
Toward Parametric Veri�cation of OpenDistributed Systems?Mads Dam, Lars-�ake Fredlund, and Dilian GurovSwedish Institute of Computer Science??Abstract. A logic and proof system is introduced for specifying andproving properties of open distributed systems. Key problems that areaddressed include the veri�cation of process networks with a changinginterconnection structure, and where new processes can be continuouslyspawned. To demonstrate the results in a realistic setting we considera core fragment of the Erlang programming language. Roughly thisamounts to a �rst-order actor language with data types, bu�ered asyn-chronous communication, and dynamic process spawning. Our aim is toverify quite general properties of programs in this fragment. The speci�-cation logic extends the �rst-order �-calculus with Erlang-speci�c prim-itives. For veri�cation we use an approach which combines local modelchecking with facilities for compositional veri�cation. We give a speci�-cation and veri�cation example based on a billing agent which controlsand charges for user access to a given resource.1 IntroductionA central feature of open distributed systems as opposed to concurrent systemsin general is their reliance on modularity. Open distributed systems must accom-modate addition of new components, modi�cation of interconnection structure,and replacement of existing components without a�ecting overall system be-haviour adversely. To this e�ect it is important that component interfaces areclearly de�ned, and that systems can be dynamically put together relying onlyon component behaviour along these interfaces. That is, behaviour speci�cationof open distributed systems, and hence also their veri�cation, cannot be basedon a �xed systems structure but needs to be parametric on the behaviour of com-ponents. Almost all prevailing approaches to veri�cation of such systems rely onan assumption that process networks are static, or can safely be approximatedas such, as this assumption opens up for the possibility of bounding the space ofglobal system states. Clearly such assumptions square poorly with the dynamicand parametric nature of open distributed systems.? Work partially supported by the Computer Science Laboratory of Ericsson TelecomAB, Stockholm, the Swedish National Board for Technical and Industrial Develop-ment (NUTEK) through the ASTEC competence centre, and a Swedish Foundationfor Strategic Research Junior Individual Grant.?? Address: SICS, Box 1263, S-164 28 Kista, Sweden. Email: fmfd,fred,diliang@sics.se.

Core Erlang Our aim in this paper is to demonstrate an approach to systemspeci�cation and veri�cation that has the potentiality of addressing open dis-tributed systems in general. We study the issue in terms of a core fragment ofEricsson's Erlang programming language [AVWW96] which we call Core Erlang.Core Erlang is essentially a �rst-order actor language (cf. [AMST97]). The lan-guage has primitives for local computation: data types, �rst-order abstractionand pattern matching, and sequential composition. In addition to this Core Er-lang has a collection of primitives for component (process) coordination: sendingand receiving values between named components by means of ordered messagequeues, and for dynamically creating new components.Speci�cation Language We use a temporal logic based on a �rst-order exten-sion of the modal �-calculus for the speci�cation of component behaviour. Inthis logic it is possible to describe a wide range of important system properties,ranging from type-like assertions to complex interdependent safety and livenessproperties. The development of this logic is actually fairly uncontroversial: Toadequately describe component behaviour it is certainly needed to express po-tentialities of actions across interfaces and the necessary and contingent e�ects ofthese actions, to express properties of data types and properties of componentsdepending on values, to access component names, and to express properties ofmessages in transit.Challenges The real challenge is to develop techniques that allow such temporalproperties to be veri�ed in a parametric fashion in face of the following basicdi�culties:1. Components can dynamically create other components.2. Component names can be bound dynamically, thus dynamically changingcomponent interconnection structure (similar to the case of the �-calculus[MPW92]).3. Components are connected through unbounded message queues.4. Through use of non-tail recursion components can give rise to local statespaces of unbounded size.5. Basic data types such as natural numbers and lists are also unbounded.We would expect some sort of uniformity in the answers to these di�culties.For instance, techniques for handling dynamic process creation are likely tobe adaptable to non-tail recursive constructions quite generally, and similarlymessage queues is just another unbounded data type.Approach In [Dam98] an answer to the question of dynamic process creationwas suggested, cast in terms of CCS. Instead of closed correctness assertions ofthe shape s : � (s is a system, � its speci�cation) which are the typical objectsof state exploration based techniques, the paper considered more general opencorrectness assertions of the shape � ` s : � where � expresses assumptionsS : on components S of s. Thus the behaviour of s is speci�ed parametricallyupon the behaviour of its component S. To address veri�cation, a sound and

weakly complete proof system was presented, consisting of proof rules to reducecomplex proof goals to (hopefully) simpler ones, including a process cut rule bywhich properties of composite processes can be proved in terms of properties ofits constituent parts. The key, however, is a loop detection mechanism, namelya rule of discharge, that can under certain circumstances be applied to dischargeproof goals that are instances of proof goals that have already been encounteredduring proof construction. The combination of the rule of discharge with theprocess cut rule provides the power required to deal successfully with featuressuch as dynamic process creation.Our contribution in the present paper is to show how the approach of [Dam98]can be extended to address the di�culties enumerated above for a fragment of areal programming language, and to show the utility of our approach on a concreteexample exhibiting some of those di�culties. In particular we have resolved anumber of shortcomings of [Dam98] with respect to the rule of discharge.Example We use a running example based on the following scenario: A user wantsto access a resource paying for this using a given account. She therefore issues arequest to a resource manager which responds by dynamically creating a billingagent process to act as an intermediary between the user, the resource, and theuser's account. We view this scenario as quite typical of many security-criticalmobile agent applications.The user is clearly taking a risk by exposing her account to the resourcemanager and the billing agent. One of these parties might violate the trust putin him eg. by charging for services not provided, or by passing information tothird parties that should be kept con�dential. Equally the resource manager needto trust the billing agent (and to some minor extent the user). We show how thesystem can be represented in Core Erlang, how some critical properties can beexpressed, and outline a proof of the desirable property of the billing agent thatthe number of transfers from the user account does not exceed the number ofrequests to use the resource.Organisation The paper is organised as follows. Section 2 introduces the frag-ment of Erlang treated in the paper and presents an operational semantics forthe language. The following section focuses on the variant of the �-calculus usedas the speci�cation logic, providing examples as well as a formal semantics.Section 4 describes the local part of a proof system for verifying that an Er-lang system satis�es a speci�cation formalised in the �-calculus, and containsproofs of soundness for some proof rules introduced in the section. The rule ofdischarge is motivated in terms of two simple examples in section 5, and it isformally stated and proved sound in section 6. In section 7 we put the proofsystem to work on the billing example, outlining parts of a correctness proof.Finally, the paper ends with a discussion in section 8 on directions for furtherwork, and some concluding remarks.

2 Core ErlangWe introduce a core fragment of the Erlang programming language with dynamicnetworks of processes operating on data types such as natural numbers, lists,tuples, or process identi�ers (pid's), using asynchronous, �rst-order call-by-valuecommunication via unbounded ordered message queues called mailboxes. RealErlang has several additional features such as communication guards, exceptionhandling, modules, distribution extensions, and a host of built-in functions.Processes A Core Erlang system consists of a number of processes computing inparallel. Each process is named by a unique process identi�er pid of which weassume an in�nite supply. Pid's are created along with the processes themselves.Associated with a process is an Erlang expression e, i.e. the expression beingevaluated, and a mailbox, or input queue q, assumed to be of unbounded capacity.Messages are sent by addressing a data value to a receiving process, identi�edthrough its pid.De�nition 1 (Processes, System States). An Erlang process is a triplehe; pid ; qi, where e is an Erlang expression, pid is a process identi�er, and qis a message queue. An Erlang system state s is a set of processes such thathe; pid ; qi ;
e0; pid 0; q0� 2 s and he; pid ; qi 6=
e0; pid 0; q0� implies pid 6= pid 0. S isthe set of system states.We normally write system states using the grammar:s ::= he; pid ; qi j s k sunderstanding k as set union.As the amount of di�erent syntactical categories involved in the operationalsemantics and in the speci�cation logic is quite large, the following notationalconvention is useful.Convention 2. Corresponding small and capital letters are used to range overvalues, resp. variables over a given syntactical domain.Thus, as e.g. e is used to range over Erlang expressions, E is used to rangeover variables taking Erlang expressions as values.Erlang Expressions Besides expressions we operate with the syntactical cat-egories of matches m, patterns p, and values v. The abstract syntax of CoreErlang expressions is summarised as follows:e ::= V j self j op(e1; : : : ; en) je1 e2 j e1; e2 j case e of m j spawn(e1; e2) jreceive m end j e1!e2m ::= p1 ! e1; � � � ; pn ! enp ::= op(p1; :::; pn) j Vv ::= op(v1; :::; vn)

Here op ranges over a set of primitive constants and operations including zero 0,successor e+1, tupling fe1; e2g, the empty list [], list pre�x [e1je2], pid constantsranged over by pid , and atom constants ranged over by a, f , and g. In additionwe need constants and operations for message queues: A queue is a sequenceof values q = v1 � v2 � : : : � vn where � is the empty queue and q1 � q2 is queueconcatenation, assumed to be associative.Atoms are used to name functions. We reserve f and g for this purpose.Expressions are interpreted relative to an environment of function de�nitionsf(V1; : : : ; Vn) ! e, syntactic sugar for f �= fV1; : : : ; Vng ! e. Each functionatom f is assumed to be de�ned at most once in this environment.Intuitive Semantics The intuitive meaning of the Erlang operators, given in thecontext of a pid pid and a queue q, should be not too surprising:{ self evaluates to the pid pid of the process.{ op is a data type constructor: To evaluate op(e1; :::; en), e1 to en are evaluatedin left-to-right order.{ e1 e2 is application: First e1 is evaluated to a function atom1 f , then e2 isevaluated to a value v, and �nally the function de�nition of f is looked upand matched to v.{ e1; e2 is sequential composition: First e1 is evaluated (for its side-e�ect only),and then evaluation proceeds with e2 whose value is actually returned.{ case e of m is evaluated by �rst evaluating e to a value v, then matching vusing m. If several patterns in m match, the �rst one is chosen. Matching apattern pi of m against v can cause unbound variables to become bound inei2. In a function de�nition all free variables are considered as unbound.{ spawn(e1; e2) is the language construct for creating new processes. First e1is evaluated to a function atom f , then e2 to a value v, a new pid pid 0 isgenerated, and a process
(f v); pid 0; �� with that pid and an initially emptyqueue is spawned evaluating f v. The value of the spawn expression itself isthe pid pid 0 of the newly spawned process.{ receive m end inspects the process mailbox q and retrieves (and removes)the �rst element in q that matches any pattern of m. Once such an elementv has been found, evaluation proceeds analogously to case v of m.{ e1!e2 is sending: e1 is evaluated to a pid pid 0, then e2 to a value v, then v issent to pid 0, resulting in v as the value of the send expression.Example: Billing Agents In the introduction we gave a scenario for accessingprivate resources. As an example Core Erlang program, a function for managingsuch accesses (a resource manager) is shown below. Erlang variables are upper-case, while atoms are lower-case. Atoms are used to name functions (rm, lookupand billagent), but also as constant values for identifying the \type" of a partic-ular message (contract , contract ok , etc.), or for other synchronisation purposes(lookup ok and lookup nok).1 There is no construct for lambda-abstraction in Erlang.2 This is not quite the binding the convention of Erlang proper: There the �rst occur-rence of V in (case e1 of V ! e2); V can bind the second.

rm(ResList,BankPid,RAcc) !receivefcontract; fPu;UAccg;UserPidg !case lookup(Pu;ResList)) offlookup ok ; P rg !UserPid !fcontract ok ;spawn(billagent; (Pr;BankPid;RAcc;UAcc))g;lookup nok !UserPid !contract nokendend,rm(ResList, BankPid, RAcc).The resource manager rm accepts as arguments a resource list, the pid ofa trusted bank agent, and a private account. The resource list uses pairs toimplement a map from public to private resource \names"; given a public namePu, a function lookup(Pu;ResList) is used to extract the corresponding privatename Pr. The resource manager, after receiving a contract o�er (identifyingthe paying account UAcc), tries to obtain the private name of the requestedresource, and if this succeeds, a billing agent is spawned to mediate between theuser, the bank and the resource, and the name (i.e. pid) of the billing agent ismade known to the user. Figure 1 shows the system con�guration before andafter the creation of the billing agent.billagent(ResPid, BankPid, RAcc, UAcc) !receivefuse;UserPidg !Res!facquire; selfg;receivefacquire ok ;Valueg !BankPid !ftrans; fUAcc;RAccg; selfg;receiveftrans ok ; fUAcc;RAccgg ! UserPid !fuse ok ;Valueg;ftrans nok ; fUAcc;RAccgg ! UserPid !use nokend;acquire nok ! UserPid!use nokendend,billagent(ResPid ;BankPid ;RAcc;UAcc):The billing agent coordinates access to the resource with withdrawals fromthe account. Upon receiving a request for the resource fuse;UserPidg, it at-tempts to acquire the resource, and if this succeeds (resulting in a responseValue being received from the resource), it attempts to transfer money from theuser account to the resource manager account, and then sends the value to theuser.

(b)

(a)

rm

user res

bank

billagent res

bank

rm

user

contract

use acquire

trans

trans_ok

acquire_okuse_ok

contract_ok

Fig. 1. The system con�guration: (a) before, and (b) after spawning the billing agent

Matching The de�nition of the operational semantics requires an ancillary, en-tirely standard, de�nition to be made concerning pattern matching between avalue v and a pattern p. A term environment is a partial function � of variablesV to values v. The totally unde�ned term environment is []. The most generaluni�er, mgu(v; p; �), of v and p in term environment � is a term environmentde�ned as follows:mgu(v; V; �) �= � [V 7! v] if V 62 dom(�)mgu(v; V; �) �= � if V 2 dom(�) and � (V) = vmgu(op(v1; :::; vn); op(p1; :::; pn); �)�= mgu(v1; p1;mgu(v2; p2; :::;mgu(vn; pn; �):::))The equations should be understood as Kleene equations: One side of the equa-tion is de�ned if and only if the other side is, and if they are de�ned, the twosides are equal. It is not hard to show that the de�nition is independent of orderof uni�cation in the third clause of this de�nition. Term environments are liftedfrom functions on variables to functions on arbitrary terms in the usual way.� (e) is � applied to the term e. Now de�ne the relation v matches p to hold justin case mgu(v; p; []) is de�ned. If fV1; : : : ; Vng are the free variables in p then vmatches p can be expressed as the �rst-order formula 9V1; : : : ; Vn:p = v.Given a value v, a queue q = v1 � v2 � : : : � vm and a match m = p1 !e1 ; � � � ; pn ! en, we de�ne two matching operations to be used below:val-match(v;m) �= mgu(v; pi; [])(ei)if v matches pi and 8j < i. not(v matches pj)queue-match(q;m) �= mgu(vm ; pi; [])(ei)if vm matches pi and 8j < m. 8k. not(vj matches pk)and 8k < i. not(vm matches pk).Operational Semantics A reduction context r[�] is an Erlang expression with a\hole" in it. The reduction context de�nes the evaluation order of subexpressionsin language constructs; here from left to right3. The result of placing e in (thehole of) a context r[�] is denoted r[e]. Contexts are de�ned by the grammar:r[�] ::= �j op(v1; : : : ; vi�1; r[�]; ei+1; : : : ; en) for all i : 1 � i � nj r[�],ej r[�] e j f r[�]j case r[�] of m endj r[�]!e j pid !r[�]j spawn(r[�]; e) j spawn(f; r[�])3 An arbitrary simpli�cation. The full Erlang language does not specify any evaluationordering.

De�nition 3 (Operational semantics). The operational semantics of CoreErlang is de�ned by table 1.The rules de�ning the operational semantics of Core Erlang are separated intothree classes: the local rules concern classical, side-e�ect free, computation stepsof an Erlang expression, the process rules de�ne the actions of a single process(an Erlang expression with an associated pid and queue), and the system rulesgive the semantics of the parallel composition operator. In the rules \pid fresh"requires pid to be a new pid, and foreign(pid)(s) states that no process in thesystem state s has pid as its pid.3 The Property Speci�cation LogicIn this section we introduce a speci�cation logic for Core Erlang. The logic isbased on a �rst-order �-calculus, corresponding, roughly, to Park's �-calculus[Par76], extended with Erlang-speci�c features. Thus the logic is based on the�rst-order language of equality, extended with modalities re
ecting the transitioncapabilities of processes and process con�gurations, least and greatest �xpoints,along with a few additional primitives.Syntax Abstract formula syntax is determined by the following grammar whereZ ranges over predicate variables parametrised by value vectors.� ::= p = p j p 6= p j term(p) = p j queue(p) = p jlocal(p) j foreign(p) j atom(p) j unevaluated(p) j� ^ � j � _ � j 8V:� j 9V:� j<>� j <p?p>� j <p!p>� j []� j [p?p]� j [p!p]� jZ(p1; : : : ; pn) j(�Z(V1; : : : ; Vn):�)(p1; : : : ; pn) j (�Z(V1; : : : ; Vn):�)(p1; : : : ; pn)It is important to note that patterns p and value variables V in the case offormulas range not only over Erlang values, but also over message queues.Intuitive Semantics The intuitive meaning of formulas is given as follows:{ Equality, inequality, the Boolean connectives and the quanti�ers take theirusual meanings.{ The purposes of term(p1) = p2 and queue(p1) = p2 are to pick up thevalues of terms and queues associated with a given pid p1. term(p1) = p2requires p1 to equal the pid of a process which is part of the system statebeing predicated, and the Erlang expression associated with that pid to beidentical to p2. Similarly queue(p1) = p2 holds if the queue associated withp1 is equal to p2.{ atom(p) holds if p is equal to an atom.

Local rulesseq : v, e �! ecase : case v of m end �! val-match(v;m) if val-match(v;m) is de�ned.fun : f v �! case v of m end if f �=m.Process ruleslocal : hr[e];pid; qi �!
r[e0];pid; q� if e �! e0.self : hr[self];pid; qi �! hr[pid];pid; qispawn : hr[spawn(f; v)];pid; qi �!
r[pid 0];pid; q� k
f v;pid 0; �� if pid 0 fresh.send : hr[pid 0!v];pid; qi pid 0!v����! hr[v];pid; qi if pid 6= pid0.self{send : hr[pid!v];pid; qi �! hr[v];pid; q � vireceive : hr[receivem end];pid; q0 � v � q00i �!
r[queue-match(q0 � v;m)];pid; q0 � q00�if queue-match(q0 � v;m) is de�ned.input : he;pid; qi pid?v����! he;pid; q � vi for all values v.System rulescom : s1 k s2 �! s01 k s02 if s1 pid!v����! s01 and s2 pid?v����! s02.interleave1 : s1 k s2 �! s01 k s2 if s1 �! s01.interleave2 : s1 k s2 pid?v����! s01 k s2 if s1 pid?v����! s01.interleave3 : s1 k s2 pid!v����! s01 k s2 if s1 pid!v����! s01 and foreign(pid)(s2).Table 1. Operational semantics of Core Erlang

{ local(p) holds if p is equal to the pid of a process in the system state beingpredicated, and analogously foreign(p) holds if p is equal to a pid and thereis no process with pid p in the predicated system state.{ unevaluated(p) holds if local(p) does and the Erlang expression associatedwith p is not a ground value.{ <>� holds if an internal transition is enabled to a system state satisfying �.[]� is the dual of <>� (i.e. all states following an internal transition satisfy�). <p1!p2>� holds if an output transition with appropriate parameters isenabled to a state satisfying �, and <p1?p2>� is used similarly for inputtransitions.{ �Z(V1; : : : ; Vn):� is the least inclusive predicate Z satisfying the equation� = Z(V1; : : : ; Vn), while �Z(V1; : : : ; Vn):� is the most inclusive such predi-cate.As is by now well known, monotone recursive de�nitions in a complete Booleanlattice have least and greatest solutions. This is what motivates the existenceof predicates Z above. Greatest solutions are used, typically, for safety (i.e. in-variant) properties, while least solutions are used for liveness (i.e. eventuality)properties. For readability we often prefer the notation f(V1; : : : ; Vn) (� forde�ning explicitly a formula atom f which is to be applied to pattern vectors(p1; : : : ; pn), instead of the standard notation for least �xpoints, and similarlyf(V1; : : : ; Vn)) � for greatest ones. In such de�nitions all value variables oc-curring freely in � have to be in V1; : : : ; Vn.We use standard abbreviations like true, false and 8V1; : : : ; Vn:�. It is possibleto de�ne a de Morganised negation not, by the standard clauses along withclauses for the Erlang speci�c atomic propositions term(p1) = p2, queue(p1) =p2, local(p), foreign(p), or unevaluated(p). This is an easy exercise given theformal semantics in table 2 below.De�nition 4 (Boolean Formula). A formula � is boolean if it has no oc-currences of modal operators, neither occurrences of any of the Erlang-speci�catomic propositions term(p1) = p2, queue(p1) = p2, local(p), foreign(p), orunevaluated(p).Boolean formulas are important as they either hold globally or not at all.The formal semantics of formulas is given as a set k � k � � S, where � isa valuation providing interpretations for variables (value variables, or predicatevariables). We use the standard notation �fv=V g for updating � so that thenew environment maps V to v and acts otherwise as �. Predicate maps f :(v1; : : : ; vn) 7! A � S are ordered by � de�ned as subset containment liftedpointwise.De�nition 5 (Formula semantics). The semantics of formulas is de�ned bytable 2, where in the last two de�ning equations, M (f)(v1; : : : ; vn) �= k � k�ff=Z; v1=V1; : : : ; vn=Vng:

k p1 = p2 k� �= fs j p1� = p2�gk p1 6= p2 k� �= fs j p1� 6= p2�gk term(p1) = p2 k� �= fhp2�; p1�; qi k s j p1� is a pidgk queue(p1) = p2 k� �= fhe; p1�; p2�i k s j p1� is a pidgk local(p) k� �= fhe; p�; qi k s j p� is a pidgk foreign(p) k� �= fs j p� is a pid that does not belong to a process in sgk atom(p) k� �= fs j p� is an atomgk unevaluated(p) k� �= fhe; p�; qi k s j e is not a ground value; p� is a pidgk �1 ^ �2 k� �= k �1 k� \ k �2 k�k �1 _ �2 k� �= k �1 k� [k �2 k�k 8V:� k� �= T fk � k�fv=V g j v a valuegk 9V:� k� �= S fk � k�fv=V g j v a valuegk <>� k� �= fs j 9 s0 2 k � k�: s �! s0gk <p1?p2>� k� �= fs j 9 s0 2 k � k�: s p1�?p2�������! s0gk <p1!p2>� k� �= fs j 9 s0 2 k � k�: s p1�!p2������! s0gk []� k� �= fs j 8 s0: s �! s0 implies s0 2 k � k�gk [p1?p2]� k� �= fs j 8 s0: s p1�?p2�������! s0 implies s0 2 k � k�gk [p1!p2]� k� �= fs j 8 s0: s p1�!p2������! s0 implies s0 2 k � k�gk Z(p1; : : : ; pn) k� �= (Z�)(p1�; : : : ; pn�)k (�Z(V1; : : : ; Vn):�)(p1; : : : ; pn) k��= (T ff j M(f) � fg) (p1�; : : : ; pn�)k (�Z(V1; : : : ; Vn):�)(p1; : : : ; pn) k��= (S ff j f �M(f)g) (p1�; : : : ; pn�)Table 2. Formula Semantics

Example Formulas The combination of recursive de�nitions with data typesmakes the logic very expressive. For instance, the type of natural numbers is theleast set containing zero and closed under successor. The property of being anatural number can hence be de�ned as a least �xpoint:nat(P)(P = 0 _ 9V:(nat(V) ^ P = V + 1) (1)Using this idea quite general
at data types can be de�ned. One can also de-�ne \weak" modalities that are insensitive to the speci�c number of internaltransitions in the following style:[[]]�) � ^ [][[]]� [[V !V 0]]� �= [[]][V !V 0][[]]�<<>>�(� _<><<>>� <<V !V 0>>� �= <<>><V !V 0><<>>�Observe the use of formula parameters, and the use of �= for non-recursivede�nitions. A temporal property like always is also easily de�ned:always(�))� ^ []always(�) ^ 8V; V 0:[V ?V 0]always(�) ^ 8V; V 0:[V !V 0]always(�) (2)The de�nition of always illustrates the typical shape of behavioural properties:one mixes state properties (�) with properties concerning program transitions,separated into distinct cases for internal transitions (i.e. []always(�)), inputtransitions and output transitions.Eventuality operators are more delicate as progress is in general only madewhen internal or output transitions are taken. This can be handled, though, bynesting of minimal and maximal de�nitions.Billing Agents: Speci�cation We enumerate some desired properties of the billingagent system introduced in the previous section.Disallowing spontaneous account withdrawals. The �rst correctness requirementforbids spontaneous withdrawals from the user account by the billing agent. Thisimplies the invariant property that the number of attempts for transfers fromthe user account should be less than or equal to the number of requests for usingthe resource:safe(Ag;BankPid;UAcc;N))[]safe(Ag;BankPid;UAcc;N)^ 8P;V:[P?V]0@ isuse(P;V;Ag) ^ safe(Ag;BankPid;UAcc;N + 1)_ not(isuse(P;V;Ag)) ^ safe(Ag;BankPid;UAcc;N)_ contains(V;UAcc) 1A^ 8P;V:[P !V]� istrans(P;V;BankPid;UAcc) ^N > 0 ^ safe(Ag;BankPid;UAcc;N � 1)_ not(istrans(P;V;BankPid;UAcc)) ^ safe(Ag;BankPid;UAcc;N) �

where the predicates isuse and istrans recognise resource requests and moneytransfers: isuse(P;V;Ag) �= P = Ag ^ 9Pid:V = fuse;Pidgistrans(P;V;BankPid;UAcc) �=P = BankPid ^ (9Pid ;Acc: V = ftrans; fUAcc;Accg;Pid)So, a billing agent with pid Ag, pid of a trusted bank agent BankPid , anduser account UAcc is de�ned to be safe if the di�erence N between the num-ber of requests for using the resource (messages of type fuse; P idg receivedin the process mailbox) and the number of attempts for transfers from theuser account (messages of type ftrans; fUAcc;Accg; pidg sent to BankPid) isalways non-negative. Since this di�erence is initially equal to zero, we expectbillagent(ResPid ;BankPid ;RAcc;UAcc) to satisfy safe(Ag;BankPid ;UAcc; 0).The predicate contains(v; v0) is de�ned via structural induction over an Erlangvalue (or queue) v and holds if v0 is a component of v (such as v being a tuplev = fv1; v2g and either v = v0 or contains(v1; v0) or contains(v2; v0)). We omitthe easy de�nition.Expected Service is Received. Other interesting properties concern facts like: De-nial of service responses correspond to failed money transfers, and returning theresource to the proper user. These sorts of properties are not hard to formalisein a style similar to the �rst example.Preventing Abuse by a Third Party.The payment scheme presented here dependscrucially on the non-communicationof private names. For instance, even if we canprove that a resource manager or billing agent does not make illegal withdrawalsnothing stops the resource manager from communicating the user account keyto a third party, that can then access the account in non-approved ways.Thus we need to prove at least that the system communicates neither theuser account key nor the agent process identi�er. Perhaps the service user alsorequests that her identity not be known outside of the system, in such a case thereturn process identi�ers may not be communicated either. As an example, theproperty that the system does not communicate the user account key is capturedby notrans(UAcc) given the de�nition below.notrans(A)) [] notrans(A)^ 8V; V 0:[V ?V 0] (contains(V 0; A) _ notrans(A))^ 8V; V 0:[V !V 0] (not(contains(V 0; A)) ^ notrans(A))4 Proof System, Local RulesIn this section we give the formal semantics of sequents, present the most im-portant rules of the proof system and establish the soundness of the proof rules.Consideration of �xed points and discharge is delayed until later.

Sequents We start by introducing the syntax and semantics of sequents.De�nition 6 (Sequent, Sequent Semantics).1. An assertion is a pair s : �. An assumption is an assertion of the shapeeither S : � or hE;P;Qi : �.2. A valuation � is said to validate an assertion s : � when s� 2k � k �.3. A sequent is an expression of the shape � ` � where � is a multiset ofassumptions, and � is a multiset of assertions.4. The sequent � ` � is valid, written � j= �, provided for all valuations�, if all assumptions in � are validated by �, then some assertion in � isvalidated by �.We use standard notation for sequents. For instance we use comma for mul-tiset union, and identify singleton sets with their member. Thus, for instance,�; S : � is the same multiset as � [fS : �g.Boolean formulas are independent of the system state being predicated. Thus,when � is boolean we often abbreviate an assertion like s : � as just �.Proof Rules The Gentzen-type proof system comes in a number of installments.1. The structural rules govern the introduction, elimination, and use of asser-tions.2. The logical rules introduce the logical connectives to the left and to the rightof the turnstile.3. The equality rules account for equations and inequations.4. The atomic formula rules control the Erlang-speci�c atomic formulas suchas the term and queue extractors, predicates such as local and foreign,etc.5. Finally the modal rules account for the modal operators.It should be noted that, as we for now lack completeness results, the selectionof rules which we present is to some extent arbitrary. Indeed some rules havedeliberately been left out of this presentation for reasons of space. This is thecase, in particular, for the groups (4) and (5). We comment more on this below.Moreover, because of the lack of completeness or syntactical cut-eliminationresults, we know little about admissibility of several rules such as Cut below.Structural RulesId �; s : � ` s : �;� Bool Id �; � ` �;� � BooleanWeakL � ` ��; s : � ` � WeakR � ` �� ` s : �;�ContrL �; s : �; s : � ` ��; s : � ` � ContrR � ` s : �; s : �;�� ` s : �;�

Cut � ` s : �;� �; s : � ` �� ` �ProcCut � ` s1 : ;� �; S : ` s2 : �;�� ` s2fs1=Sg : �;� S freshObserve that the standard cut rule is not derivable from the process cut rule asin Cut the system state s might appear in � or �.Logical RulesAndL �; s : �1; s : �2 ` ��; s : �1 ^ �2 ` � AndR � ` s : �1;� � ` s : �2;�� ` s : �1 ^ �2;�OrL �; s : �1 ` � �; s : �2 ` ��; s : �1 _ �2 ` � OrR � ` s : �1; s : �2;�� ` s : �1 _ �2;�AllL �; s : �fv=V g ` ��; s : 8V:� ` � AllR � ` s : �;�� ` s : 8V:�;� V freshExL �; s : � ` ��; s : 9V:� ` � V fresh ExR � ` s : �fv=V g;�� ` s : 9V:�;�We claim that for the full proof system the left and right not introduction rulesNotL �; s : not � ` �� ` s : �;� NotR � ` s : not �;��; s : � ` �are derivable. Given this a number of other useful rules such as the rule ofcontradiction Contrad � ` s : �;� � ` s : not �;�� ` �become easily derivable as well.Equality Rules For the rules which follow recall that op ranges over data typeconstructors like zero, successor, unit, binary tupling, etc.Re
 � ` p = p;�Subst �fp1=V g ` �fp1=V g�fp2=V g; p1 = p2 ` �fp2=V gConstrIneq op 6= op0�; op(p1; : : : ; pn) = op0(p01; : : : ; p0n0) ` �ConstrEqL �; pi = p0i ` ��; op(p1; : : : ; pn) = op(p01; : : : ; p0n) ` �ConstrEqR � ` p1 = p01;� � � � � ` pn = p0n;�� ` op(p1; : : : ; pn) = op(p01; : : : ; p0n);�

Atomic Formula Rules For the Erlang-speci�c primitives we give only a samplehere, of rules governing the term and queue extraction constructs.TermL �;E = p ` ��; hE;Pid; Qi : term(Pid) = p ` �TermR � ` p1 = p2;�� ` hp1; pid ; qi : term(pid) = p2;�ParTerm � ` s1 : term(p1) = p2;�� ` s1 k s2 : term(p1) = p2;�QueueL �;Q = p ` ��; hE;Pid; Qi : queue(Pid) = p ` �QueueR � ` p2 = p3;�� ` hp1; pid ; p2i : queue(pid) = p3;�ParQueue � ` s1 : queue(p1) = p2;�� ` s1 k s2 : queue(p1) = p2;�Modal Rules The rules governing the modal operators come in three
avours:Monotonicity rules that capture the monotonicity of the modal operators asunary functions on sets, transition rules (\model checking-like rules") that provemodal properties for closed system states by exploring the operational semanticstransition relations, and compositional rules that decompose modal propertiesof composite system states in terms of modal properties of their components.Monotonicity Rules The monotonicity rules are similar to well-known rules fromstandard Gentzen-type accounts of modal logic. Let � stand for either no labelor for a label of the form p1?p2 or p1!p2.Mon1 �; S : �;S : �1; : : : ; S : �m ` S : 1; : : : ; S : n;��; s : <�>�; s : [�]�1; : : : ; s : [�]�m ` s : <�> 1; : : : ; s : <�> n;� S freshMon2 �;S : �1; : : : ; S : �m ` S : ; S : 1; : : : ; S : n;��; s : [�]�1; : : : ; s : [�]�m ` s : [�] ; s : <�> 1; : : : ; s : <�> n;� S freshTransition Rules The transition rules explore symbolic versions of the opera-tional semantics transition relations. These relations have the shapes pre; �; post��������! s0where pre is a (�rst-order) precondition for �ring the transition from s to s0, � (asabove) is the transition label, and post is the resulting (�rst-order) postconditionin terms of e.g. variable bindings. Since the transformation of the semantics in

table 1 to a symbolic one is straightforward, we will only give a single exampleof the transformation where the original rulesend :
r[pid 0!v]; pid; q� pid 0!v����! hr[v]; pid ; qi if pid 6= pid0becomes the symbolic rulesends :
r[pid 0!v]; pid; q� pid 6= pid 0; pid 0!v; true�����������������! hr[v]; pid ; qi :The transition rules now become the following two:Diamond �; pre; post ` s0 : � � ` pre s pre; �; post��������! s0� ` s : <�>�Box f�; � = �0; pre; post ` s0 : � j s pre; �0; post���������! s0g� ` s : [�]�In the rule Box we use � = �0 as an abbreviation. If � and �0 have di�erent sorts(e.g. � is empty and �0 is not) then � = �0 abbreviates false. If � and �0 are bothempty, � = �0 abbreviates true. If � and �0 are both send actions, e.g. � = p1!p2and �0 = p01!p02 then � = �0 abbreviates the conjunction p1 = p01 ^ p2 = p02. Asimilar condition holds if � and �0 are both input actions.Compositional Rules We give rules for inferring modal properties of compositesystem states s1 k s2 in terms of modal properties of the parts s1 and s2.DiaPar1 �; S1 : �; S2 : ` S1 k S2 : �;��; s1 : <p1!p2>�; s2 : <p1?p2> ` s1 k s2 : <>�;� S1; S2 freshDiaPar2 �; S : � ` S k s2 : ;��; s1 : <>� ` s1 k s2 : <> ;� S freshDiaPar3 �; S : � ` S k s2 : ;��; s1 : <p1?p2>� ` s1 k s2 : <p1?p2> ;� S freshDiaPar4 �; S : � ` S k s2 : ;� � ` s2 : foreign(p1)�; s1 : <p1!p2>� ` s1 k s2 : <p1!p2> ;� S fresh

BoxPar1
�; S1 : �1 ` S1 : [] [];��; S1 : []; s2 : �2 ` S1 k s2 : ��; S2 : �2 ` S2 : [] �[];��; s1 : �1; S2 : �[] ` s1 k S2 : ��; S1 : �1 ` S1 : [V !V 0] [V !V 0];��; S2 : �2 ` S2 : [V ?V 0] �[V ?V 0];��; S1 : [V !V 0]; S2 : �[V ?V 0] ` S1 k S2 : ��; S1 : �1 ` S1 : [V ?V 0] [V ?V 0];��; S2 : �2 ` S2 : [V !V 0] �[V !V 0];��; S1 : [V ?V 0]; S2 : �[V !V 0] ` S1 k S2 : ��; s1 : �1; s2 : �2 ` s1 k s2 : [] �;� S1; S2; V; V 0 freshBoxPar2 �; S1 : �1 ` S1 : [p1?!p2] [p1?!p2];��; S1 : [p1?!p2]; s2 : �2 ` S1 k s2 : ��; S2 : �2 ` S2 : [p1?!p2] �[p1?!p2];��; s1 : �1; S2 : �[p1?!p2] ` s1 k S2 : ��; s1 : �1; s2 : �2 ` s1 k s2 : [p1?!p2] �;� S1; S2 freshThe last two rules are less complex than they appear. They just represent theobvious case analyses needed to infer the �-indexed necessity properties stated intheir conclusions. For instance in the case where � is empty it is clearly requiredto analyse all cases where either{ s1 performs an internal transition and s2 does not,{ s2 performs an internal transition and s1 does not,{ s1 performs a send action and s2 performs a corresponding receive action,and{ s2 performs a send action and s1 performs a corresponding receive action.In fact, the last two rules are simpli�ed versions of more general rules havingmultiple assumptions about s1 and s2 in the conclusion. However, a formal state-ment of these rules, while quite trivial, becomes graphically rather unwieldy.Observe that these rules deal only with composite system states of the forms1 k s2. Related compositional rules are needed also for singleton processeshe; pid ; qi, to decompose properties of e in terms of properties of its constituentparts. For closed processes, however, and for tail-recursive programs e (as is thecase in the main example considered later), the transition rules are quite ade-quate, and so this collection of compositional proof rules for sequential processesis not considered further in the present paper.Theorem 1 (Local Soundness). Each of the above rules is sound, i.e. theconclusion is a valid sequent whenever all premises are so and all side conditionshold.Proof. Here we show soundness of the more interesting rules only; the proofs ofthe remaining rules are either standard or similar to these.

Rule ProcCut. Assume the premises of the rule are valid sequents. Assumeall assumptions in � are validated by some arbitrary valuation �. Then validityof the �rst premise implies that also some assertion in s1 : ;� is validated by�. Since S is fresh (i.e. not free in � or �) and since s1� equals S�fs1�=Sg,some assertion in S : ;� is validated by �fs1�=Sg. Then either some assertionin � is validated by �fs1�=Sg, or all assertions in �; S : are validated by�fs1�=Sg. In the latter case, the validity of the second premise implies that alsosome assertion in s2 : �;� is validated by �fs1�=Sg. Since S is fresh and sinces2�fs1�=Sg equals s2fs1=Sg�, some assertion in s2fs1=Sg : �;� is validated by�. Hence the conclusion of the rule is also a valid sequent.Rule Mon1. Assume the premise of the rule is a valid sequent. Assume allassumptions in �; s : <�>�; s : [�]�1; : : : ; s : [�]�m are validated by �. Then,according to the semantics of the "diamond" and "box" modalities, there isa closed system state s0 such that s� ����! s0 and s0 satis�es all formulas in�; �1; : : : ; �m under �. Since s0 equals S�fs0=Sg, and since S is fresh, all as-sumptions in �; S : �; S : �1; : : : ; S : �m are validated by �fs0=Sg. By validityof the premise, some assertion in S : 1; : : : ; S : n;� is also validated by�fs0=Sg. This means that either some assertion in � is validated by �, or s0satis�es some formula in 1; : : : ; n under �, and consequently some assertionin s : <�> 1; : : : ; s : <�> n;� is validated by �. Hence the conclusion of therule is also a valid sequent.RuleDiaPar1. Assume the premise of the rule is valid. Assume all assumptionsin �; s1 : <p1!p2>�; s2 : <p1?p2> are validated by �. Then there are closedsystem states s0 and s00 such that s1� p1�!p2������! s0 2k � k � and s2� p1�?p2�������!s00 2k k �. Since s0 equals S1�fs0=S1; s00=S2g and s00 equals S2�fs0=S1; s00=S2g,and since S1 and S2 are fresh, all assumptions in �; S1 : �; S2 : are validatedby �fs0=S1; s00=S2g. Then, by validity of the premise, some assertion in S1 kS2 : �;� is also validated by �fs0=S1; s00=S2g. As a consequence, either someassertion in � is validated by �, or s0 k s00 2k � k �. In the latter case we haves1� k s2� �! s0 k s00 2k � k �, and therefore some assertion in s1 k s2 : <>�;�is validated by �. Hence the conclusion of the rule is also valid.Rule BoxPar1. The proof is along the lines of the preceding ones and shall onlybe sketched here. Assume the premises to the rule are valid sequents. Assumeall assumptions in �; s1 : �1; s2 : �2 are validated by �. Then, from the �rsttwo premises it follows that either some assertion in � is validated by �, or itis the case that for every closed system state s such that s1� �! s, processs k s2� satis�es � under �. Similarly, the next two assumptions imply thats1� k s satis�es � under � whenever s2� �! s. From the next group of threeassumptions we obtain that s0 k s00 satis�es � under � whenever s1� v0!v00���! s0and s2� v0?v00����! s00 for some values v0 and v00. The last three premises imply thats0 k s00 satis�es � under � whenever s1� v0?v00����! s0 and s2� v0!v00���! s00 for somevalues v0 and v00. As a consequence of these relationships, either some assertionin � is validated by �, or every closed system state s such that s1� k s2� �! s

satis�es � under �. Hence, some assertion in s1 k s2 : [] �;� is validated by �,and therefore the conclusion of the rule is valid. ut5 Inductive and Coinductive ReasoningTo handle recursively de�ned formulas some mechanisms are needed for success-fully terminating proof construction when this is deemed to be safe. We discussthe ideas on the basis of two examples.Example 1 (Coinduction). Consider the following Core Erlang function:stream(N;Out)! Out !N; stream(N + 1;Out):which outputs the increasing stream N , N + 1, N + 2, . . . along Out. The spec-i�cation of the program could be that it can always output some value alongOut: stream spec(Out) = always(9X:<<Out !X>>true)The goal sequent takes the shapeOut 6= P ` hstream(N;Out); P;Qi : stream spec(Out): (3)That is, assuming Out 6= P (since otherwise output will go to the streamprocess itself), and started with pid P and any input queue Q, the propertystream spec(Out) will hold. The �rst step is to unfold the formula de�nition.This results in a proof goal of the shapeOut 6= P ` hstream(N;Out); P;Qi : always(9X:<<Out !X>>true): (4)Using the proof rules (4) is easily reduced to the following subgoals:Out 6= P ` hstream(N;Out); P;Qi : <<Out!N>>true (5)Out 6= P ` hstream((N + 1); Out); P;Qi : always(9X:<<Out !X>>true) (6)Out 6= P ` hstream(N;Out); P;Q � V 0i : always(9X:<<Out !X>>true): (7)Proving (5) is straightforward using the local proof rules and �xed point unfold-ing. For (6) and (7) we see that these goals are both instances of a proof goal,namely (4), which has already been unfolded.Continuing proof construction in example 1 beyond (6) and (7) is clearlyfutile: The further information contained in these sequents compared with (4)does not bring about any new potentiality for proof. So we would like the nodes(6) and (7) to be discharged, as this happens to be safe. This is not hard to see:The �xed point � = always(9V:<<Out !V >>true)can only appear at its unique position in the sequent (6) because it did so in thesequent (4). We can say that � is regenerated along the path from (4) to (6).

Moreover, always constructs a greatest �xed point formula. It turns out thatthe sequent (6) can be discharged for these reasons. In general, however, �xedpoint unfoldings are not at all as easily analysed. Alternation is a well-knowncomplication. The basic intuition, however, is that in this case sequents can bedischarged for one of two reasons:1. Coinductively, because a member of � is regenerated through a greatest�xed point formula, as in example 1.2. Inductively, because a member of � is regenerated through a least �xed pointformula.Intuitively the assumption of a least �xed point property can be used to de-termine a kind of progress measure ensuring that loops of certain sorts musteventually be exited. This signi�cantly increases the utility of the proof system.For instance it allows for datatype induction to be performed.Example 2 (Induction). Consider the following function:stream2(N + 1; Out)! Out!N; stream2(N;Out)which outputs a decreasing stream of numbers along Out. If N is a naturalnumber, stream2 has the property that, provided it does not deadlock, it willeventually output zero along Out. This property can be formalised as follows:evzero(Out)([]evzero(Out) ^ 8V:[Out!V](V = 0 _ evzero(Out))The goal sequent isOut 6= P; nat(N) ` hstream2(N + 1; Out); P;Qi : evzero(Out) (8)where nat is de�ned in (1). The least �xed point appearing in the de�nition ofnat will be crucial for discharge later in the proof. By unfolding the functionaccording to its de�nition we obtain the sequent:Out 6= P; nat(N) ` h(Out!N; stream2(N;Out)); P;Qi : evzero(Out)Now the formula has to be unfolded, resulting in a conjunction and hence intwo sub-goals. The �rst of these is proved trivially since the system state can-not perform any internal transition when Out 6= P . The second sub-goal, afterhandling the universal quanti�er, becomes:Out 6= P; nat(N)` h(Out!N; stream2(N;Out)); P;Qi : [Out!V](V = 0 _ evzero(Out)) (9)By following the output transition enabled at this state we come a step closerto showing that zero is eventually output along Out:Out 6= P; nat(N); N = V ` hstream2(N;Out); P;Qi : V = 0; evzero(Out) (10)

In the next step we perform a case analysis on N by unfolding nat(N). Thisresults in a disjunction on the left amounting to whether N is zero or not, andyields the two sub-goals:Out 6= P;N = 0; N = V ` hstream2(N;Out); P;Qi : V = 0 (11)Out 6= P; nat(N 0); N = N 0 + 1; N = V` hstream2(N;Out); P;Qi : evzero(Out) (12)The �rst of these is proved trivially. The second can be simpli�ed to:Out 6= P; nat(N 0) ` hstream2(N 0 + 1; Out); P;Qi : evzero(Out) (13)This sequent is an instance of the initial goal sequent (8). Furthermore, it wasobtained by regenerating the least �xpoint formula nat(N) on the left. Thisprovides the progress required to discharge (13).Finitary data types in general can be speci�ed using least �xpoint formulas.This allows for termination or eventuality properties of programs to be provenalong the lines of the above example. In a similar way we can handle programproperties that depend on inductive properties of message queues.6 Proof Rules for Recursive FormulasThe approach we use to handle �xed points, and capture the critical notionsof \regeneration", \progress", and \discharge" is, essentially, formalised well-founded induction. When some �xed points are unfolded, notably least �xedpoints to the left of the turnstile, and greatest �xed points to the right of theturnstile, it is possible to pin down suitable approximation ordinals providing, forleast �xed points, a progress measure toward satisfaction and, for greatest �xedpoints, a progress measure toward refutation. We introduce explicit ordinal vari-ables which are maintained, and suitably decremented, as proofs are elaborated.This provides a simple method for dealing with a variety of complications suchas alternation of �xpoints and the various complications related to duplicationand interference between �xed points that are dealt with using the much moreindirect approach of [Dam98].We �rst pin down some terminology concerning proofs. A proof structure isa �nite, rooted, sequent-labelled tree which respects the proof rules in the sensethat if � is a proof node labelled by the sequent �, and if �1; : : : ; �n are thechildren of � in left to right order labelled by �1; : : : ; �n then�1 � � � �n�is a substitution instance of one of the proof rules. A node � is elaborated if itslabel is the conclusion of a rule instance as above. A proof is a proof structurefor which all nodes are elaborated. In the context of a given proof structure we

write �1 ! �2 if �2 is a child of �1. A path is a �nite sequence � = �1; : : : ; �nfor which �i ! �i+1 for all i : 1 � i < n. Generally we use the term \sequentoccurrence" as synonymous with node. However, when the intention is clear fromthe context we sometimes confuse sequents with sequent occurrences and writeeg. �1 ! �2 in place of �1 ! �2 when the sequents label their correspondingnodes.Ordinal Approximations In general, soundness of �xed point induction relies onthe well-known iterative characterisation where least and greatest �xed pointsare \computed" as iterative limits of their ordinal approximations. This alsohappens in the present case. Let � range over ordinal variables. Valuations andsubstitutions are extended to map ordinal variables to ordinals. Let U; V rangeover �xed point formula abstractions of the form �Z(V1; : : : ; Vn):�. We introducenew formulas of the shape U� and � < �0. Ordinal inequalities have their obvioussemantics, and � � �0 abbreviates � < �0 _ � = �0 as usual. For approximated�xed point abstractions suppose �rst that U = �Z(V1; : : : ; Vk):� and � = �.Thenk U�(P1; : : : ; Pk) k � = 8><>:S; if � = 0k �fU�0=Zg k �fP1=V1; : : : ; Pk=Vkg; if � = �0 + 1Tfk U�0(P1; : : : ; Pk) k � j �0 < �g; if � limit ord.Dually, if � = �:k U�(P1; : : : ; Pk) k � = 8><>:;; if � = 0k �fU�0=Zg k �fP1=V1; : : : ; Pk=Vkg; if � = �0 + 1Sfk U�0(P1; : : : ; Pk) k � j �0 < �g; if � limit ord.We get the following basic monotonicity properties of ordinal approximations:Proposition 1. Suppose that � � �0.1. If U is a greatest �xed point abstraction thenk U�0(P1; : : : ; Pn) k � �k U�(P1; : : : ; Pn) k �2. If U is a least �xed point abstraction thenk U�(P1; : : : ; Pn) k � �k U�0(P1; : : : ; Pn) k �Proof. By wellfounded induction. utMoreover, and most importantly, we get the following straightforward appli-cation of the well-known Knaster-Tarski �xed point theorem.Theorem 2 (Knaster-Tarski). Suppose that U = �Z(V1; : : : ; Vk):�. Thenk U (P1; : : : ; Pn) k � = (\fk U�(P1; : : : ; Pn) k � j � an ordinalg; if � = �[fk U�(P1; : : : ; Pn) k � j � an ordinalg; if � = �

As the intended model is countable the quanti�cation in theorem 2 can be re-stricted to countable ordinals.The main rules to reason locally about �xed point formulas are the unfoldingrules. These come in four
avours, according to whether the �xed point abstrac-tion concerned has already been approximated or not, and to the nature andposition of the �xed point relative to the turnstile.ApprxL �; s : U�(P1; : : : ; Pn) ` ��; s : U (P1; : : : ; Pn) ` � U lfp; � freshApprxR � ` s : U�(P1; : : : ; Pn);�� ` s : U (P1; : : : ; Pn);� U gfp; � freshUnfL1 �; s : �fU=Z; P1=V1; : : : ; Pn=Vng ` ��; s : U (P1; : : : ; Pn) ` � U = �Z(V1; : : : ; Vn):�UnfR1 � ` s : �fU=Z; P1=V1; : : : ; Pn=Vng;�� ` s : U (P1; : : : ; Pn);� U = �Z(V1; : : : ; Vn):�UnfL2 �; s : �fU�1=Z; P1=V1; : : : ; Pn=Vng; �1 < � ` ��; s : U�(P1; : : : ; Pn) ` � U lfp; �1 freshUnfR2 �; �1 < � ` s : �fU�1=Z; P1=V1; : : : ; Pn=Vng;�� ` s : U�(P1; : : : ; Pn);� U gfp; �1 freshUnfL3 �; s : �1 < � � �fU�1=Z; P1=V1; : : : ; Pn=Vng ` ��; s : U�(P1; : : : ; Pn) ` � U gfpUnfR3 � ` s : �1 < � ^ �fU�1=Z; P1=V1; : : : ; Pn=Vng;�� ` s : U�(P1; : : : ; Pn);� U lfpNormally we would expect only least �xed point formula abstractions to appearin approximated form to the left of the turnstile (and dually for greatest �xedpoints). However, ordinal variables can \migrate" from one side of the turnstileto the other through one of the cut rules. Consider for instance the followingapplication of the process cut rule:� ` s2 : U� �; S : U� ` s1 : U�� ` s1fs2=Sg : U�In this example U may be a greatest �xed point formula which, through someearlier application of ApprxR has been assigned the ordinal variable �. The secondantecedent has U� occurring to the left of the turnstile.In addition to the above 8 rules it is useful also to add versions of the identityrules re
ecting the monotonicity properties of ordinal approximations, prop. 1:IdMon1 � ` � � �0;��; s : U�(P1; : : : ; Pn) ` s : U�0(P1; : : : ; Pn);� U lfp

IdMon2 � ` � � �0;��; s : U�(P1; : : : ; Pn) ` s : U�0 (P1; : : : ; Pn);� U gfpAdditionally a set of elementary rules are needed to support reasoning aboutwell-orderings, including transitivity and irre
exivity of <. These rules are leftout of the presentation.For the above rules we obtain the following basic soundness result:Theorem 3. The rules ApprxL, ApprxR, UnfL1, UnfR1, UnfL2 and UnfR2 aresound.Proof. Rules ApprxL and ApprxR. For ApprxL assume �; s : U�(P1; : : : ; Pn) j=K;��, and that � is fresh. Assume also that � and s : U (P1; : : : ; Pn) holds, up tosome valuation. Then, for this valuation, so does s : U�(P1; : : : ; Pn) for someordinal �. But then we �nd that some assertion in � is true as well, completingthe case. For ApprxR the dual argument applies.Rules UnfL1 and UnfL2. The soundness of these rules follows directly from thefact that �Z(V1; : : : ; Vn):� is a parametrised �xed point of �.Rules UnfL2 and UnfR2. We consider UnfL2. Assume that�; s : �fU�1=Z; P1=V1; : : : ; Pn=Vng; �1 < � j= �:Assume also that U is a least �xed point abstraction, and that �1 is fresh. Assumefurthermore that a valuation is given, making � and U�(P1; : : : ; Pn) true. Either� is 0, or � = �1 + 1, or � is a limit ordinal. The �rst case is contradictory. Forthe second case we get the �1 we are looking for directly, and some assertionin � is established as desired. For the third case we �nd some �01 < � suchthat U�01(P1; : : : ; Pn) is true. We can assume that �01 is a successor ordinal. Butthen the previous subcase applies, and we are done. Again UnfR2 is proved by asymmetric argument.Rules UnfL3 and UnfR3. We consider UnfL3. Assume that�; s : �1 < � � �fU�1=Z; P1=V1; : : : ; Pn=Vng j= �:Assume also that a valuation is given such that � and s : U�(P1; : : : ; Pn) istrue. Then whenever �1 < �, s : �fU�1=Z; P1=V1; : : : ; Pn=Vng is true as well. If� = 0 this is trivially so. If � is a successor ordinal it follows by prop. 1, and if� is a limit ordinal we know that whenever �01 < � then s : U�01+1(P1; : : : ; Pn),so s : �fU�1=Z; P1=V1; : : : ; Pn=Vng. In any case we can conclude that someassertion in � must be true, �nishing the argument. Again UnfR3 is symmetric.Rules IdMon1 and IdMon2 are trivial, given 1. utDischarge: Some Intuition The fundamental problem in arriving at a sound, yetpowerful, rule of discharge, is to control the way �xed points may interfere asproofs are elaborated. We illustrate the problem by two examples.Example 3. Consider the proof goalS : �Z1:�Z2:[]Z1 ^ 8P; V:[P !V]Z2 ` S : �Z3:�Z4:[]Z4 ^ 8P; V:[P !V]Z3 (14)

The assumption states that any in�nite sequence of internal or send transitionscan only contain a �nite number of consecutive send transitions, while the as-sertion states that any in�nite sequence of internal or send transitions can onlycontain a �nite number of send transitions. Thus (14) is false.Let us introduce the following abbreviations:U1 = �Z1:�Z2:[]Z1 ^ 8P; V:[P !V]Z2U2 = �Z2:[]U1 ^ 8P; V:[P !V]Z2U3 = �Z3:�Z4:[]Z4 ^ 8P; V:[P !V]Z3U4 = �Z4:[]Z4 ^ 8P; V:[P !V]U3We start by re�ning (14) to the subgoalS : U�22 ` S : U�44 (15)using the rules UnfL1, UnfR1, ApprxL and ApprxR. Continuing a few steps further(by unfolding the �xed point formulas and treating the conjunctions on the leftand on the right) we obtain the two subgoalsS : []U1; S : 8P; V:[P !V]U�022 ; �02 < �2; �04 < �4 ` S : []U�044 (16)S : []U1; S : 8P; V:[P !V]U�022 ; �02 < �2; �04 < �4 ` S : 8P; V:[P !V]U3 (17)Subgoal 16 is re�ned via rule Mon2 toS0 : U1; S : 8P; V:[P !V]U�022 ; �02 < �2; �04 < �4 ` S0 : U�044 (18)and after unfolding U1 using UnfL1 we arrive atS0 : U2; S : 8P; V:[P !V]U�022 ; �02 < �2; �04 < �4 ` S0 : U�044 (19)which sequent one might expect to be able to discharge against (15) by coinduc-tion in �4. By the same token when we re�ne (17) toS : []U1; S0 : U�022 ; �02 < �2; �04 < �4 ` S0 : U4 (20)we would expect to be able to discharge against (15) inductively in �2. Thisdoes not work, however, since derivation of (19) from (15) fails to preserve theinduction variable �2 needed for (20), and vice versa, �4 is not preserved alongthe path from (15) to (20). Therefore, the in�nite proof structure resulting froman in�nite repetition of the above steps contains paths in which neither of thetwo variables is actually being preserved and decremented in�nitely many times,and hence the attempted ordinal induction fails. It would still have been soundto discharge if at least one of the two ordinal variables had been preserved inthe corresponding other branch; then there would have been no such paths.

Example 4. Consider the (reversed) proof goalS : �Z1:�Z2:[]Z2 ^ 8P; V:[P !V]Z1 ` S : �Z3:�Z4:[]Z3 ^ 8P; V:[P !V]Z4 (21)stating that if all in�nite sequences of internal or send transitions of a processcan only contain a �nite number of send transitions, then these in�nite sequencesof internal or send transitions can only contain �nite sequences of consecutivesend transitions. This goal is obviously valid.The abbreviations we shall use are:U1 = �Z1:�Z2:[]Z2 ^ 8P; V:[P !V]Z1U2 = �Z2:[]Z2 ^ 8P; V:[P !V]U�011U3 = �Z3:�Z4:[]Z3 ^ 8P; V:[P !V]Z4U4 = �Z4:[]U�033 ^ 8P; V:[P !V]Z4First we apply rules ApprxL, ApprxR, UnfL2 and UnfR2 to reduce (21) to thesubgoal S : U2; �01 < �1; �03 < �3 ` S : U4 (22)Continuing in much the same way as in the preceding example we arrive at thetwo subgoalsS0 : U2; S : 8P; V:[P !V]U�011 ; �01 < �1; �03 < �3 ` S0 : U�033 (23)S : []U2; S0 : U�011 ; �01 < �1; �03 < �3 ` S0 : U4 (24)These subgoals are re�ned, using UnfR2 and UnfL2 respectively, toS0 : U2; S : 8P; V:[P !V]U�011 ; �01 < �1; �03 < �3; �003 < �03` S0 : �Z4:[]U�0033 ^ 8P; V:[P !V]Z4 (25)S : []U2; S0 : �Z2:[]Z2 ^ 8P; V:[P !V]U�0011 ; �01 < �1; �03 < �3; �001 < �01` S0 : U4 (26)These sequents can be discharged against (22) inductively in �3, and coinduc-tively in �1, respectively. In contrast with the previous example, here everyordinal variable which is used for induction (or coinduction) in one of the twoleaves is preserved throughout the path to the other leaf.The Rule of Discharge We now arrive at the formal de�nition of the rule ofdischarge.Convention 7. From this point onwards proof elaboration takes place in thecontext of some �xed, but arbitrary linear ordering < on �xed point formulaabstractions U .

Assuming one �xed linear ordering can be too restrictive when recursiveproof structures are independent. Below we brie
y discuss ways of relaxing theconstruction to allow the linear ordering to be built incrementally.Below we de�ne the critical notions of regeneration, progress, and discharge.Discharge is applied when facing a proof goal �n which is unelaborated, suchthat, below �n we �nd some already elaborated node �1 such that �n is in asense an instance of �1. This requires variables present in �1 to be interpretedas terms in �n. This is what the substitution � of the following de�nition servesto achieve.De�nition 8 (Regeneration, Progress, Discharge). Let � = �1; : : : ; �n bea path such that �n is not elaborated. Suppose that �i is labelled by �i ` �i forall i : 1 � i � n.1. The path � is regenerative for U and the substitution �, if whenever thereis a �i such that U�i is a subformula of �i (�i) then there also are �1, : : :,�i�1, �i+1, : : :, �n such that for all j : 1 < j � n, U�j is a subformula of �j(�j), and �j ` �j � �j�1. Moreover we require that �(�1) = �n.2. The path � is progressive for U and � if we can �nd �1; : : : ; �n such that:(a) For all i : 1 < i � n, U�i is a subformula of �i (�i), and �i ` �i � �i�1.(b) �(�1) = �n.(c) For some i : 1 < i � n, �i ` �i < �i�1.3. The node �n can be discharged against the node �1 if we can �nd some Uand substitution � such that:(a) � is regenerative for all U 0 < U and �.(b) � is progressive for U and �.(c) For all assumptions s : � in �1, �n ` s� : ��, and all assertions s : � in�1 then s� : �� ` �n.In this case we term �n a discharge node and �1 its companion node.In this de�nition we are being slightly sloppy with our use of U 's: Really weare identifying �xed point formula abstractions up to ordinal approximationsexcept where they are explicitly stated.It is quite easy to verify that for Example 3 no linearisation of the �xed pointformulas can be devised such that the nodes (18) and (19) can be discharged. Onthe other hand, for Example 4, any linear ordering which (up to approximationordinals) has U4 < U2 will do.Observe that the linear ordering on �xed point formula abstractions can bechosen quite freely. One might expect some correlation between position in thelinear ordering and depth of alternation, viz. example 4 above. In practice thisis in fact a good guide to choosing a suitable linear ordering. However, as weshow, we do not need to require such a correlation a priori. Moreover one canconstruct examples, using cut's, of proofs for which the above rule of thumb doesnot work.Now, the full proof system is obtained by adding the proof rules for �xedpoints, including the rule of discharge, to the local rules of section 4.

Theorem 4 (Soundness, Recursive Formulas). The full proof system issound.Proof. The proof is by induction on the size of proof trees. Assume a proof of rootsequent �0 ` �0, and assume soundness for all proof trees of a strictly smallersize. Assume for a contradiction that �0 6j= �0. We then �nd a valuation �0which invalidates �0 6j= �0, i.e. which makes all assumptions in �0 valid, and allassertions in�0 invalid.We use this assumption to construct an in�nite rejectionsequence � of sequent-valuation pairs (�0 ` �0; �0)(�1 ` �1; �1) � � � such that forall i, �i invalidates �i ` �i, and, considering nodes of discharge to be followed bytheir respective companion nodes, the sequent sequence (�0 ` �0)(�1 ` �1) � � �forms a run through the proof tree. Subsequently we use this sequence to derivea contradiction.The sequence � is constructed inductively. Assuming that the constructionhas reached the i'th element we show how to construct the (i + 1)'th elementdepending on the rule by which �i ` �i was elaborated in the proof. For all rulesexcept discharge the construction is trivial, by the \local" soundness results,Theorems 1 and 3. So assume that �i ` �i was discharged against � 0i ` �0iusing substitution � as speci�ed by the de�nition of the discharge rule. We thende�ne the (i + 1)'st element of the sequence as (� 0i ` �0i; �i � �) and show that�i+1 = �i � � invalidates � 0i ` �0i. Let s : � be any assertion in � 0i . By theinduction hypothesis and condition 8.3.(c) we see that since all assumptions in�i are validated under �i then so is s : � under �i+1. Secondly let s : � be anyassertion in �0i. We need to show that s�i+1 : ��i+1 is false. But if it were not, bythe induction hypothesis and condition 8.3.(c) we would obtain some assertionin �i which is valid under �i, and this is an impossibility since �i invalidates�i ` �i. The construction is thus complete.In�nitely often along � the discharge rule is applied. The proof being �nite,the number of distinct �xed point abstractions that can appear in the proof is�nite too. As a consequence we must be able to �nd a smallest U under < whichis appealed to in�nitely often (in 8.3) in applications of discharge along �. Let ibe such that �i ` �i is elaborated in�nitely often through the rule of dischargeby appealing to U , and that, for no j � i, is �j ` �j discharged with referenceto a U 0 which is strictly smaller than U . For some �i we �nd an occurrence ofU�i in the corresponding sequent �i ` �i, say that U�i is a subformula of �i.We then see that for each j > i we can �nd an ordinal variable �j such that U�joccurs as a subformula of �j. We shall sketch an argument that the subformulasU�j can be chosen so that the values assigned to �j by �j form a sequence whichis non-increasing and in fact in�nitely often decreasing. But this is not possible,since ordinals are well-founded, and we hence shall arrive at a contradiction.Consider an arbitrary interval �(j1; jm) of � such that the �rst sequent�j1 ` �j1 is equal to the last �jm ` �jm and does not occur inbetween. Thenthere must be an element in the interval whose sequent is a discharge node, andwhose companion node is either �jm ` �jm or is some sequent higher in theproof tree (i.e. closer to the root sequent). We shall call the earliest such elementthe characterising element of the interval. The interval itself might contain other

intervals of the same shape. Moreover, one can choose these intervals in such away that the elements not occurring in any of the intervals, the characterizingelement being among them, form a simple run (i.e. a run not visiting any se-quent more than once) through the loop de�ned by the discharge path for thecharacterising sequent. Given an initial partitioning of � into such intervals, onecan iteratively apply this decomposition scheme until no interval can be furtherdecomposed. Given an index j, we shall call the active interval the least intervalof the above type containing both the j'th and the j + 1'th element of �.We perform an initial partitioning of � in intervals �(j1; jm) so that �j1 `�j1 is the companion node of �i ` �i, and continue the decomposition processas described above. Starting from index j = i, we shall choose �j according tothe discharge condition for the path having as a discharge node the sequent fromthe characterising element of the active interval. If the current interval is charac-terised by �i ` �i (which can only happen in outermost intervals) we choose �jas for progression (cf. 8.2), in all other cases we choose �j for regeneration (cf.8.1). The discharge condition and the induction hypothesis guarantee that thevalues assigned to �j by �j form a sequence which is non-increasing (in regen-erative intervals) and in�nitely often decreasing (in progressive intervals), thusyielding a contradiction.So, no such rejection sequence � can exist, and the assumption �0 6j= �0must have been false. ut7 Verifying the Resource ManagerIn this section the proof system is demonstrated by outlining a proof that theresource manager function introduced in section 2 satis�es the safe speci�ca-tion de�ned in section 3. The proof will be kept informal. For instance we willwrite out neither ordinal variables nor the linear ordering on �xed point formulaabstractions, since they can easily be added to the proof. Adding ordinal an-notations to the proof and taking them into account presents no real di�cultysince the �xed point de�nitions in the example are
at, i.e., they never refer toother �xed point de�nitions.For simplicity it is assumed that the manager knows of only one resource,with public name Pu and private Pr. The corresponding list [fPu; Prg] is referredto as RL, and RP denotes the process identi�er of the resource manager process.Since the de�nition of safe is parametrised on a billing agent and a useraccount the formula must be preceded by an initialisation phase (notice the useof the weak modality [[�]] introduced in section 3):8PubRes ;UAcc;UserPid;Agent:[RP ?fcontract; fPubRes;UAccg;UserPidg][[UserPid!fcontract ok ;Agentg]]safe(Agent ;BankPid ;UAcc; 0)So we set out to prove the following sequent:� ` hrm(RL;BankPid ;RAcc); RP ; �i

: 8PubRes ;UAcc;UserPid;Agent:[RP?fcontract; fPubRes ;UAccg;UserPidg] : : : (27)The needed inequations on process identi�ers (e.g., RP 6= Pr) are collected in� . By application of simple proof steps { four applications of AllR and thenrepeated applications of the rules for unfolding, elimination of conjunctions, andthe rule for the box modality { the following proof state is reached:� 0 ` hrm(RL;BankPid ;RAcc); RP ; �ijj hbillagent(Pr;BankPid ;RAcc;UAcc); BP ; �i: safe(BP ;BankPid ;UAcc; 0) (28)where � 0 is � extended with the fact that BP is a fresh process identi�er. Thisis a critical proof state, where we must come up with properties of the resourcemanager and the billing agent, that are su�ciently strong to prove that theirparallel composition satis�es the safe property. In general such a proof step maybe very di�cult, but here the choice is relatively simple:�a: The billing agent satis�es the safe property, i.e., safe(BP ;BankPid ;UAcc; 0).�b: The billing agent communicates the user account to no process except thebank, unless some other process �rst sends it the account.�c: The resource manager does not communicate the user account, unless someother process �rst sends it the account. This property can be formulated asnotrans(UAcc) given the de�nition of the notrans property at the end ofsection 3.�d: The resource manager does not send a tuple containing the atom use in the�rst position (a usage request to a billing agent).�e: The resource manager cannot receive messages sent to the bank process, norcan it receive messages sent to the billing agent.Properties �b, �d and �e can easily be formulated in a manner similar to �c.Essentially these conditions guarantee that bank transfers are the result of userrequests, rather than incorrectly programmedbilling agents or resource managersthat exchange information with each other.The result of applying the ProcCut rule twice, after generalising the proofgoals, is the following proof obligations:� 0; not(contains(BQ;UAcc)); countuse(BQ;M);M � N `hbillagent(Pr ;BankPid ;RAcc;UAcc); BP ; BQi: safe(BP ;BankPid ;UAcc; N) ^ �b (29)� 0; not(contains(RQ;UAcc)) ` hrm(RL;BankPid ;RAcc); RP ; RQi: notrans(UAcc) ^ �d ^ �e (30)� 0; S1 : safe(BP ;BankPid ;UAcc; N) ^ �b; S2 : notrans(UAcc) ^ �d ^ �e: S1jjS2 : safe(BP ;BankPid ;UAcc; N) (31)

To prove the leftmost conjunct in the goal (29) one has to show that the numberof valid usage requests in the input queue (the parameterM in countuse(BQ;M))is always less than or equal to the number of transfer requests that are possible(the parameter N). This proof involves well-known techniques for proving cor-rectness of sequential programs, and the proof of �b is even less involved (proofsomitted). Instead we concentrate on the leftmost conjunct of (30), i.e., that rmsatis�es notrans(UAcc) as long as no element in its input queue contains UAcc.The proofs of properties �d and �e follow the same pattern (details omitted).To prove (30) we �rst unfold the de�nition of notrans and eliminate the con-junctions. In case of an input step [V ?V 0] either we are done immediately (ifcontains(V 0;UAcc)). Otherwise the resulting proof state is� 0; not(contains(RQ;UAcc)); not(contains(V 0;UAcc)) `hrm(RL;BankPid ;RAcc); RP ; RQ � V 0i : notrans(UAcc) (32)which can be rewritten into (by referring to the de�nition of contains)� 0; not(contains(RQ � V 0;UAcc)) `hrm(RL;BankPid ;RAcc); RP ; RQ � V 0i : notrans(UAcc) (33)which can be discharged against the leftmost conjunct of (30). The rm processcan clearly not perform any output step so that part of the conjunction is triviallytrue. Thus only the internal step remains, and such a step must correspond tounfolding the application rm(RL;BankPid ;RAcc). The resulting proof state is:� 0; not(contains(RQ;UAcc)) `hcase fRL;BankPid ;RAccg of : : : ; RP ; RQi : notrans(UAcc) (34)By repeating the above steps, i.e., handling input, output and internal stepseventually one reaches the goal:� 00; not(contains(RQ0;UAcc)) `
UserPid !fcontract ok ; B0pg; rm(RL;BankPid ;RAcc) : : : ; RP ; RQ0�k
billagent(Pr;BankPid ;RAcc;UAcc0); BP 0; ��: notrans(UAcc) (35)where � 00 is � 0 together with inequations involving the fresh process identi�erBP 0, and the fact that UAcc0 6= UAcc. This goal is handled by applying ProcCutto the parallel composition using notrans(UAcc) as the cut formula both to theleft and to the right. The resulting goals are:� 00; not(contains(RQ0;UAcc)) `
UserPid!fcontract ok ; BP 0g; rm(RL;BankPid ;RAcc) : : : ; RP ; RQ0�: notrans(UAcc) (36)� 00 `
billagent(Pr;BankPid ;RAcc;UAcc0); BP 0; �� : notrans(UAcc) (37)� 00; S3 : notrans(UAcc); S4 : notrans(UAcc) ` S3 k S4 : notrans(UAcc) (38)

Goal (37) is easy to prove, since no new processes are created (proof sketchomitted). For goal (36) we have to show not(contains (fcontract ok ; B0pg;UAcc)),since this is the value the resource manager will send to pid UserPid. The prop-erty is clearly true since B0P is a fresh pid. The resulting goal, after a simple stepwhere the resulting sequence is reduced, becomes� 00; not(contains(RQ0;UAcc)) `
rm(RL;BankPid ;RAcc); RP ; RQ0�: notrans(UAcc) (39)This goal can be discharged against the leftmost conjunct of (30). Thus onlygoals (31) and (38) remain. These types of goals are handled in a uniform andregular way, using applications of BoxPar1 and BoxPar2, repeated use of booleanreasoning, the UnfR and UnfL rules, and discharging against previously seen goals(details omitted).8 Concluding RemarksWe have introduced a speci�cation logic and proof system for the veri�cation ofprograms in a core fragment of Erlang, and illustrated its application on a small,but quite delicate, agent-based example. Our approach is quite general both re-garding the kinds of languages and models that can be addressed, and the kindsof assertions that can be formulated. For instance we are not restricted, as inmany other approaches to compositional veri�cation, to linear-time logic, neitherdoes the proof system rely on auxiliary features like history or prophecy vari-ables. In addition our approach permits the treatment of programming languageconstructs such as dynamic process creation, non-tail recursion and inductivedata type de�nitions in a uniform way, via a powerful rule of discharge.An important feature of our approach is the use of �xed points to describerecursively the �ne structure of computation trees, and to use these recursivedescriptions to decompose properties according to system structure. No �xedvocabulary of temporal connectives such as those of LTL, CTL, or CTL� wouldpermit a similarly general decomposition. The proof-theoretical setting givenhere represents a substantial advance on the initial work for CCS reported in[Dam98]. That work su�ered from a number of shortcomings which we thinkhave now been resolved in a satisfactory manner. This concerns:1. The account of discharge in [Dam98] used an indirect approach, tracking andindexing �xed point unfoldings in a very syntactical and opaque manner. Thepresent approach, using explicit ordinal annotations, is arguably far simpler,more intuitive, and semantically clearer.2. The sequent format used in [Dam98] was more restrictive than the one usedhere, in e�ect preventing contraction, a�ecting proof power very severely,theoretically as well as in practice.3. The discharge condition of [Dam98] required much more rigid relationshipsbetween the structure of discharged nodes and the internal nodes motivatingtheir discharge. In e�ect it was required that all information be completely

cyclic in a pointwise manner. But many examples are extremely cumbersome,if not outright impossible, to force into such a framework.The drawback, if any, of the approach used here is the explicit use of ordinals.However, in an implementation of this proof system, users need rarely, if ever, bedirectly exposed to ordinals. Ordinal annotations can be automatically synthe-sised, and only in very special circumstances do we envisage ordinal informationbeing passed explicitly to users for proof debugging.Several important lessons were learned in the process of doing proofs likethe billing agent example. We have already mentioned the need for more
exi-ble sequent formats and discharge conditions. Practical proofs tend to get verylarge. Without support for reducing duplication of proof nodes the proof exam-ple outlined for the billing agent has in the range of 105{106 proof tree nodes.Just by avoiding proof node duplication this �gure can be brought down verysubstantially, for the billing agent example by roughly a factor of 15. But in factvery few steps in the proof convey information which is really interesting. Theseare:1. Points where a process cut need to be applied, to initiate induction in systemstate structure.2. Points at which some other symbolic or inductive argument needs to be done,to handle e.g. induction in the message queue structure.3. Choice points which we may want to return to later, for backtracking.4. Points which we expect to want to discharge against in the future.One can easily envisage other proof elaboration steps being automated, andeliminated from view to a very large extent, perhaps using a selection of problem-dependent proof tactics. However, it is important to realise that, in contrast tomainstream proof editors such as HOL or PVS, in this some explicit support formanaging proof node histories is essential for e�ciency.To investigate these issues, and to begin doing real application studies, weare currently building a prototype proof checking tool that can handle programsof a moderate size such as the billing agent example. Some support for automa-tion of proof steps along the above lines already exists (e.g. for some modelchecking analyses), but we also need to identify other classes of sequents thatcan be solved algorithmically. Other ongoing work focuses on integrating theoperational semantics of Erlang more tightly with the proof systems (along thelines of [Sim95]) and to improve the handling of process identi�er scoping (butsee [AD96] for an approach to this in the context of the �-calculus).Acknowledgements Many thanks are due to Fredrik Orava of the department ofTeleinformatics at the Royal Institute of Technology, and Thomas Arts, TonyRogvall and Dan Sahlin of Ericsson Telecom Computer Science Laboratory.

References[AD96] R. Amadio and M. Dam. A modal theory of types for the �-calculus.In Proc. FTRTFT'96, Lecture Notes in Computer Science, 1135:347{365,1996.[AMST97] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation foractor computation. J. Functional Programming, 7:1{72, 1997.[AVWW96] J. Armstrong, R. Virding, C. Wikstr�om, and M. Williams. ConcurrentProgramming in Erlang (Second Edition). Prentice-Hall International (UK)Ltd., 1996.[Dam98] M. Dam. Proving properties of dynamic process networks. To appear,Information and Computation, 1998. Preliminary version as \Composi-tional Proof Systems for Model Checking In�nite State Processes", Proc.CONCUR'95, LNCS 962, pp. 12{26.[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I andII. Information and Computation, 100(1):1{40 and 41{77, 1992.[Par76] D. Park. Finiteness is mu-Ine�able. Theoretical Computer Science, 3:173{181, 1976.[Sim95] A. Simpson. Compositionality via cut-elimination: Hennessy-Milner logicfor an arbitrary GSOS. In Proceedings, Tenth Annual IEEE Symposium onLogic in Computer Science, pages 420{430, San Diego, California, 26{29June 1995. IEEE Computer Society Press.

