
Long Proofs of (Seemingly) Simple Formulas

Mladen Mikša and Jakob Nordström

School of Computer Science and Communication
KTH Royal Institute of Technology

SE-100 44 Stockholm, Sweden

Abstract. In 2010, Spence and Van Gelder presented a family of CNF
formulas based on combinatorial block designs. They showed empirically
that this construction yielded small instances that were orders of mag-
nitude harder for state-of-the-art SAT solvers than other benchmarks of
comparable size, but left open the problem of proving theoretical lower
bounds. We establish that these formulas are exponentially hard for res-
olution and even for polynomial calculus, which extends resolution with
algebraic reasoning. We also present updated experimental data show-
ing that these formulas are indeed still hard for current CDCL solvers,
provided that these solvers do not also reason in terms of cardinality
constraints (in which case the formulas can become very easy). Some-
what intriguingly, however, the very hardest instances in practice seem
to arise from so-called fixed bandwidth matrices, which are provably easy
for resolution and are also simple in practice if the solver is given a hint
about the right branching order to use. This would seem to suggest that
CDCL with current heuristics does not always search efficiently for short
resolution proofs, despite the theoretical results of [Pipatsrisawat and
Darwiche 2011] and [Atserias, Fichte, and Thurley 2011].

1 Introduction

Modern applied SAT solving is a true success story, with current state-of the art
solvers based on conflict-driven clause learning (CDCL) [4, 21, 23] having deliv-
ered performance improvements of orders of magnitude larger than seemed possi-
ble just 15–20 years ago. From a theoretical perspective, however, the dominance
of the CDCL paradigm is somewhat surprising in that it is ultimately based on
the fairly weak resolution proof system [9]. Since it is possible in principle to
extract a resolution refutation of an unsatisfiable formula from the execution
trace of a CDCL solver running on it, lower bounds on resolution refutation
length/size yield lower bounds on the running time of any CDCL solver trying
to decide this formula.1 By now, there is a fairly extensive literature on SAT in-
stances for which exponential lower bounds are known, imposing firm restrictions
on what kind of formulas the basic CDCL approach can hope to solve.

1 Provided that the solver does not reason in terms of cardinality constraints or sys-
tems of linear equations and does not introduce new variables to apply extended
resolution, in which case the theoretical lower bound guarantees no longer apply.

This suggests that an interesting question might be to turn the tables and
ask for maximally hard instances. What are the smallest CNF formulas that
are beyond reach of the currently best solvers? Pigeonhole principle (PHP) for-
mulas were the first to be proven hard for resolution in the breakthrough re-
sult by Haken [15], but in terms of formula size N their hardness scales only
as exp

(
Ω
(

3
√
N
))

. Two formula families with refutation length exp(Ω(N)) are
Tseitin formulas2 over so-called expander graphs and random k-CNF formulas,
as shown by Urquhart [27] and Chvátal and Szemerédi [11], respectively. The
strongest lower bounds to date in terms of the explicit constant in the exponent
were established recently by Beck and Impagliazzo [5].

Spence [26] instead focused on empirical hardness and exhibited a family of
3-CNF formulas that seem practically infeasible even for very small instances
(around 100 variables). These formulas can be briefly described as follows. Fix
a set of 4n+ 1 variables. Randomly partition the variables into groups of 4 plus
one group of 5. For each 4-group, write down the natural 3-CNF formula en-
coding the positive cardinality constraint that at least 2 variables must be true,
and for the 5-group encode that a strict majority of 3 variables must be true.
Do a second random variable partition into 4-groups plus one 5-group, but now
encode negative cardinality constraints that the number of false variables is at
least 2 and 3, respectively. By a counting argument, the CNF formula consisting
of the conjunction of all these clauses must be unsatisfiable. Although [26] does
not present any theoretical analysis, these formulas have a somewhat pigeon-
hole principle-like flavour and one can intuitively argue that they would seem
likely to be hard provided that every moderately large set of positive cardinality
constraints involves variables from many different negative constraints.

This construction was further developed by Van Gelder and Spence in [28],
where the variable partitioning is done in terms of an n×nmatrix with 4 non-zero
entries in each row and column except that one extra non-zero entry is added to
some empty cell. The variables in the formula correspond to the non-zero entries,
each row is a positive cardinality constraint on its non-zero entries just as before,
and each column provides a negative cardinality constraint. Equivalently, this
formula can be constructed on a bipartite graph which is 4-regular on both sides
except that one extra edge is added. In addition, there is a “no quadrangles”
requirement in [28] that says that the graph contains no cycles of length 4. Just
as above, it seems reasonable to believe that such formulas should be hard for
resolution if the graph is a good expander. One such instance on 105 variables
was issued by [28] as a “challenge formula” to be solved by any SAT solver in
less than 24 hours, and in the concluding remarks the authors ask whether lower
bounds on resolution length can be proven for formulas generated in this way.

1.1 Our Theoretical Results

We show that the formulas in [26, 28] are exponentially hard for resolution if
the collection of constraints have a certain expansion property, and that random

2 Encoding that the sum of the vertex indegrees in an undirected graph is even.

instances of these formulas are expanding with overwhelming probability. Let
U denote the set of positive cardinality constraints and V the set of negative
constraints. Then we can represent the formulas in [28] (and [26]) as bipartite
(multi-)graphs G = (U ∪̇ V,E), where edges are identified with variables and
x = (u, v) ∈ E if x occurs in both u ∈ U and v ∈ V . Informally, we obtain the
following lower bound for resolution (see Theorem 6 for the formal statement).

Theorem 1 (Informal). If a 4-regular bipartite (multi-)graph G with one ex-
tra edge added is a sufficiently good expander, then the formula in [28] gen-
erated from G (or in [26] if G is a multigraph) requires resolution refutations
of length exp

(
Ω(n)

)
. In particular, random instances of these formulas require

resolution length exp
(
Ω(n)

)
asymptotically almost surely.

As a side note, we remark that the “no quadrangles” condition discussed
above is not necessary (nor sufficient) for this theorem to hold—the more general
notion of expansion is enough to guarantee that the formulas will be hard.

In one sentence, the proof works by reducing the formula to the pigeonhole
principle on a 3-regular bipartite graph, which is then shown to be hard by a
slight tweak of the techniques developed by Ben-Sasson and Wigderson [6]. A
more detailed (if still incomplete) proof sketch is as follows. Start by fixing any
complete matching in G (which can be shown to exist) and set all the matched
edges plus the added extra edge to true. Also, set all remaining edges incident
to the unique degree-5 vertex v∗ on the right to false (this satisfies the negative
constraint for v∗, which means that the corresponding clauses vanish). After
this restriction, we are left with n constraints on the left which require that at
least 1 out of the remaining 3 variables should be true, whereas on the right we
have n − 1 constraints which all require that at most 1 remaining variable is
true. But this is just a restricted PHP formula where each pigeon can go into
one of three holes. Since we had a bipartite expander graph before restricting
edges, and since not too many edges were removed, the restricted graph is still
an expander. Now we can argue along the lines of [6] to obtain a linear lower
bound on the refutation width from which an exponential length lower bound
follows (and since restrictions can only make formulas easier, this lower bound
must also hold for the original formula).

In fact, using tools from [2] one can show that the formulas are hard not only
for resolution but also for polynomial calculus resolution [1, 12], which adds the
power of Gröbner basis computations to resolution.

Theorem 2 (Informal). For 4-regular bipartite (multi-)graphs with one extra
edge that are sufficiently good expanders the formulas in [26, 28] require refu-
tations of size exp

(
Ω(n)

)
in polynomial calculus resolution (PCR). In particu-

lar, randomly sampled instances of these formulas require PCR refutation size
exp
(
Ω(n)

)
asymptotically almost surely.

The technical details of this argument get substantially more involved, how-
ever. Thus, although Theorem 1 is strictly subsumed by Theorem 2, we focus
mostly on the former theorem since it has a much cleaner and simpler proof that
can be presented in full within the page limits of this extended abstract.

1.2 Our Empirical Results

We report results from running some current state-of-the-art SAT solvers on
random instances of the formulas constructed by Spence [26] and Van Gelder
and Spence [28], as well as on so-called fixed bandwidth versions of these formulas.
The latter are formulas for which the non-zero entries on each row in the matrix
appear on the diagonal and at some fixed (and small) horizontal offsets from
the diagonal. Such matrices yield highly structured formulas, and as pointed out
in [28] it is not hard to show that these formulas have polynomial-size refutations.

Our findings are that random instances of the formulas in [26, 28] are very
hard, and become infeasible for slightly above 100 variables. As could be ex-
pected, the formulas in [28] are somewhat harder than the original formulas
in [26], since the former are guaranteed not to have any multi-edges in the bi-
partite graph representing the constraints and thus “spread out” variables better
among different constraints. However, to our surprise the formulas that are hard-
est in practice are actually the ones generated from fixed bandwidth matrices.
A priori, one possible explanation could be that although the formulas are the-
oretically easy, the constants hidden in the asymptotic notation are so bad that
the instances are hard for all practical purposes. This appears not to be the
case, however—when the SAT solver is explicitly given a good variable branch-
ing order the fixed bandwidth formulas are solved much more quickly. Thus, this
raises the question whether this could perhaps be an example of formulas for
which CDCL with current state-of-the-art heuristics fails to search effectively for
resolution proofs. This stands in intriguing contrast to the theoretical results in
[3, 25], which are usually interpreted as saying that CDCL essentially harnesses
the full power of resolution.

We have also done limited experiments with feeding the formulas in [26, 28] to
Sat4j [7], the latest version of which can detect (small) cardinality constraints [8].
It is not hard to see that if the SAT solver is given the power to count, then
it could potentially figure out quickly that it cannot possibly be the case that
a strict majority of the variables is both true and false simultaneously. Indeed,
this is also what happens, and in particular Sat4j solves the challenge formula
from [28] in less than a second.

1.3 Organization of This Paper

After reviewing some preliminaries in Section 2, we state and prove formal ver-
sions of our proof complexity lower bounds in Section 3. In Section 4, we report
our experimental results. Section 5 contains some concluding remarks.

2 Proof Complexity Preliminaries

In what follows, we give a brief overview of the relevant proof complexity back-
ground. This material is standard and we refer to, e.g., the survey [24] for more
details. All formulas in this paper are in conjunctive normal form (CNF), i.e.,

consist of conjunctions of clauses, where a clause is a disjunction of positive lit-
erals (unnegated variables) and negative literals (negated variables, denoted by
overline). It is convenient to view clauses as sets, so that there is no repetition of
literals and order is irrelevant. A k-CNF formula has all clauses of size at most k,
which is always assumed to be some fixed (and, in this paper, small) constant.

A resolution refutation π : F `⊥ of a formula F (sometimes also referred to as
a resolution proof for F) is an ordered sequence of clauses π = (D1, . . . , Dτ) such
that Dτ = ⊥ is the empty clause without literals, and each line Di, 1 ≤ i ≤ τ , is
either one of the clauses in F (an axiom clause) or is derived from clauses Dj , Dk

in π with j, k < i by the resolution rule B∨x C∨x
B∨C (where B ∨C is the resolvent

of B ∨ x and C ∨ x on x). It is also sometimes technically convenient to add a
weakening rule B

B∨C that allows to add literals to a previously derived clause.
The length (or size) L(π) of a resolution refutation π is the number of clauses
in π. The width W(C) of a clause C is the number of literals |C|, and the width
W(π) of a refutation π is the width of a largest clause in π. Taking the minimum
over all refutations of F , we obtain the length LR(F `⊥) and width WR(F `⊥)
of refuting F , respectively. It is not hard to show that all use of weakening can
be eliminated from refutations without increasing these measures.

Resolution can be extended with algebraic reasoning to yield the proof system
polynomial calculus resolution (PCR), or more briefly just polynomial calculus.3

For some fixed field F (which would be GF(2) in practical applications but can
be any field in theory) we consider the polynomial ring F[x, x, y, y, . . .] with x
and x as distinct formal variables, and translate clauses

∨
x∈L+ x ∨

∨
y∈L− y to

monomials
∏
x∈L+ x ·

∏
y∈L− y. A PCR refutation π of F is then an ordered

sequence of polynomials π = (P1, . . . , Pτ), expanded out as linear combinations
of monomials, such that Pτ = 1 and each line Pi, 1 ≤ i ≤ τ , is one of the
following:

– a monomial encoding a clause in F ;
– a Boolean axiom x2−x or complementarity axiom x+x−1 for any variable x;
– a polynomial obtained from one or two previous polynomials by linear com-

bination Q R
αQ+βR or multiplication Q

xQ for any α, β ∈ F and any variable x.

The size S (π) of a PCR refutation π is the number of monomials in π
(counted with repetitions) and the degree Deg(π) is the maximal degree of any
monomial appearing in π. Taking the minimum over all PCR refutations, we
define the size SPCR(F `⊥) and degree DegPCR(F `⊥) of refuting F in PCR.
When the proof system is clear from context, we will drop the subindices de-
noting resolution or PCR, respectively. It is straightforward to show that PCR
can simulate resolution efficiently by simply mimicking the resolution steps in a
refutation, and this simulation can be done without any noticeable blow up in
size/length or degree/width. There are formulas, however, for which PCR can
be exponentially stronger than resolution with respect to size/length.

3 Strictly speaking, PCR as defined in [1] is a slight generalization of polynomial
calculus [12], but here we will not be too careful in distinguishing between the two
and the term “polynomial calculus” will refer to PCR unless specified otherwise.

A restriction ρ on F is a partial assignment to the variables of F . In a
restricted formula F�ρ (or refutation π�ρ) all clauses satisfied by ρ are removed
and all other clauses have falsified literals removed. It is a well-known fact that
restrictions preserve resolution refutations, so that if π is a resolution refutation
of F , then π�ρ is a refutation of F�ρ (possibly using weakening) in at most the
same length and width. For polynomials, we think of 0 as true and 1 as false.
Thus, if a restriction satisfies a literal in a monomial that monomial vanishes,
and all falsified literals in a monomial get replaced by 1 and vanish. Again it
holds that if π is a PCR refutation of F , then π�ρ is a PCR refutation of F�ρ
(after a simple postprocessing step to take care of cancelling monomials and to
adjust for that multiplication can only be done one variable at a time). This
restricted refutation will have at most the same size and degree (except possibly
for a constant factor in size due to postprocessing multiplications).

3 Theoretical Hardness Results

In this section, we present our proof complexity lower bounds. We will focus
below on the formulas in [28]. The proof for the formulas in [26] is very similar
in spirit but contains some further technical complications, and we defer the
discussion of this to the end of this section. Let us start by giving an explicit,
formal definition of these formulas, which we will refer to as subset cardinality
formulas.

Definition 3 (Subset cardinality formula). Suppose that G = (U ∪̇ V,E)
is a 4-regular bipartite (multi-)graph except that one extra edge has been added.
Then the subset cardinality formula SC (G) over G has variables xe, e ∈ E, and
clauses:

– xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to u ∈ U ,
– xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to v ∈ V .

As noted before, an easy counting argument shows that these formulas are
unsatisfiable. Intuitively, the hardness of proving this unsatisfiability should de-
pend on the structure of the underlying graph G. We remind the reader that
compared to [28], the “no quadrangles” condition mentioned in Section 1 is
missing in Definition 3. This is because this condition is neither necessary nor
sufficient to obtain lower bounds. Expressed in terms of the graph G, what
quadrangle-freeness means is that there are no 4-cycles, which is essentially say-
ing that no constraints in G have a very “localized structure.” However, the
fixed bandwidth formulas already discussed in Section 1 can be constructed to
be quadrangle-free, but are still guaranteed to be easy for resolution. Therefore,
in order for our lower bound proof to go through we need the more general
condition that the graph G should be an expander as defined next.

Definition 4 (Expander). A bipartite graph G = (U ∪̇ V,E) is an (s, δ)-
expander if for each vertex set U ′ ⊆ U, |U ′| ≤ s, it holds that |N(U ′)| ≥ δ|U ′|,
where N(U ′) = {v ∈ V | ∃(u, v) ∈ E for u ∈ U ′} is the set of neighbours of U ′.

The key idea in our lower bound proof is to apply a suitably chosen restric-
tion to reduce subset cardinality formulas to so-called graph pigeonhole principle
formulas PHP(G). These formulas are also defined in terms of bipartite graphs
G = (U ∪̇ V,E) and encode that every “pigeon” vertex on the left, i.e., in U ,
needs to have at least one of the edges incident to it set to true, while every
“hole” vertex on the right, i.e., in V , must have at most one edge incident to it
set to true. Ben-Sasson and Wigderson [6] showed that random instances of such
formulas are hard for resolution if the left degree is at least 5, and modifying
their techniques slightly we prove that left degree 3 is sufficient provided that the
graphs have good enough expansion. The proof is by showing a resolution width
lower bound and then applying the lower bound on length in terms of width
in [6]. An analogous result can be proven also for polynomial calculus by using
techniques from Alekhnovich and Razborov [2] to obtain a degree lower bound
and then applying the lower bound on size in terms of degree in Impagliazzo et
al. [17], which yields the following lemma.

Lemma 5. Suppose that G = (U ∪̇ V,E) is a 3-regular
(
εn, 32 + δ

)
-expander for

some constant ε, δ > 0 and |U | = |V | = n, and let G′ be the graph obtained by
removing any vertex from V in G and its incident edges. Then the resolution
refutation length of the graph pigeonhole principle PHP(G′) is exp(Ω(n)), and
the same bound holds for PCR size.

Let us first show how Lemma 5 can be used to establish the lower bound for
subset cardinality formulas and then present a proof of the lemma for the case of
resolution. The argument for polynomial calculus is more involved and we will
only be able to sketch it due to space constraints.

Theorem 6. Suppose that G = (U ∪̇ V,E) is a 4-regular
(
εn, 52 + δ

)
-expander

for |U | = |V | = n and some constants ε, δ > 0, and let G′ be obtained from G by
adding an arbitrary edge from U to V . Then any polynomial calculus refutation
of SC (G′) must have size exp

(
Ω(n)

)
(and hence the same lower bound holds for

resolution length).

Proof. We want to restrict the subset cardinality formula SC (G′) to get a graph
pigeonhole principle formula. By a standard argument, which can be found for
instance in [10], we know that any 4-regular bipartite graph G has a perfect
matching. Fix such a matching M and let M ′ = M ∪ {(u′, v′)}, where (u′, v′)
denotes the edge added to G. We apply the following restriction ρ to SC (G′):

ρ
(
x(u,v)

)
=


> if (u, v) ∈M ′,
⊥ if v = v′ and (u, v′) /∈M ′,
∗ otherwise (i.e., the variable is unassigned).

(1)

This reduces the original formula SC (G′) to PHP(G′′) on the graph G′′ obtained
by removing the matching M and also the vertex v′ with incident edges from G.
To see this, consider what happens with the clauses encoding the constraints.

For every vertex u ∈ U \ {u′}, which has four edges ei, 1 ≤ i ≤ 4, incident to
it, we have the clauses {xe1∨xe2∨xe3 , xe1∨xe2∨xe4 , xe1∨xe3∨xe4 , xe2∨xe3∨xe4}
in SC (G′). After applying ρ, the one edge that is in the matching M will be set
to true, satisfying all of these clauses but one. If in addition u is one of the
vertices neighbouring v′, the remaining constraint will shrink to a 2-clause. The
constraint corresponding to u′ is similarly reduced. In this case, we have five
incident edges ei, 1 ≤ i ≤ 5, and two of them are set to true. If, for instance,
we have e4 ∈ M and e5 = (u′, v′), then the only clause that is not satisfied is
xe1 ∨ xe2 ∨ xe3 , which corresponds to the pigeon axiom for the vertex u′ in G′′.

For a constraint v ∈ V \ {v′} with neighbours ei, 1 ≤ i ≤ 4, the clause set is
the same as for U \ {u′} except that every variable is negated. If e4 ∈ M , then
after the restriction we are left with the set of clauses {xe1 ∨ xe2 ∨ xe3 , xe1 ∨
xe2 , xe1 ∨xe3 , xe2 ∨xe3}, where the last three clauses are the hole axioms for the
vertex v in G′′ and the first clause can be ignored since it follows by weakening of
any of the other clauses. Since ρ satisfies the constraint v′ the clauses encoding
this constraint vanish. This shows that SC (G′)�ρ is indeed equal to PHP(G′′).

Now all that remains is to observe that G′′ can be obtained by removing
a right vertex from a 3-regular bipartite (εn, 32 + δ)-expander. This is so since
deleting the matching M from G decreases all vertex degrees from 4 to 3 and
lowers the expansion factor by at most an additive 1. Applying Lemma 5 we
conclude that PHP(G′′) requires polynomial calculus size (and hence resolution
length) exp

(
Ω(n)

)
. As restrictions do not increase the length/size of refutations,

the same lower bound must hold also for SC (G′).

It remains to prove Lemma 5. We give a full proof of the lemma for resolution
below, but due to space constraints we can only outline the argument for poly-
nomial calculus. For both resolution and polynomial calculus we need a stronger
notion of expansion as defined next.

Definition 7 (Boundary expander). A bipartite graph G = (U ∪̇ V,E) is an
(s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds
that |∂(U ′)| ≥ δ|U ′|, where v ∈ ∂(U ′) if there is exactly one vertex u ∈ U ′ that
is a neighbour of v.

Using the following connection between usual expansion and boundary ex-
pansion (which is straightforward to show and is stated here without proof) we
can prove Lemma 5.

Proposition 8. Every d-regular (s, δ)-expander is also an (s, 2δ − d)-boundary
expander.

Proof (of Lemma 5 for resolution). Since G is an (εn, 2δ)-boundary expander by
Proposition 8, even after removing a vertex in V it must hold for G′ that every
set of vertices U ′′ ⊆ U , |U ′′| ≤ εn satisfies |∂G′(U ′′|)| ≥ 2δ|U ′| − 1.

Let us also observe that the connected component Gc = (U c ∪̇ V c, Ec) of G
to which the vertex v′ belongs must be a 3-regular graph with |U c| > εn. This
is so since if |U c| ≤ εn, it would follow from the expansion of G that |V c| =

|NGc(U c)| ≥
(
3
2 + δ

)
|U c| > |U c|. But |U c| 6= |V c| implies that Gc cannot be a

3-regular bipartite graph, which is a contradiction. Furthermore, for every proper
subset U ′′ (U c it must hold that |N(U ′′)| > |U ′′|, since otherwise U ′′ and its
neighbours N(U ′′) would form a disconnected component in Gc. Hence, when we
remove the vertex v′ from Gc we have |N(U ′′)| ≥ |U ′′| for every proper subset
U ′′ (U c. By Hall’s theorem, this implies that every proper subset U ′′ (U c

has a matching in Gc. This shows that any refutation of PHP(G′) must use all
the pigeons in Gc, i.e., at least εn pigeon axiom clauses, to show that PHP(G′)
is unsatisfiable, since the formula becomes satisfiable if just one of these pigeon
axioms is removed.

Now we can employ the progress measure on refutations developed in [6] to
show that the width of refuting PHP(G′) is lower bounded by εδn − 1. This
follows by a straightforward adaptation of the argument in Sections 5 and 6.2
of [6], which yields a width lower bound analogous to that in Theorem 4.15. By
appealing to the lower bound on length in terms of width in Corollary 3.6 in [6]
we obtain a lower bound on the resolution refutation length of exp

(
Ω(n)

)
.

The proof of Lemma 5 for polynomial calculus is similar in that we prove
a degree lower bound and then use the lower bound on size in terms of degree
in [17] (which is an exact analogue of the result in [6] for resolution). We closely
follow the proof of Theorem 4.14 in [2], from which one can derive that any refu-
tation of the graph pigeonhole principle on an (s, δ)-boundary expander requires
degree δs/2. This is almost what we need, except that we lose an additive 1 when
we remove a vertex from the right. Nevertheless, the proof still goes through if
we subtract 1 everywhere, yielding a degree lower bound of δs/2 − 1. The only
point where we argue a bit differently than [2] is when we need to show that at
least s pigeons have to be used to prove unsatisfiability. But we have already
shown this claim in the proof of the resolution width lower bound and we can
reuse the same argument in the proof of Lemma 5 for polynomial calculus.

This proves that the formulas in [28] are hard for polynomial calculus (and
hence also for resolution) if the underlying graph is an expander. In order to
establish that randomly sampled instances of such formulas are hard, we just
need the fact that randomly sampled graphs are likely to be expanders. The
following theorem tells us what we need to know.

Theorem 9 ([16]). Let d ≥ 3 be a fixed integer. Then for every δ, 0 < δ < 1
2 ,

there exists an ε > 0 such that almost all d-regular bipartite graphs G with
n vertices on each side are

(
εn, d− 3

2 + δ
)
-expanders.

Corollary 10. The formula SC (G) for a random 4-regular bipartite graph G
with an arbitrary extra edge added requires polynomial calculus refutations (and
hence also resolution refutations) of exponential size asymptotically almost surely.

Proof. Use Theorem 9 with d = 4 together with Theorem 6.

Let us conclude this section by discussing how the lower bound proof above
for the formulas in [28], i.e., subset cardinality formulas SC (G) for ordinary
graphs G, can be made to work also for the formulas in [26].

Following the description in Section 1, the formulas in [26] can be defined in
terms of permutations of [4n+ 1]. We can construct a bipartite multigraph G(σ)
from a permutation σ of [4n+ 1] as follows. We first partition [4n+ 1] into sub-
sets {1, 2, 3, 4}, {5, 6, 7, 8} . . . , {4n− 3, 4n− 2, 4n− 1, 4n, 4n+ 1} and identify
the vertices in V with these subsets. Second, by using the partition into subsets
{σ(1), σ(2), σ(3), σ(4)}, . . . , {σ(4n− 3), σ(4n− 2), σ(4n− 1), σ(4n), σ(4n+ 1)}
we obtain the vertices in U . Then, for every number that is in both in u ∈ U
and v ∈ V we add an edge between u and v. In this way, we obtain a subset
cardinality formula on the multigraph G(σ), which we will denote by SC ∗(G(σ))
(or more briefly just SC ∗(σ)) to highlight that the formula is generated from a
multigraph obtained from a permutation.

In order to show that the formula SC ∗(σ) requires polynomial calculus refu-
tations of exponential size if the multigraph G(σ) is an expander, there are three
issues we need to address in the proof for standard graphs above:

– Firstly, our graph theoretic claims should now be made for multigraphs in-
stead of ordinary graphs. This is not a problem, however, since all the claims
we need are still true in this setting and since multiple copies of an edge can
be eliminated by setting the corresponding variables to false.

– Secondly, the degree-5 vertices are not necessarily connected in G(σ). Be-
cause of this, we need to modify the restriction used to reduce the formula
to a graph pigeonhole principle formula. We still find a matching and set all
the edges in it to true, but now we choose two special edges incident to the
degree-5 vertices u′ and v′ and set their values to true and false, respectively.
In this way the graph we get has a vertex on the right with two of the edges
incident to it set to true, one from the matching and one from the special
edge incident to u′. This forces the values of the remaining two edges to
be false, which satisfies the constraint v′ and gives us the graph pigeonhole
principle formula required by Lemma 5.

– Thirdly, a slightly subtle point is that we do not require G(σ) to be expand-
ing, but rather a slightly modified multigraph GM (σ). To form GM (σ), we
start by removing from G(σ) one of the edges incident to the degree-5 vertex
in U and one of the edges incident to the degree-5 vertex in V . The resulting
multigraph has two vertices of degree 3, which we connect with an edge in
order to form the 4-regular multigraph GM (σ).

In order to show that randomly sampled instances of the formulas SC ∗(σ))
are hard, we note that the model of a random graph used to prove Theorem 9 is
actually based on random permutations. Hence, the claim that random 4-regular
graphs are good expanders holds for random permutations as well, which implies
that almost all instances of the formulas in [26] are hard for polynomial calculus.

Theorem 11. Let σ be a permutation of [4n+ 1] and let SC ∗(σ) be the corre-
sponding subset cardinality formula. If the multigraph GM (σ) is an

(
εn, 52 + δ

)
-

expander for some constants ε, δ > 0, then any polynomial calculus refutation
(and resolution refutation) of SC ∗(σ) has size exp

(
Ω(n)

)
.

In particular, for a random permutation σ the formula SC ∗(σ) requires poly-
nomial calculus refutation of exponential size asymptotically almost surely.

4 Empirical Results on SAT Solver Performance

For our experiments we used the SAT solvers Glucose 2.2 [14], March-rw [19],
and Lingeling-ala [18]. The experiments were run under Linux on a computer
with two quad-core AMD Opteron 2.2 GHz CPUs (2374 HE) and 16 GB of
memory, where only one solver was running on the computer at any given time.
We limited the solver running time to 1 hour per instance . For the experiments
with fixed variable ordering we used a version of MiniSat 2.2.0 [22] modified so
that the solver always branches on unset variable in fixed order.

The CNF formula instances were obtained as follows:

1. The formulas SC ∗(σ) from [26] were generated by taking one fixed partition
of [4n+ 1] into {1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {4n−3, 4n−2, 4n−1, 4n, 4n+ 1}
and one random partition into 4-groups plus one 5-group, and then encod-
ing positive and negative cardinality constraints, respectively, on these two
partitions.

2. For the formulas SC (G) from [28] we started with a random (non-bipartite)
4-regular graph, took the bipartite double cover (with two copies vL, vR of
each vertex v and edges (uL, vR) for all edges (u, v) in the original graph),
and finally added a random edge.4

3. The fixed bandwidth formulas were constructed from an n× n matrix with
ones in the first row on positions 1, 2, 4, 8 and zeroes everywhere else, and
with every subsequent row being a cyclic shift one step to the right of the
preceding row. Finally, an extra one was added to the top right cell of the
matrix if this was a zero, and otherwise to the nearest cell containing a zero.5

For each CNF formula we ran each SAT solver three times (with different
random seeds), and for randomly generated formulas we ran on three different
CNF formulas for each parameter value. The values in the plots are the me-
dians of these values. We also performed exactly the same set of experiments
on randomly shuffled version of the formulas (with randomly permuted clauses,
variables, and polarities), but this random shuffling did not affect the results in
any significant way and so we do not display these plots.

We present the results of our experiments in Figure 1 with one subplot per
solver.6 As can be seen from these plots, all three versions of the formulas be-
come infeasible for around 100–120 variables. Comparing to our experiments on
random 3-CNF formulas and Tseitin formulas on random 3-regular graphs in
Figure 2, it should be clear that all three flavours of the formulas from [26, 28]
that we investigated were substantially harder than random formulas. Notice

4 We remark that, strictly speaking, this does not yield uniformly random instances
but we just wanted to obtain some instances with “good enough” randomness (and
hence expansion) on which we could run experiments.

5 Note that this construction yields quadrangle-free instances for large enough n, ex-
cept possibly for quadrangles involving the added extra top-right entry.

6 The code for generating the CNF instances and complete data for the experiments
can be found at http://www.csc.kth.se/~jakobn/publications/sat14/.

0 20 40 60 80 100 120 140

Number of variables

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

)

SC (G)

SC ∗(σ)

fixed bandwidth

(a) Glucose

0 20 40 60 80 100 120 140

Number of variables

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

)

SC (G)

SC ∗(σ)

fixed bandwidth

(b) Lingeling

0 20 40 60 80 100 120 140

Number of variables

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

)

SC (G)

SC ∗(σ)

fixed bandwidth

(c) March

Fig. 1. SAT solver performance on variants of the formulas in [26, 28].

0 100 200 300 400 500 600
Number of variables

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s
)

glucose-2.2 pre

lingeling-ala gauss

march-rw pre

(a) Random 3-CNF formulas

0 50 100 150 200

Number of variables

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s
)

glucose-2.2 pre

lingeling-ala pre

(b) Tseitin formulas on random graphs

Fig. 2. SAT solver performance on two well-known hard formula families.

that for Tseitin formulas we do not present results for March and that Lingeling
was run without Gaussian elimination. The reason is that March and Lingeling
with Gaussian elimination solve Tseitin formulas in less than a second for even
the largest instances we have tried.

Comparing random instances of formulas SC ∗(σ) and SC (G) with fixed
bandwidth instances, we can see that the easiest ones are SC ∗(σ) while SC (G)
are somewhat harder. This is as expected—by construction, for SC (G) we are
guaranteed that no pair of positive and negative constraints share more than one
variable, whereas for SC ∗(σ) it could happen in principle that a positive and
a negative constraint act on two, three, or even four common variables. Some-

what counter-intuitively, however, the instances that are hardest in our practical
experiments are the theoretically easy fixed bandwidth formulas.

In order to investigate whether the hardness of fixed bandwidth formulas
could be attributed to hidden constants in the asymptotics—i.e., that the poly-
nomial upper bounds on resolution length are so large in practice that the fixed
bandwidth formulas are infeasible for all practical purposes—we ran a modified
version of MiniSat on these formulas which always branched on variables row
by row and in every row column by column. Intuitively, this seems to be the
appropriate variable ordering if one is to recover the polynomial-length resolu-
tion refutation presented in [28]. And indeed, MiniSat run on fixed bandwidth
formulas with fixed variable ordering performed much better than any of the
other solvers on random instances of SC ∗(σ) and SC (G) formulas. (We also
verified that fixed variable ordering is not a good idea in general—as expected,
MiniSat with fixed variable ordering performs poorly on random instances of
SC ∗(σ) and SC (G) formulas.)

Given the latest advances in SAT solving technology, with solvers going be-
yond resolution by incorporating elements of algebraic reasoning (Gröbner bases)
and geometric reasoning (pseudo-Boolean solvers), a natural question is whether
the formulas in [26, 28] remain hard for such solvers.

Regarding algebraic solvers, we are not aware of any general-purpose solvers
that can compete with CDCL solvers, but as mentioned the theoretical lower
bounds that we prove for resolution hold also for polynomial calculus, which
is a proof system for formalizing the reasoning in solvers based on Gröbner
basis computations. Also, one can note that the algebraic reasoning in terms of
Gaussian elimination in Lingeling does not seem to help.

For pseudo-Boolean solvers, which can be seen to search for proofs in (more
or less restricted version of) the cutting planes proof system [13], the story
could potentially be very different. As noted multiple times already, the formulas
SC ∗(σ) and SC (G) are just encodings of a fairly simple counting principle, and
in contrast to resolution and polynomial calculus the cutting planes proof system
knows how to count. Thus, pseudo-Boolean solvers with enough well-developed
methods of cardinality constraints reasoning should have the potential to solve
these formulas quickly. This indeed appears to be the case as reported in [8],
and our own (albeit limited) experiments also show this.

5 Concluding Remarks

In this work, we establish that the formulas constructed by Spence [26] and Van
Gelder and Spence [28] are exponentially hard for resolution and also for poly-
nomial calculus resolution (PCR), which extends resolution with Gröbner basis
computations. Formally, we prove that if the bipartite (multi-)graph describing
the constraints encoded by the formula is expanding, then this implies exponen-
tial lower bounds on proof size in resolution and PCR. Furthermore, we show
that random instances of these formulas are almost surely expanding, meaning
that the exponential lower bound applies with high probability.

We also investigate the performance of some current state-of-the-art SAT
solvers on these formulas, and find that small instances are indeed much harder
than, e.g., random 3-CNF formulas with the same number of variables. Some-
what surprisingly, however, the very hardest formulas in our experiments are
versions of the formulas in [26, 28] generated from fixed bandwidth matrices.
This is intriguing, since such formulas are easy for resolution, and since the cur-
rent conventional wisdom (based on [3, 25]) seems to be that CDCL solvers can
search efficiently for short resolution proofs. In view of this, an interesting (al-
beit very speculative) question is whether perhaps these fixed bandwidth matrix
formulas could be used to show formally that CDCL with VSIDS, 1UIP, and
phase saving, say, does not polynomially simulate resolution.

Since the formulas in [26, 28] encode what is in essence a fairly simple counting
argument, SAT solvers that can reason efficiently with cardinality constraints
could potentially solve these formulas fast. This indeed turns out to be the case
for the latest version of Sat4j [8]. It would be interesting to investigate whether
the formulas in [26, 28] could be slightly obfuscated to make them hard also
for solvers with cardinality constraints. If so, this could yield small benchmark
formulas that are hard not only for standard CDCL solvers but also for solvers
extended with algebraic and/or geometric reasoning.

Another candidate construction of small but very hard CNF formulas is the
one presented by Markström [20]. It would be interesting to investigate what
theoretical hardness results can be established for these formulas (for resolution
and proof systems stronger than resolution) and how the practical hardness
scales compared to the constructions by Spence and Van Gelder [26, 28]. In
particular, an interesting question is whether these formulas, too, become easy
for CDCL solvers enhanced with cardinality constraints reasoning.

Acknowledgements

The authors are very grateful to Massimo Lauria and Marc Vinyals for stimulat-
ing discussions and for invaluable practical help with setting up and evaluating
the experiments. We wish to thank Niklas Sörensson for explaining how to fix the
variable decision order in MiniSat, and Daniel Le Berre for sharing data about
the performance of the latest version of Sat4j on our benchmark formulas. We
are also grateful to Allen Van Gelder for comments on a preliminary write-up of
some of the results in this paper, as well as for introducing us to this problem in
the first place. Finally, we thank several participants of the workshop Theoretical
Foundations of Applied SAT Solving (14w5101) at the Banff International Re-
search Station in January 2014 for interesting conversations on themes related
to this work.

The authors were funded by the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant
agreement no. 279611. The second author was also supported by the Swedish
Research Council grants 621-2010-4797 and 621-2012-5645.

References

1. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complex-
ity in propositional calculus. SIAM Journal on Computing 31(4), 1184–1211 (2002),
preliminary version appeared in STOC ’00

2. Alekhnovich, M., Razborov, A.A.: Lower bounds for polynomial calculus: Non-
binomial case. Proceedings of the Steklov Institute of Mathematics 242, 18–35
(2003), available at http://people.cs.uchicago.edu/~razborov/files/misha.

pdf. Preliminary version appeared in FOCS ’01.
3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many

restarts and bounded-width resolution. Journal of Artificial Intelligence Research
40, 353–373 (Jan 2011), preliminary version appeared in SAT ’09

4. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial In-
telligence (AAAI ’97). pp. 203–208 (Jul 1997)

5. Beck, C., Impagliazzo, R.: Strong ETH holds for regular resolution. In: Proceedings
of the 45th Annual ACM Symposium on Theory of Computing (STOC ’13). pp.
487–494 (May 2013)

6. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
Journal of the ACM 48(2), 149–169 (Mar 2001), preliminary version appeared in
STOC ’99

7. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010), system description

8. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints
in CNF. In: Proceedings of the 17th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT ’14) (Jul 2014), to appear

9. Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)
11. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the

ACM 35(4), 759–768 (Oct 1988)
12. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to

find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC ’96). pp. 174–183 (May 1996)

13. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Applied Mathematics 18(1), 25–38 (Nov 1987)

14. The Glucose SAT solver. http://www.labri.fr/perso/lsimon/glucose/
15. Haken, A.: The intractability of resolution. Theoretical Computer Science 39(2-3),

297–308 (Aug 1985)
16. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-

letin of the American Mathematical Society 43(4), 439–561 (Oct 2006)
17. Impagliazzo, R., Pudlák, P., Sgall, J.: Lower bounds for the polynomial calculus

and the Gröbner basis algorithm. Computational Complexity 8(2), 127–144 (1999)
18. Lingeling and Plingeling. http://fmv.jku.at/lingeling/
19. March. http://www.st.ewi.tudelft.nl/~marijn/sat/march_dl.php
20. Markström, K.: Locality and hard SAT-instances. Journal on Satisfiability, Boolean

Modeling and Computation 2(1-4), 221–227 (2006)
21. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers 48(5), 506–521 (May 1999), pre-
liminary version appeared in ICCAD ’96

22. The MiniSat page. http://minisat.se/
23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-

neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC ’01). pp. 530–535 (Jun 2001)

24. Nordström, J.: Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science 9, 15:1–15:63 (Sep 2013)

25. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence 175, 512–525 (Feb 2011), preliminary ver-
sion appeared in CP ’09

26. Spence, I.: sgen1: A generator of small but difficult satisfiability benchmarks. Jour-
nal of Experimental Algorithmics 15, 1.2:1.1–1.2:1.15 (Mar 2010)

27. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219
(Jan 1987)

28. Van Gelder, A., Spence, I.: Zero-one designs produce small hard SAT instances.
In: Proceedings of the 13th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’10). Lecture Notes in Computer Science, vol. 6175,
pp. 388–397. Springer (Jul 2010)

