypqq Qiff for all A, o, of safety(liveness) algebras.
P must A only if @ must A, and All three classes admit free algebras—I&%(F2)
P live, @Q can « only if P can « and denote the free liveness(safety) algebra, ahgd the
Pla Ty, Qo free synchronous algebra. These algebras have simple

Let ©y = >0 C1.n @ Cy = ,,5¢ Co.n. We extend representations in terms of sets of irredundant paths.
operations to sets®®, Q by pointwise extensions, e.g. A path s, is a pair(a, i), with & cAct* andi € {0, 1};
P-Q={p-q|pePqecQ}. ands = (@, 1) is irredundantif e is a suffix of @ only
wheni = 0. We assume all paths below irredundant,

Theorem 1" unless otherwise specified. We order paths(fy:) <
i. Forall i€ {1,2}, ==L o (B,j) iff either i =1 = j anda = 3, ori = 0 and
ii. Forall e {1,2,3}, ~ is substitutive. a is a prefix of 3. Sets,S;, S,, of paths are ordered by

Proof: i. For C show fori = 1,2 respectively that g, <, §, iff Vs; € S13s5 € S5 S.t. 57 < 89, S1 <o S5
=iCLC;, for all n > 0. For the converse assume e.gff s, € Sy3s; € 91 S.ts; < s9, and<s = <1 N <s.

for i = 2 that P must ¢ but not@ must ¢, and proceed A set, S, of paths islower(l), if s € S ands’ < s

to show that therP iZ,,, ) for somen. implies s’ € S, it is uppe(2), if s € S ands < &

ii. It suffices to showC; ,, substitutive for all» > 0 and implies s € S, and it is convex3), if si,s, € S and

i € {1,2}. We take only the case far= 2 and-. S0 4, < s <, impliess € S. Letcl;, i € {1,2,3} denote
assumePy Copny1 P2 If P -@Q must A thenP) must  the corresponding closure operators. A closed $egf

{1 | P can aq, Jaq.Q can ag, anag € A} = A1 paths isfinitely generatedf.q.), if S is the closure of
ThenP, must A;, whenceP; - Q must A. Suppose that 3 finite set—clearly a 1- or 3-closed f.g. set is finite.
P -Qliveand P, - @ can a. Then Py, @ live and P, Note that generating sets are closed under intersections—
can oy, @ can ay for someas, ap s.t.agaz = a. Then hence every f.g. set contains a unique least generating
P, can a; whenceP; - Q can «. Also wheneverP, get.

can ai, @ can az and ajaz = a then Py/a; - Q/az Prefixing of paths is defined hy((a,4)) = ((aa), ),

Con P2/on - Q/az by the induction hypothesis. Butif o £ ¢ or (a,i) # (1), ande((,1)) = (e,1).
then, as for alln,P,P",Q if P Ty, Q and P C P' Multiplication of paths is defined similarly. Then the op-
thenP’ T, Q, we obtain(P; - Q)/a Eap (P2-Q)/a,  erators, fori € {1,2,3}, are defined by; = cl;{(e,0)},

whenceP; - Q Ty 41 P> - @ and we are done. 1L =cli{(e, 1)}, a;(S) = cli{a(s) | s € S}, S18; 52 =
Cli(SlUSQ), andsS;-; S = CZZ‘{Sl'SQ | 1 € 51,8 € SQ}
SYNCHRONOUS ALGEBRAS LetthenD, = {S | S is ani-closed, f.g. and nonempty

set of irredundant pathsandD; denote theD; ordered

The three preorderss;, i € {1,2,3}, have simple (in- . with operations as defined above, foe {1,2,3}.
Jequational axiomatizations, in terms of “synchronOLWe obtain

algebras”. .
These are structured = (4, <,0,®, -, 1,Act), where Theorem 2. Forall i € {1,2,3}, 7; = D;.
i. (A,<,0) is a poset with) least and< substitutive Proof: See appendix.

w.rt. @ and-, Then processes modulo the three preorders are charac-
ii. (A, @) is a semilattice, terized by
iii. (A,-, 1) is a commutative monoid withpreserving

Theorem 3. For all i € {1,2,3},
(P/ =i, = | =) =2 F.
Proof: See appendix.

@ and0, and
iv. Act is an abelian group as above of operators/bn
s.t. eacha € Act preserves< and @, and s.t. the

following equations hold: Thm. 2 and 3. automatically gives us a fully abstract
a. az)®0=alz®0)®0 semantics[-];, for i € {1,2,3}, from P onto D;.
b. a(z)-B(y) = (aB)(z -y) From this point onwards we shall deal solely with the
c.e(l)=1 safety case — henc®, [-], <, etc. shall denote the

If @ is the inf(sup) W.r.t< we sayA is asafety(livenesy COrresponding safety entities.

algebra and denote the by r(L). Clearly the safety
(liveness) algebras form an equational class—defire A RELEVANT LOGIC OF PROCESSES



We treat safety properties as filters rather than idealsvie have shown: My | ®; — ®5. Thus[®; — o] is
contrast to [11]: for safety propert®, if p = ® and a filter.
p X gtheng = @, and ifp = ® andq = ® then

pMq | ® (wheref is @ in the safety case). . _
s formulast <Fom e e o e o o o o i i
P=X DB [ DAD[DVE| ()P | (a)d ; ; guely _
corresponding one in [11], as well as the one {olin

h 1L ¢ ional variables. i [9]. Notice that inD each element is the inf of the set
whereX €Var, some set of propositional variables,is ¢ primes (= one-element sets) above it (8iris prime

relevant implication /v are extensional (“additive”, in if wheneversS; M5, < S thenS; < S or Sy < S). In

the terminology of [8]) and/ora) a future,(a) a past, Of ¢, .+ \ve obtain
reverse modalityt is intensional (“multiplicative”) truth

and L is extensional falsehood. The operations -, Theorem 5: For all S € D, ®, ¥ € Form,
def def

For the free safety algebra, the defining clausegHor

— and(«) are defined byT =1—1, -® = & —1, i. Sk @ iff for all prime S’ € D, S < S’ only if
© UL (@ U)A (T — @), and(a) < (a)T. S'E @,

Initially we interpret formulas over safety algebras. Aii. S |= ® Vv V iff for all prime S' € D, S < 5" only
model is a paitM = (A, V), whereA is a safety algebra if S"=®orS V.

andV a valuation of propositional variables s.t. for eacpr oof: Straightforward.
X eVar, V(X) is a filter in A.
Then satisfactiori=,, is defined inductively by (we

suppress subscripting g¥1):

z = X iff z e V(X),

rE=®— Viff forall y € A, if y =@ then

vy EY,
rE®AVIf x| =®andz =V,
xE®VUIff 2 =® orz = ¥ or there are

The property 5.ii is reminiscent of the barring in
Beth models for intuitionistic logic. We can use this
property to give an account of satisfaction directly on
the processes themselves. Notice thaSan D is prime
iff it is the image of some trace, where a trace is a process
not containing occurrences of. Define satisfactioni=,
of variable-free formulas by

x1,m9 € A, StxyMay <z, x1 E P and p = ® Vv U iff for all traceso of p, o = ® or
1) ’: v, g ’: v,
z |= (a)® iff there is ana’ € A s.t.a(2') < z, p = ()@ iff for all traceso of p, o can a,
' E P, o/a =@,
z E (@)® iff a(z) =, p =t iff for all traceso of p, o can e, o/e = t,
xE=tiff 1 <z, and and the other clauses being identical to thosel-of
x L. Then one can show that our logic characterizes the safety

So the— is the operation of relativizing w.r.tzcontexts ordering in the sense that
introduced above. For the/ note that the standard

. . o . Theorem 6. For all
satisfaction conditiona( = ® v ¥ iff z = ® or 2 = ¥) _ _ peP, o
will not work with our interpretation of properties as |- For all variable-free® eForm p |= & iff [] |= 2,
filters — here, anz will have the propertyd v ¥ iff il » = ¢ iff for all variable-free & cForm p = &

it dominates an “internal branching” (i.e. inf) of two implies g = @.

elements either of which satisfies eitheror W. Proof (sketch) i. Induction in the structure of. Use
Validity is defined by:® valid in M, ¢ @ iff thm. 3, 4 and 5. ii. The “only if” direction follows from

1pm Em @ (cf. sec. 2). We obtain i. and thm. 4. For the converse direction, note that an

S € D has a simple representatioR(S), in the logic,

Theorem 4. For all & €Form [®] = {z |2 |= &} is depending on the least generating subse$of

a filter.
Proof: Induction on the structure ab. We take only the R(cl({és,0>})) =T,
g, 1 =

case ford = &, — &, — the other cases are similar.  L(c/({{c,1)})) = ¢,

Letz = &3 — &3 andz < y. Let z = ®;. Then R(c({((aq),i)})) = (a)R(cl({{a,4)})),

z-z | ®yandz -z < y -z by the monotonicity of, R(cl({s1, ", sn}))

whence by the induction hypothesisz = ®,. But then = R(cl({s1})) V-V R(cl({sn})), for n > 1.

y E &1 — ®o. Next, if z,y = &1 — &y andz = ®; Then one shows by induction on the complexity of the
thenz - z,y -2 | ®3. Nowz - 2My-2 = (zMNy) -2 leastgenerating set ¢ that for allS" € D, S’ = R(S)
and by the induction hypothesis- z My - z = ®3, and iff S < S’. Now the result follows, for ifs = R([p]),



then[q] = R([p]) by i., whence]p] < [q], sop = ¢ by
thm. 3.

Vl'VQz{‘I"H(I)EVQ.(I)%\IJEVl}
={U 3P e V.9 — VU e Vs},
1={ |- D},
(V) ={®| (a)® € V} = th{(a)® | ® € V},
and define the valuatiorl/, by V € V(X) iff X € V.
The check that the operations are well-defined and that
we indeed do obtain a safety algebra in this way is a

A COMPLETENESS RESULT FOR SAFETY
ALGEBRAS

In this section we exhibit a Hilbert-type axiomatizatio

of the L-free fragment of our logic w.r.t. validity in all

r%tralghtforward application of the axioms and rules. As
an example we showassociative. So assume thate

models. V1-(V2-V3). Thenthereis @ € Vy s.t. ¥ — & € Vs
Axioms: 1. -® — & V3, and then thereisB e Vo s.t.T' — (¥ — @) € V3.
2. F(@®—U) = (T — &) — I — W) Using 1-3 and m.p. it is easy to show, that
3. F(®@— (U —=T))— (= (®—T)) FUV - T — (= (¥ —92))— )
4, H(® - V)N (P —-T)— (®—-TAT) andthen — (¥ — @)) — & € V; - Vy, whence
5 FOATU - @ ® € (V1 -Vy) - V3 as desired. It is straightforward also
6. FOANT — T to check thatV = @ iff & € V, and we are done, for
7. F(@—-DA (¥ —=T)—= (dv¥ —T) Iif /¥ ®then® ¢ 1, and thenl = @ in the canonical
8. Fd—-oVVY model.
9. FY PV
10. Fd — (t — D) COMPLETENESS FOR THE FREE SAFETY
11. F()(PVVY) - ()P V ()P ALGEBRA
ig '; Epa) —(a)qj(; @@AY) Finally we exhibit an axiomatization of the logic with
: = (@)((e)®) falsehood, but without propositional variables, complete
14. F ()((a)®) — @ for F.
15. F (@)((B)® — ¥) < (? — (aB) V) First we have the standard axioms forand L:
Rules: m.p & — U, - ®onlyif -V 16. Fo—T
adj. @, - Wonlyif FdAD 17. Fl—0
(e)-nec. + @ only if - ()@ We strengthen 13. and 14. to
(e)-nec. + @ only if - (e)® , _
(a)-mon. = & — W only if I (a)® — ()W 13,' F® o (a)((e)®)
(a)-mon. - & — ¥ only if - (a)® — (a)T. 14 oA (a) < (a)((2)®)
Notice that our axiomatization of the modal-free fragThen the additions are
ment (axioms 1-10, rules m.p., adj.) is just a standard 18. Ft«—(e)t
axiomatization of the &, A, V, t)-fragment of linear 19. FOA(PVD) - (PAT)VT
logic. Incidentally the semilattice ordered monoids un- 20. F-%— (T — —d)
derlying our notion of safety algebra are closely related 2. F=(B)((a)®), for a # 5
to the models for BCK- and related logics of [17]. Note 22. F((a)®) < P
also that we shall not obtain completeness for the free 23. F((@)® = Vgep(B)¥s) —
algebra; e.g. irF, (a)® A ()W is unsatisfiable whenever Vaep((a)® — (6)¥p)
a # (3, whereas this is not true in general. We obtain 24. (T = Vaea(a)®y)
25. FT—(a)T

Theorem 7. - @ iff for all safety modelsM, = .
Proof (sketch) Soundness is proved in the standard way
(note that= & — VW iff for all =z, z = ® implies

Fom® A (@) — (ﬁ)‘lf)

(Ble™)(@ — ¥)

x | U). Completeness is obtained by a simple HenkiriNote:

type construction. AheoryV is any (!) set of formulas .
stdeVand-d - Tonlyif P € V,and®d, v €V i

only if ® AW € V. For any set,S, of formulas, there

is a least theoryh(S) containingS. We build a safety iii.

algebra from theories, by taking to ben, 0 to (), and

Axiom 18 makes rulege)-nec.,(e)-nec. redundant.
Axiom 19 (distributivity) marks a departure from
linear logic.

Axiom 20 reveals the strong nature of the negation
(x E —® iff for all y, y = ).



To summarize, our axiom system consists of axioms 1- = ® < V4 p Ao (f(@)a )W, rq).
12,13',14',15-26 plus rules m.p., adje).-mon. and Using 14’,16,21,22 and«)-mon one can show for all

(ar)-mon. Provability}-, from now on denotes provability ;| Ty, - =((«)T'1 A (B)T2), whenevera # 3. Hence

in this system. if for all f : A — B there areaj,as € A sit.
Completeness is proved via a normal form theorema,)a; ! # f(as)ay !, thenk @ « 1. Otherwise a
for formulas. Note first, that we have little bit of manipulation establishes a finite, nonempty
Theorem 8. Let® = U iff - ® — U. Then=is a setC' C Act and for eachy € C al', € NF' s.t.
congruence. F® o V,ee(V).

Proof: The equivalence property of follows from |Ifforall v € C, T, =L thent & — L by 22. Otherwise,
axioms 1, 2, 5, 6 plus m.p. and adj. We show tkat using 22 again, we can assume for eacke C, that
is respected by the operations. E.g. fer, if ® = ¥ T, #£1.If C = {e} andT'. = ¢ then by 18~ ® « ¢.
then® - T'=¥ —-T,I' > ®=1T — ¥ by axioms 2, Otherwise\/..-(y)I', € NF' and we are done.
3, 5, 6 plus m.p. and adj. The other cases are similar. Now we are almost home, for it is easy to show that
Theorem 9. For all variable-free formulas® cForm, ~ for ® € NF, |= @ iff ® “contains ane-trace” (that is,

- & iff =r . =t ®=Tord = V,ycu(®)®,, e € Aand P,
Proof (sketch) Soundness is proved as usual, using tff@Ntains are-trace). But for suchb it is very easy to
representation in thm. 2. For completeness, define the §@fstruct a proof — thus ending the proof of thm. 9.

NF' inductively by Notice, that the rewriting procedure used in the proof
i. t, TeNF/, of thm. 9 gives us a procedure for deciding in one go
i Vaea(a)®o € NF, if i. Validity: ® valid iff = @ iff 1 = @,

a. A is a finite, nonempty subset of Act, ii. “Universal” validity: ® “universally” valid iff for all
b. e € A, &, =t only if card(4) > 1, and reF,xE=o,iff =T, and
c. foralae A, &, € NF/, iii. “Satisfiability”: ¢ “satisfiable” iff there is anc € F

and then we letNF' = NF’ U {L}. In order to apply stz k=, iff £L.
axiom 26 note that:

Lemma 1. If ® € NF' thenl =—®.
Proof: By induction on the structure of normal forms. CONCLUDING REMARKS
First, we have- ® — ——®. Hence, if® = T or ® = ¢,
by - T, - ¢t we haver ——T, - ——t. By axiom 22,
F =((a)®) — —®, hence if- ==& alsor == ((a)®).
Additionally, if H =—®, - ==V thenk ——(® Vv V). This
handles the inductive case and we are done.

Of course lots of questions remain to be answered.
First on the axiomatization of section 6: Can one add
falsehood, L, to the axiomatization? Properties such as
x -0 < 0 seem hard to obtain, due to peculiarities of
our negation. Also it does not seem possible to obtain
Now one can show by a long structural induction angl complete axiomatization with future modalities alone.
an inner induction on the modal depth of formulas (notgowever, one can choose to add the “fusion” (intensional
only we assigrnt the modal deptit), that each formula conjunction) instead of the past modality.
® can be rewritten into al € NF, s.t.® = ¥. We  Secondly, how do we deal with the liveness case?
outline the proof foré = ®; — &,. By the induction One idea could be to let the disjunction induce under-
hypothesis,®;, ®, can be rewritten into normal form specification, or “Hoare-type” nondeterminism [4] into
— suppose thatt; = V,ca(a)®, € NF and®; = the process system, enabling a treatment similar to the
Vep(B)®); € NF. Using 2,3,7,8,9 and 23 we obtain safety case—maintaining our identification of properties

@ = A, Va((a)Pa — (8)P)). as filters. But more generally it remains to be seen
For eacha € A, &, € NF’', hence- ——®, by lemma how these ideas can cope with various extensions of the
1. Using 26 we can obtain process language, primarily external choice.

F® o A Va(Bla))(Ra — ).
By the inner induction hypothesis we can obtain for eachAcknowledgements. The present work was supported
a€A BeEBav,;=d, — ‘I’/ﬁ st 0,4 € NF. by the Danish Technical Research Council, grant no. 16-

By thm. 8 we obtain- & < A, \s(Ba~1)Ta 4. We 3809.E. Thanks to my Ph.D. supervisor, Colin Stirling
can assume. that for alt € A ?herﬁe is a3 g% st for innumerable valuable discussions on the subject.

v, 3 #L, for otherwiset- & — 1L and we are done. By
19 we obtain APPENDIX



Proof of theorem 2: First check, that for each ¢
{1,2,3}, D; € C;. Next each mappingf : D; — A,
determines a unique mappingf, from finite, nonempty
sets of (irredundant) paths intd, defined by

fT({Slv s 7571})
= flci({s1,-- -, sn}))
= flci({s1}) ®a--- ®acli({sn})),
for n > 1. Further,f is a homomorphism ifff satisfies
L fT({s1, o sn)) = FT{s1}) @a- - @a fTi({sn)),
forn > 1,
i. fT({{.0)}) = 0.4,
ii. fT({{e,1)}) = 14, and
iv. fT({{aa,5)}) = aa(fT({{a,5)}),

and any suclf’ determinesf. The “only if” direction is

straigthforward. For the converse direction, note first tha

any element in the range gf' is equal to a suny. X,

for X afinite, nonempty set dfaceswhich are elements

obtainable using only, 1 and operatorgx €Act. Next
note that whenevetl;(S1) = cl;(S2), for Sy, Sy finite,
nonempty, thenf(S1) = £1(Sy). Thirdly, if s;, s, are
paths, andf' satisfies i.—iv.,fT({sy - s2}) = fT({s1}) -

fT({s2}). Then we check, thaf is a homomorphism—

we take only the case for
f(Sl . SQ) = fT({Sl - 89 | S1 € 51,82 € Sé,Si(Sé)
is finite and generateS; (S2)})
=2 a{fT({s1-52}) | 51 € S7, 50 € S5}
=2 A{T{s1}) - fI({s2}) | 51 € 51,
So € Sé}
=Y a{s1-s2]|s1(s2) a trace of
FHSD(F1(55))}
= f1(SD) - f1(8%)
= f(51) - f(S2).
Then we are done, for i.—iv. determing$, and hence
f, uniquely. The check, that preserves<; is straight-
forward.

Proof of theorem 3. Thm. 2 gives homomorphisms

[-li - P — D; for eachi € {1,2,3}. We must show

these semantics to be fully abstract, i.e. that for all

p,q € P, p =i qiff [p]i <ilqli i € {1,2,3}. For the

if-direction it suffices to show the (in-)equations valid
w.r.t. the <; — this is straightforward. For the converse
direction note first that there are obvious relations of

“may” and “must”, inducing the relations?, defined

=AY

on the D;. Using thm. 2 and the if-direction it may

be shown thatp =; ¢ iff [p]; <P

(2

lq];- To complete

the proof we assumép]; £; [¢]; and show that then
[pl: AP [q];- The case fori = 3 reduces to those for

i € {1,2}. We outline the proof foi = 2. So, letSy, So

on the complexity of the least generating subsetaf
We take only the case where = (asas,j2). Then
every s; € S; must have the form eithes; = (¢,1)
or s1 = {(a1a1,71). As Sy is f.g. we can find a finite,
nonempty setd CAct s.t.S; must > A andasy € A. For
k=1,2letS, = {{(a, k)| (k) € Sp}. If ST =0 all
we have to do is to find a test, s.t. notS; must ¢,,. If
S| # 0 note thatS7, S5 € Dy and thatS] %o S5. It may
be seen, that the complexity of, is strictly less than

that of Sy, hence we can apply the inductive hypothesis

to find a test,, s.t. S] must ¢,, and notS, must ¢,,.
This is then combined witll, obtaining a test separating
S1 and Sy, and we are done.
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