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Abstract— This paper presents a unified framework for
Behavior Trees (BTs), a plan representation and execution tool.
The available literature lacks the consistency and mathematical
rigor required for robotic and control applications. Therefore,
we approach this problem in two steps: first, reviewing the
most popular BT literature exposing the aforementioned issues;
second, describing our unified BT framework along with equiv-
alence notions between BTs and Controlled Hybrid Dynamical
Systems (CHDSs). This paper improves on the existing state of
the art as it describes BTs in a more accurate and compact
way, while providing insight about their actual representation
capabilities. Lastly, we demonstrate the applicability of our
framework to real systems scheduling open-loop actions in a
grasping mission that involves a NAO robot and our BT library.

I. INTRODUCTION

Behavior Trees (BTs) are plan representation tools com-
monly used in scenarios where there is no need to have
a mathematical foundation encompassing continuous-time
dynamics. However, such requirement arises in order to use
BTs on more complex applications, e.g. real robots, control
systems. This indicates the need to formalize BTs in a
mathematical framework that is both accurate and compact.

Intuitively, we measure accuracy to be inversely propor-
tional to the degree of misinterpretation that a certain state-
ment can be subjected to. Likewise, we measure compactness
to be inversely proportional to the amount of definitions
required to fully specify an idea. Using these two indicators
we created a framework that surpasses the state of the art.

In pursuit of the accuracy, we formulated the Action and
Condition subsets which remove the ambiguities that could
arise when referring to the node Success, Running, or Failure.
It is relying on these subsets that we could motivate the node
extensions, and compare BTs with other plan representations.

There exist ad-hoc engineering solutions to circumvent
the intrinsic limitations of BTs regarding two aspects: nodes
are memory-less [5] (do not store the last running node), and
BTs execute independently from one another [2] (cooperative
tasks are not possible). This paper formalizes and motivates
solutions to both problems in an accurate and compact way.

After [13], there is still uncertainty regarding the potential
of BTs as a suitable representation to replace Controlled
Hybrid Dynamical Systems (CHDSs) [15]-[17]. We address
the problem in two complementary ways: from CHDSs to
BTs, and vice-versa. This provides important insight about
which tasks are representable, under what constraints, and
what are the advantages / disadvantages of each paradigm.
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Fig. 1. The Top, Middle, and Bottom Layers of robot architectures. The
division is arbitrary: there is no strict boundary between layers.

As represented in Fig. 1, the BTs and CHDSs belong to
the Middle Layer which provides a mechanism for switching
between low-level controllers. The Top Layer automatically
generates and updates plans, whereas the Bottom Layer
handles low-level controllers that interact with the hardware.

To demonstrate the usability of our work, we implemented
an open source BT library for the Robot Operating System
(ROS) [18], which allowed us to test the concepts described
in this paper on real robotic platforms. We briefly analyze
the implementation limitations regarding the different ways
of resolving subset intersection (prevalence and hysteresis).

The main contributions of this paper are listed below:

1) A more accurate and compact BT framework.

2) Introduction of the Action and Condition subsets.

3) Formalization and motivation of two node extensions.

4) Equivalence notions between BTs and CHDSs.

The execution of the task described in Section IX is
presented in a video!, and the source code of the library
is publicly available on www.github.com/almc.

The paper is structured as follows: in Section II we review
related work, in Section III we formalize BTs and introduce
the subsets, in Sections IV and V we present the Node*
and the Decorator™ extensions, in Section VI we present
a formal definition of CHDSs, in Section VII we study
the equivalence between BTs and CHDSs, in Section VIII
we present the software structure of our implementation, in
Section IX we describe the experimental framework, and in
Section X we present the conclusions and future work.

'YouTube video name: Behavior Trees - NAO Grasping [ROS / C++].



II. RELATED WORK

Most of the current BT research efforts are focused
towards finding new efficient ways to implement Artificial
Intelligence (AI) for entertainment systems, e.g. specifying
Non-Player Characters (NPCs) in video-games. This situ-
ation often yields BT frameworks that are game-oriented;
even though they contain interesting features, they are not
generalizable to be used in other research fields, e.g. robotics.

Fortunately, not all papers suffer from these problems but
they do differ in several aspects (§; — §11). The criteria, by
which these papers were evaluated, is specified in Table I,
whereas the comparison itself is presented in Table II. We
refrain from expanding on the contributions of each paper,
even though they do contain noteworthy contributions, since
our primary goal is to point out the differences between them
as a mean to justify the need for an unified BT framework.

TABLE I. Criteria used to compare BT publications (§1 — §11).

planning integration: whether there exists a mechanism for automated BT

81 generation and maintenance. This corresponds to the Top Layer.
non-blocking actions: whether actions stop the flow of the BT until they
§2 finish executing. This affects the ability of the BT to react to changes.
modularity: whether BTs are built in such a way that they can be chained
§s together (embedded one inside the other) and still function properly.
dynamic tree: whether BTs can be modified during run-time. This is
§a required for the Top Layer implementation, but does not imply it exists.
virtual world: if it was implemented in a simulated environment (game).
§s This considers cases where it has access to the game-state or to an interface.
86 real world: if it was implemented in the real world (robot). This considers

cases where the outcome of the BT manifests outside a computer simulation.

5 multi-agent: whether the proposed BT structure can handle multiple agents
4 simultaneously. This considers cases involving at least two agents.

global variables: whether the implementation requires a common set of

8 variables (blackboard) shared between actions or uses parameters instead.
. BT library: whether the implementation supports a database of behaviors
8 that can be polled to build BTs. This requires modularity enforced.
infinite execution: whether the BTs are meant to finish executing at some
810 point, or they are supposed to run forever. This affects the modularity.
multiple parents to node: whether the strict definition of trees is enforced, or
811 a relaxed version (where a node can belong to several parents) is preferred.
TABLE II. Comparison of BT publications. [O]: reference to this paper.

[Ref [ 8 [ 8 [ 8§ [ 8 | 8 | 8 | § | 8 | 8o | 810 | 8u |

[1] X X X X X
21 | X | X | X X | X X | x | X
Bl | X X X [ X X

4 | X | X X X | X X | X | X
Bl | X | X | x| X X X | X X
6] X X X
[7] X X X X
Bl | X X | X X X | X | x | X
O] | X X | X X X | x | X
o] | x | ¥ X X X X
1] X | X X [ X X X
2] | ¥ X X X X
3 | X X | x| x| x X | X | X
[O] X

Table II demonstrates that many papers disagree in crucial
aspects such as: §,, 83, §10, and §15. Our framework, which
builds upon [13], [19] and [20], manages to combine every
aspect considered in Table I except planning integration.
To the best of our knowledge, this is the first paper to
achieve such integration. The reader should be aware that
BTs are, however, not the only alternative for Middle Layer
representation, see [21]-[25]. Lastly, we point out that BTs
have also been formalized through CSP semantics in [26].

III. BEHAVIOR TREES

This section gives a formal description of BTs following
the guidelines of [3], [8], [13]. A BT is defined as a directed
acyclic graph G(V, £) with |V| nodes and |€] edges. We call
the outgoing node of a connected pair the parent, and the
incoming node the child. We call the child-less nodes leaves,
and the unique parent-less node Root. Each node in a BT,
with the exception of the Root, is one of six possible types:
four non-leaf (control-flow) node types (Selector, Sequence,
Parallel and Decorator), and two leaf (execution) node types
(Action and Condition). These are summarized in Table III.

Unlike traditional graph theory trees [14], any node in the
BT (except the Root and its only child) can have multiple
parents [3]. This allows sub-trees to be reused without having
to copy them but decreases readability; for this reason we
explicitly advocate for the following workaround: nodes
having multiple parents are prohibited, the re-usability of
sub-trees is not to be done at the level of control-flow nodes,
preferably, it is to be done at the level of execution nodes.

The Root periodically, with frequency fi;cx, generates an
enabling signal called fick, which is propagated through the
branches according to the algorithm defined for each node.
When the tick reaches a leaf node, it executes one cycle
of the Action or Condition. Actions can alter the system
configuration, returning one of three possible state values:
Success, Failure, or Running. Conditions cannot alter the sys-
tem configuration, returning one of two possible state values:
Success, or Failure. This returned state is then propagated
back and forth through the tree, possibly triggering other
leaf nodes with their own return states, until finally one of
these states reaches the Root. The nodes which are not ticked
are set to a special node state: NotTicked. The BT then waits
before sending the new fick to maintain f;. constant. We
remark that in the implementation the tick frequency fiick is
completely unrelated to the controller’s frequency feontrol;
they work asynchronously as explained in Section VIII-B.

A. Node Types

The node types behave according to Algorithms 1-11,
where the statement Tick (child(?)) : triggers the algorithm
that corresponds to its child node type. The execution begins
and ends on Algorithm 4, the symbols S,F,R C X, X(t) €
X, U(t) € U are the Success/Failure/Running subsets, state
space, and control signals respectively. For a detailed real-
life example using these variables refer to Section III-B.

TABLE III. The seven node types of a BT. Ch = children, S = succeeded,
F = failed, R = running. N = # children, S, F' € N are node parameters.

[ Node Type [Symb.| Succeeds if [ Fails if | Runsif |

Root o tree S tree F tree R
Selector ? 1chs NChF 1chR
Sequence — N Ch s 1chF 1chR

Parallel = >ScChs > F Ch F | otherwise
Decorator & varies varies varies

Action n 0 Xn(t)ESn | Xn(t)EFpn | Xn(t)ER,

Condition n O X,.(t)eS, | Xn(t)EF, never




Selector. When a Selector node is enabled, it ticks its
children sequentially as long as they continue to return
Failure, and until one of them returns Running or Success. If
the Selector node does not find a running or succeeding child,
it returns Failure, otherwise it returns Running or Success
depending on the state of its first non-failing child.

Sequence. When a Sequence node is enabled, it ficks
its children sequentially as long as they continue to return
Success, and until one of them returns Running or Failure. If
the Sequence node does not find a running or failing child,
it returns Success, otherwise it returns Running or Failure
depending on the srate of its first non-succeeding child.

Parallel. When a Parallel node is enabled, it ticks all its
children sequentially. If the number of succeeding children
is > S, it returns Success. If the number of failing children
is > F, it returns Failure. Otherwise, it returns Running.

Decorator. When a Decorator node is enabled, it checks a
condition on its internal variables, based on which it could
tick or not its only child. It applies functions ¢ or ¢o to
determine the return state, see Algorithm 11 for the template.

Action. When an Action node, indexed n, is enabled, it
determines the state value to be returned by checking if
its current state space configuration X, (t) belongs to the
Success S,,, Failure F,, or Running R,, subsets. On the third
case, it also performs a discrete control step v, : X, — U,.

Condition. When a Condition node is enabled, it behaves
like the Action, without the Running subset and control step.

Algorithm 1: Selector Algorithm 2: Sequence

1 for i<+ 1to N do 1 for i<+ 1to N do

2 state < Tick (child(i)) 2 state <— Tick (child(z))
3 if state = Running then 3 if state = Running then
4 | return Running 4 | return Running

5 if state = Success then 5 if state = Failure then
6 | return Success 6 | return Failure

7 end 7 end

8 end 8 end

9 return Failure 9 return Success

Algorithm 3: Parallel Algorithm 4: Main Loop

1 for i< 1to N do 1 initialize (agent)

2 | state; < Tick (child(i)) 2 BT.parse (agent)

3 end 3 while (active = true) do
4 if nSucc (state) > S then 4 state +— Tick (Root)
5 | return Success 5 sleep (1/ frick)

6 if nFail (state) > F then 6 end

7 | return Failure 7 BT.delete (agent)

8 else 8 return 0

9 | return Running

10 end

Algorithm 5: Action Algorithm 6: Condition

1 if X, (t) € S, then 1 if X, (t) €S, then
2 return Success 2 | return Success
3 if X, (t) € F,, then 3 if X, (¢t) € F,, then
4 | return Failure 4 | return Failure

5 if X,,(¢) € Ry, then 5 end

6 Un(t) < vn (Xn(t))

7 return Running Algorithm 7: Root
8 end

1 return Tick (child(0))

B. Action Subsets

Action nodes rely on three subsets: {S,, F,, R, }, used in
Algorithm 5. Condition nodes rely on two subsets: {S,, F,,},
used in Algorithm 6. We focus on the Action since the
Condition is simpler. These subsets partition the Action’s
state space X,,, where X, (t) take its values, such that the
following properties hold for Action n and Condition n
respectively: S,,UF,UR,, D X, and S,,UF,, O X,,. We could
be more restrictive, i.e. S, NF,, =S, NR, =F,NR,, = @.
However, intersecting subsets allow the use of hysteresis, e.g.
the threshold for switching from R,, to S,, is not necessarily
the same as the threshold for switching from S, to R,,.

As an example consider the modular driving BT shown
in Fig. 2, with the corresponding Action subsets portrayed in
Fig. 3. A BT being modular means that it can be treated as
a stand-alone Action by BTs of higher hierarchy seamlessly.
Modularity is enforced through the logic of the BT (control-
flow node placement and subsets definitions). The Root,
purposefully omitted in Fig. 2, is always removed before
composing two BTs to avoid having multiple fick sources.

These three Actions, scheduled by the Sequence node,
try to maintain a proper distance from the next vehicle
using control algorithms 7, (X, (t)) = U,(t). Defining the
notation return_status?ionia!, we illustrate the use of
subsets showing two possible event sequences from the
perspective of each driver Action (e|n|c): these correspond
to the upper/lower branches, i.e. (s§— sg|r? —sP|ff—sg),
and (s§ = r§|rf — f2Iff — f$) respectively. Qualitatively,
both scenarios start with two control steps (r7, 75) executed
by Normal Driver. On the upper branch, the execution is
handed over to Cruise Driver (r5,r§) reaching Success on
the fifth control step (sg). On the lower branch, the execution
is handed over to Emergency Driver to take care of an
unexpected situation during two control steps (75, 7).

%
Emergency Normal Cruise
Driver Driver Driver

Fig. 2. A generic autonomous driving behavior, represented using a BT.
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The solid arrows | dashed arrows represent transitions caused by the
Action’s controller / system dynamics or other controllers respectively.



IV. THE NODE* EXTENSION

The BT node algorithms presented so far are insufficient
to represent plans where it is necessary to “remember” if an
Action | Condition | sub-tree has already succeeded or failed.

A. Node* Motivation

Let us consider a Sequence node with two fully-actuated®
Actions whose subsets, X; and X5, are represented in Fig. 4.
Under these assumptions, if X1NX, # & there is at least one
variable controlled by both Actions. Depending on the subset
definitions, this could yield unsatisfiable BTs, e.g. Action 2
executes r?"’; decreasing X[1] so that X (¢) ¢ S; anymore,
Action I then executes rfl, 7,511; causing an endless cycle.

X1[2] = wa1 Action 1 Xa[2] = wa2 Action 2
A A
Ay A, / A Ay
LSt OA—}\QT /A1 1 OA —g‘ofg Ay
7 |¥e - a3 eI
\ |
7 ’
| 7 |
o R 47 l '\
> >
Xl[l] =T11 Xg[l] =T12

Fig. 4. Subsets of two Actions demonstrating how cycles appear. For
simplicity we let X1 = Xo, but normally it is enough that X1 N X2 # &.

In general, the traditional BT algorithms have the fol-
lowing limitations: in a Sequence node, for an arbitrary j-
indexed child Action Aj to be ticked at time ty, it needs to
happen that {Xl(tk) ESIA...A Xjfl(tk) S ijl}tk ER, -
Similarly, in a Selector node, for an arbitrary j-indexed child
Action Aj to be ticked at time t, it needs to happen that
{Xl(tk) cFi AN Xj—l(tk,) S Fj—l}tk ER, -

This could be desirable in some cases where we need to
guarantee that a certain property holds over a set of Actions,
but in other situations it is necessary to ‘“remember” which
nodes have already returned Success or Failure, in order to
not tick (check) them again on the next iteration. The Parallel
node does not have this problem, hence no Parallel* exists.

B. Node* Extended Algorithms

Rather than tracking and storing which children have
returned Success or Failure, we use a variable that points
to the child that has most recently returned Running. This
variable is reset every time the Selector or Sequence returns
a terminal state (Success or Failure). See Algorithms 8, 9.

Algorithm 8: Selector* Algorithm 9: Sequence*

1 for i < run-index to N do 1 for i < run-index to N do

2 state < Tick (child(i)) 2 state < Tick (child(1))
3 if state = Running then 3 if state = Running then
4 run-index < 1 4 run-index < i

5 ‘ return Running 5 ‘ return Running

6 if state = Success then 6 if state = Failure then

7 run-index + 1 7 run-index < 1

8 return Success 8 return Failure

9 end 9 end

10 end 10 end

run-index < 1
2 return Success

[
—

11 run-index < 1
12 return Failure

"

V. THE DECORATOR”™ EXTENSION

The BT node algorithms presented so far are insufficient
to represent plans where two or more agents must undertake
a common task jointly by synchronizing parts of their BTs.

A. Decorator™ Motivation

To control multiple agents using BTs, we have two
choices: to have one big BT containing the Actions of all the
agents, or to have separated BTs running the Actions of each
agent independently from one another. The first solution has
the advantage that all the agents can be synchronized inside
the same structure, however it is clear that for big groups of
agents it turns unmanageable. The second solution has the
advantage that BTs are much smaller, easier to understand
and expand, however it is not obvious how these independent
trees can be synchronized to achieve cooperative behaviors.

We discard the first solution as it is unfeasible for our
purposes, focusing on the second scenario which can be dealt
with using two approaches. First, making new control-flow
nodes with the synchronization capability. Second, making a
special Decorator node with the sole purpose of providing
its sub-tree with the synchronization capability. We favor the
second because it allows the multi-agent features to be kept
aside from the execution logic, this permits non-cooperative
behaviors to become cooperative by merely placing them
under the synchronization Decorator defined below.

B. Decorator™ Extended Algorithm

When the Decorator™ is enabled, it broadcasts the agent’s
name (determined contextually) to the other Decorator™
nodes of the same cooperative task, indicating them that it
is ready to engage as soon as there are enough agents 1,¢q
to trigger the sub-tree. In most cases, the tick is received
by this node when the other agents are busy performing
higher priority tasks of their BTS (nnow < 7req), In these
cases the Decorator™ will return without ticking its sub-tree.
Eventually, enough agents will be available to engage in the
cooperation (Nyew = Tireq), at this point the barrier imposed
to the ficks by the synchronization Decorator™ will be
temporarily® removed allowing the sub-tree to be executed.
Naturally, this requires a software infrastructure, like ROS,
capable of handling message passing, and a mechanism that
allows each Decorator™ to keep track of which and how
many agents have broadcasted their messages. Time stamps
are used to ensure that such messages were broadcasted
recently enough to be valid. See Algorithms 10, 11.

Algorithm 10: Decorator™  Algorithm 11: Decorator

1 Broadcast (agent, ID) 1 PreFunc (vars)

2 if Npow > Nreq then 2 if Condition (vars) then

3 state; < Tick (child) 3 state; <+ Tick (child)
state < states state <— ¢1 (vars, statey)

4 else 4 else

5 | state < NotTicked 5 | state < ¢o (vars)

6 end 6 end

7 Update (agents, Ninow) 7 PostFunc (vars, state)

8 return state 8 return state

2The function i : U — X is bijective (one to one correspondence Vu, ).

3The barrier will block again if npow < Nreq at any point in time.



VI. CONTROLLED HYBRID DYNAMICAL SYSTEMS
Following the definitions of [15]-[17]: a CHDS, shown in
Fig. 5, is an indexed collection of Controlled Dynamical Sys-
tems (CDS) and a mechanism for switching between them
whenever the hybrid state satisfies certain conditions and the
control dictates so. More formally, a CHDS H is defined* as
follows H = (Q, Xy,Uy, Aq, Eq,Zq,Cq, Dy, So)qe 0, With:
Q discrete state space Q = {q;|i € {1,...,]|Q|}}

= {qu |j € {17‘ R |Xq|}}
U, control signal space Uy = {ugq |k € {1,...,|[U;|}}
A, edge label set A, = {a,5|q € Ny}

N, directed neighborhood of q (7 € Ny =%~ q € Ny)
&, edge set, each edge is £, = (4,7, aqq, Gqq) T4q)qeN,

q,q initial and final discrete states (¢, q) € (Q,N;)

aqg edge label connecting (g, q) with asg € A,

Gqq edge guard enabled if X,(t) € G4q C A&

Taq state jump sets X, (t) — Xg(t) € Tyq C Xy x Xy
Z, location invariant X,(t) € I, Vte R Vqe Q
Cqy control algorithms Uy (t) =T 4(X,(t))
D, system dynamics Xq( ) = Ag(X4(t), Uq
8¢ hybrid state {Q(t), Xq(t), Aq(t), Uq(t)}
So initial state {Q(0), ), A4(0), T,

X, continuous state space X,

Xq(0), 44(0), Ug(0)}

{¢' € N\aHd'la € Ny \a} {d' € Ny\aHd'|d € Ny \a}

Fig. 5. Generic CHDS H, showing two connected states ¢ and q.
Consider a continuous trajectory (g, 64, X4(t),Uqy(t)) as-
sociated to the discrete state ¢ with a non-negative time
04 (duration of the continuous trajectory), a piecewise con-
tinuous function U,(¢) : [0,0,] — U,, and a continuous
piecewise differentiable function X, (t) : [0, d,] — A}, such
that X (t) € Z, Vt € (0,0,) and A(X,(¢),U,(t)) =
X,(t) ¥t e (0,8,) except for the points of discontinuity.
The trajectory (solution / run) of a CHDS is a (possibly in-
finite) sequence of continuous trajectories chained together:
(4%, 840, Xp0(t), Up (1)) X (g4, 850, X o (), Up (1)) e
such that at the event times where transitions occur tg, t1,.. .,
defined as: tg = d40,%1 = 00 +0g1,t2 = dgo + g1 + g2, .. .,
the following inclusions hold for the discrete transitions XA,
Xgi(tj) € Ggigarr and (Xyi(t5), Xq1+1( ) € Tgigir for
all j = 0,1,...,00. Where ¢’ is the j-th state ¢ taking
place, to which one associates the symbol a; = a;q+1, that
represents the jump policy signal at the j-th state transition.

YTy Q =Ty C Xy, Gag : Q — Gaq C X, Taq - QX Xg — QX Xy,
Ag: QX Xg XUy — Xg, Tq: Qx Xy = Ug, Qt) € Q, Xq(t) € Xy,
Aq(t) € Ag, Uqg(t) € Uy, St € Q x Xyq x Ag X Ug, So = S(to).

VII. EQUIVALENCE

We show that every CHDS using a specific jump policy
can be represented with a BT, and every BT composed only
of certain node types can be represented with a CHDS.

A. From CHDSs To BTs

To prove that any CHDS has an equivalent BT it suffices
to show that the trajectories both systems produce, when
confronted with the same environment (for all possible
environments and initial conditions), are identical. Naturally,
a CHDS has continuous dynamics which are impossible to
mimic using a discrete-time structure like a BT. For this
reason, we define a continuous-time BT as a regular BT
which has: infinite tick frequency, zero tick propagation time,
and zero execution time for Actions and Conditions.

Additionally, assuming that the BT initializes () to the
initial state of the CHDS, and the CHDS uses a sequential
prioritized jump policy a;. It is straightforward to check
that for an infinitesimal time window d¢, the BT shown
in Fig. 6, in continuous-time, produces the same control as
the CHDS shown in Fig. 5. Since this holds true for any
infinitesimal time window, it follows that the trajectories are
also identical. More complex jump policies are not covered
but could possibly be reproduced depending on the case.

Lastly, consider a CHDS where the continuous dynamics
are discretized using a finite sampling frequency fcupps, and
a BT which satisfies all the properties of continuous-time BTs
except for the fick frequency fiick Which in this case is finite.
Under the assumption that fcyps = fiick, and following a
similar reasoning, it follows that the discretized trajectories
are equal because they are sampled / executed synchronously.

U(t) « T (X(t)
X(t) <A (X #),U(t))

“Csuccess

SiQ(t) + q
8. X(t) — Tpa(X (1))

Fig. 6. Equivalent BT to the generic CHDS presented in Fig. 5.

This BT mimics the corresponding CHDS as follows: there
are |Q| branches departing from the first Selector which
account for the checks that need to be performed in order to
determine which discrete state is currently being executed.
The transitions to other discrete states are covered by the
|Ng| branches departing from the second Selector, these
include both the CHDS guards G and the jumps J. The
CHDS-BT equivalence is not unique, to prove it we notice
that any re-ordering of the BT nodes in Fig. 6, that preserves
the underlying logic and jump policy, is still a valid BT.



B. From BTs To CHDSs

The inclusion of Decorator, Selector®, Sequence*, and
Parallel nodes precludes the translation because CHDSs do
not support certain features that those nodes bring about. The
functionality missing from CHDSs to mimic the Selector*
and Sequence™ nodes is being able to rewire (on run-time) the
edges between discrete states; this involves dynamic edges.
The functionality missing from CHDSs to mimic the Parallel
node is being able to execute multiple discrete states simulta-
neously; this involves multi-valued initial states. Decorators
are to be dealt with on a case-by-case basis.

Any BT consisting only of a Root, Selectors, Sequences,
Actions, and Conditions has an equivalent CHDS representa-
tion. To show the equivalence we write the CHDS version of
a generic Selector | Sequence (with N children), and a Root.
Then, we use the fact that BTs are constructed using these
basic building blocks (node primitives), embedding them one
inside the other, to justify making the following assertion:
finding an equivalent CHDS representation for a set of BT
node primitives is a sufficient condition to guarantee that any
BT built using only this set can be represented with a CHDS.

Fig. 7. Selector node with N Actions / sub-trees represented as a CHDS.
X
start *’
2(t) € Ra
®XN(¢) €Ry
©X ~N(t)E Sy
Fig. 8. Sequence node with N Actions / sub-trees represented as a CHDS.

Fig. 9. Root node with 1 Action / sub-tree represented as a CHDS.

In these three CHDSs: Fig. 7, Fig. 8, and Fig. 9, the start is
to be thought of as an input (where the tick comes from), and
the three small colored circles labeled ‘S’, ‘R’, and ‘F’ are
to be thought of as outputs (where the tick is returned), none
of which are discrete states, they are symbolic and merely
used to wire arcs when composing the CHDS of the BT.

Inside the CHDS discrete states, which correspond to BT
Actions / sub-trees® (A, : Ay), we place the corresponding
controllers -y, presented in Algorithm 5. From this point it is
straightforward to see that under the input / output mindset,
the CHDS of a BT node primitive can be embedded as an
Action A,, in a CHDS of higher hierarchy. Performing this
procedure recursively turns out to be equivalent to translating
the BT to a CHDS starting from the leaves, and following this
embedding procedure recursively until the Root is reached.

VIII. ROS IMPLEMENTATION

We propose a ROS implementation of the BT framework,
the behavior-trees library, designed abiding by the Google
C++ Style Guide with the following compromises:

Compatibility with existing ROS libraries, making it fast
and easy to incorporate into new robotic platforms.

Simplicity of the code, allowing other programmers to
understand, expand, maintain, and reuse the code.

Efficiency of processing power, providing the complete
functionality of BTs, using a low amount of resources.

The implementation consists of three main parts: the
Client, where the BT is held, the Server, where the Action
and Condition algorithms are held, and the Communication,
where the actionlib ROS library provides the connection be-
tween the first two. In the following paragraphs we describe
how these parts, represented in Fig. 10, work together.

[ Client }(E)[ Communication ](:)[ Server}

[Execution}* Main }‘ ------- >[ Main *(Execution}

| )\
Publisher

Parser

Fig. 10. Diagram showing the client-server communication.

A. Client

This part is a ROS module that contains the BT control-
flow nodes, and the clients of the Action and Condition nodes,
i.e. the BT logic that does not change between applications. It
is composed of three parts: Parser, Interface, and Execution.

a) Parser: Reads the BT specification from a file and
generates the node objects dynamically. The nodes are linked
with each other according to the tree structure. The parent
only stores a pointer to his first child and refers to the other
children using pointers between adjacent brothers.

b) Interface: Displays the BT with the node states in
real-time using a lightweight OpenGL based interface. It
allows the user to navigate through the tree, and override
the node states for simulation or debugging purposes.

c) Execution: Generates a new tick at the Root of the
BT with a fixed frequency. It updates the state of each
node by propagating the tick through the branches using the
algorithms explained in Section III-A. When the fick reaches
a leaf node, an actionlib message is sent to signal the server.

SWe ignored Conditions because they are simpler versions of Actions.



B. Server

Every leaf node of the BT is linked to a corresponding
ROS server module. These contain the functionality of the
application’s actuation and sensing algorithms running at the
control frequency feontrol referenced earlier. Each server is
composed of the three parts: Goal, Publisher, and Execution.

a) Goal: Receives the actionlib messages, that are sent
from the client side, each time a tick reaches a leaf node.
It updates internal variables, such as the “elapsed time since
last message was received”, to determine if the control
algorithms should be: started, resumed, or stopped.

b) Publisher: Contains functions to send state updates
to the client side, so that the BT node states are kept
synchronized with the actual state of the controllers. The
user must define the succeeding S,,, failing F,,, and running
R,, subsets for each control algorithm to be implemented.

c) Execution: Runs the main loop of the controller on
a separate thread to allow asynchronous actionlib message
reception. It periodically checks the “elapsed time since last
message was received” in order to destroy the thread if no
tick has reached the client node for a certain amount of time.

C. Communication

The client and server parts are connected using actionlib;
the most widely used ROS library. It functions under a non-
supervised goal achieving scheme, where the client sends a
goal to the server and waits for it to either succeed or fail.

Clearly, actionlib does not work with the same paradigm
as the BTs, but it provides a valuable framework of client-
server communication in ROS. We took advantage of this to
provide our behavior-trees library with the set of callbacks
that allows it to schedule in time the different nodes of a BT.
Among these functions® we highlight the following:

DoneCB called upon goal completion.

ActiveCB called upon goal acceptance.
FeedbackCB  called upon feedback publishing.
GoalCB called upon new goal reception.
PreemptCB  called upon goal preemption.
ExecuteCB called periodically if the node is active.

D. Implementation Limitations

There are two main limitations: the first cannot be avoided

due to the nature of BTs, the second has a small workaround:

1) BTs operate by calling a function from inside an-

other function in a recursive manner following the

Algorithms 1-11. Computationally, this could produce

stack overflow for huge trees, even for implementations

like ours that separate the control algorithms from the
execution logic using clients and servers.

2) For each fick that is sent to traverse the BT, a large
number of checks has to be performed over the state
spaces of the Actions in the tree. Our implementation
overcomes this problem by performing both calcu-
lations asynchronously, thereby preferring to get a
delayed srate update than blocking the fick flow.

%The callbacks DoneCB, ActiveCB, and FeedbackCB belong to the client.
The callbacks GoalCB, PreemptCB, and ExecuteCB belong to the server.

IX. SYSTEM DEMONSTRATION

To show the potential of BTs and the usability of our
library, we implemented in ROS a grasping task using a NAO
humanoid robot from Aldebaran Robotics, see Fig. 12.

A. The Mission

We define a scenario where the robot stands up, walks
towards a table, and attempts three different grasps on an
object until one of them succeeds or all three fail. If a grasp
succeeds: the robot informs the user, releases the object,
turns 180 degrees, and returns to the starting position. If all
grasps fail, the robot informs the user, but does not return to
the starting position. In both cases, whether the grasp was
successful or not, the robot sits down and disables its motors.

To improve the safety of the robot behavior, we include
fallback handling for motor temperature and falls. This
means that at any point in the execution of the program, if
the robot detects either of these conditions, it automatically
disables the current node and enables the proper one to
handle the situation. For instance, if the robot detects a
high motor temperature, it sits down and disables the motors
in order to prevent overheating. Additionally, if the robot
detects a fall, it attempts to stand up before continuing.

B. Behavior Tree Representation

The BT of this task is shown in Fig. 11, and features two
characteristics that, in general, make BTs powerful tools:
a) Flexibility: It is easy to extend the behavior by
adding or removing nodes without modifying the structure
of the tree. For instance, to include detection and proper
handling of low battery levels, it suffices to add the dashed
Condition in Fig. 11. In contrast, adding or removing a node
from a CHDS, could potentially involve wiring 2N +1 arcs
(N/N arcs going to / departing from the node + 1 self-loop).
b) Modularity: 1t is possible to encapsulate behaviors
as sub-trees, in order to append them to a tree with a higher
hierarchy. To do this, the sub-tree to be appended needs to
be modular, which informally means it never returns Success
or Failure until it has actually finished executing its goal.

e
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Grasp

Both Hands
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Around
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Fig. 11. BT representation of the grasping task implemented on the NAO.
We entirely disregard the automatic plan generation, i.e. Top Layer of Fig. 1.
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Fig. 12. Demonstration 1: successful ball grasp depicted in 12(a)-12(f).
Demonstration 2: failed bottle grasp depicted in 12(g)-12(1).

X. CONCLUSIONS

We presented an algorithmic BT framework which is
substantially more accurate and compact than previous de-
scriptions. We provided equivalence notions between BTs
and CHDSs which gave us insight about the advantages of
each framework: using BTs we lose the ability to be in a
certain state, but we achieve modularity. A BT is modular if
its control-flow nodes and the subsets are laid out in such a
way that the goal represented succeeds or fails in finite time,
and its Root receives Running for all intermediate states.

We introduced the Action and Condition subsets, which
allowed us to formalize and motivate two extensions to
the basic BT functionality, thereby avoiding the use of ad-
hoc solutions. The robotic platform tests and theoretical
analysis allowed us to conclude that BTs can replace certain
CHDSs without losing accuracy, descriptive power, or human
readability. Moreover, BTs have a larger set of representable
plans because nodes such as the Parallel, Selector®, or Se-
quence® do not have a corresponding CHDS representation.

While not explicitly demonstrated here, we believe that the
fexibility and modularity of BTs, make them a good candi-
date for representing Middle Layer plans that are created and
maintained automatically by high-level AI algorithms. We
acknowledge that the current demonstration merely shows
open-loop action scheduling through BTs, and we plan to
address this by upgrading the system to encompass closed-
loop controllers. Lastly, we plan to analyze the relation
between our framework parameters and its functionality.
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