
How Behavior Trees Modularize
Robustness and Safety in Hybrid Systems

Michele Colledanchise and Petter Ögren

Abstract— Behavior Trees (BTs) have become a popular
framework for designing controllers of in-game opponents in
the computer gaming industry. In this paper, we formalize and
analyze the reasons behind the success of the BTs using stan-
dard tools of robot control theory, focusing on how properties
such as robustness and safety are addressed in a modular way.
In particular, we show how these key properties can be traced
back to the ideas of subsumption and sequential compositions of
robot behaviors. Thus BTs can be seen as a recent addition to a
long research effort towards increasing modularity, robustness
and safety of robot control software. To illustrate the use of
BTs, we provide a set of solutions to example problems.

I. INTRODUCTION

Behavior Trees (BTs) were developed within the computer
gaming community [1], [2], [3] as a more modular alternative
to Finite State Machines (FSMs). Their recursive structure
and usability have made them very popular in industry, which
in turn has created a growing amount of attention in academia
[4], [5], [6], [7], [8], [9], [10], [11].

The main advantage of BTs compared to FSMs is their
modularity, as can be seen by the following programming
language analogy [2]. In FSMs, the state transitions are
encoded in the states themselves, and switching from one
state to the other leaves no memory of where the transition
was made from, a so-called one way control transfer. This
is very general and flexible, but actually very similar to
the now obsolete GOTO command, that was an important
part of many early programming languages, e.g., BASIC.
In BTs the equivalents of state transitions are governed by
calls and return values being passed up and down the tree
structure, i.e. two way control transfers. This is also flexible,
but more similar to the use of function calls, that has replaced
GOTO in almost all modern programming languages. Using
function calls when programming made it much easier to
modularize the code, which in turn improved readability and
reusability. Thus, BTs exhibit many of the advantages in
terms of modularity (including readability and reusability)
that was gained when going from GOTO to function calls in
the 1980s. Note however, that there are no claims that BTs
are superior to FSMs from a purely theoretical standpoint.
On the contrary, all BTs can most likely be formulated in
terms of a FSM, just as most general purpose programing
languages are equivalent in the sense of Turing completeness,
but still differ in modularity, readability and reusability.

The authors are with the Computer Vision and Active Perception Lab.,
Centre for Autonomous Systems, School of Computer Science and Com-
munication, KTH - Royal Institute of Technology, SE-100 44 Stockholm,
Sweden. e-mail: {miccol�petter}@kth.se

?

Action

1

Action

2

1

(a)

R0 F0

F0

R0

S0

Rn

f0 = f1

f0 = f2

(b)

Fig. 1. A minimalist Behavior Tree composition (a) and the corresponding
vector field (b). The second subtree increases the robustness of the compo-
sition by increasing the combined region of attraction.

BTs were first described in [1], [2], as powerful tools
to provide intelligent behaviors for non-player characters
in high profile computer games, such as the HALO series.
Later work proposed ways of combining BTs with machine
learning techniques [4], [5], and making them more flexible
in terms of parameter passing [6]. The advantage of BTs
as compared to FSMs was also the reason for extending the
JADE agent Behavior Model with BTs in [7], and the benefits
of using BTs to control complex multi mission UAVs was de-
scribed in [8]. The modularity and structure of BTs enabled a
step towards the formal verification of mission plans in [10],
and estimates on execution times of stochastic BTs were
provided in [11]. A ROS node implementation of BTs was
described in [12] and a Modellica implementation in [13].
Finally, in [9], BTs were used to perform autonomous robotic
grasping in the Darpa Autonomous Robotic Manipulation
Challenge. In particular, it was shown how BTs enabled
the easy composition of primitive actions into complex and
robust manipulation programs.

In this paper, we show that the safety and robustness (in
terms of large regions of attraction, see Figure 1) of BTs to a
large extent relies upon ideas from the robotics community,
presented in [14] and [15]. In a seminal paper by Burridge
et al., [14] the idea of increasing the region of attraction of a
controller by composing a set of controllers was described.
By making sure that the asymptotically stable equilibrium
of one controller was inside the region of attraction of
the next, stability properties of the combination could be
proved. This line of thought was later continued in e.g.,
[15], where additional robustness issues were considered. In
another ground breaking paper [16], ideas regarding the more
of less parallel execution of controllers of different priority
were described. The key idea being that a higher priority
controller can subsume or suppress, the lower priority ones,

whenever needed. Both these ideas are fundamental to the
BT structure.

The contributions of this paper is that we present a model
of BTs that is explicitly based on recursive function calls,
allowing us to investigate properties such as robustness and
safety. We also provide a theoretical analysis of when these
properties are preserved in recursive modular compositions
of new BTs and describe how these compositions rely on
the ideas described in [14] and [16]. Finally, the fact that
BTs are used extensively to design hybrid controllers in the
computer gaming industry, motivates the analysis of them
from a robotics control perspective.

The outline of this paper is as follows. In Section II we
review the classical formulation of BTs . Then, in Section
III we give a number of examples of BTs in different areas
of application. Section IV-A then contains a new compact
function call formulation of BTs. Using the new formulation,
we define properties related to robustness and safety for
BTs in Section IV-B, and prove how they are carried over
to composite BTs in Section IV-C. Finally, the paper is
concluded in Section V.

II. BACKGROUND: CLASSICAL FORMULATION OF BTS

In this section, we will describe BTs in the classical
way. To enable our analysis, we will then, in Section IV,
provide a functional model of BTs. The classical description
is included for comparison with the functional one.

Following [8], we let a BT be a directed tree, with nodes
and edges, using the usual definition of parents and children
for neighboring nodes. The node without parents is called the
root node, and nodes without children are called leaf nodes.
Now, each node of the BT is labeled as belonging to one
of the four different types listed in Table I. If the node is
not a leaf it can be one of the first two types, Selector or
Sequence, and if it is a leaf it is one of the last two types,
Action or Condition.

Remark 1: Here we only focus on the core concepts
of BTs. For a more complete description, including e.g.
Decorator and Parallel nodes, see see [1], [2], [3], [8].

Upon execution of the BT, each time step of the control
loop, the root of the BT is ticked. This tick is then progressed
down the tree according to the types of each node. Once
a tick reaches a leaf node (Action or Condition), the node
does some computation, possibly affecting some continuous
or discrete states/variables of the BT, and then returns
either Success, Failure or Running. The return status is then
progressed up the tree, back towards the root, according
to the types of each node. We will now describe how all
the different node types handle the tick and processes the
different return statuses.

Selector. Selectors are used to find and execute the first
child that does not fail. A Selector will return immediately
with a status code success or running when one of its children
returns success or running, see Table I and the pseudo code
below. The children are ticked in order of importance, from
left to right. Figure 2 illustrates a simple BT with one selector

and a set of Actions. We will later discuss how this is related
to the ideas in [14].

Algorithm 1: Pseudocode of a Selector node with N
children

1 for i← 1 to N do
2 childStatus ← Tick(child(i))
3 if childStatus = running then
4 return running
5 else if childStatus = success then
6 return success

7 return failure

?

Prio 1

Action

Prio 2

Action

. . . Prio N

Action

1

Fig. 2. The Selector ticks its children in order until one returns Success
or Running. Selectors are denoted by a white square with a question mark
and Actions are denoted by a green square.

Sequence. Sequences are used to find and execute the first
child that has not yet succeeded. A Sequence will return
immediately with a status code failure or running when one
of its children returns failure or running, see Table I and the
pseudo code below. The children are ticked in order, from left
to right. Figure 3 illustrates a simple BT with one Sequence
and a set of Actions. We will later discuss how this is related
to the ideas in [16].

Algorithm 2: Pseudocode of a Sequence node with N
children

1 for i← 1 to N do
2 childStatus ← Tick(child(i))
3 if childStatus = running then
4 return running
5 else if childStatus = failure then
6 return failure

7 return success

!

First

Action

Second

Action

. . . Last

Action

1

Fig. 3. The Sequence ticks its children in order until one returns failure
or running.

Action. An Action node performs an action, and returns

TABLE I. The six node types of a BT.

Node type Succeeds Fails Running
Selector If one child succeeds If all children fail If one child returns running

Sequence If all children succeeds If one child fails If one child returns running

Action Upon completion When impossible to complete During completion
Condition If true If false Never

Success if the action is completed, Failure if it can not be
completed and Running if completion is under way.

Condition. A Condition node determines if a condition
C has been met. Conditions are technically a subset of the
Actions, but are given a separate category and graphical
symbol to improve readability of the BT and emphasize the
fact that they never return running and do not change any
internal states/variables of the BT. Examples of Conditions
can be found in Figure 4 below.

?

! A2

C1 A1

1

Fig. 4. A Selector, a Sequence, a Condition (yellow) and two Actions
(green). Action A1 is only performed when Condition C1 returns Success
and Action A2 is only performed if C1 or A1 returns Failure.

III. EXAMPLES OF BTS

To see how BTs are used to provide modularity, robustness
and safety, we will review a set of examples. For the purpose
of illustration, they are all quite small. Note however that
the application reported in [9], Figure 6, was part of the
DARPA Autonomous Robotic ManipulationSoftware track
(ARM-S) challenge. Thus BTs have been successfully used
in real robotic applications, with the explicit motivation
of being “an architecture supporting easy composition of
primitive behaviors into complex and robust manipulation
programs”, [9]. This paper investigates the robustness and
safety of such compositions.

As noted above, BTs were developed in the gaming
industry to provide hybrid controllers for in game opponents.
In [17] the problem of machine learning was investigated for
BTs controlling game characters doing hand to hand combat.
One of the BTs used is depicted in Figure 5. Note how the
combination of Sequence-Condition-Action from the left of
Figure 4 is used repeatedly to determine when to use the
different controllers. When the enemy is not in sight, the
character rests.

A completely different BT is shown in Figure 6. This is
a sub tree of the BT doing grasping in [9]. As can be seen,

?

!
Rest

Enemy

Resting

Stun

Attack

!

Enemy

Defending

Quick

Attack

!

Random

Defence

Enemy

Attacking

1

Fig. 5. A BT for doing hand to hand combat in a computer game.

the robot tries to execute the sequence of finding the table,
detecting the objects, and verifying the pose of the hammer.
If any of these actions return failure, the robot will move
to improve/switch the perspective, until progress in the task
sequence is once again established. One can assume that
Switch perspective always returns Running, which implies
that the complete BT only returns success when all three
actions in the main sequence have succeeded.

?

! Switch
Perspective

Find
Table

Detect
Objects on

Table

Verify
Hammer
Pose

1

Fig. 6. If the key actions in the first sequence fail, the robot moves to
improve the perspective, until progress in the sequence resumes.

The example in Figure 7 deals with autonomous driv-
ing. It is meant to be a BT version of the FSM used in
[18]. The first, default, action is basic driving in a lane.
This corresponds to invoking the car controller with the
following constraints: no passing, no reversing, keep large
safety margins. If no progress can be achieved with these
constraints, implying that the current lane is blocked, the next
action invokes the same controller while allowing passing,
but reducing the allowed speed. If again, no progress can be
made, perhaps because the vehicle in front is too close, the
constraint of reversing is removed while the allowed speed
is reduced further. If the lack of progress remains, the safety
margins are stepwise reduced along with the allowed speed.
Until finally, extremely low speed off road driving is applied
to pass the obstacle.

The example in Figure 8 also deals with autonomous
driving. Here the special cases presented by parking lots,

?

No pass

No Reverse

Large

margins

Pass

No Reverse

Large

margins

Pass &

Reverse

Large

margins

Pass &

Reverse

Medium

margins

Pass &

Reverse

Small

margins

Drive o↵

Road

1

Fig. 7. The BT of an autonomous car, loosely following [18].

intersections, and needed u-turns are first covered, as de-
scribed in [19]. If non of those are needed, the vehicle tries
to perform normal lane following. Finally, if lane following
fails (i.e. results in a stop due to vehicles blocking the road)
an overtaking action is performed.

?

! Follow
Lanes

Overtake
Obstacle

At
Parkinglot

Handle
Parkinglot

!

At
Intersection

Handle
Intersection

!

U-turn
Facing Wrong

Way

1

Fig. 8. The BT of an autonomous car, loosely following [19].

The final example is a UAV controller, where the safety
critical part of the control system has been moved into a
separate module and connected in a sequence with the rest,
see Figure 9. Thus, the rest is executed only when the
Guarantee altitude above 1000 ft returns success. In this
way, the complex mission execution part can be updated
and extended, without risk of introducing bugs in the safety
critical part.

!

Guarantee

altitude above

1000 ft

Perform

Mission

1

Fig. 9. A UAV control BT, where the safety critical part of the controller
has been isolated from the complex mission execution part.

Remark 2: Note that all examples above could be cap-
tured using a FSM instead of a BT. As noted above, the
advantages of BTs lie in the modularity of the switching,
making compositions easier and improving e.g. readability
and reusability. We believe that these advantages, in terms
of software complexity, are as important when developing
robotics software, as it is when developing computer games.

IV. MAIN RESULTS

In this section, we will first propose a functional model of
BTs, we then define properties regarding safety, robustness
and efficiency of BTs, and finally show how these properties
extend across BT compositions in a modular way.

A. A Functional Model of BTs

In this section we define a more formal, functional version
of the BTs described above. The tick is now replaced by
recursive function calls, incorporating both the return status,
and the dynamics of the control system. These definitions
enable us to describe and prove properties of the BTs.

Definition 1 (Behavior Tree (BT)): A BT is a three-tuple

T
i

= {f
i

, r
i

,�t}, (1)

where i ∈ N is the index of the tree, f
i

∶ Rn → Rn is the right
hand side of an ordinary difference equation, �t is a time
step and r

i

∶ Rn → {R,S,F} is the return status, that can be
equal to either Running (R), Success (S), or Failure (F).
The return status r

i

will be used when recursively combining
BTs, as explained below.

Definition 2 (Executing a BT): The execution of a BT T
i

is a standard ordinary difference equation

x
k+t(tk+1) = f

i

(x
k

(t
k

)), (2)
t
k+1 = t

k

+�t. (3)
From now on we will assume that all BTs evolve in the

same continuous space Rn using the same time step �t
i

.
Remark 3: It is often the case, that different BTs, control-

ling different vehicle subsystems evolving in different state
spaces, need to be combined into a single BT. Such cases can
be fit in the assumption above by letting all systems evolve
in a larger state space, that is the cartesian product of the
smaller state spaces.

Definition 3: The three regions R
i

, S
i

, F
i

⊂ Rn of a BTT
i

are defined as follows

R
i

= {x ∶ r
i

(x) = R} (4)
S
i

= {x ∶ r
i

(x) = S} (5)
F
i

= {x ∶ r
i

(x) = F} (6)

and denoted Running/Activation region (R
i

), Success region
(S

i

) and Failure region (F
i

).
A behavior tree that never returns running, is called a

Condition. For those, success/failure are often interpreted as
true/false:

Definition 4 (Condition): A Condition is a BT T
i

with
R

i

= �.
BTs that satisfy Definition 1 directly, without calling other

subtrees, see below, is called Actions.
Definition 5 (Action): An Action is a BT T

i

that has no
subtrees.

Definition 6 (Sequence compositions of BTs): Two or
more BTs can be composed into a more complex BT using
a Sequence operator,

T0 = Sequence(T1,T2).

Then r0, f0 are defined as follows

If x
k

∈ S1 (7)
r0(xk

) = r2(xk

) (8)
f0(xk

) = f2(xk

) (9)
else

r0(xk

) = r1(xk

) (10)
f0(xk

) = f1(xk

). (11)T1 and T2 are called children of T0. Note that when executing
the new BT, T0 first keeps executing its first child T1 as
long as it returns Running or Failure. The second child is
executed only when the first returns Success, and T0 returns
Success only when all children have succeeded, hence the
name Sequence. For notational convenience, we write

Sequence(T1,Sequence(T2,T3)) = Sequence(T1,T2,T3),
(12)

and similarly for arbitrarily long compositions.

R1

S1

F1

F2

S2

R2

Rn

Fig. 10. The sets S1, F1,R1 (solid boundaries) and S2, F2,R2 (dashed
boundaries) of Example 1 and Lemma 2.

Example 1: To illustrate how safety can be improved
using a Sequence composition, we once again consider the
BT in Figure 9. The sets S

i

, F
i

,R
i

are shown in Figure 10.
As T1 is Guarrantee altitude above 1000 ft, its failure region
F1 is a small part of the state space (corresponding to a
crash) surrounded by the running region R1 that is supposed
to move the UAV away from the ground, guaranteeing a
minimum altitude of 1000 ft. The success region S1 is large,
every state sufficiently distant from F1. The BT that performs
the mission, T2, has a smaller success region S2, surrounded
by a very large running region R2, containing a small failure
region F2. The function f0 governed by Equations (9) and
(11) and is depicted together with the vector field (f0(x)−x)
in Figure 11.

R0

R0

F0

F0

S0

R0

Rn

f0 = f1

f0 = f2

Fig. 11. The sets S0, F0,R0 and the vector field (f0(x)−x) of Example 1
and Lemma 2.

The discussion above is formalized in Lemma 2 below.

Remark 4: The definition above corresponds to so-called
memoryless Sequences. Most BT implementations also in-
clude a Sequence with memory, where a subtree that returned
Succeed is never executed again, see Remark 1.

Remark 5: The issue of undesired chattering, i.e., switch-
ing back and fourth between different sub-controllers, is al-
ways an important concern when designing switched control
systems. BTs are no exception. As is suggested by the left
part of Figure 11, chattering can be a problem when vector
fields meet at a switching surface.

Definition 7 (Selector compositions of BTs): Two or
more BTs can be composed into a more complex BT using
a Selector operator,

T0 = Selector(T1,T2).
Then r0, f0 are defined as follows

If x
k

∈ F1 (13)
r0(xk

) = r2(xk

) (14)
f0(xk

) = f2(xk

) (15)
else

r0(xk

) = r1(xk

) (16)
f0(xk

) = f1(xk

). (17)
Note that when executing the new BT, T0 first keeps

executing its first child T1 as long as it returns Running
or Success. The second child is executed only when the first
returns Failure, and T0 returns Failure only when all children
have tried, but failed, hence the name Selector.

R1

F1

S1 S2

F2
R2

Rn

Fig. 12. The sets S1, F1,R1 (solid boundaries) and S2, F2,R2 (dashed
boundaries) of Example 2 and Lemma 2.

Example 2: To illustrate how robustness can be improved
using a Selector composition, we consider a general BT
with two subtrees, see Figure 1(a), that might correspond
to the two first subtrees of the Autonomous driving BT in in
Figure 7. The sets S

i

, F
i

,R
i

are shown in Figure 12. T1 is
the main BT, expected to be executing most of the time and
get us to the desired part of the state space. However, there
are some situations that T1 cannot handle, for example when
overtaking is needed to pass a blocking vehicle. Instead of
making T1 more complex, we combine it with another BT,T2, that can handle the situation, i.e. do overtaking, and move
the state back to the part of the state space that T1 can handle,
this corresponds to S2 ⊂ R1. The sets S0, F0,R0 and f0 of
the combined BT are shown in Figure 13, together with the

vector field f0(x) − x. As can be seen, the combined BT
can now move a larger set of initial conditions to the desired
region S0 = S1.

R0 F0

F0

R0

S0

Rn

f0 = f1

f0 = f2

Fig. 13. The sets S0, F0,R0 and the vector field (f0(x)−x) of Example 2
and Lemma 3.

The discussion above is formalized in Lemma 3 below.

B. Definitions of Safety, Efficiency and Robustness of BTs

Many control problems, in particular in robotics, can be
formulated in terms of achieving a given goal configuration
in a way that is safe, time efficient, and robust with respect to
the initial configuration. Given a configuration space, safety
corresponds to avoiding parts of the space, time efficiency
corresponds to reaching another part of the space in time,
and robustness corresponds to achieving both of the above
from a large set of initial positions.

Using the definitions below, we say that a BT is safe if it
satisfies Definition 8, efficient if it satisfies Definition 9 with
a small ⌧ and robust if it satisfies Definition 9 with a large
region of attraction R′.

Definition 8 (Safe): A BT is Safe, with respect to the
obstacle region O ⊂ Rn, and the initialization region I ⊂ R,
if for all starting points x(0) ∈ I , x(t) �∈ O, for all t ≥ 0.

Definition 9 (Finite Time Successful): A BT is Finite
Time Successful with region of attraction R′, if for all
starting points x(0) ∈ R′ ⊂ R, there is a time ⌧ such that
x(⌧ ′) ∈ S for some ⌧ ′ ≤ ⌧ and x(t) ∈ R′ for all t ∈ [0, ⌧ ′).
As noted in the following Lemma, exponential stability
implies Finite Time Success, given the right choices of the
sets S,F,R.

Lemma 1 (Exponential stability and FTS): A BT for
which x

s

is a globally exponentially stable equilibrium of
the execution (2), and S ⊃ {x ∶ ��x − x

s

�� ≤ ✏}, ✏ > 0, F = �,
R = Rn � S, is Finite Time Successful.

Proof: Global exponential stability implies that there
exists a > 0 such that ��x(k)−x

s

�� ≤ e−ak for all k. Then, for
each ✏ there is a time ⌧ such that ��x(k) − x

s

�� ≤ e−a⌧ < ✏,
which implies that there is a ⌧ ′ < ⌧ such that x(⌧ ′) ∈ S and
the BT is Finite Time Successful.

In order to make statements about the safety of composite
BTs we also need the following definition.

Definition 10 (Safeguarding): A BT is Safeguarding, with
respect to the step length d, the obstacle region O ⊂ Rn, and
the initialization region I ⊂ R, if it is safe, and finite time

successful with region of attraction R′ ⊃ I and a success
region S such that I surrounds S in the following sense:

{x ∈ Rn ∶ inf
s∈S1

��x − s�� ≤ d} ⊂ I. (18)
We are now ready to look at how these properties extend
across compositions of BTs.

C. Safety, Efficiency and Robustness of Composite BTs

In this section we use standard tools from control theory to
show how properties of composite BTs can be derived from
their subtrees. We believe that this functional modularity
provides the reusability and flexibility that are the key
reasons behind the success of BTs in the computer gaming
industry.

In the first result, we show that the modularity of the
Safety property using the Sequence composition, builds upon
the ideas of subsumption, originally presented in [16].

Lemma 2 (Safety of Sequence Compositions): If T1
is safeguarding, with respect to the obstacle O1 initial
region I1, and margin d, and T2 is an arbitrary BT
with max

x

��x − f2(x)�� < d, then the compositionT0 = Sequence(T1,T2) is Safe with respect to O1 and
I1.

Proof: T1 is safeguarding, which implies that T1 is
safe and thus any trajectory starting in I1 will stay out of
O1 as long as T1 is executing. But if the trajectory reaches
S1, T2 will execute until the trajectory leaves S1. We must
now show that the trajectory cannot reach O1 without first
entering I1. But any trajectory leaving S1 must immediately
enter I1, as the first state outside S1 must lie in the set{x ∈ Rn ∶ inf

s∈S1 ��x − s�� ≤ d} ⊂ I1 due to the fact that forT2, ��x(k) − x(k + 1)�� = ��x(k) − f2(x(k))�� < d.
This Lemma is also illustrated in Example 1 and Figures

10 and 11 above.
The second result regarding robustness, is a variation on

the elegant funnel argument of Burridge et al [14]. There,
they showed how the region of attraction could be extended
using a family of controllers, as long as the asymptotically
stable equilibrium of each controller was either the goal
state, or inside the region of attraction of another controller,
positioned earlier in the sequence.

We will now describe the construction of Burridge et al
[14] in some detail, and then see how this concept is captures
in the BT framework. Given a family of controllers U ={�

i

}, we say that �
i

prepares �
j

if the goal G(�
i

) is inside
the domain D(�

j

). Assume the overall goal is located at
G(�1). A set of execution regions C(�

i

) for each controller
was then calculated according to the following scheme:

1) Let the queue contain �1. Let C(�1) =D(�1), N = 1,
D1 =D(�1).

2) Remove the first element of the queue and append all
controllers that prepare it to the back of the queue.

3) Remove all elements in the queue that already has a
defined C(�

i

).
4) Let �

j

be the first element in the queue. Let C(�
j

) =
D(�

j

) �D
N

, D
N+1 =DN

∪D(�
j

) and N ← N + 1.
5) Repeat steps 2,3 and 4 until the queue is empty.

The combined controller is then executed by finding j such
that x ∈ C(�

j

) and then invoking controller �
j

.
Looking at the design of the Selector operator in BTs, it

turns out that it does exactly the job of the Burridge algorithm
above, as long as the subtrees of the Selector are ordered in
the same fashion as the queue above. We formalize this in
the following Lemma.

Lemma 3: (Robustness and Efficiency of Selector Compo-
sitions) If T1,T2 are Finite Time Successful, with S2 ⊂ R′1,
then T0 = Selector(T1,T2) is Finite Time Successful with
⌧0 = ⌧1 + ⌧2, R′0 = R′1 ∪R′2 and S0 = S1.

Proof: First we consider the case when x(0) ∈ R′1.
Then, as T1 is FTS, the state will reach S1 before ⌧1 < ⌧0,
without leaving R′1. If x(0) ∈ R′2 �R′1, T2 will execute, and
the state will progress towards S2. But as S2 ⊂ R′1, x(k1) ∈
R′1 at some time k1 < ⌧2. Then, we have the case above,
reaching x(k2) ∈ S1 in a total time of k2 < ⌧1 + k1 < ⌧1 + ⌧2.

This Lemma is also illustrated in Example 2 and Figures
12 and 13 above.

The efficiency of some compositions can be computed
using Lemma 3 above. But in other cases, efficiency of the
combined controllers is reduced significantly by chattering,
as noted in Remark 5. Inspired by [20] the following result
can give an indication of when chattering is to be expected.

Lemma 4: Given a composition T0 = Sequence(T1,T2),
where f

i

depend on �t are such that ��f
i

(x)−x��→ 0 when
�t → 0. Let s ∶ Rn → R be such that s(x) = 0 if x ∈
�S1 ∩ R2, s(x) < 0 if x ∈ interior(S1) ∩ R2, s(x) > 0 if
x ∈ interior(Rn � S1) ∩R2, and let

�
i

(x) = (@s
@x
)T (f

i

(x) − x).
Then, x ∈ �S1 is chatter free for small enough �t, if �1(x) <
0 or �2(x) > 0.

Proof: When condition holds, the vector field is point-
ing outwards on at least one side of the switching boundary.

Note that this condition is not satisfied on the left hand side
of Figure11. This concludes our analysis of BT compositions.

V. CONCLUSIONS

In this paper, we have provided a theoretical description of
how properties such as robustness and safety are preserved
in modular compositions of BTs. We have also provided a
new function call formulation of BTs underlying the analysis,
and discussed how BT compositions build upon the earlier
ideas of subsumption and sequential composition of robot
behaviors. We believe that the strength of BTs lie in their
modularity, and that BTs can complement FSM in robotic
software development, much like one programming language
can complement another.

ACKNOWLEDGEMENTS

The authors thank Professor Magnus Egerstedt for his
valuable input into this paper. This work has been supported
by the European Union FP7 Project Reconfig (FP7-ICT-
600825), the authors gratefully acknowledge the support.

REFERENCES

[1] D. Isla, “Handling Complexity in the Halo 2 AI,” in Game Developers
Conference, 2005.

[2] A. Champandard, “Understanding Behavior Trees,” AiGameDev. com,
vol. 6, 2007.

[3] D. Isla, “Halo 3-building a Better Battle,” in Game Developers
Conference, 2008.

[4] C. Lim, R. Baumgarten, and S. Colton, “Evolving Behaviour Trees
for the Commercial Game DEFCON,” Applications of Evolutionary
Computation, pp. 100–110, 2010.

[5] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving
Behaviour Trees for the Mario AI Competition Using Grammatical
Evolution,” Applications of Evolutionary Computation, 2011.

[6] A. Shoulson, F. M. Garcia, M. Jones, R. Mead, and N. I. Badler,
“Parameterizing Behavior Trees,” in Motion in Games. Springer,
2011.

[7] I. Bojic, T. Lipic, M. Kusek, and G. Jezic, “Extending the JADE
Agent Behaviour Model with JBehaviourtrees Framework,” in Agent
and Multi-Agent Systems: Technologies and Applications. Springer,
2011, pp. 159–168.

[8] P. Ögren, “Increasing Modularity of UAV Control Systems using
Computer Game Behavior Trees,” in AIAA Guidance, Navigation and
Control Conference, Minneapolis, MN, 2012.

[9] J. A. D. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard,
M. Pivtoraiko, J.-S. Valois, and R. Zhu, “An Integrated System
for Autonomous Robotics Manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, October 2012, pp.
2955–2962.

[10] A. Klökner, “Interfacing Behavior Trees with the World Using De-
scription Logic,” in AIAA conference on Guidance, Navigation and
Control, Boston, 2013.

[11] M. Colledanchise, A. Marzinotto, and P. Ögren, “Performance Analy-
sis of Stochastic Behavior Trees,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on, June 2014.

[12] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards
a Unified Behavior Trees Framework for Robot Control,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on, June
2014.

[13] A. Klöckner, F. van der Linden, and D. Zimmer, “The Modelica
BehaviorTrees Library: Mission planning in continuous-time for un-
manned aircraft,” in Proceedings of the 10th International Modelica
Conference, 2014.

[14] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential
Composition of Dynamically Dexterous Robot Behaviors,” The In-
ternational Journal of Robotics Research, vol. 18, no. 6, pp. 534–555,
1999.

[15] J. Le Ny and G. J. Pappas, “Sequential Composition of Robust
Controller Specifications,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, 2012, pp. 5190–5195.

[16] R. Brooks, “A Robust Layered Control System for a Mobile Robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[17] L. Pena, S. Ossowski, J. M. Pena, and S. M. Lucas, “Learning and
Evolving Combat Game Controllers,” in Computational Intelligence
and Games (CIG), 2012 IEEE Conference on. IEEE, 2012, pp. 195–
202.

[18] T. Wongpiromsarn and R. M. Murray, “Distributed Mission and
Contingency Management for the DARPA Urban Challenge,” in In-
ternational Workshop on Intelligent Vehicle Control Systems (IVCS),
2008.

[19] M. Powers, D. Wooden, M. Egerstedt, H. Christensen, and T. Balch,
“The Sting Racing Team’s Entry to the Urban Challenge,” in Experi-
ence from the DARPA Urban Challenge. Springer, 2012, pp. 43–65.

[20] A. Filippov and F. Arscott, Differential Equations with Discontinuous
Righthand Sides: Control Systems, ser. Mathematics and its
Applications. Kluwer Academic Publishers, 1988. [Online].
Available: http://books.google.se/books?id=KBDyZSwpQpQC

