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Abstract

Proof complexity is the study of non-deterministic computational models,
called proof systems, for proving that a given formula of propositional logic
is unsatisfiable. As one of the subfields of computational complexity theory,
the main questions of study revolve around the amount of resources needed to
prove the unsatisfiability of various formulas in different proof systems. This
line of inquiry has ties to some of the fundamental questions in theoretical
computer science, as showing superpolynomial lower bounds on proof size for
an arbitrary proof system would separate P from NP. However, while this was
the original motivation for the field, that goal of separating P and NP still
remains far out of our reach.

In this thesis, we study two simple proof systems: resolution and polynomial
calculus. In resolution we reason using clauses, while in polynomial calculus
we can use polynomials over some fixed field. We have two main measures
of complexity of proofs: size and space. Formally, size is the number of
clauses or monomials that appear in a resolution or polynomial calculus proof,
respectively. Space is the maximum number of clauses/monomials we need to
keep at each time step if we view the proof as being presented as a sequence
of configurations of limited memory. A third measure, which turns out to be
very important in understanding the others, is width/degree. Width is the
size of the largest clause in a resolution proof, while degree is an analogous
measure for polynomial calculus that measures the size of a largest monomial
in a proof.

One reason that width is important in resolution is that width is a lower
bound for space. The original proof of this claim focused on proving a
characterization of resolution width in finite model theory and using this
characterization to prove the relation with space. In this thesis we give a
direct proof of the space-width relation, thereby improving our understanding
of it. In the case of polynomial calculus we can pose the question whether the
same relation holds between space and degree. We make some progress on
this front by showing that if a formula F requires resolution width w then the
XORified version of F requires space Ω(w). On the other hand we show that
space lower bounds do not imply degree lower bounds in polynomial calculus,
which was already known in resolution.

The second reason why width/degree is an important measure is that
strong lower bounds for width/degree imply strong lower bounds for size in
both resolution and polynomial calculus. By now, proving width lower bounds
in resolution follows a standard process with a developed machinery behind it.
However, the situation in polynomial calculus was quite different and degree
was much more poorly understood. We improve this situation by providing
a unified framework for almost all previous degree lower bounds. Using this
framework we also prove a few new degree and size lower bounds. In addition,
we explore the relation between theory and practice by running experiments
on some current state-of-the-art SAT solvers that are based on resolution.
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Sammanfattning

Beviskomplexitet är studiet av icke-deterministiska beräkningsmodeller,
så kallade bevissystem, för att bevisa att givna formler i satslogik är osa-
tisfierbara. Som ett delområde inom beräkningsvetenskapen så kretsar de
centrala frågorna kring mängden resurser som behövs för att bevisa att givna
formler är osatisfierbara i olika bevissystem. Sådana frågeställningar anknyter
till fundamentella frågor inom teoretisk datalogi, eftersom superpolynomiella
undre gränser på bevisstorlek för ett godtyckliga bevissystem skulle separera
P från NP. Även om detta samband var den ursprungliga motivationen till
beviskomplexitet, är målet att separera P från NP fortfarande långt bort.

Vi studerar i denna avhandling två enkla bevissystem: resolution och
polynomkalkyl. I resolution resonerar man med hjälp av klausuler medan
man i polynomkalkyl använder polynom över någon fix kropp. Det finns två
huvudsakliga resurser för bevis: storlek och utrymme. Formellt är storlek
antalet klausuler som förekommer i ett resolutionsbevis eller antalet monom
som förekommer i ett polynomkalkylbevis. Utrymme är definierat som det
maximala antalet klausuler eller monom vi måste ha vid något tidssteg om
vi betraktar bevis som en sekvens av konfigurationer med begränsat minne.
En tredje resurs—som är användbar för att förstå storlek och utrymme—är
bredd/gradtal. Bredd definieras som storleken på den största klausulen i ett
resolutionsbevis medan gradtal är en motsvarande resurs för polynomkalkyl
som mäter storleken på det största monomet i ett bevis.

En anledning till att bredd är en relevant resurs för att förstå resolution
är att bredden är en undre gräns för utrymme. Det ursprungliga beviset
för detta påstående fokuserade på att bevisa en karakterisering av bredd
inom ändlig modellteori och använde denna karakterisering för att bevisa
relationen till utrymme. I denna avhandling presenterars ett direkt bevis för
utrymme-bredds relationen och tillför därmed till vår förståelse av relationen.
För polynomkalkyl kan man fråga om samma relation håller mellan utrymme
och gradtal. Vi tillför till denna fråga genom att visa att om en formel F
kräver resolutionsbredd w så kräver dess XOR-ifierade version utrymme Ω(w).
Däremot visar vi att undre gränser för utrymme inte innebär undre gränser
för gradtal i polynomkalkyl, som tidigare var känt för resolution.

Den andra anledningen till att bredd/gradtal är en relevant resurs är att
starka undre gränser för bredd/gradtal innebär starka undre gränser för storlek
för både resolution och polynomkalkyl. Vid det här laget följer bevis av undre
gränser för bredd i resolution en standardiserad process med sofistikerade
matematiska tekniker. Motsvarande process fanns dock inte för polynomkalkyl
där gradtal är mycket sämre förstådda. Vi förbättrar denna situation genom
att presentera ett enhetligt ramverk för nästan samtliga tidigare undre gränser
av gradtal. Med hjälp av detta ramverk visar vi också nya undre gränser
för gradtal och storlek. Slutligen undersökar vi relationen mellan teori och
praktik genom experiment med några av de främsta moderna SAT lösare som
är baserade på resolution.
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Prologue





Chapter 1

Introduction

If you recall a time when you tried solving some hard problem, you might recall
spending several hours, or even days, in trying to find a solution. However, once
you finally knew how to solve it, it likely seemed much simpler and you could check
that it was a correct solution with great ease. On the other hand, if the problem
did not have any solutions, convincing you of that might have been even harder.
Understanding these differences between solving a problem, verifying its solution
and establishing that there are no solutions is one of the central fields of interest in
computational complexity theory. In this thesis we concentrate specifically on the
question of showing that a problem does not have any solutions, which is the main
topic of proof complexity.

As an example, let us look at an instance of a sudoku puzzle. Consider an
instance in Figure 1.1 and try to solve it. How long did it take you? Most likely
more than a couple of minutes. Now, consider if you were given the solution to

4 7
6

7 5 6 8 9
1 2 3
8 5

6 7 2
8 1 5 3 4

6
9 7

Figure 1.1: An example of sudoku puzzle.
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9 6 3 1 8 4 7 2 5
2 8 5 3 7 9 6 1 4
1 4 7 5 6 2 3 8 9
7 9 1 2 4 5 8 6 3
3 2 8 6 9 1 5 4 7
6 5 4 8 3 7 2 9 1
8 1 2 9 5 3 4 7 6
5 7 6 4 1 8 9 3 2
4 3 9 7 2 6 1 5 8

Figure 1.2: The solution to the sudoku puzzle in Figure 1.1.

this puzzle as displayed in Figure 1.2. How long does it take you to check that
this solution is not a cheat? Likely less than a minute. In general, it seems to
us that verifying solutions to problems is much easier than actually solving them.
This observation is the intuition behind the main open problem in computational
complexity theory, the P vs. NP problem.

We can view the problem of solving a sudoku puzzle in another way as well.
Usually, when we are given a sudoku puzzle, we assume that there exists a solution
and our “only” task is to find the said solution. However, what would happen if we
were given a sudoku puzzle in which we did not know whether a solution existed.
How could we prove the existence of a solution, for instance in the example of a
puzzle in Figure 1.1? Here the proof would be simple. We would just present the
solution from Figure 1.2 and we would be done. If a solution exists the simplest
proof that a puzzle is solvable is presenting that solution. Observe that such a proof
where we just present the solution is easy to verify and that using this kind of proof
cannot establish solvability of an unsolvable puzzle. In other words, the proof makes
intuitive sense. One final thing to note in this case is also that this kind of proof is
short. That is, our solution is not significantly larger than the specification of the
puzzle itself.

Let us look now at a second example of a sudoku puzzle presented in Figure 1.3.
Can you solve this puzzle? The first thing that we can notice when trying to solve
it is that we get stuck very quickly. After we reach the configuration in Figure 1.4
we are left with no more forced decisions. That is, in order to proceed in solving
this puzzle we need to guess the value of one of the squares. However, we run into
a problem if we try to do that in this case. No matter what value we choose for
our guess, we cannot find a full solution. This puzzle is actually unsolvable! The
question we can ask then is how can we convince anyone else of this conclusion?
How can we prove to someone that this puzzle is unsolvable?
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7 4 5
9 1 7 6 8

1
3 7 2 5

3 9 4 6
4 8 3

4 2 6
8 2 4

1 9 5 2 6

Figure 1.3: A second example of a sudoku puzzle.

7 4 9 8 5
9 1 2 7 6 8

1
3 7 2 5

3 9 4 6
4 8 3

4 7 2 5 6
8 2 4

1 8 9 5 2 6

Figure 1.4: Partially solved sudoku puzzle from Figure 1.3.

One way would be to list all possible guesses and show that all of them lead to
an inconsistency in the puzzle. However, if after the first guess we at some point
need to guess again, the number of choices we need to list in our proof doubles.
Thus, following this strategy for proving the unsolvability of the puzzle could lead
to very long proofs, potentially even exponential in the size of the original problem.
Can we do better? This question guides most of the research in proof complexity.

Most people conjecture that we cannot find short proofs establishing that an
arbitrary sudoku puzzle is unsolvable. If we state it in computational complexity
terms we get the conjecture that coNP is different from NP. One thing to note is
that assuming we could prove this conjecture we would also know that there are
no efficient strategies for solving sudoku. For if there existed an efficient strategy
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for solving sudoku we could apply it to an unsolvable sudoku. The strategy should
then detect the unsolvability of the puzzle and, as we assume that it is an efficient
strategy, the description of the steps we took in using this strategy would constitute
a short proof of unsolvability of the puzzle. Thus, efficient algorithms for solving
sudoku would imply short proofs of unsolvability of sudoku puzzles. Reversing this
observation, we have that if there are no short proofs for unsolvability of sudoku
then there are no efficient algorithms for solving it, implying that P is not equal to
NP. This observation was the original motivation for studying proof complexity.

Currently, we are very far from the goal of proving that there are no short proofs
of unsolvability. The reason is that in general there are very little restrictions on how
a proof of unsolvability may look like. Moreover, even if we restrict our attention to
natural methods of reasoning, we still cannot show that we need long proofs. In
order to actually prove some results we need to restrict the reasoning methods even
further to the case of very simple systems. In this thesis we focus on a couple of
such systems. In the following chapters we will compare two very simple reasoning
systems and show how the results in one of the systems can be extended to the
other, more powerful system. In the process we will also observe that already in
order to make this small step in reasoning power we need to substantially complicate
our proof techniques. The next chapter presents formal definitions for the intuitions
described here, as well as an overview of the background for this thesis.



Chapter 2

Background

The main concept in computational complexity is that of a Turing machine, an
idealized computer that can run any currently known computational process. A
Turing machine is a computer with an arbitrary amount of discrete memory, which
can be locally manipulated using a finite number of control states. For further details
on Turing machines refer to a standard textbook in complexity theory, e.g. [61]. We
focus on problems that can be answered by “yes” or “no”, that is decision problems.
A particular problem can then be identified as a formal language consisting of all
instances that have a “yes” answer. A Turing machine then solves a problem if it
halts on every input and outputs “true ” if the input is in the language and “false”
otherwise. There usually exist straightforward transformations between decision
problems and problems requiring other kinds of output, such that we can use one
solution to efficiently (in polynomial time) solve the other.

We say that a class of problems is efficiently solvable if there is a Turing machine
that solves the problem in a polynomial number of steps. This class of problems is
known as P. On the other hand, we can also consider problems in which we can
verify the solution efficiently. Formally, this is a class of problems such that there is
a polynomial time Turing machine that can determine whether a given solution is
correct. One requirement is that the solution to the problem is polynomially related
to the size of the problem. We can view this solution as a certificate or proof that a
solution exists. Note that if there is no solution, then there should not exist any
certificate that would be accepted by the verifying Turing machine. This class of
problems is called NP.

On the other hand, we can be interested in verifying that there are no solutions
to a given problem. In that case, we can ask for a proof/certificate of that claim.
This gives us the coNP class of problems. It is easy to see that P is a subset of both
NP and coNP. However, we do not know whether all of these classes are distinct or
there exists an equality between some of them. These questions are also known as
the P vs. NP problem, the most famous problem in theoretical computer science,
and the related NP vs. coNP problem. As we intuitively observed in Chapter 1,

7



8 CHAPTER 2. BACKGROUND

proving that NP is distinct from coNP would imply that P is distinct from NP.
Let us now take a closer look at the definition of coNP. We have limited the size

of the proof/certificate to be polynomial in the size of the input. We can remove
this constraint and require only that the proof verifier runs in the number of steps
that is polynomial in the joint size of the input and the proof, while keeping other
constraints the same. That is, if the input does not have a solution, then there
cannot exist any proof that makes the verifier accept the input. If the input has a
solution, then there is at least one proof that is accepted by the verifier. Thus, we
require that the proofs are easily verifiable, but do not put any constraints on their
size. These constraints correspond to the most general definition of a proof system
proposed by Cook and Reckhow [27].

Definition 2.1 (Proof system [27]). A proof system for a language L is a de-
terministic algorithm P (x, π) that runs in time polynomial in |x| and |π| such
that

• for all x ∈ L there is a string π (proof) such that P (x, π) outputs “true”, and

• for all x 6∈ L it holds for all strings π that P (x, π) outputs “false”.

If for a language L and its verifier P there always exists a proof with its size
polynomially related to the size of the input, then P is a polynomial proof system.
It is straightforward to see that if L is the set of all tautologies of propositional logic,
the coNP vs. NP problem turns into the question whether there exists a polynomial
proof system for L. The initial goal of proof complexity was to prove that no such
proof system exists. However, proving lower bounds for general proof systems is
still quite far from what we can currently do. Hence, the current focus of the field
is on simpler proof systems for proving tautologies. In these cases it is usually more
natural to look at the set of all unsatisfiable formulas instead of tautologies and
call proofs refutations. In the rest of the thesis we adopt this view and use the
term refutation in order to distinguish the input π for P from our proofs about the
behavior of π. We start by looking at one of the simplest proof systems: resolution.

2.1 Resolution

To start we give a brief survey of some of the basic definitions in propositional logic.
This is standard material that can be found, e.g., in [55].

A literal over a Boolean variable x is either the variable x itself or its negation
that is denoted either as ¬x or as x. We define x = x. A clause C = a1 ∨ . . .∨ ak is
a disjunction of literals and a term T = a1 ∧ . . .∧ ak is a conjunction of literals. We
denote the empty clause by ⊥ and the empty term by ∅. A clause (term) containing
at most k literals is called a k-clause (k-term). A CNF formula F = C1 ∧ . . . ∧ Cm
is a conjunction of clauses. A DNF formula F = T1 ∨ . . . ∨ Tm is a disjunction
of terms. A k-CNF formula is a CNF formula consisting of k-clauses. A k-DNF
formula is a DNF formula consisting of k-terms. We think of clauses, terms, CNF
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and DNF formulas as sets so that order is irrelevant and there are no repetitions.
We can now define the resolution proof system introduced by Blake in [18], which
Robinson [60] proposed for automated theorem proving. Initial practically efficient
search procedures for resolution were proposed by Davis and Putnam [30] and Davis,
Logemann, and Loveland [29], and currently resolution is the foundation of most
state-of-the-art SAT solvers [4, 49, 53].

Definition 2.2 (Resolution [18]). A resolution configuration C is a set of clauses. A
resolution refutation of a CNF formula F is a sequence of configurations (C0, . . . ,Cτ )
such that C0 = ∅, ⊥ ∈ Cτ , and for 1 ≤ t ≤ τ we obtain Ct from Ct−1 by one of the
following steps:

Axiom download Ct = Ct−1 ∪ {A}, where A /∈ Ct−1 is a clause in F (sometimes
referred to as an axiom clause).

Inference Ct = Ct−1 ∪ {D}, where D /∈ Ct−1 is inferred by the resolution rule
(where G,H denote clauses in Ct−1 and x denotes a variable):

G ∨ x H ∨ x
G ∨H

Erasure Ct = Ct−1 \ {D} for D ∈ Ct−1.

The length L(π) of a resolution refutation π is the number of download and infer-
ence steps. The space SpR(π) is the maximal number of clauses in any configuration
in π. The width W(π) is the size of a largest clause in π. We define the length
L(F `⊥), the space SpR(F `⊥), and the width W(F `⊥) of refuting a formula F
in resolution by taking the minimum over all refutations of F with respect to the
relevant measure.

An early breakthrough in resolution was the proof of the (sub)exponential
lower bound on refutation length for the pigeonhole principle formulas obtained by
Haken [44]. Truly exponential lower bounds in the size of the formula were later
established in [25, 64]. Essentially all of these bounds were later reproved by Ben-
Sasson and Wigderson [14], who identified width as a crucial resource. Ben-Sasson
and Wigderson proved that strong lower bounds on the width of refutation imply
strong lower bounds on the length. This result gives a straightforward way of proving
resolution lower bounds, as Ben-Sasson and Wigderson also gave a simple method
for proving width lower bounds. However, if the width lower bound is at most a
square of the number of variables then this width-length technique does not give any
non-trivial lower bounds on length. This is tight as Bonet and Galesi [41] showed
that there exist formulas refutable in polynomial length, but requiring quadratic
width for their refutation. The relation between length and width notwithstanding,
there are formulas for which we can show resolution length lower bounds that
cannot use the length-width relation as shown by Dantchev and Riis [28]. The
strongest lower bounds to date in terms of the explicit constant in the exponent
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were established by Beck and Impagliazzo [8] and further improved by Bonacina
and Talebanfard [22].

The study of space in resolution started with Esteban and Torán [34], who gave
linear lower bounds for space of Tseitin formulas. It is not too hard to show that this
lower bound is tight as space can be at most linear in the formula size. Some further
lower bounds on space were proved in [1, 11]. Similarly to the case of length and
width, Atserias and Dalmau [3] proved that width is a lower bound for space, again
rederiving all then known space lower bounds as corollaries of width lower bounds.
However, space is not a lower bound for width as was shown by Ben-Sasson and
Nordström [12]. They gave a formula family with constant width complexity but
almost linear space complexity. Moreover, Ben-Sasson [10] proved that there exist
space-width trade-offs with formulas refutable in constant width and constant space,
but such that optimizing one of the measures causes essentially worst-case behaviour
of the other. This result was recently strengthened by Berkholz and Nordström [16]
who exhibit formulas which can be refuted in both small space and width, but for
which any small-width refutation must have space significantly greater than the
linear worst-case upper bound.

Instead of only counting the clauses, we can can count all symbols that appear
in each clause of a configuration. This measure is called total space. First optimal
lower bounds for total space were proved by Bonacina, Galesi and Thapen [21], and
later extended by Bennett et al. [15]. Recently, Bonacina [19] showed that width
squared is a lower bound for total space, proving a tight relation between width and
total space.

We can also ask about connections between length and space. From Atserias
and Dalmau [3] it follows that formulas with low space complexity also have short
refutations. On the other hand, length is not an upper bound for space as shown
in [12]. Nevertheless, if we restrict resolution to the subsystem called tree-like
resolution, where each line of the refutation can be used only once, Esteban and
Torán [34] showed that length upper bounds also imply space upper bounds. Strong
trade-offs between length and space in general resolution were proved in [13, 5, 9, 54],
showing that there are exist separate refutations in small space and small length,
but that both cannot be achieved simultaneously. That is, we can prove exponential
lower bounds on refutation length for refutations that have sublinear space [13, 54].

In the next section we explore one proof system that is stronger than resolution:
polynomial calculus.

2.2 Polynomial Calculus

In polynomial calculus (or more generally polynomial calculus resolution1) we
translate a Boolean formula into a set of polynomial equations. As we now deal

1In this thesis we use polynomial calculus to refer to both polynomial calculus and polynomial
calculus resolution with the distinction being discernable from context. Usually the proof system
we refer to is polynomial calculus resolution.
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with variables taking values from some field, we need to identify truth values with
field elements. Somewhat contrary to intuition, we identify 0 with true and 1 with
false. However, this is more natural choice in polynomial calculus. For a field F we
consider the polynomial ring F[x, x, y, y, . . .] (where x and x are viewed as distinct
formal variables). We can now define polynomial calculus resolution as proposed by
Alekhnovich et al. [1] extending the original definition of Clegg et al. [26].

Definition 2.3 (Polynomial calculus resolution (PCR) [1, 26]). A PCR configu-
ration P is a set of polynomials in F[x, x, y, y, . . .]. A PCR refutation of a CNF
formula F is a sequence of configurations {P0, . . . ,Pτ} such that P0 = ∅, 1 ∈ Pτ ,
and for 1 ≤ t ≤ τ we obtain Pt from Pt−1 by one of the following steps:

Axiom download Pt = Pt−1 ∪ {p}, where p is either

• a monomial m =
∏
x∈L+ x ·

∏
y∈L− y encoding a clause C =

∨
x∈L+ x ∨∨

y∈L− y in F , or

• a Boolean axiom x2 − x or complementarity axiom x + x − 1 for any
variable x (or x).

Inference Pt = Pt−1∪{p}, where p is inferred from polynomials q, r ∈ Pt, variable x,
and field elements α, β ∈ F by either of

• Linear combination q r

αq + βr
,

• Multiplication
q
xq .

Erasure Pt = Pt−1 \ {p}, where p is a polynomial in Pt−1.

If we drop complementarity axioms and encode each negative literal x as the
polynomial (1− x), the proof system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π is the number of monomials (counted
with repetitions) in all downloaded or derived polynomials in π, the (monomial)
space SpPC(π) is the maximal number of monomials (counted with repetitions) in any
configuration in π, and the degree Deg(π) is the maximal degree of any monomial
appearing in π. Taking the minimum over all PCR refutations of a formula F , we
define the size S(F `⊥), space SpPC(F `⊥), and degree Deg(F `⊥) of refuting F
in PCR (and analogously for PC).2

If we view polynomial calculus as an extension of resolution then counting
monomials instead of polynomials is a natural measure. This holds because each
clause of the original formula is transformed into a monomial. Moreover, if we modify

2When the proof system is clear from context, we drop the subscript in the notation for space
that distinguishes polynomial calculus from resolution.
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the definition of polynomial calculus slightly we can show that any k-CNF formula
has a refutation in polynomial size if we count only the number of polynomials.
For more details on this refer to Paper D. One consequence of the correspondence
between clauses and monomials is that the width measure from resolution gets
translated to degree in polynomial calculus. With respect to these measures, we have
that polynomial calculus simulates resolution with only a small loss in parameters.
Moreover, there are formulas for which polynomial calculus can provably do better
than resolution.

Compared to resolution, proving lower bounds for size in polynomial calculus
is significantly harder. For instance, we do not have any proof techniques for
proving size lower bounds without using degree. However, the proof that strong
degree lower bounds imply strong size lower bounds was given by Impagliazzo
et al. [46]. This proof is analogous to the Ben-Sasson and Wigderson’s proof for
resolution [14]. Interestingly, the polynomial calculus proof is actually a precursor
to the resolution one. Nevertheless, this relation does not resolve the question of
size lower bounds as proving degree lower bounds turns out to be much harder than
proving resolution width lower bounds. The first polynomial calculus degree lower
bound was established by Razborov [57] (later extended in [46] to the size lower
bound) for the pigeonhole principle. However, these lower bounds worked with a
special encoding of the pigeonhole principle that is not applicable to CNF formulas.

For fields of characteristic distinct from 2, Grigoriev [43] and Buss et al. [24]
proposed a technique that performs an affine transformation of the refutation from
{0, 1} to the “Fourier basis” {−1,+1}, allowing easier proofs of degree lower bounds.
First fully general polynomial calculus degree lower bound that works for any field
was proved by Alekhnovich and Razborov [2]. However, their technique was difficult
to use and, hence, was followed by only a few further results [40, 41]. Notably, Galesi
and Lauria [41] established the optimality of the size-degree relation, mimicking the
result of Bonet and Galesi [23] for resolution.

The first space lower bounds in polynomial calculus were proved by Alekhnovich
et al. [1], but only sublinear bounds and for formulas of unbounded width. The first
space lower bounds for k-CNF formulas were given by Filmus et al. [39], and optimal
(linear) lower bounds were proven by Bonacina and Galesi [20]. The latter result
was proved for k-CNF formulas where k ≥ 4, and was later extended to 3-CNF
formulas by Bennett et al. [15]. As for the relation between space and degree, it is
open whether degree is a lower bound for space (which would be analogue to what
holds in resolution). Also, it was previously unknown whether the two measures
can be separated in the sense that there are formulas of low degree requiring high
space until Paper A presented in this thesis. As for trade-offs between degree and
space, Beck et al. [9] proved a space-degree trade-off analogous to the resolution
space-width trade-off from [10].

The first trade-off between size and space in polynomial calculus was proved by
Huynh and Nordström [45]. However, these were not true trade-offs. They proved
that certain formulas have small size refutations and that any refutation in small
space must have large size. However, the problem is that we do not know of any



2.3. CONTRIBUTIONS OF THE THESIS 13

small-space refutations of these formulas and it seems likely that no such refutation
exist. The first true trade-off for polynomial calculus was proved by Beck et al. [9]
essentially matching the results for resolution except for a small loss in parameters.

We continue by giving a brief overview of the contributions of this thesis. The
full papers can be found in Part II.

2.3 Contributions of the Thesis

The first two papers deal with questions related to space and width/degree in
resolution and polynomial calculus. The first paper deals with questions about
polynomial calculus space and the relation between space and degree. It was
coauthored with Yuval Filmus, Massimo Lauria, Jakob Nordström, and Marc
Vinyals and was presented at the 40th International Colloquium on Automata,
Languages and Programming (ICALP ’13) [36]. More details about the paper can
be found in Chapter 4 and the full paper is presented as Paper A. The results of
the paper are briefly described below:

1. We make progress on the question of whether degree is a lower bound for space
in polynomial calculus. We prove that if the resolution width of refuting a
CNF formula F is w, then the XORified version F [⊕] of the formula F requires
PCR space Ω(w). We XORify a formula F by substituting each variable in
F with an exclusive or of two new variables and expanding the result out to
get a new CNF formula F [⊕]. On one hand, this result is stronger than the
claim that degree is a lower bound for space, since small width complexity
implies small degree complexity. On the other hand, this is a much weaker
result because we need to XORify the formula and we know that XORification
can substantially amplify the hardness of a formula. Nevertheless, this is the
first and still the only result that makes any connection between width/degree
and space in polynomial calculus.

2. Using the previous result, we resolve the other side of the relation between
space and degree. We prove essentially optimal separation between degree and
space. In order to prove this result we consider (XORified) Tseitin formulas,
which encode an unsatisfiable system of linear equations. We show that XORi-
fied random Tseitin formulas have proofs of size O(n logn) and degree O(1) in
polynomial calculus (even the original one without special variables for nega-
tions), but require space Θ(n) in polynomial calculus resolution. In addition,
these small-size proofs are tree-like. Thus, we show that size is not an upper
bound on space in tree-like polynomial calculus in contrast to the result in
resolution [34].

3. Using ideas related to the ones in previous items allows us to also prove strong
PCR space lower bounds for a more general class of Tseitin formulas that
have not been XORified. We prove that randomly generated 4-CNF Tseitin
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formulas asymptotically almost surely require Ω(
√
n) space in polynomial

calculus to refute.

4. All of the previous results build on the general framework by Bonacina and
Galesi [20] for proving polynomial calculus space lower bounds. However, we
show that this framework cannot give us all the results that we believe are
true in polynomial calculus. Concretely, we show that this framework cannot
prove lower bounds for the functional pigeonhole principle formulas, although
it seems plausible that these formulas are hard with respect to space.

The second paper, Paper B, in this thesis revisits the space lower bounds in
resolution and the relation between space and width. The goal of the paper was to
better understand resolution lower bounds in the hope of transporting these insights
to polynomial calculus. However, as discussed below, these hopes seem unlikely to
be fulfilled. The paper was coauthored with the same set of people as the previous
one, Paper A. It was originally published at the 31st Symposium on Theoretical
Aspects of Computer Science (STACS ’14) [37] and the full version was published in
the journal ACM Transactions on Computational Logic [38]. The main results are:

1. We give a new proof of the result by Atserias and Dalmau [3] that width
lower bounds space in resolution. They prove that resolution width can be
characterized in terms of Ehrenfeucht–Fraïssé games in finite model theory
and use this characterization to establish that width is a lower bound for
space. On the other hand, our proof of the space-width relation gives a direct
combinatorial transformation between small space and small width refutations.
That is, we describe a transformation that turns an arbitrary refutation in
space s into a refutation that has width at most s+ O(1).

2. With this new proof in hand, we also obtain a new technique for proving space
lower bounds in resolution. This new approach is reminiscent of width lower
bounds in [14]. We define a static “progress measure” on refutations and argue
that when a refutation has made substantial progress (in terms of the defined
measure) it must have high space complexity.

3. Finally, we observe that using the new proof of the width-space relation in
resolution is unlikely to yield any new insights into polynomial calculus. The
problem can be summarized in the observation that a conjunction of variables
has a space efficient encoding in polynomial calculus, which is not the case in
resolution. This observation leads us to suspect that polynomial calculus has
more ways to refute formulas in a space efficient way than resolution has.

The previous two papers shed some light on space and its relation to width/degree
in resolution and polynomial calculus. However, the most interesting question of
whether degree is a lower bound for space in polynomial calculus still remains open.
In the remaining two papers presented in this thesis we take a different track and
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move to questions of width/length lower bounds in resolution and degree/size lower
bounds in polynomial calculus.

In Paper C, we study formulas that were proposed by Spence and Van Gelder [62,
65] as some of the hardest formulas for current state-of-the-art SAT solvers. The
paper was coauthored with Jakob Nordström and published at the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14). A brief
description of the results follows:

1. Originally, Spence and Van Gelder [62, 65] introduced what we call subset
cardinality formulas and have showed that these formulas are extremely hard
experimentally, without any theoretical results corroborating the experiments.
In our paper, we rectify that by showing that subset cardinality formulas are
exponentially hard in terms of length/size for both resolution and polynomial
calculus.

2. We also ran SAT solvers that were state-of-the-art at that time on random
instances of subset cardinality formulas, as well as on fixed bandwidth formu-
las that are theoretically easy versions of subset cardinality formulas. We
confirmed prior experimental observations. In addition, our experiments also
showed that fixed bandwidth formulas are the hardest for SAT solvers, raising
the question whether they could be an example of formulas for which current
SAT solvers fail to search effectively for resolution refutations.

The aim of the final paper in this thesis, Paper D, was to find a more manageable
framework for proving degree and hence size lower bounds in polynomial calculus.
The paper is joint work with Jakob Nordström and was published at the 30th Annual
Computational Complexity Conference (CCC ’15). The main results are as follows:

1. We extend the method of Alekhnovich and Razborov [2] for proving polynomial
calculus degree lower bounds. We show that if given a formula F we can
construct a graph based on F that satisfies certain properties, then the degree
lower bound follows. This extension of the original lower bound method allows
us to capture previously known degree lower bounds from [2, 41, 50] in a
unified framework. However, there still exist formulas which we believe are
hard for polynomial calculus, but where our framework seems inadequate.

2. Using this new framework, we show that functional pigeonhole principle is
hard for polynomial calculus, solving one of the open problems Razborov listed
in [58].

We now conclude our brief overview of results and move to a more technical
discussion. However, before diving into more technical details of the results of
this thesis, we make a short digression to discuss the relation between length and
width in resolution. The proof that width lower bounds imply length lower bounds
will serve as an example of techniques used in proof complexity, as well as let us
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(somewhat) complete the picture of the relations that exist between length/size,
space, and width/degree in resolution and polynomial calculus.



Chapter 3

Length and Width in Resolution

Ben-Sasson and Wigderson [14], based on work by Impagliazzo et al. [46], proved
that strong lower bounds on width of refuting a formula imply strong lower bounds
on length. In what follows we denote the width (maximum number of literals in each
clause) of the formula F with W(F ). For instance, the width of a k-CNF formula is
equal to k. We now formally state the length-width relation in resolution.

Theorem 3.1 (Ben-Sasson and Wigderson [14]). The length of refuting a CNF
formula F over n variables in resolution is bounded from below by

L(F `⊥) = exp
(

Ω
(

(W(F `⊥)−W(F ))2

n

))
.

The main idea of the proof is to take a refutation in small length, break it apart
into different pieces and then stitch the pieces back together to produce a refutation
in small width. In the process the length of the refutation will blow-up substantially,
but we will get the desired small width. In order to facilitate achieving this goal
we rewrite Theorem 3.1 as an upper bound on the width of refuting a formula F ,
reintroducing constants not present in Theorem 3.1.

Lemma 3.2. The width of refuting a CNF formula F over n variables in resolution
is bounded from above by

W(F `⊥) ≤ max
{

W(F ),
⌈√

2n ln L(F `⊥)
⌉}

+
⌈√

2n ln L(F `⊥)
⌉
. (3.1)

It is not hard to see that by replacing the maximum operator with summation
and rearranging the inequality we get back Theorem 3.1.

As mentioned previously, we will break apart the short length refutation and
stitch it back together to produce a new one. In breaking apart the proof we use
restrictions, that is partial assignments ρ to the variables of the formula F . In a
restricted formula F �ρ (or refutation π�ρ) all clauses satisfied by ρ are removed

17
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and all other clauses have falsified literals removed. Restrictions preserve both
resolution and polynomial calculus refutations (up to some minor modifications of
the refutation). Hence, if π is a refutation of F , then π�ρ is a refutation of F �ρ
in at most the same length/size, width/degree, and space (except possibly for a
constant factor in size in polynomial calculus due to postprocessing steps). For two
restrictions ρ and ρ′ over distinct domains, we denote by ρ ∪ ρ′ the restriction ρ′′
such that ρ′′(x) = ρ(x) or ρ′′(x) = ρ′(x) depending on whether x belongs to the
domain of ρ or ρ′, respectively.

We will break apart our small length refutation by producing refutations of two
different formulas F�x and F�x, where we use x to denote restriction ρ that sets
ρ(x) = > and similarly use x to denote ρ(x) = ⊥. To simplify the following proofs
we add one more inference rule to resolution: weakening. In weakening we can
infer the clause C ∨D from C for an arbitrary clause D. It is not hard to see that
weakening steps can be removed from any refutation without any loss in complexity.
To begin our proof, we show how to stitch back together the two different refutations
of F�x and F�x.

Lemma 3.3. For a literal l, if W(F�l `⊥) ≤ w − 1 and W(F�l `⊥) ≤ w then it
holds that W(F `⊥) ≤ max{w,W(F )}.

Proof. First, we show that from the refutation π : F�l `⊥ with W(F�l `⊥) ≤ w−1
we can construct a derivation π′ : F ` l that has width at most w. The main idea is
to follow the refutation π using the axioms from F instead of F�l. This means that
a particular axiom A in F�l might turn into A ∨ l in F (as those are the ones that
get truncated by restricting F ). Following this process further, it is not hard to see
it results with π′ where each clause is of the form C or C ∨ l for the corresponding
clause C in π. Thus, we get that the final clause of π′ is either the empty clause ⊥
or l, where in the former case we can just use weakening to derive l. As we have
added at most one literal to each clause of π, we have shown that W(F ` l) ≤ w.

With l in hand from π′, we resolve out literal l from all axioms in F that
contain it. This results in essentially the formula F �l. Let us denote this part
of refutation by π′′. Note that π′′ has width upper bounded by the width of the
formula W(F ). We can now just run the refutation π′′′ : F�l `⊥ in width w, which
exists by assumption, to construct the final refutation of F . That is, piecing together
derivations π′, π′′, and π′′′ in sequence produces a refutation of F with width at
most W(F `⊥) ≤ max{w,W(F )}.

The main part of the proof of Lemma 3.2 consists of reducing the width of
clauses that appear in the small length refutation. The clauses that we focus on are
the “fat” clauses that have width lower bounded by some threshold d, d ≥ 1. For
an arbitrary refutation π we denote by fatd(π) the number of clauses C in π such
that W(C) ≥ d. The next lemma shows us how we can trade-off the number of fat
clauses in a refutation for a refutation of smaller width. We simplify the notation
and use ρ ∪ l to denote the restriction ρ ∪ {l}, where we assume that ρ does not set
a variable corresponding to the literal l.
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Lemma 3.4. Let d ≥ 1 be an integer and π a refutation of a CNF formula F . If
there exists a real-valued constant a > 1 such that for any restriction ρ there exists
a literal l in the variables of F�ρ with fatd(π�ρ∪l) ≤ 1

a fatd(π�ρ), then

W(F `⊥) ≤ max {W(F ), d}+ dloga fatd (π)e ,

where we assume that loga fatd(π) = 0 when fatd(π) = 0.

Proof. Let ρ be an arbitrary restriction including an empty one. We use a nested
induction over the number of fat clauses fatd(π�ρ) and the number of variables of
F�ρ to show that W(F�ρ `⊥) ≤ max{W(F�ρ), d}+ dloga fatd(π�ρ)e. First, for the
basis of the induction we have that if fatd(π�ρ) = 0 then π�ρ is a refutation of F�ρ
that has all clauses with width strictly less than d. Thus the inductive bound is
satisfied. Otherwise, if the number of variables of F�ρ is equal to 0 we have that
the formula F�ρ consists only of the empty clause and there are no fat clauses in its
refutation and hence the first case holds.

Now we show that the lemma still holds for a restriction ρ such that the number
of variables of F�ρ and the number of fat clauses fatd(π�ρ) are both strictly greater
than 0. By assumption there exists a literal l over the variables of F�ρ such that
fatd(π�ρ∪l) ≤ 1

a fatd(π�ρ). By induction we have

W(F�ρ∪l `⊥) ≤ max {W(F�ρ∪l), d}+ dloga fatd (π�ρ∪l)e (3.2)

≤ max {W(F�ρ), d}+
⌈

loga
1
a

fatd (π�ρ)
⌉

(3.3)

≤ max {W(F�ρ), d}+ dloga fatd (π�ρ)e − 1. (3.4)

On the other hand, for F�ρ∪l we know only that the number of variables in F�ρ got
reduced, while the number of fat clauses in π�ρ might have stayed the same. Hence,
we can apply induction to get:

W(F�ρ∪l `⊥) ≤ max
{

W(F�ρ∪l), d
}

+
⌈
loga fatd

(
π�ρ∪l

)⌉
(3.5)

≤ max {W(F�ρ), d}+ dloga fatd (π�ρ)e . (3.6)

Now, we apply Lemma 3.3 to conclude that

W(F�ρ `⊥) ≤ max {W(F�ρ), d}+ dloga fatd (π�ρ)e . (3.7)

We get the final result of the lemma by taking ρ to be the empty restriction,
thereby operating on the vanilla formula F and refutation π.

The previous lemma allows us to exchange the refutation with a small number
of fat clauses for a refutation having small width. The crucial part is identifying a
literal l which significantly reduces the number of fat clauses. Hence, we need to
identify the best value of the reduction factor a that we can achieve for an arbitrary
formula. The following lemma gives us one good bound.
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Lemma 3.5. For an integer d ≥ 1 and a refutation π : F `⊥ of a formula F over
n variables, we have that there exists a literal l such that

fatd (π�l) ≤
(

1− d

2n

)
fatd (π) .

Proof. First note that if d > 2n then fatd(π) = 0. This holds because there are 2n
different literals over n variables implying that any clause in π has width at most 2n.
In this case the bound in the lemma trivially holds as both sides of the inequality
are equal to 0.

Otherwise, as each fat clause in π has at least d literals, there are at least
d · fatd(π) literals in the fat clauses of π (possibly with repetitions). We estimate
the minimal number of times that the most frequently occurring literal appears
in the fat clauses of π. As there are 2n different literals, we have that there is a
literal l that appears in at least d

2n fatd(π) fat clauses of π. Setting that literal to
true satisfies all such clauses that contain l. Hence, those clauses do not exist in π�l
and the number of fat clauses is bounded by

fatd (π�l) ≤
(

1− d

2n

)
fatd (π) , (3.8)

proving the lemma.

Now, we can put the pieces together to produce the proof of Lemma 3.2.

Proof of Lemma 3.2. We need to show that for any CNF formula F over n vari-
ables it holds that W(F `⊥) ≤ max

{
W(F ),

√
2nL(F `⊥)

}
+
√

2nL(F `⊥). Let
π : F `⊥ be a refutation of F that achieves the optimal length bound L(F `⊥) and
denote L = L(π) = L(F `⊥). It holds that fatd(π) ≤ L. Now, we use Lemma 3.5
to get the constant a, which we will then plug into Lemma 3.4.

We set a =
(
1 − d

2n
)−1, where we require that 1 ≤ d < 2n. It follows that

a > 1 satisfying one condition of Lemma 3.4. By Lemma 3.5 we have that for any
restriction ρ there is a literal l in F �ρ such that fatd(π�ρ∪l) ≤

(
1 − d

2m
)

fatd(π�ρ)
where m is the number of variables in F�ρ. As m ≤ n for such an l it also holds that
fatd(π�ρ∪l) ≤

(
1 − d

2n
)

fatd(π�ρ). Hence, our choice of a also satisfies the second
condition of Lemma 3.4 and we can deduce that

W(F `⊥) ≤ max {W(F ), d}+ dloga Le , (3.9)

where a =
(
1− d

2n
)−1, as fatd(π) ≤ L.

To find the best value for d we write loga L as lnL/ ln a and lower bound ln a.
We have

ln a = ln
(

1− d

2n

)−1
= − ln

(
1− d

2n

)
≥ d

2n, (3.10)

as ln(1 + x) ≤ x whenever x ≥ −1. Thus loga L ≤ 2n lnL
d . To set d we minimize

the expression d + 2n lnL
d , as this gives us the tightest upper bound on width up
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to additive constants. The optimal setting is d =
⌈√

2n lnL
⌉
. As length is strictly

less than 2n+1 (which can be showed for any formula F over n variables) we have
that d ≤

√
2n(n+ 1) ln 2 < 2n when n ≥ 1, satisfying the condition on d. Hence

our final bound on the width of refuting F is

W(F `⊥) ≤ max
{

W(F ),
⌈√

2n ln L(F `⊥)
⌉}

+
⌈√

2n ln L(F `⊥)
⌉
, (3.11)

proving Lemma 3.2.

A similar proof also works for polynomial calculus and the relation between
size and degree. Thus, this proof gives us a relation between length/size and
width/degree in resolution and polynomial calculus. In the rest of the thesis we
survey papers that elaborate more on the relations between space and width/degree,
as well as prove width/degree lower bounds. The first paper in the sequence deals
with space in polynomial calculus.





Chapter 4

Paper A. Towards an
Understanding of Polynomial
Calculus

In the paper “Towards an Understanding of Polynomial Calculus: New Separations
and Lower Bounds” [36], we explore the questions about space in polynomial calculus.
The paper builds on the work by Bonacina and Galesi [20] that presents a framework
for proving polynomial calculus lower bounds. In this chapter, we present two main
results of the paper that relate space and degree in polynomial calculus, sketching
the proof of one of them. At the end of the chapter we survey the remaining results
of the paper.

4.1 Space and Degree in Polynomial Calculus

The central result we establish presents partial progress on understanding the
relation between space and degree in polynomial calculus. We show that if the
resolution width of refuting a CNF formula F is large, then by XORifying F we
obtain the formula F [⊕] that requires large polynomial calculus space. The notation
F [⊕] denotes the CNF formula we obtain by substituting every variable x in F with
x1 ⊕ x2, where x1 and x2 are new variables for every x, and expanding out such a
formula to conjunctive normal form. Formally we prove the following theorem.

Theorem 4.1. For a k-CNF formula F it holds over any field that

SpPCR(F [⊕] `⊥) = Ω(WR(F `⊥)).

The main idea of the theorem is to combine the framework for space lower
bounds in polynomial calculus by Bonacina and Galesi [20] with the characterization
of resolution width by Atserias and Dalmau [3]. An almost immediate consequence
of this theorem is that there are formulas that have polynomial calculus refutations
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in constant degree but nevertheless require maximal space. Here, we sketch out
the proof for the field of characteristic 2. First, let us define the formulas that are
crucial for this result.

Definition 4.2 (Tseitin formula). Let G = (V,E) be an undirected graph and
χ : V → {0, 1} be a function. Identify every edge e ∈ E with a variable xe and let
PARITY v,χ denote the CNF encoding of the constraint that the number of true
edges xe incident to a vertex v ∈ V is equal to χ(v) (mod 2). Then the Tseitin
formula over G with respect to f is TG,χ =

∧
v∈V PARITY v,χ.

We use these formulas to prove our separation between space and degree in
polynomial calculus.

Theorem 4.3. For polynomial calculus over F2, there is a family of k-CNF formulas
Fn of size O(n) such that SpPCR(Fn `⊥) = Ω(n) but which have polynomial calculus
refutations with Deg(πn) = O(1).

Proof sketch. For each n, we set Fn to be a Tseitin formula TG,χ over an expander
graph (a graph with very good connectivity) with n vertices. From Ben-Sasson and
Wigderson [14] we know that WR(Fn `⊥) = Ω(n) for such graphs.

If we now take Fn[⊕] instead, by Theorem 4.1 we get the polynomial calculus
space lower bound. On the other hand, it is not hard to see that XORification
yields another Tseitin formula as we can interpret XOR as turning the graph into a
multi-graph by doubling each edge. The degree upper bound for F [⊕] then follows
by observing that unsatisfiable systems of linear equations can easily be refuted by
summing up all equations.

4.2 Other Results

Looking more carefully at the proof of Theorem 4.3, we extend the result on Tseitin
formulas from multi-graphs to d-regular graphs with d ≥ 4. Formally, we prove the
following theorem.

Theorem 4.4. Let G be a random d-regular graph on n vertices, where d ≥ 4.
Then over any field it holds almost surely that SpPCR(TG,χ `⊥) = Ω

(√
n
)
.

As all of the previous theorems used Bonacina and Galesi’s framework [20] for
proving space lower bounds, we can ask whether this framework allows us to prove
all space lower bounds that we care about. Unfortunately this does not seem to be
the case if we consider the functional pigeonhole principle, a particular encoding of
a statement that n+ 1 pigeons cannot nest in n holes (defined later in Chapter D).
While these formulas need large degree to refute [57, 51] and we believe that they
require large space as well, the current framework cannot establish that result as
shown by our final theorem of this paper.

Theorem 4.5. There is no r-extendible family for FPHPn+1
n for r > 1.



Chapter 5

Paper B. From Small Space to
Small Width in Resolution

In the paper “From Small Space to Small Width in Resolution” [38], we study
the relation between space and width in resolution. As seen before, Atserias and
Dalmau [3] showed that width is a lower bound on space in resolution. The basis
of their paper was a combinatorial characterization of the resolution width as a
particular kind of Ehrenfeucht–Fraïssé game. With this alternative characterization
in hand, they showed that any small space refutation in resolution can be viewed as
an efficient strategy for this game. While their paper gave us a better understanding
of resolution width, the proof of the space-width relation felt a bit opaque. In this
paper we improve on this state of affairs by giving a direct translation from small
space into small width refutations in resolution. Moreover, we also present a new
proof technique for proving space lower bounds in resolution building on this new
proof of the space-width relation.

5.1 The New Proof of Space-Width Relation in Resolution

Here we sketch our new proof that space upper bounds width in resolution.1

Theorem 5.1 ([3]). Let π : F `⊥ be a resolution refutation of a k-CNF formula F in
space Sp(π) = s. Then there exists a resolution refutation π′ of F in width W(π′) ≤
s+ k − 3.

In our proof we start with a resolution refutation in small space written out as a
sequence of configurations and then negate each configuration in the refutation. As
a contradiction turns into a tautology and vice versa under negation we have to run
the new refutation backwards. The rest of the proof consists in filling in the details
in order to make sure that the new refutation is a legal one and has the right width
upper bound.

1Razborov also found a similar proof, but did not publish it.[56]
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Definition 5.2. The negated configuration neg(C) of a configuration C is defined
by induction on the number of clauses in C:

• neg(∅) = {⊥},

• neg(C ∪ {C}) = {D ∨ a | D ∈ neg(C) and a ∈ C},

where we remove trivial and subsumed clauses from the final configuration.

We want to take a resolution refutation π = (C0,C1, . . . ,Cτ ) and prove that
if it has small space, then the reversed sequence of negated configurations π′ =
(neg(Cτ ),neg(Cτ−1), . . . ,neg(C0)) has small width. As π′ is not necessarily a legal
refutation, we need to show how to derive the clauses in each configuration of the
negated refutation. Inference and clause deletion steps turn out to be easy to run
in reverse. They follow from the fact that in inference and clause deletion we have
that Ci � Ci+1. In such cases it is not hard to see that for every clause C ∈ neg(Ci)
there is a clause C ′ ∈ neg(Ci+1) such that C is a weakening of C ′.2 Thus, the
clauses in the negated configuration can be derived easily.

The axiom download case is a bit harder to prove and it introduces the k from
k-CNF in the upper bound in Theorem 5.1. The basic analysis here consists of
noting that for a clause C ∈ neg(Ci) the configuration neg(Ci+1) essentially contains
clauses Ca = C ∨ a for all literals a in the downloaded axiom A. Thus, we can use
resolution over A and clauses Ca to derive the clause C in the reverse refutation.
The details can be found in the full paper.

The hope in finding this new proof was that it would help us prove the space-
degree relation in polynomial calculus. However, this seems unlikely. An example
of formulas that seem hard to deal with in this way are pebbling contradictions.
Pebbling contradictions are defined in terms of directed acyclic graphs (DAGs) with
a unique sink (vertex with no outgoing edges). The formulas state that each source
(vertex with no incoming edges) is true, that each inner vertex is true if its parents
are true, and that the sink is false.

The main observation is that in resolution there are two natural refutations
of pebbling contradictions, which are reverse images of each other. One keeps a
big AND of literals (a small width refutation), while the other keeps a big OR (a
small space refutation). Negating one of these refutations produces the other. The
complication in polynomial calculus is that AND can be in small space. Thus we
have a second small space refutation that does not exist in resolution, while it does
not seem likely that we can produce a second small degree refutation. Therefore,
the proof of space-degree relation in polynomial calculus would have to introduce
some fundamental changes to our proof technique in order for us to have any hope
of making it work.

2See Chapter 3 for the discussion of the weakening rule.



Chapter 6

Paper C. Long Proofs of
(Seemingly) Simple Formulas

In the paper “Long Proofs of (Seemingly) Simple Formulas” [50] we leave the
questions of space and its relation to width/degree and return to the questions of
length/size lower bounds. We explore the connection between theoretical results
for resolution and experimental results for conflict-driven clause learning (CDCL)
SAT solvers. The basis for this exploration is the class of formulas proposed by
Van Gelder and Spence [62, 65], which we call subset cardinality formulas. Van
Gelder and Spence showed that subset cardinality formulas were among the hardest
formulas for then current state-of-the-art SAT solvers, but they did not provide a
theoretical justification for that fact. We make progress on this question by proving
that subset cardinality formulas are hard for both resolution and polynomial calculus.
In addition, we further explore the experimental hardness of these formulas and add
some new observations about the state-of-the-art SAT solvers.

6.1 Theoretical Hardness of Subset Cardinality Formulas

To form subset cardinality formulas we start with a set of 4n+ 1 variables, which
are (randomly) partitioned into groups of 4 plus one group of 5 variables. For each
of these groups we write down clauses encoding the constraint that at least half of
the variables in the group are true, that is 2 variables for 4-groups and 3 variables
for a 5-group. Furthermore, we take a second random partition into groups of 4 and
one group of 5, but now encode the constraint that at least half of the variables
are false. By a counting argument it is not hard to see that such formulas must be
unsatisfiable. There are a few ways that we can improve on this construction in
order to ensure that an average formula is even harder for SAT solvers. For instance,
we can base the formula on 4-regular bipartite graphs with an extra edge added.
We define this kind of formula next.
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Definition 6.1 (Subset cardinality formula). Suppose that G = (U ∪̇ V,E) is a
4-regular bipartite graph except that one extra edge has been added. Then the
subset cardinality formula SC (G) over G has variables xe, e ∈ E, and clauses:

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to u ∈ U ,

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to v ∈ V .

The main theoretical result in the paper is that if the bipartite graph is chosen at
random, we are almost sure to produce a hard formula for resolution and polynomial
calculus. To prove this result we use a restriction that when applied to a subset
cardinality formula produces a pigeonhole principle formula.1 As these formulas
have exponential lower bounds in resolution and polynomial calculus, our theorem
follows. The restriction that is used is based on an arbitrary matching, which must
exist in such a graph, by setting the edges in the matching to true. The 5-degree
vertices are dealt with separately. We have the following theorem.

Theorem 6.2. The formula SC (G) for a random 4-regular bipartite graph G with
an arbitrary extra edge added requires polynomial calculus refutations (and hence
also resolution refutations) of exponential size asymptotically almost surely.

6.2 Experimental Results

We also ran experiments with SAT solvers Glucose 2.2 [42], March-rw [48], and
Lingeling-ala [47] on subset cardinality formulas, as well as a few benchmark formulas:
random 3-CNFs and Tseitin formulas. An example of the results can be seen in
Figure 6.1. As this and the other experiments presented in the full paper indicate,
the subset cardinality formulas are among the hardest formulas for modern SAT
solvers. However, we also see an interesting phenomenon where the theoretically
easiest formulas, the fixed bandwidth formulas, are the hardest for SAT solvers
(they time-out on instances with the smallest number of variables). These formulas
are a special kind of subset cardinality formulas where the neighborhood relations
of the graph follow a specific pattern, which makes formulas easy to refute.

To further explore this issue, we also ran experiments where we fixed the order
in which the SAT solver branches on different variables. For this we have used a
modified MiniSat 2.2.0 [52]. An example of the results can be seen in Figure 6.2.
With a better ordering the results for fixed-bandwidth formulas improve, bringing
them in line with the theoretical understanding. Moreover, using a different ordering,
for instance one suggested by Elffers [31], gives significantly better results than the
ones produced by our ordering. This further confirms that fixed bandwidth formulas
can be made easy for SAT solvers. An interesting, although speculative, question
that these experiments raise is whether fixed-bandwidth formulas could be used to

1Formally, we reduce it to a special kind of pigeonhole principle formulas that are based on
well connected graphs.
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formally show that CDCL with current heuristics does not polynomially simulate
resolution. Note also that the advances in pseudo-Boolean solvers reported in [17]
show that subset cardinality formulas can be easy when the reasoning system can
detect and use cardinality constraints.
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Figure 6.1: Comparison of subset cardinality formulas with other benchmarks.
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Chapter 7

Paper D. A Generalized Method
for Proving Polynomial Calculus
Degree Lower Bounds

Paper “A Generalized Method for Proving Polynomial Calculus Degree Lower
Bounds” [51] explores the question of degree lower bounds in polynomial calculus.
By a version of Theorem 3.1 for polynomial calculus we have that we can translate
degree lower bounds into size lower bounds. However, unlike resolution, in polynomial
calculus we do not have a well-developed machinery for proving degree lower bounds.
In this paper we improve on this situation by introducing a graph structure that, if
it can be built from the CNF formula, implies the degree lower bound. An even
more general framework was independently developed by Filmus [35]. Filmus gives
different, more explicit, proofs of the key technical lemmas in [2], but does not
obtain any new lower bound results.

In this chapter we give an overview of a simplified version of our graph framework
for proving degree lower bounds. We also present a brief discussion on how this
framework differs from the framework that allows us to prove resolution width lower
bounds. In the second part of the chapter we give an overview of different versions
of pigeonhole principle formulas and our contributions to resolving their hardness.

7.1 A Generalized Clause-Variable Incidence Graph

We build a bipartite graph representing the CNF formula F by splitting the formula
into subformulas (i.e., subsets of clauses). That is, we take a family U of subformulas
F of F turning each subformula F into a vertex on the left-hand side of the graph.
We also partition the variables of F into a family V of subsets of variables V to
get the vertices on the right-hand side of the graph. We place an edge between a
formula F and a set of variables V if they share at least one variable. An important
requirement for this graph is that for each edge (F, V ) we can satisfy the formula F
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by setting only the variables in V . In what follows, we use the notation Vars(F ) to
denote the set of all variables that appear in F .

Definition 7.1 (Bipartite (U ,V)-graph). Let U be a set of CNF formulas, and V
be a partition of the set of variables

⋃
F∈U Vars(F ). Then the (U ,V)-graph is a

bipartite graph with left vertices F ∈ U , right vertices V ∈ V, and edges between
F and V if Vars(F ) ∩ V 6= ∅. Furthermore, for every edge (F, V ) we require that
there is an assignment ρ to variables in V that satisfies F .

We use standard graph notation and write N(F ) to denote the set of all neigh-
bours V ∈ V of a vertex/CNF formula F ∈ U . The crucial criteria for determining
the hardness of the formula F is whether a (U ,V)-graph that we build from F is
expanding, meaning that the sets of vertices on the left-side of the graph have a lot
of unique neighbors on the right. The formal definitions follow.

Definition 7.2 (Boundary of a (U ,V)-graph). For a (U ,V)-graph and a subset
U ′ ⊆ U , the boundary ∂(U ′) of U ′ is the family of variable sets V ∈ V such that
each V ∈ ∂(U ′) is a neighbor of some clause set F ∈ U ′ but is not a neighbor of any
other clause set F ′ ∈ U ′ \ {F}.

Definition 7.3 (Boundary expander). A (U ,V)-graph is said to be an (s, δ)-
boundary expander if for every set U ′ ⊆ U , |U ′| ≤ s, it holds that |∂(U ′)| ≥ δ|U ′|.

With the definitions above we can state the simplified version of our main
theorem on degree lower bounds in polynomial calculus.

Theorem 7.4. Let a (U ,V)-graph be an (s, δ)-boundary expander. Then any poly-
nomial calculus refutation of

∧
F∈U F requires degree strictly greater than δs/2.

Recall that we required that for each edge (F, V ) there exists an assignment ρ
to V that satisfies F . Another way of viewing this statement is through a kind of
“edge game” played against an adversary. In this game we start first by setting the
variables in V , after which the adversary sets the remaining variables to whichever
values he wants. We win the game if F is satisfied after both we and the adversary
make our moves. Then the constraint that V must satisfy F translates into the
requirement that we can always win the “edge game”.

The difference in resolution is that we change the “edge game” so that the
adversary is required to go first and set all variables outside of V . When adversary
finishes his step we can proceed to set the variables in V however we like in order to
achieve the same goal of satisfying F . This gives us more power in resolution and
makes the game easier, as we do not need to anticipate all possible moves made by
the adversary. One example where this makes a difference are the Tseitin formulas
from Definition 4.2. Taking each formula Fv ∈ U to be an encoding of a constraint
PARITY v,χ on a vertex v and V consisting of singleton sets of one variable each we
can form the (U ,V)-graph for Tseitin. It is not hard to see that the “edge game”
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for resolution is winnable, while the polynomial calculus game is not. This is in line
with the fact that in polynomial calculus we can efficiently refute Tseitin formulas.

The framework presented in this chapter is a significantly simplified version of
the original framework and it does not allow us to prove lower bounds for many
formulas. The main concern is that an original formula might not consist only of
the subformulas that can be arranged into an expanding graph. If that is the case
we isolate the non-expanding part of the formula into a separate subformula E that
is not an immediate part of the graph, but which changes the “edge game”. If we
have the subformula E, all of the assignments in the “edge game” must not falsify E.
That is, the adversary’s assignment must not falsify E, while the union of our and
the adversary’s assignment must satisfy both the formula F that belongs to the
edge as well as E. In the paper, we also distinguish between the edges on which
we can win this new “edge game” and the edges on which we cannot, and define
the expansion accordingly. However, we do not need this distinction in any of our
applications.

The second distinction between the simplified framework and the full framework
is that we do not require V to be a partition, but allow some variables to appear in
multiple sets. In this case we need to bound the number of sets in which a variable
can appear and this then weakens the lower bound in Theorem 7.4. Nevertheless,
this modification is needed to show lower bounds for ordering principle formulas,
originally shown hard for degree in [41], and functional pigeonhole principle formulas.
In the next section we survey the bound on pigeonhole principle formulas and how
our results fit into them.

7.2 Pigeonhole Principle Bounds

We start by giving a formal definition of different versions of pigeonhole principle
formulas, using the notation [n] = {1, 2, . . . , n}. The pigeonhole principle formulas
are CNF formulas over variables xp,h, p ∈ [n+ 1] and h ∈ [n], which we interpret as
being true if pigeon p nests in hole h. We have the following axioms:

n∨

h=1
xp,h p ∈ [n+ 1] (pigeon axioms) (7.1a)

xp,h ∨ xp′,h h ∈ [n], p, p′ ∈ [n+ 1], p 6= p′, (hole axioms) (7.1b)
xp,h ∨ xp,h′ p ∈ [n+ 1], h, h′ ∈ [n], h 6= h′ (functionality axioms) (7.1c)
n+1∨

p=1
xp,h h ∈ [n] (onto axioms) (7.1d)

The standard pigeonhole principle formula PHPn+1
n is the formula consisting of only

the pigeon and hole axioms. The functional pigeonhole principle formula FPHPn+1
n

is the pigeonhole principle formula PHPn+1
n with functional axioms added, the onto

pigeonhole principle formula Onto-PHPn+1
n is PHPn+1

n with onto axioms added,
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Table 7.1: Comparison of pigeonhole principle formulas in resolution and polynomial
calculus. Hard denotes an exponential lower bound, while easy denotes a polynomial
upper bound in the number of holes n.

Variant Resolution Polynomial Calculus
PHPn+1

n hard [44] hard [2]
FPHPn+1

n hard [44] hard [51, 66]
Onto-PHPn+1

n hard [44] hard [2]
Onto-FPHPn+1

n hard [44] easy [59]

while the formula that contains all axioms (7.1a)-(7.1d) is called the onto functional
pigeonhole principle Onto-FPHPn+1

n . The overview of how these different versions
of pigeonhole principle compare in resolution and polynomial calculus can be found
in Table 7.1.

For resolution, Haken’s celebrated result [44] established that pigeonhole principle
is exponentially hard in terms of the number of holes. Moreover, it can be seen that
this proof works for all other versions of the pigeonhole principle as well. On the other
hand, in polynomial calculus it was known that the ordinary pigeonhole principle is
hard by the result of Alekhnovich and Razborov [2], while the full onto functional
pigeonhole principle had polynomially sized refutations as proved by Riis [59]. In the
paper presented in this chapter, we have observed that Alekhnovich and Razborov’s
original proof extends to the onto pigeonhole principle, as well as used our framework
to establish the exponential lower bound for the functional pigeonhole principle [51].
A similar lower bound for the functional pigeonhole principle, but proved directly
without using any general framework, was also obtained by Wołochowski [66].



Chapter 8

Conclusion

In this thesis we explored the relation between space and width/degree in resolution
and polynomial calculus, as well as different techniques for width/degree and
therefore length/size lower bounds in these proof systems. In the first two papers of
the thesis, Chapters 4 and 5, we explored the space lower bounds and the relation
between space and width/degree. Building on previous results, we made progress
on the question of whether degree is a lower bound on space in polynomial calculus,
as well as proved that space cannot be a lower bound on degree. However, both
of these results could be further improved. We still do not know whether degree
remains a lower bound for space if we do not amplify the hardness of the formula by
XORification. Furthermore, our second result where we separate degree from space
in polynomial calculus depends on the characteristic of the field. That is, we need
different formulas for different characteristics. We still do not know whether there
are single formulas that separate degree from space for all fields simultaneously.

In studying the relation between space and degree in polynomial calculus, we have
also explored this relation in resolution. We simplified the proof that width lower
bounds space in resolution by directly transforming a small space refutation into a
small width one. While the new proof helps us understand better the resolution
result, it does not seem to help in any way with polynomial calculus. Hence, space
in polynomial calculus is still only partially understood and there is ample room
for improvement in the techniques for proving space lower bounds in order to truly
capture all the formulas that we are interested in. In addition, improving these
techniques could lead to resolving the previous question of whether space is lower
bounded by degree, or even resolution width.

The other two papers in the thesis, Chapters 6 and 7, leave the topic of space
and move to length/size lower bounds in resolution and polynomial calculus. By
the result presented in Chapter 3, we have that width/degree lower bounds imply
length/size lower bounds. In addition to exploring the question of length/size lower
bounds, in Chapter 6 we also explore the practical question of how our theoretical
lower bounds relate to actual SAT solver running times. We show the first theoretical
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lower bound for subset cardinality formulas, which were previously shown to be
among the hardest formulas in practice. In addition, we ran experiments that confirm
these prior observations. One interesting result that we got in our experiments is
that the theoretically easiest formulas turn out to be very hard in practice when
we do not help the SAT solver by giving it an explicit ordering on the variables.
This demonstrates that there are still open questions with regard to the relation
between resolution and current state-of-the-art SAT solvers. Some progress on these
questions was recently made by Elffers et al. [32].

In the final paper we turn to presenting a general framework for proving polyno-
mial calculus degree lower bounds. We show that if we can form a special kind of
a bipartite graph from a given CNF formula, then the degree lower bound follows.
This method allows us to reprove almost all previously known degree lower bounds,
as well as prove a lower bound for the functional pigeonhole principle. When we
compare our framework to resolution, we can see that they are quite similar except
that in resolution we have a weaker condition on the edges of the graph. However,
this leads to a big difference as the resolution lower bound technique is applicable
too almost all formulas that we care about. This is not the case with our polynomial
calculus framework, as for instance we do not know how to fit coloring and indepen-
dent set formulas into our framework although they are hard for resolution [6, 7].
Another open question is to find lower bounds for polynomial calculus size that do
not go through degree lower bounds.

In conclusion, in this thesis we have made progress in understanding complexity
measures in polynomial calculus. Generally, we can see that many general techniques
and basic results transfer from resolution to polynomial calculus, but they can
become quite harder to prove. This still leaves us with a lot of open questions in
polynomial calculus and with the hope that we can find a way to simplify and unify
these techniques. Achieving this goal could potentially not only help us understand
resolution and polynomial calculus better, but might also provide us with tools to
efficiently tackle even the more powerful proof systems.
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Marc Vinyals2
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Abstract

During the last decade, an active line of research in proof complexity has
been into the space complexity of proofs and how space is related to other
measures. By now these aspects of resolution are fairly well understood, but
many open problems remain for the related but stronger polynomial calculus
(PC/PCR) proof system. For instance, the space complexity of many standard
“benchmark formulas” is still open, as well as the relation of space to size and
degree in PC/PCR.

We prove that if a formula requires large resolution width, then making
XOR substitution yields a formula requiring large PCR space, providing some
circumstantial evidence that degree might be a lower bound for space. More
importantly, this immediately yields formulas that are very hard for space but
very easy for size, exhibiting a size-space separation similar to what is known
for resolution. Using related ideas, we show that if a graph has good expansion
and in addition its edge set can be partitioned into short cycles, then the
Tseitin formula over this graph requires large PCR space. In particular, Tseitin
formulas over random 4-regular graphs almost surely require space at least
Ω
(√

n
)
.

Our proofs use techniques recently introduced in [Bonacina-Galesi ’13].
Our final contribution, however, is to show that these techniques provably
cannot yield non-constant space lower bounds for the functional pigeonhole
principle, delineating the limitations of this framework and suggesting that
we are still far from characterizing PC/PCR space.

∗This is the full-length version of the paper [FLM+13] that appeared in Proceedings of the
40th International Colloquium on Automata, Languages and Programming (ICALP ’13).
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1 Introduction

Proof complexity studies how hard it is to provide succinct certificates for tauto-
logical formulas in propositional logic—i.e., proofs that formulas always evaluate
to true under any truth value assignment, where these proofs are verifiable in time
polynomial in their size. It is widely believed that there is no proof system where
such efficiently verifiable proofs can always be found of size at most polynomial
in the size of the formulas they prove. Showing this would establish NP 6= coNP,
and hence P 6= NP, and the study of proof complexity was initiated by Cook and
Reckhow [CR79] as an approach towards this (still very distant) goal.

A second prominent motivation for proof complexity is the connection to applied
SAT solving. By a standard transformation, any propositional logic formula F can
be transformed to another formula F ′ in conjunctive normal form (CNF) such that
F ′ has the same size up to constant factors and is unsatisfiable if and only if F
is a tautology. Any algorithm for solving SAT defines a proof system in the sense
that the execution trace of the algorithm constitutes a polynomial-time verifiable
witness of unsatisfiability (such a witness is often referred to as a refutation rather
than a proof , and we will use the two terms interchangeably in this paper). In the
other direction, most modern SAT solvers can in fact be seen to search for proofs in
systems studied in proof complexity, and upper and lower bounds for these proof
systems hence give information about the potential and limitations of such SAT
solvers.

In addition to running time, a major concern in SAT solving is memory consump-
tion. In proof complexity, these two resources are modelled by proof size/length and
proof space. It is thus interesting to understand these complexity measures and how
they are related to each other, and such a study reveals intriguing connections that
are also of intrinsic interest to proof complexity. In this context, it is natural to
focus on proof systems at comparatively low levels in the proof complexity hierarchy
that are, or could plausibly be, used as a basis for SAT solvers. Such proof systems
include resolution and polynomial calculus. This paper takes as its starting point
the former system but focuses on the latter.

Previous Work

The resolution proof system was introduced in [Bla37], and is at the founda-
tion of state-of-the-art SAT solvers based on so-called conflict-driven clause learn-
ing (CDCL) [BS97, MS96].

In resolution, one derives new disjunctive clauses from the clauses of the original
CNF formula until contradiction is reached. One of the early breakthroughs in proof
complexity was the (sub)exponential lower bound on proof length (measured as the
number of clauses in a proof) obtained by Haken [Hak85]. Truly exponential lower
bounds—i.e., bounds exp(Ω(n)) in the size n of the formula—were later established
in [CS88, Urq87] and other papers.
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Ben-Sasson and Wigderson [BW01] identified width as a crucial resource, where
the width is the size of a largest clause in a resolution proof. They proved that
strong lower bounds on width imply strong lower bounds on length, and used this
to rederive essentially all known length lower bounds in terms of width.

The study of space in resolution was initiated by Esteban and Torán [ET01],
measuring the space of a proof (informally) as the maximum number of clauses
needed to be kept in memory during proof verification. Alekhnovich et al. [ABRW02]
later extended the concept of space to a more general setting, including other proof
systems. The (clause) space measure can be shown to be at most linear in the
formula size, and matching lower bounds were proven in [ABRW02, BG03, ET01].

Atserias and Dalmau [AD08] proved that space is in fact lower-bounded by
width, which allowed to rederive all hitherto known space lower bounds as corollaries
of width lower bounds. A strong separation of the two measures was obtained
in [BN08], exhibiting a formula family with constant width complexity but almost
linear space complexity. Also, dramatic space-width trade-offs have been shown
in [Ben09], with formulas refutable in constant width and constant space where
optimizing one of the measures causes essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [AD08] that
formulas of low space complexity also have short proofs. For the subsystem of tree-
like resolution, where each line in the proof can only be used once, [ET01] showed
that length upper bounds also imply space upper bounds, but for general resolution
[BN08] established that this is false in the strongest possible sense. Strong trade-offs
between length and space were proven in [BN11, BBI12].

This paper focuses on the more powerful polynomial calculus (PC)1 proof system
introduced by Clegg et al. [CEI96], which is not at all as well understood. In a PC
proof, clauses are interpreted as multilinear polynomials (expanded out to sums of
monomials), and one derives contradiction by showing that these polynomials have
no common root. Intriguingly, while proof complexity-theoretic results seem to hold
out the promise that SAT solvers based on PC could be orders of magnitude faster
than CDCL, such algebraic solvers have so far failed to be truly competitive.

Proof size2 in PC is measured as the total number of monomials in a proof and
the analogue of resolution space is the number of monomials needed in memory
during proof verification. Clause width in resolution translates into polynomial
degree in PC. While length, space and width in resolution are fairly well understood
as surveyed above, our understanding of the corresponding complexity measures in
PC is much more limited.

Impagliazzo et al. [IPS99] showed that strong degree lower bounds imply strong
size lower bounds. This is a parallel to the length-width relation in [BW01], and in

1Strictly speaking, to get a stronger proof system than resolution we need to look at the
generalization PCR as defined in [ABRW02], but for simplicity we will be somewhat sloppy in this
introduction in distinguishing between PC and PCR.

2The length of a proof is the number of lines, whereas size also considers the size of lines. In
resolution the two measures are essentially equivalent. In PC size and length can be very different,
however, and so size is the right measure to study.
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fact this latter paper can be seen as a translation of the bound in [IPS99] from PC
to resolution. This size-degree relation has been used to prove exponential lower
bounds on size in a number of papers, with [AR03] perhaps providing the most
general setting.

The first lower bounds on space were reported in [ABRW02], but only sublinear
bounds and only for formulas of unbounded width. The first space lower bounds for
k-CNF formulas were presented in [FLN+12], and asymptotically optimal (linear)
lower bounds were finally proven by Bonacina and Galesi [BG13]. However, there
are several formula families with high resolution space complexity for which the PC
space complexity has remained unknown, e.g., Tseitin formulas (encoding that the
sum of all vertex degrees in an undirected graph must be even), ordering principle
formulas, and functional pigeonhole principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is a
lower bound for space (which would be the analogue of what holds in resolution) and
also it has been unknown whether the two measures can be separated in the sense
that there are formulas of low degree complexity requiring high space. However,
[BNT13] recently proved a space-degree trade-off analogous to the resolution space-
width trade-off in [Ben09] (in fact for the very same formulas). This could be
interpreted as indicating that there should be a space-degree separation analogous
to the space-width separation in resolution, and the authors of [BG13] suggest
that their techniques might be a step towards understanding degree and proving
that degree lower-bounds space, similar to how this was done for resolution width
in [AD08].

As to size versus space in PC, essentially nothing has been known. It is open
whether small space complexity implies small size complexity and/or the other way
around. Some size-space trade-offs were recently reported in [HN12, BNT13], but
these trade-offs are weaker than the corresponding results for resolution.

Our Results
We study the relation of size, space, and degree in PC (and the stronger system
PCR) and present a number of new results as briefly described below.

1. We prove that if the resolution width of refuting a CNF formula F is w, then
by substituting each variable by an exclusive or of two new variables and
expanding out we get a new CNF formula F [⊕] requiring PCR space Ω(w).
In one sense, this is stronger than claiming that degree is a lower bound for
space, since high width complexity is a necessary but not sufficient condition
for high degree complexity. In another sense, however, this is (much) weaker
in that XOR substitution can amplify the hardness of formulas substantially.
Nevertheless, to the best of our knowledge this is the first result making any
connection between width/degree and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between
length and degree on the one hand and space on the other. Namely, taking
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expander graphs and making double copies of all edges, we show that Tseitin
formulas over such graphs have proofs in size O(n logn) and degree O(1) in
PC but require space Θ(n) in PCR. (Furthermore, since these small-size proofs
are tree-like, this shows that there is no tight correlation between size and
space in tree-like PC/PCR in contrast to resolution.)

3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin
formulas over (simple or multi-)graphs where the edge set can be partitioned
into small cycles. (The two copies of every edge in the multi-graph above form
such cycles, but this works in greater generality.) In particular, for Tseitin
formulas over random d-regular graphs for d ≥ 4 we establish that an Ω(

√
n)

PCR space lower bound holds asymptotically almost surely.

4. On the negative side, we show that the techniques in [BG13] cannot prove
any non-constant PCR space lower bounds for functional pigeonhole principle
(FPHP) formulas. That is, although these formulas require high degree
and it seems plausible that they are hard also with respect to space, the
machinery developed in [BG13] provably cannot establish such lower bounds.
Unfortunately, this seems to indicate that we are further from characterizing
degree in PC/PCR than previously hoped.

Organization of This Paper

The rest of this paper is organized as follows. We briefly review preliminaries in
Section 2. Section 3 presents a overview of our results and provides some proof
sketches outlining the main technical ideas that go into the proofs.

In Section 4, we prove that resolution width lower bounds plus substitutions
with XOR or other suitable Boolean functions yields PCR space lower bounds. We
use this in Section 5 to separate size and degree from space in PC and PCR. In
Section 6, we show PCR space lower bounds for Tseitin formulas over graphs with
edge sets decomposable into partitions of small cycles. The proof that random
d-regular graphs for d ≥ 4 (almost) decompose into cycles of length O(

√
n) is

given in Section 7. The fact that PCR space lower bounds cannot be obtained for
the functional pigeonhole principle formulas with current techniques is proven in
Section 8, and in the same section we show that a larger class of formulas containing
FPHP formulas have essentially the same space complexity for PC and PCR (so
that when proving lower bounds, one can without loss of generality ignore the
complementary formal variables for negative literals in PCR and focus only on PC).

We make some concluding remarks and discuss some of the (many) open questions
remaining in Section 9. For completeness, in Appendix A we provide a full description
of our version of the techniques in [BG13] and provide proofs that the same claims
still hold in this slightly different setting.
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2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal)
or its negation ¬x or x (a negative literal). It will also be convenient to use the
alternative notation x0 = x, x1 = x, where we identify 0 with true and 1 with false3

(so that xb is true if x = b). A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals.
We denote the empty clause by ⊥. A clause containing at most k literals is called a
k-clause. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. A k-CNF
formula is a CNF formula consisting of k-clauses. We think of clauses and CNF
formulas as sets so that order is irrelevant and there is no repetitions.

Let F be a field and consider the polynomial ring F[x, x, y, y, . . .] (where x
and x are viewed as distinct formal variables). We employ the standard notation
[n] = {1, . . . , n}.

Definition 1 (Polynomial calculus resolution (PCR)). A PCR configura-
tion P is a set of polynomials in F[x, x, y, y, . . .]. A PCR refutation of a CNF
formula F is a sequence of configurations {P0, . . . ,Pτ} such that P0 = ∅, 1 ∈ Pτ ,
and for t ∈ [τ ] we obtain Pt from Pt−1 by one of the following steps:

Axiom download Pt = Pt−1 ∪ {p}, where p is either a monomial m =
∏
i x

b
i

encoding a clause C =
∨
i x

b
i ∈ F , or a Boolean axiom x2−x or complementarity

axiom x+ x− 1 for any variable x (or x).

Inference Pt = Pt−1 ∪ {p}, where p is inferred by linear combination q r
αq+βr or

multiplication q
xq from polynomials q, r ∈ Pt−1 for α, β ∈ F and x a variable.

Erasure Pt = Pt−1 \ {p}, where p is a polynomial in Pt−1.

If we drop complementarity axioms and encode each negative literal x as the
polynomial (1− x), the proof system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π is the number of monomials (counted
with repetitions) in all downloaded or derived polynomials in π, the (monomial)
space Sp(π) is the maximal number of monomials (counted with repetitions)4 in any
configuration in π, and the degree Deg(π) is the maximal degree of any monomial
appearing in π. Taking the minimum over all PCR refutations of a formula F , we
define the size SPCR(F `⊥), space SpPCR(F `⊥), and degree DegPCR(F `⊥) of
refuting F in PCR (and analogously for PC).

We can also define resolution in this framework, where proof lines are always
clauses (i.e., single monomials) and new clauses can be derived by the resolution
rule inferring C ∨D from C ∨x and D∨x. The length of a resolution refutation π is
the number of downloaded and derived clauses, the space is the maximal number of

3Note that this notational convention is the opposite of what is found in many other papers,
but as we will see shortly it is the natural choice in the context of polynomial calculus.

4We note that in [ABRW02], space was defined without counting repetitions of monomials. All
our lower bounds hold in this more stringent setting as well.
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(b) Corresponding Tseitin formula.

Figure 2: Example Tseitin formula.

clauses in any configuration, and the width is the size of a largest clause appearing
in π (or equivalently the degree of such a monomial). Taking the minimum over all
refutations as above we get the measures LR(F `⊥), SpR(F `⊥), and WR(F `⊥).
It is not hard to show that PCR can simulate resolution efficiently with respect to
all these measures.

We say that a refutation is tree-like if every line is used at most once as the
premise of an inference rule before being erased (though it can possibly be rederived
later). All measures discussed above can also be defined for restricted subsystems
of resolution, PC and PCR admitting only tree-like refutations.

Let us now describe the family of CNF formulas which will be the main focus of
our study.

Definition 2 (Tseitin formula). Let G = (V,E) be an undirected graph and
χ : V → {0, 1} be a function. Identify every edge e ∈ E with a variable xe and let
PARITY v,χ denote the CNF encoding of the constraint that the number of true
edges xe incident to a vertex v ∈ V is equal to χ(v) (mod 2). Then the Tseitin
formula over G with respect to χ is Ts(G,χ) =

∧
v∈V PARITY v,χ.

When the degree of G is bounded by d, PARITY v,χ has at most 2d−1 clauses,
all of width at most d, and hence Ts(G,χ) is a d-CNF formula with at most 2d−1|V |
clauses. Figure 1(b) gives an example Tseitin formula generated from the graph in
Figure 1(a). We say that a set of vertices U has odd (even) charge if

∑
u∈U χ(u) is

odd (even). By a simple counting argument one sees that Ts(G,χ) is unsatisfiable if
V (G) has odd charge. Lower bounds on the hardness of refuting such unsatisfiable
formulas Ts(G,χ) can be proven in terms of the expansion of G as defined next.

Definition 3 (Connectivity expansion [ABRW02]). The connectivity expan-
sion of G = (V,E) is the largest c such that for every E′ ⊆ E, |E′| ≤ c, the graph
G′ = (V,E \ E′) has a connected component of size strictly greater than |V |/2.
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If F is a CNF formula and f : {0, 1}d → {0, 1} is a Boolean function, then we
can obtain a new CNF formula by substituting f(x1, . . . , xd) for every variable x and
expanding out to conjunctive normal form. We write F [f ] to denote the resulting
substituted formula, where we will be interested in substitutions with a particular
kind of functions defined as follows.

Definition 4 (Non-authoritarian function [BN11]). We say that a Boolean
function f(x1, . . . , xd) is non-authoritarian if for every xi and for every assignment
α to xi there exist α0, α1 extending α such that f(αb) = b for b ∈ {0, 1}.

By way of example, exclusive or (XOR), denoted ⊕, is clearly non-authoritarian,
since regardless of the value of one variable, the other one can be flipped to make
the function true or false, but standard non-exclusive or ∨ is not.

Let us finally give a brief overview of the framework developed in [BG13], which
we use to prove our PCR space lower bounds.5 A partial partition Q of a variable
set V is a collection of disjoint sets Qi ⊆ V . We use the notation

⋃Q =
⋃
Qi∈QQi.

For two sets of partial assignments H and H ′ to disjoint domains, we denote by
H ×H ′ the set of assignments H ×H ′ = {α ∪ β | α ∈ H and β ∈ H ′}. A set of
partial assignments H to the domain Q is flippable on Q if for each variable x ∈ Q
and b ∈ {0, 1} there exists an assignment αb ∈ H such that αb(x) = b. We say that
H satisfies a formula F if all α ∈ H satisfy F .

A Q-structured assignment set is a pair (Q,H) consisting of a partial partition
Q = {Q1, . . . , Qt} of V and a set of partial assignments H =

∏t
i=1 Hi, where each

Hi assigns to and is flippable on Qi. We write (Q,H) 4 (Q′,H′) if Q ⊆ Q′ and
H′�Q= H, where H′�Q=

∏
Qi∈QH

′
i. A structured assignment set (Q,H) respects a

CNF formula F ′ if for every clause C ∈ F ′ either Vars(C) ∩⋃Q = ∅ or there is a
set Q ∈ Q such that Vars(C) ⊆ Q and H satisfies C.

Expressed in this language, the key technical definition in [BG13] is as follows.

Definition 5 (Extendible family). A non-empty family F of structured assign-
ment sets (Q,H) is r-extendible for a CNF formula F with respect to a satisfiable
F ′ ⊆ F if every (Q,H) ∈ F satisfies the following conditions.

Size |Q| ≤ r.

Respectfulness (Q,H) respects F ′.

Restrictability For every Q′ ⊆ Q the restriction (Q′,H�Q′) is in F .

Extendibility If |Q| < r then for every clause C ∈ F \F ′ there exists (Q′,H′) ∈ F
such that 1. (Q,H) 4 (Q′,H′), 2. H′ satisfies C, and 3. |Q′| ≤ |Q|+ 1.

When F ′ = ∅, we simply say that F is r-extendible for F .
5The actual definitions that we use are slightly different but essentially equivalent. We provide

the full details including proofs in Section A for completeness.
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To prove PCR space lower bounds for a formula F , it is sufficient to find an
extendible family for F .

Theorem 6 ([BG13]). Suppose that F is a CNF formula which has an r-extendible
family F with respect to some F ′ ⊆ F . Then SpPCR(F `⊥) ≥ r/4.

All space lower bounds presented in this paper are obtained in this manner,
where in addition we always have F ′ = ∅.

3 Overview of Results and Sketches of Some Proofs

In this section, we give a more detailed overview with formal statements of our results,
and also provide some proof sketches in order to convey the main technical ideas. As
a general rule, the upper bounds we state are for polynomial calculus (PC) whereas
the lower bounds hold for the stronger system polynomial calculus resolution (PCR).
In fact, even more can be said: just as is the case in [ABRW02, FLN+12, BG13], all
our lower bounds hold also for functional calculus, where proof lines are arbitrary
Boolean functions over clauses/monomials and anything that follows semantically
from the current configuration can be derived in a single step. We do not discuss
this further below but instead refer to Appendix A for the details.

Relating PCR Space and Resolution Width
The starting point of our work is the question of how space and degree are related in
polynomial calculus, and in particular whether it is true that degree lower-bounds
space. While this question remains wide open, we make partial progress by showing
that if the resolution width of refuting a CNF formula F is large (which in particular
must be the case if F requires high degree), then by making XOR substitution we
obtain a formula F [⊕] that requires large PCR space. In fact, this works not only
for exclusive or but for any non-authoritarian function (as defined in Definition 4).
The formal statement is as follows.

Theorem 7. Let F be a k-CNF formula and let f be any non-authoritarian function.
Then it holds over any field that SpPCR(F [f ] `⊥) ≥ (WR(F `⊥)− k + 1)/4.

Proof sketch. In one sentence, the proof of Theorem 7 is by combining the concept
of extendible families in Definition 5 with the combinatorial characterization of
resolution width in [AD08]. We show that the properties of F implied by the width
lower bound can be used to construct an extendible family for F [f ]. To make this
description easier to parse, let us start by describing in somewhat more detail the
width characterization in [AD08].

Consider the following game played on F by two players Spoiler and Duplicator .
Spoiler asks about assignments to variables in F and Duplicator answers true or
false. Spoiler can only remember ` assignments simultaneously, however, and has
to forget some variable when this limit is reached. If Duplicator is later asked
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about some forgotten variable, the new assignment need not be consistent with the
previous forgotten one. Spoiler wins the game by constructing a partial assignment
that falsifies some clause in F , and the game is a Duplicator win if there is a strategy
to keep playing forever without Spoiler ever reaching this goal. It was proven in
[AD08] that this game exactly captures resolution width in the sense that Duplicator
has a winning strategy if and only if ` ≤WR(F `⊥).

Let us fix r = WR(F `⊥)− k + 1 and use Duplicator’s winning strategy for ` =
WR(F `⊥) to build an r-extendible family for F [⊕] (the proof for general non-author-
itarian functions is very similar and is given in Section 4). Consider any assignment
α reached during the game. We define a corresponding structured assignment set
(Qα,Hα) by adding a block Qx = {x1, x2} to Qα for every x ∈ Dom(α), and let Hx

contain all assignments αx to {x1, x2} such that αx(x1 ⊕ x2) = α(x).
Given these structured assignment sets (Qα,Hα), the family F is constructed

inductively as follows. The base case is that (Q∅,H∅) = (∅, ∅) is in F . To extend
(Qα,Hα) to satisfy a clause in C[⊕], we simulate a Spoiler with memory α who asks
about all variables in C. Since Duplicator does not falsify C, when all variables
have been queried some literal in C must be satisfied by the assignment. Fix one
such variable assignment {x = b} and add

(
Qα∪{x=b},Hα∪{x=b}

)
as defined above

to F . All that remains now is to verify that this yields an extendible family as
described in Definition 5 and then apply Theorem 6.

Separation of Size and Degree from Space
An almost immediate consequence of Theorem 7 is that there are formulas which
have small PC refutations in constant degree but nevertheless require maximal space
in PCR.

Theorem 8. For any field F of characteristic p there is a family of k-CNF formulas
Fn (where k depends on p) of size O(n) for which SpPCR(Fn `⊥) = Ω(n) over any
field but which have tree-like PC refutations πn : Fn `⊥ over F of size S(πn) =
O(n logn) and degree Deg(πn) = O(1).

Proof sketch. Let us focus on p = 2, deferring the general proof to Section 5.
Consider a Tseitin formula Ts(G,χ) for any constant-degree graph G over n vertices
with connectivity expansion Ω(n) and any odd-charge function χ.

From [BW01] we know that WR(F `⊥) = Ω(n). It is not hard to see that XOR
substitution yields another Tseitin formula Ts(G′, χ) for the multi-graph G′ obtained
from G by adding double copies of all edges. This formula requires large PCR space
(over any field) by Theorem 7. The upper bound follows by observing that the CNF
encodes a linear system of equations, which is easily shown inconsistent in PC by
summing up all equations in a tree-like fashion.

It follows from Theorem 8 that tree-like space in PC/PCR is not upper-bounded
by tree-like size, in contrast to resolution. This is the only example we are aware of
where the relations between size, degree, and space in PC/PCR differ from those
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between length, width, and space in resolution, so let us state this as a formal
corollary.

Corollary 9. It is not true in PC/PCR that tree-like space complexity is upper-
bounded by the logarithm of tree-like size complexity.

Space Complexity of Tseitin Formulas
A closer analysis of the proof of Theorem 8 reveals that it partitions the edge set
of G′ into small edge-disjoint cycles (namely, length-2 cycles corresponding to the
two copies of each original edge) and uses partial assignments that all maintain the
same parities of the vertices on a given cycle. It turns out that this approach can
be made to work in greater generality as stated next.

Theorem 10. Let G = (V,E) be a connected graph of bounded degree d with
connectivity expansion c such that the edge set E can be partitioned into cycles of
length at most b. Then it holds over any field that SpPCR(Ts(G,χ) `⊥) ≥ c/4b−d/8.

Proof sketch. We build on the resolution space lower bound in [ABRW02, ET01],
where the proof works by inductively constructing an assignment αt for each derived
configuration Ct (which corresponds to removing edges from G and updating the
vertex charges accordingly) such that (a) αt satisfies Ct, and (b) αt does not create
any odd-charge component in G of size less than n/2. The inductive update can
be performed as long as the space is not too large, which shows that contradiction
cannot be derived in small space (since Ct is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an
exponential number of such good assignments, and in general we do not know how
to do this. Nevertheless, some more thought reveals that the only important aspect
of our assignments are the resulting vertex parities. And if the edge set is partitioned
into cycles, we can always shift edge charges along the cycles so that for all the
exponentially many assignments, the vertex parities are all the same (meaning that
on a higher level we only have to maintain one good assignment after all). The full
proof is presented in Section 6.

Some graphs, such as rectangular grids, can be partitioned into cycles of size O(1),
yielding tight bounds on space. A bit more surprisingly, random d-regular graphs
for d ≥ 4 turn out to (sort of) admit partitions into cycles of size O(

√
n), which

yields the following theorem.

Theorem 11. Let G be a random d-regular graph on n vertices, where d ≥ 4. Then
over any field it holds almost surely that SpPCR(Ts(G,χ) `⊥) = Ω

(√
n
)
.

Proof sketch. As long as we are interested in properties holding asymptotically
almost surely, we can replace random 4-regular graphs with unions of two random
Hamiltonian cycles [KW01]. We show that a graph distributed according to the
latter model almost surely decomposes into cycles of length O(

√
n), along with εn
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additional edges (which are easily taken care of separately). Since random graphs
are also excellent expanders, we can apply Theorem 10. The argument extends
straightforwardly to random d-regular graphs for any d ≥ 4. The full proof, which
contains a bit more by way of technical details, is given in Section 7.

We believe that the true space bound should actually be Θ(n), just as for
resolution, but such a result seems beyond the reach of our current techniques. Also,
note that to make Theorem 10 go through we need graph expansion plus partitions
into small cycles. It seems plausible that expansion alone should be enough to imply
PCR space lower bounds, as for resolution, but again we are not able to prove this.

Limitations of the PCR Space Lower Bound Technique
The framework in [BG13] can also be used to rederive all PCR space lower bounds
shown previously in [ABRW02, FLN+12], and in this sense [BG13] sums up what
we know about PCR space lower bounds. There are also intriguing similarities
between [BG13] and the resolution width characterization in [AD08] (as partly hinted
in the proof sketch for Theorem 7), which raises the question whether extendible
families could perhaps be a step towards characterizing degree and showing that
degree lower-bounds space in PC/PCR.

Even more intriguingly, however, there are CNF formulas for which it seems
reasonable to expect that PCR space lower bounds should hold, but where extendible
families seem very hard to construct. Such formulas include ordering principle
formulas, functional pigeonhole principle (FPHP) formulas, and random 3-CNF
formulas. In fact, no PCR space lower bounds are known for any 3-CNF formula—it
is consistent with current knowledge that all 3-CNF formulas could have constant
space complexity in PCR (!), though this seemingly absurd possibility can be ruled
out for PC [FLN+12].

We show that the problems in applying [BG13] to the functional version of the
pigeonhole principle are inherent, in that these techniques provably cannot establish
any nontrivial space lower bound. We refer to Section 8 for the formal description
of the formulas and the proof of the next theorem.

Theorem 12. There is no r-extendible family for FPHPn+1
n for r > 1.

Since by [Raz98] these formulas6 require PC refutation degree Ω(n), one way of
interpreting Theorem 12 is that the concept of r-extendible families is very far from
providing the hoped-for characterization of degree.

One step towards proving PCR space lower bounds could be to obtain a weaker
PC space lower bound—as noted above in the discussion of 3-CNF formulas, this
can sometimes be easier. For FPHPn+1

n , however, and for a slightly more general
6To be precise, the degree lower bound in [Raz98] is proven for the functional pigeonhole

principle encoded as linear equations—the standard CNF version has large initial width/degree
and so there is nothing to prove. However, the linear-equations encoding of FPHP has axioms of
large space, and so for space lower bounds we want to study the CNF version.
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class of formulas described in Section 8, it turns out that such PC space lower
bounds would immediately imply also PCR space lower bounds.

Theorem 13. SpPCR(FPHPn+1
n `⊥) = Θ(SpPC(FPHPn+1

n `⊥)).

Proof sketch. In FPHPn+1
n we have variables xi,j for i ∈ [n+ 1], j ∈ [n], encoding

that pigeon i goes into hole j. The clauses of the formula require that every pigeon
is mapped to some hole and that this mapping is one-to-one. Because of this, the
negation of xi,j is equivalent to

∨
j′ 6=j xi,j′ and so the literal xi,j can be encoded as

the monomial
∏
j′ 6=j xi,j′ in PC. Since this substitutes a monomial for a monomial

the space does not increase. Now we can take any PCR refutation of FPHPn+1
n

and apply such substitutions line by line. The inferences remain sound (with some
local auxiliary steps added) and so this process gives a PC refutation of FPHPn+1

n

in roughly the same space.

4 PCR Space Lower Bounds From Resolution Width

In the rest of this paper, we give formal proofs of the results described in Section 3.
We start by considering the question of relating space and degree in PCR. Although
we do not know how to prove (or rule out) an analogue of the relation between
space and width in resolution, we can use the combinatorial game from [AD08] to
prove a weaker relation between PCR space and resolution width. Recall from the
informal description of the game in Section 3 that we have two players, Spoiler and
Duplicator, and that Duplicator needs to be able to provide an answer to any of
Spoiler’s questions about assignments to some bounded number of variables in order
to win the game. Formally, a winning strategy for Duplicator is defined as follows.

Definition 14 (Duplicator’s strategy [AD08]). A Duplicator winning strategy
for the Boolean existential `-pebble game on a CNF formula F is a non-empty family
D of partial truth value assignments to Vars(F ) such that every α ∈ D satisfies the
following conditions:

1. No clause C ∈ F is falsified by α.

2. The domain of α has size at most |Dom(α)| ≤ `.

3. For every subassignment α′ ⊆ α it holds that α′ ∈ D.

4. If |Dom(α)| < `, then for every variable x there exists an α′ ∈ D that assigns
a value to x and extends α (i.e., α′ ⊇ α).

In [AD08], Atserias and Dalmau proved the following tight connection between
Duplicator winning strategies and resolution refutation width.

Theorem 15 ([AD08]). The CNF formula F has a resolution refutation of width
` if and only if Duplicator has no winning strategy for the Boolean existential
(`+ 1)-pebble game on F .
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The Duplicator strategy in Definition 14 has some similarities with the extendible
family in Definition 5, which can be taken to suggest that there might be a relation
between resolution width and PCR space. The main difference is that extendible
families consist of sets of assignments in which we must be able to flip every variable,
while Duplicator’s strategy is built on fixed individual assignments. However, if
we substitute every variable in F with a non-authoritarian function as defined in
Definition 4, then it is straightforward to make the transition from fixed assignments
to sets of flippable assignments.

Lemma 16. Let F be a k-CNF formula and let f be a non-authoritarian function.
If Duplicator wins the Boolean existential `-pebble game on F , then there exists an
(`− k + 1)-extendible family for F [f ].

Proof. Let D be a winning Duplicator strategy for F . We will use D to construct
an (`− k+ 1)-extendible family F for the substituted formula F [f ]. In what follows,
let us denote by Varsd(x) the set of variables that we get when we substitute x by
f(x1, . . . , xd) in F for some non-authoritarian function f of arity d.

For x ∈ Vars(F ), define Qx = Varsd(x) and let Hx,α = {β | Dom(β) =
Qx and f(β) = α(x)} be the set of all assignments over Qx for which f evaluates
to the value that α assigns to x. For any partial assignment α ∈ D we let the
corresponding structured assignment set (Qα,Hα) be the pair consisting of Qα =
{Qx | x ∈ Dom(α)} and Hα =

∏
x∈Dom(α) Hx,α. We define F to encompass all

structured assignment sets (Qα,Hα) corresponding to partial assignments α ∈ D
with |Dom(α)| ≤ `− k + 1. We need to prove that F constructed in this way is an
(`− k + 1)-extendible family with respect to F ′ = ∅.

By construction, for every (Qα,Hα) ∈ F we have that Qα is a partial partition
and that the partial assignments Hx,α ∈ Hα assign to Qx ∈ Qα. Furthermore,
Hx,α is flippable on Qx. This is so since f is a non-authoritarian function, which
means that for very variable in xi ∈ Qx there exist assignments βb, b ∈ {0, 1}, to Qx
such that βb(xi) = b and f(βb) = α(x). Hence, all (Qα,Hα) ∈ F are structured
assignment sets.

The size condition |Qα| ≤ ` − k + 1 in Definition 5 is clearly satisfied for all
(Qα,Hα) ∈ F , and respectfulness is vacuously true. To see that the restriction
property also holds, consider any (Qα,Hα) ∈ F obtained from α ∈ D. For any
subset Q′ ⊆ Qα, let α′ be the subassignment of α restricted to {x | Qx ∈ Q′} and
let H′ =

∏
Qx∈Q′ Hx,α =

∏
x∈Dom(α′) Hx,α′ . Then since α′ ∈ D by Definition 14, it

follows by the construction of F that (Q′,H�Q′) = (Q′,H′) ∈ F as required.
It remains to prove that F has the extension property. Let (Qα,Hα) ∈ F be such

that |Qα| < `−k+ 1 and let C be a clause in F [f ]. We need to argue that (Qα,Hα)
can be extended to satisfy C. Let A ∈ F be the clause such that C ∈ A[f ], i.e., C is
one of the clauses obtained when substituting f in A. If α ∈ D satisfies A, it follows
by construction that Hα satisfies all of A[f ] and hence, in particular, C, and we are
done. Otherwise, it follows from the definition of a winning Duplicator strategy and
the fact that |α| ≤ `− k that α can be extended to an assignment α′ that queries
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all of the (at most k) variables in A without falsifying the clause. Such an α′ must
satisfy A. Fix some variable x∗ ∈ Dom(α′) \ Dom(α) such that α′ satisfies A by
assigning to x∗, and let α∗ be the subassignment of α′ with domain Dom(α)∪ {x∗}.
This α′ must be in D by Definition 14, and analogously to what was argued above it
must hold that Hα∗ satisfies C ∈ A[f ]. It is clear that (Qα,Hα) 4 (Qα∗ ,Hα∗), and
that |Qα∗ | ≤ |Qα|+ 1. Hence, F satisfies extendibility, and the lemma follows.

Combining Lemma 16 with the combinatorial characterization of width in Theo-
rem 15 and the lower bound on space in terms of extendible families in Theorem 6,
we obtain the first theorem claimed in Section 3.

Theorem 7 (restated). Let F be a k-CNF formula and let f be any non-authori-
tarian function. Then

SpPCR(F [f ] `⊥) ≥ WR(F `⊥)− k + 1
4 .

While it can be argued that this theorem might be interpreted as an indication
that degree could be a lower bound for space in PCR, a more immediate and concrete
consequence is that it gives us a way to prove the existence of formulas which have
very small PCR refutations, but for which any refutation must have essentially
maximal space. For polynomial calculus over fields of characteristic 2, we already
have all the tools needed to argue this. In particular, the space lower bound needed
follows immediately from Theorem 7 as described next.

Corollary 17. Let G be an expander graph of bounded degree over n vertices, let
χ be an odd-charge function on V (G), and let G′ be the multi-graph obtained by
adding two copies of each edge in G. Then

SpPCR(Ts(G′, χ) `⊥) = Ω(n) .

Proof. As shown in [BW01], refuting Tseitin formulas over expander graphs requires
linear width in resolution. It is not hard to see that substituting with XOR in a
Tseitin formula over G is the same as considering the formula over the multi-graph
with two copies of every edge. Thus Ts(G′, χ) requires monomial space Ω(n) by
Theorem 7, which is linear in the formula size if G is a constant-degree expander.

As briefly discussed in Section 3, it is not hard to show that Tseitin formulas
have small refutations in PCR (and even PC) over fields of characteristic 2, which
yields Corollary 9 for this characteristic. However, this upper bound does not hold
for characteristics distinct from 2. Therefore, we need to work with generalized
version of Tseitin formulas and prove our results for such formulas instead. We do
so in the next section.

61



5 Formulas With Small Proofs May Require Large Space

In Section 2 we defined Tseitin formulas as the CNF encoding of particular linear
systems over F2. Here we consider a generalization over fields of any positive
characteristic. Any such formula essentially defines an unsatisfiable linear system
over Fp for some prime p. In order to efficiently encode this linear system as a CNF
it is important that each equation mentions a small (for instance constant) number
of variables: any equation over d variables can be encoded as a set of at most 2d
clauses with d literals each. In particular, Tseitin formulas are defined on directed
graph as follows.

Definition 18. Let G = (V,E) be a directed graph and χ : V → {0, 1, . . . , p− 1}
be a function. Identify every directed edge (u, v) ∈ E with a variable x(u,v) and let
Modpv,χ denote the CNF encoding of the constraint that the number of incoming
edges x(u,v) incident to a vertex v ∈ V that are set to true, minus the number of
outgoing edges x(v,w) set to true is equal to χ(v) (mod p). Then the Tseitin formula
over G with respect to χ is Tsp(G,χ) =

∧
v∈V Modpv,χ.

This formula is unsatisfiable when
∑
v χ(v) 6≡ 0 (mod p). Compare Definition 2

with Definition 18: for p = 2 the definitions coincide because is such characteristic
there is no difference between the contribution of the incoming and the outgoing
edges. For p = 2 it is natural to define the formula in terms of undirected graphs,
indeed. Not surprisingly, polynomial calculus over a field of characteristic p efficiently
refutes unsatisfiable Tseitin formulas defined on sums modulo p.

Lemma 19. Consider a directed graph G = (V,E) with n vertices and constant
degree, and a function χ : V → {0, 1, . . . , p− 1} with

∑
v χ(v) 6≡ 0 (mod p). The

formula Tsp(G,χ) has a tree-like polynomial calculus refutation of constant degree,
size O(n logn), and monomial space O(n).

Furthermore, given any boolean function f on a constant number of variables,
the result holds for the substituted formula Tsp(G,χ)[f ].

Proof. Let us first consider the case without substitution. Recall that true value is
encoded as 0 and false as 1. In this encoding formula Modpv,χ is equivalent to

∑

u : (u,v)∈E
(1− xuv)−

∑

w : (v,w)∈E
(1− xvw) ≡ χ(v) (mod p) . (5.1)

The proof is based on the natural intuition that summing the equations (5.1) for
all vertices in the graph results in a contradiction, since in the sum each variable
appears twice: once with positive and once with negative sign. Fix an enumeration
of V = {v1, . . . vn}, and fix the following notation for partial sums:

Sa,b :=
b∑

i=a


 ∑

u:(u,vi)∈E
(1− xuvi

)−
∑

w:(vi,w)∈E
(1− xviw)


 ≡

b∑

i=a
χ(vi) (mod p) .

(5.2)
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We fix t = 2dlogne < 2n and consider Si,i to be the equation “0 = 0” for all
n < i ≤ t. We set up a tree of height dlogne, where leaves are labeled by equations
Si,i and internal nodes are labeled by the sum of the two children labels (i.e., a
node at level k is labeled by the equation Si,i+2k−1 for some i).

Each equation Si,i is derived from the encoding of Modpvi,χ. This equation
mention only a constant number of variables, so by implicational completeness of
polynomial calculus (see Lemma 20) we have a derivation of constant space and
size.

Equations in internal nodes are derived by summing the equations of the children.
We derive all the equations on the tree in a bottom-up fashion. This concludes the
refutation since the equation S1,t at the root is

n∑

i=1


 ∑

u:(u,vi)∈E
(1− xuvi

)−
∑

w:(vi,w)∈E
(1− xviw)


 ≡

n∑

i=1
χ(vi) (mod p) (5.3)

∑

(u,v)∈E
(1− xuv)−

∑

(v,w)∈E
(1− xvw) ≡

n∑

i=1
χ(vi) (mod p) (5.4)

0 ≡
n∑

i=1
χ(vi) (mod p) (5.5)

Which is the end of the refutation, since
∑n
i=1 χ(vi) is non-zero.

The size of the proof accounts O(1) for the deduction of each Si,i, and O(n)
for the total number of monomial at each level of the tree: at level k there are t

2k

equations with at most O(2k) monomials. So the total size is as claimed.
Regarding the monomial space, notice that we need to keep simultaneously

in memory only the equations of two adjacent levels, which have at most O(n)
monomials.

The degree of the refutation is O(1) for the inference of each equation Si,i. The
rest of the proof has degree 1.

The case with substitution is similar: consider a substituting function f on a
constant number of variables. There is a multilinear polynomial pf which evaluates
exactly as f on all {0, 1} inputs, and which mentions a constant number of monomials.

The substituted linear forms Si,i[f ] are linear combinations of copies of pf , so
they have a constant number of variables each and their inference from Modpvi,χ[f ]
is doable in constant space, size and degree because of Lemma 20.

Once the equations Si,i[f ] are derived, the refutation goes exactly as shown for
the case with no substitution. From this point on the original refutation is linear;
applying the trivial substitution to these proof lines increases the space, degree and
size only by constant factors.

For the sake of self-containment, we give a proof of the implicational completeness
of polynomial calculus. This completes the proof of Lemma 19.
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Lemma 20. Consider a polynomial implication p1 . . . pl |= p which is valid over
{0, 1} assignments. Assume all involved polynomials collectively mention d variables
and have degree O(d); then there is a PC proof of this implication in degree O(d),
space 2O(d), and length 2O(d).

Proof. Without loss of generality we assume that all polynomials are in multilinear
form. So each of them has size at most 2d and degree d. Let α = {x1 7→ v1, . . . , xd 7→
vd} be an assignment; we define Cα as

∏
i(vixi + (1− vi)(1− xi)), the polynomial

which evaluates to 1 exactly on the assignment α. We list some useful observations:
Observation (1) is that given the axioms {xi = vi}i∈[d] and any polynomial q on

variables x1, . . . , xd, it is possible to efficiently infer q − α(q) = 0. We prove this by
induction on the number of variables. If d = 0 then q = α(q). Now assume that
q − α(q) = s + xt − α(q). If we have deduced q�x=0= s − α(q) and we have the
axiom x, we can easily infer xt and then s+ xt− α(q). If we have deduced q�x=1
(which is s+ t−α(q)) and we have the axiom x− 1, we can easily infer (x− 1)t and
then s+ t+ (x− 1)t−α(q) = s+xt−α(q). This derivation requires O(d) steps, one
per variable, and both size and space are proportional to the number of monomials
in q. The degree is equal to the degree of q plus d.

Observation (2) is that for any q on variables x1, . . . , xd, we can infer from
Boolean axioms the polynomial Cα(q − α(q)), for every assignment α on such
variables. The inference is in degree O(d), and length and space are 2O(d). It is
immediate for the simple case q = xi: each Cα(xi − vi) contains the factor x2

i − xi
by construction. For any non-trivial q we apply the inference in Observation (1),
with the caveat that each line is multiplied by Cα. The resulting polynomial is
Cα(q − α(q)).

Observation (3) is that
∑
α∈{0,1}d Cα = 1, and this is an easy induction over d

(it also follows from the semantic of polynomials Cα).
We now see how to deduce Cαp for every assignment α. For α which satisfy p

we derive Cα(p− 0) using observation (2). For α which falsify p, pick any falsified pi
and deduce both Cα(pi−α(pi)) and Cαpi, using observations (2) and multiplication
rule, respectively. The sum is Cαα(pi), and since α(pi) is a non-zero field element,
we can multiply by p

α(pi) to get Cαp.
Having deduced all Cαp we can use observation (3) to infer p. Notice that we

did 2d inferences (one for each α), each of them of degree O(d) and each of them in
space 2O(d).

Now we have seen that (substituted) Tseitin formulas are easy to polynomial
calculus under determined conditions. Nevertheless we can use the tools from
Section 4 to show that even under such conditions, any refutation requires large
space.

Theorem 21 (restatement of Theorem 8). For F any field of characteristic p
there is a family of k-CNF formulas Fn (where k depends on p) of size O(n) for
which SpPCR(Fn `⊥) = Ω(n) over any field but which have tree-like PC refutations
πn : Fn `⊥ over F of size S(πn) = O(n logn) and degree Deg(πn) = O(1).
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Proof. The formula family we consider is based on Tseitin formulas over a family
of Ramanujan graphs of constant degree. This is a family of simple graphs with
good expansion properties; a construction is given in [Mor94]. Consider such a
graph G on m vertices: set an arbitrary orientation on the edges, and consider any
χ : [m]→ {0, . . . , p− 1} with

∑
i χ(i) 6= 0 mod p.

In Corollary 4.5 of [AR03], it is claimed that if G is a d-regular graph for d at
least some constant value dp, then Tsp(G,χ) requires refutations of degree Ω(m) in
polynomial calculus over any field of characteristic different from p.

Polynomial calculus simulates resolution over any characteristic, and the degree
of the simulation is exactly the width of the simulated resolution proof. This implies
that resolution requires width Ω(m) to refute the formula.

Fix k = 2d. We apply a XOR substitution on formula Tsp(G,χ), and we get
a k-CNF formula on n = dm variables. Theorem 7 implies that any polynomial
calculus (or PCR) refutation requires monomial space Ω(n), under any characteristic.

If the characteristic of the underlying field is p the upper bound follows by
Lemma 19.

6 PCR Space Lower Bounds for Tseitin Formulas

In the following exposition we assume that G = (V,E) is a graph with connectivity
expansion c and χ : V → {0, 1} is a Boolean function. We call a pair (G,χ) a
charged graph, and we say that a set of vertices U is even (odd) charged if

∑
v∈U χ(v)

is even (odd). We denote the set of edges incident to a vertex v by E(v) and extend
the notation to sets of vertices. We write α to denote the complementary assignment
of α obtained by flipping the value of all variables in the domain Dom(α).

Definition 22. The charged graph induced by a partial assignment α is ((V,E \
Dom(α)), γ), where γ(v) = χ(v) +

∑
e3v(1− α(e)).

Observation 23. The formulas Ts((V,E \Dom(α)), γ) and Ts(G,χ)�α are equiv-
alent. An assignment α satisfies the clauses PARITY v,γ if and only if the vertex v
is isolated and even (as a singleton set) in the charged graph induced by α. In that
case, we say that the assignment α satisfies the vertex v.

Definition 24 (non-splitting assignment). A charged graph is non-splitting if
all its connected components of size at most n/2 are even. A partial assignment α
is non-splitting if the charged graph induced by α is non-splitting.

Observation 25. The empty assignment is non-splitting for the charged graph (G,χ)
if and only if (G,χ) is non-splitting. A connected graph is always non-splitting.

Observation 26. Suppose α is a partial assignment extending a partial assignment
β (or conversely, β = α�D for some D ⊆ Dom(α)). If α is non-splitting, then so is
β. In other words, “unsubstituting” an edge cannot result in an odd component that
has size less than or equal to n/2 because component sizes can only increase.
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The key idea in the resolution space lower bound is that if a proof does not
mention many edges, then it is possible to maintain a satisfiable assignment to
the edges the proof mentions. This satisfiable assignment shifts the charged in the
graph so that a contradiction only arises in vertices that the proof does not mention
and leaves enough freedom to keep adding edges to the assignment unless the proof
reaches a space threshold. Thus the proof is unable to derive a contradiction unless
it mentions many edges at once.

The following lemma implements the charge shifting idea.

Lemma 27. Let α be a non-splitting assignment. Let e be an edge. Let D =
Dom(α) ∪ {e}. If |D| ≤ c then we can extend α to some non-splitting assignment β
such that Dom(β) = D.

Proof. Let (G′, γ) be the charged graph induced by α. Let e = (u, v). Let C be the
connected component in G′ that contains the vertices u and v. Let α0 = α∪{e 7→ 0}
and α1 = α ∪ {e 7→ 1}. Let (G′′, γ0) and (G′′, γ1) be the charged graph induced by
α0 and α1 respectively. Observe that γ0(C) = γ1(C) = γ(C).

If e is not a bridge, i.e., removing the edge e from G′ does not disconnect C,
then we can extend α to either α0 or α1. In this case there is no new component.

If e is a bridge, let C ′ and C ′′ be the components in G′′ that e disconnects C
into. If γ(C) is even, either both γ0(C ′) and γ0(C ′′) are even, in which case we can
extend α to α1, or both γ0(C ′) and γ0(C ′′) are odd, in which case we can extend α
to α0 reversing both parities. In this case all new components are even.

Otherwise, since α is non-splitting, |C| > n/2. Since |D| ≤ c, the graph G′′ has
a connected component larger than n/2. The graph G′ cannot have two disjoint
components both larger than n/2, so this large component is a subset of C; either
C ′ or C ′′. Assume it is C ′ without loss of generality. Since C is odd, either γ0(C ′)
is odd and γ0(C ′′) is even, in which case we can extend α to α1, or γ0(C ′) is even
and γ0(C ′′) is odd, in which case we can extend α to α0 reversing both parities. In
this case there is one new odd component, but it is larger than n/2.

Corollary 28. Let α be a non-splitting assignment. Let E be a set of edges. Let
D = Dom(α)∪E. If |D| ≤ c then we can extend α to some non-splitting assignment
β such that Dom(β) = D.

To extend this idea to a PCR lower bound for space, and in particular to the
framework of [BG13], we need to use assignments that are not only non-splitting
but also resilient to flips of the values of some variables.

Observe that if all the edges along a cycle change their value, the graph induced
by the cycle stays the same. The following definition will let us formalize this
property. Recall the cartesian product notation for sets of assignments.

Definition 29 (Flipped assignments). Let α be a partial assignment and let Q
be a (total) partition of Dom(α). The set of flipped assignments of α with respect
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to Q is the set of assignments given by

Flip(Q, α) =
∏

Q∈Q
{α�Q, α�Q} .

Observation 30. If α is an assignment over a cycle C, then α and α induce
the same charged graph. Therefore, if Q is a set of disjoint cycles, all the flipped
assignments of some assignment α with respect to Q induce the same charged graph.

Theorem 31 (Strengthening of Theorem 10). Let (G,χ) be non-splitting
charged graph of maximal degree d with connectivity expansion c such that a partition
M of E into edge-disjoint cycles of length at most b exists. Then

SpPCR(Ts(G,χ) `⊥) ≥ c/4b− d/8 .

Note that this is a strengthening of Theorem 10 since if G is connected then
(G,χ) is trivially non-splitting for every χ.

Proof. By Theorem 6, it is sufficient to build an r-extendible family for r = c/b−d/2.
Let F be the set of all pairs (Q,Hα) satisfying:

1. Q ⊆M and |Q| ≤ r.

2. Hα = Flip(Q, α), where α is any non-splitting assignment over
⋃Q.

Note that Q is a collection of edge-disjoint cycles and every Hα consists of the some
non-splitting assignment α and its flips over cycles. Each (Q,Hα) ∈ F has many
different representations, since Hα = Hβ whenever β ∈ Flip(α,Q).

Let us show that F is an extendible family. First, pairs (Q,Hα) are Q-structured
by construction.

The empty assignment is non-splitting by Observation 25. So the family F is
not empty because (∅,H∅) ∈ F , where ∅ is the empty assignment.

Let us show that the family is closed under restriction. Consider any (Q,H) ∈ F
and Q′ ⊆ Q. Let α ∈ H, and let β be the restriction of α to

⋃Q′. By construction α
is non-splitting, and restriction preserves the property of being non-splitting as noted
in Observation 26, so (Q′,Hβ) ∈ F . Finally H�Q′= Flip(Q, α)�Q′= Flip(Q′, β) =
Hβ .

Let us show that the family is closed under extension. Let (Q,H) ∈ F with
|Q| < r and let p ∈ PARITY v,χ for some vertex v ∈ V .

If H satisfies p we are done; otherwise we will extend a non-splitting assignment
associated with H.

Let α ∈ H be a non-splitting assignment that does not satisfy p. Let Qv = {C ∈
M | v ∈ C} be the cycles adjacent to v, and let Q+ = Qv \ Q; we will see that Q+
is not empty, but we do not need to assume it now. Let D = Dom(α) ∪⋃Q+. By
hypothesis |Q ∪ Q+| < r + d/2, and it follows that |D| < c. Thus we can apply
Corollary 28 on α and

⋃Q+ to extend α to a non-splitting assignment β over D.
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The assignment β disconnects the component {v} and is non-splitting, so it
makes the component {v} even. By Observation 23, β satisfies the vertex v. Note
that β falsifies p ∩⋃Q, the subclause of p with variables

⋃Q. If for all C ∈ Q+
the assignment β supersatisfies or falsified the subclause p ∩C, then there would be
a non-splitting assignment in Flip(Q+, β) that falsified p.

Let C ∈ Q+ be a cycle that contains one literal of p that β satisfies and one literal
that β falsifies. Let Q′ = Q∪ {C} and let H′ = Hβ . By construction (Q′,H′) ∈ F ,
and assignments in H′ restricted to C satisfy p.

Theorem 10 is somewhat restrictive, in that it requires us to partition all edges
in the graph into short cycles. However, as the following corollary shows, it is
enough to partition most of the edges.

Corollary 32. Let (G,χ) be a non-splitting charged graph of maximal degree d with
connectivity expansion c such that a partition M of E into edge-disjoint cycles of
length at most b and an additional number of t < c edges exist. Then

SpPCR(Ts(G,χ) `⊥) ≥ (c− t)/4b− d/8

Proof. Let H be the graph obtained by removing the t extra edges. Note that the
connectivity expansion of H is at least c− t. Corollary 28 on page 66 shows that
there exists a non-splitting assignment α on G \ H. Observation 23 on page 65
implies that for some γ, (H, γ) is a non-splitting charged graph. By a restriction
argument, any PCR refutation of a non-splitting Tseitin formula on G in space S
can be translated to a PCR refutation of a non-splitting Tseitin formula on H in
space at most S. Theorem 10 shows that S ≥ (c− t)/4b− d/8.

Application: Grid Graphs
There are families of graphs where we actually get matching upper and lower bounds
for PCR space. One such family is square grids. For the following subsection let n
be an even integer and denote Zn = Z/nZ, the integers modulo n. The following
defines a grid over a torus.

Definition 33 (Grid graph). The grid graph (or discrete torus) T (n) is a 4-regular
graph with vertices V = Zn × Zn and edges

E =
{(

(i, j), (i+ 1, j)
)
,
(
(i, j), (i, j + 1)

) ∣∣i, j ∈ V
}
.

We order the vertices of T (n) lexicographically: (i, j) < (k, l) if i < k or i = k and
j < l. The predecessor of a vertex (i, j) 6= (1, 1), denoted pred (i, j), is the vertex
immediately preceding (i, j) in this order.

We will explicitly refer to the edges we need to disconnect a set of vertices from
a graph. This notion is known as edge boundary.
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Definition 34. Let G(V,E) be a graph and U ⊆ V be a subset of vertices. The
edge boundary of U is the set of edges ∂e(U) = {(x, y) ∈ E : x ∈ U, y /∈ U}.

We can find an upper bound on PC space by mentioning all the vertices in
lexicographical order.

Lemma 35. The space of refuting a Tseitin formula over the n× n grid graph for
an odd charge function χ over characteristic 2 is SpPC(Ts(T (n), χ) `⊥) = O(n).

Proof sketch. Observe that for every set of vertices U it holds that
∑
e∈E(U) e ≡∑

e∈∂e(U) e (mod 2), and that in PC over characteristic 2 this expression corresponds
to the polynomial

∑
e∈∂e(U) e. Thus, we can express

∑
e∈E(U) e ≡ χ(U) in space

∂e(U). If we let Uij = {(a, b) ∈ V | (a, b) ≤ (i, j)}, the edge boundary of any
Uij is at most 2n + 1, so the monomial space of each of the polynomials pij =∑
e∈∂e(Uij) e− χ(Uij) is at most 2n+ 1 = O(n).
If we show how to derive the polynomials pij in lexicographical order in O(n)

space, we will be done. And indeed, for any vertex (i, j) we can infer the polynomial
qij =

∑
e3(i,j) e− χ(v) by downloading the 2d−1 axioms PARITY (i,j),χ and adding

all of them in constant space. To derive pij from ppred(ij) it is enough to add the
polynomials ppred(ij) and qij . The maximum space is Sp(ppred(ij))+Sp(pij)+O(1) =
O(n).

The connectivity expansion follows from the following isoperimetric inequality.

Theorem 36 ([BL91]). Let U be a subset of vertices of T (n) with |U | ≤ n2/2.
Then

|∂e(U)| ≥ min{2n, 4|U |1/2} .

Corollary 37. The connectivity expansion of T (n) is 2n− 1.

Proof. If we erase 2n− 1 or less edges from T (n), then by Theorem 36 the largest
region we can disconnect has size |U | ≤ b(2n − 1)/4c2 < n2/2, so c ≥ 2n − 1. If
we erase the 2n edges {((i, 0), (i, 1)) | i ∈ Zn} ∪ {((i, n/2), (i, n/2 + 1)) | i ∈ Zn} we
obtain two connected components of size n2/2, so c < 2n.

The lower bound on PCR space follows.

Corollary 38. The space of refuting a Tseitin formula over the n× n grid graph
(over any characteristic) is SpPCR(Ts(T (n), χ) `⊥) = Ω(n).

Proof. Let us find a partition of the edges of T (n). Let C(i, j) be the set of edges of
the cycle

(
(i, j), (i+1, j), (i+1, j+1), (i, j+1)

)
. Then the set M = {C(i, j) | i+j ≡ 0

(mod 2)} is a partition of the edges of T (n) into edge-disjoint cycles of length 4. By
Theorem 6, SpPCR(Ts(T (n), χ) `⊥) ≥ (2n− 9)/16.

Theorem 39. The space of refuting a Tseitin formula over the n×n grid graph for
an odd charge function χ over characteristic 2 is SpPCR(Ts(T (n), χ) `⊥) = Θ(n).
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Application: Triangulations
Given a graph with good expansion, we can add a few edges to it and obtain a new
graph whose Tseitin formula we can prove to be hard for PCR space. We already
showed in Section 4 how to use a XOR substitution to obtain such a multi-graph;
the following subsection shows how to obtain a simple graph. The proposed method
is to convert every edge into a triangle, and a greedy strategy is enough as the
following lemma shows.

Lemma 40. Let G be a graph of order n, size m and maximal degree d. If T is
an integer such that T (n− 4d− 4(T + 1)) ≥ m then there exists a simple graph H
of maximal degree at most 2d+ 2T which is a supergraph of G whose edges can be
partitioned into disjoint triangles.

Proof. Consider the algorithm that iteratively chooses any edge (x, y) not yet
handled, chooses a vertex z not adjacent to any of the endpoints of minimal degree,
and adds the two remaining edges (x, z) and (y, z) from the endpoints to the vertex.

We consider the new edges to be directed (from x and y to z) and the indegree
and outdegree to refer to new edges only. The degree of a vertex is thus the sum
of its initial degree, its indegree and its outdegree. Observe that at every step the
outdegree of every vertex is at most its initial degree, which is at most d. When
choosing the vertex z, we will choose the vertex of minimal indegree.

Assume that at some state S of the execution of the algorithm the maximal
indegree is 2t. We claim that the algorithm handles at least the next n−4d−4(t+1)
edges without the indegree exceeding 2(t+ 1).

Indeed, consider the k-th edge (x, y) the algorithm visits after state S. Its
endpoints are connected to at most d+ 2(t+ 1) + d vertices each, which we discard
as candidates for z, and at most k − 1 vertexes increased their indegree to 2(t+ 1).
There remain at least n− 4d− 4(t+ 1)− k + 1 ≥ 1 potential vertexes of indegree at
most 2t, and the greedy algorithm chooses one of these.

The initial indegree of all vertexes is 0. After handling all m edges, the maximal
indegree increases at most T times, where T is such that

m ≤
T−1∑

t=0
n− 4d− 4(t+ 1) = T (n− 4d− 4(T + 1)) . (6.1)

In particular, if d ≤ n/4−√m− 1 such a T exists, and if d = o(n) the inequality
(6.1) holds asymptotically for T = dd+1

2 e. The lower bound on space follows by
applying theorem Theorem 6 to the resulting supergraph and noting that the
connectivity expansion cannot decrease.

Theorem 41. Let G be a graph of maximal degree d = o(n) and connectivity
expansion c. There exists a simple graph H of maximal degree at most 3d+ 2 which
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is a supergraph of G such that the space of refuting a Tseitin formula over H is at
least SpPCR(Ts(H,χ) `⊥) ≥ c/12− (3d+ 2)/8.

7 Cycle Partitions of Random Regular Graphs

Models of Random Regular Graphs
Let Pn be a sequence of probability spaces. A sequence of events En on Pn holds
asymptotically almost surely if Pr[En] −→ 1. In the sequel, we often abuse notation
and say that an event is true asymptotically almost surely in a probability space,
when we actually mean sequences of both. The probability space will depend on a
parameter n.

Two probability spaces are contiguous if every event which holds asymptotically
almost surely in one also holds asymptotically almost surely in the other; we will
use the notation A ≈ B to denote that A and B are contiguous. Let Dd be the
probability space of random d-regular graphs on n vertices, H+H be the probability
space of unions of (not necessarily disjoint) random Hamilton cycles on n vertices,
and H⊕H be the probability space of unions of disjoint random Hamilton cycles
on n vertices; H⊕H is obtained by conditioning H+H upon the event that the
two random Hamilton cycles are disjoint. Note that H+H is a probability space
on multi-graphs. Kim and Wormald [KW01] proved the following theorem (see also
Wormald’s survey [Wor99] and [J LR00, §9.3–9.6]).

Theorem 42. We have D4 ≈ H⊕H.

We will need one more fact from [KW01], whose proof we only sketch.

Lemma 43. If G ∼ H+H then Pr[G is simple] −→ e−2.

Proof sketch. Fix the first Hamilton cycle H1. Let ei be the (random) ith edge of
the second Hamilton cycle H2. It is easy to see that Pr[ei ∈ H1] = 2/(n− 1), hence
E[|H1 ∩H2|] −→ 2. Moreover, one can show using Brun’s sieve (for example [AS00,
Theorem 8.3.1]) that the distribution of |H1 ∩H2| is asymptotically Poisson; the
required calculations are sketched in [KW01, §2(iii)]. Hence Pr[|H1 ∩H2| = 0] −→
e−2.

Putting both facts together, we get the following result which will serve as our
vantage point over random 4-regular graphs.

Lemma 44. Suppose E is an event which holds asymptotically almost surely in
H+H. Then E also holds asymptotically almost surely for random 4-regular graphs.

Proof. Lemma 43 shows that E holds asymptotically almost surely in H⊕H, and
so in D4 by Theorem 42.

Corollary 45. A random 4-regular graph is connected asymptotically almost surely.
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Some Properties of Random Regular Graphs
For a graph G = (V,E) and a subset U of the vertices, recall that N(U) is the set of
edges connecting U and V \U . We say that the graph G is a δ-expander if for every
set U of at most |V |/2 vertices, |N(U)| ≥ δ|U |. Note that our definition involves
edge expansion. Bollobás [Bol88] proved the following fundamental result.

Theorem 46. There is a constant c1 such that asymptotically almost surely, a
random 4-regular graph is a c1-expander.

In fact, we can choose any c1 < 2(1− η) ≈ 0.4401, where η is the unique positive
solution of (1− η)1−η(1 + η)1+η = 2. In particular, asymptotically almost surely a
random 4-regular graph is a 0.44-expander.

The following lemma gives a lower bound on the connectivity expansion of a
random 4-regular graph, defined in Definition 3.

Lemma 47. There is a constant c2 such that asymptotically almost surely, the
connectivity expansion of a random 4-regular graph on n vertices is at least c2n.

Proof. Let G be a random 4-regular graph. Theorem 46 shows that asymptotically
almost surely, G is a c1-expander. Suppose G has connectivity expansion s. There is
a set W of s edges and an edge e such that G\W has a component of size larger than
n/2, but G \ (W ∪ {e}) has no component of size larger than n/2. Since e breaks
the giant component into two components, G \ (W ∪ {e}) must have a component
U of size larger than n/4. Expansion shows that |N(U)| ≥ c1|U | > (c1/4)n, and so
s = |W | ≥ (c1/4)n. This shows that we can choose c2 = c1/4.

Simple Lower Bound
In this section we prove that refuting a non-splitting Tseitin formula on a random
4-regular graph on n vertices requires space Ω

(√
n/ logn

)
, asymptotically almost

surely over the choice of the graph.
The idea is to prove that asymptotically almost surely, a random 4-regular graph

on n vertices can be partitioned into cycles of length O
(√
n logn

)
. In order to prove

that, it will be useful to consider a model related to H+H.
Let [n] = {1, . . . , n}, and let Sn be the set of all permutations on [n]. Every

permutation π ∈ Sn determines a Hamilton cycle

H(π) = (π(1), π(2)), (π(2), π(3)), . . . , (π(n− 1), π(n)), (π(n), π(1)) . (7.1)

(The cycle is undirected.) Let ι denote the identity permutation. We will consider
the probability space H(ι) +H(π) formed by taking the union of H(ι) and H(π),
where π is chosen uniformly at random from Sn.

The idea of the proof is to divide [n] into
√
n/ logn blocks of length

√
n logn.

We will show that asymptotically almost surely, each block Ik contains a point tk
such that sk = π(tk) ∈ Ik. For any two adjacent blocks Ik, Ik+1, we can form a
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cycle of length O
(√
n logn

)
by pasting together the path from sk to sk+1 in H(ι)

and the path from π(tk) to π(tk+1) in H(π). As a result, the graph decomposes
into

√
n/ logn cycles of length O

(√
n logn

)
.

Let m be a parameter depending on n; in this section, we choose m =
√
n logn,

while in the next section, we choose m = C
√
n. For simplicity, we assume that

m and n/m are both integers. We partition [n] into n/m blocks I1, . . . , In/m
of size m: Ik = {(k − 1)m + 1, . . . , (k − 1)m + m}. Let Bk be the event that
π(Ik) ∩ Ik = ∅. We think of Bk as a bad event, and our goal in this section is to
show that asymptotically almost surely, none of the Bk happen. In order to show
this, we estimate the probability that Bk happens.

Lemma 48. For k ∈ [n/m], Pr[Bk] ≤ e−m2/n.

Proof. Using 1− x ≤ e−x, we calculate

Pr[Bk] =
m−1∏

i=0

(
1− m

n− i

)
≤
(

1− m

n

)m
≤ e−m2/n . (7.2)

If Bk holds, we define tk to be the first point in Ik such that π(tk) ∈ Ik, and let
sk = π(tk).

Lemma 49. Suppose Bk and Bk+1 both hold (indices taken modulo n/m). Define
a cycle Ck by taking two paths P ιk, Pπk from sk = π(tk) to sk+1 = π(tk+1), one from
each of the two Hamilton cycles:

P ιk = (sk, sk + 1), (sk + 1, sk + 2), . . . , (sk+1 − 1, sk+1) ,

Pπk = (π(tk), π(tk + 1)), (π(tk + 1), π(tk + 2)), . . . , (π(tk+1 − 1), π(tk+1)) .

The length of Ck is at most 4m.

Proof. Assume for simplicity that k 6= n/m. Then sk, tk ≥ (k − 1)m + 1 and
sk+1, tk+1 ≤ km+m. The length of Ck is (sk+1 − sk) + (tk+1 − tk) ≤ 4m− 2.

If none of the bad events happen, then the cycles C1, . . . , Cn/m cover all of the
graph. Choosing m accordingly, we can ensure that this happens asymptotically
almost surely.

Lemma 50. Let m =
√
n logn. Asymptotically almost surely, a graph chosen

according to H(ι) +H(π) decomposes into n/m cycles of size at most 4m.

Proof. According to Lemma 48, for each k ∈ [n/m], Pr[Bk] ≤ e− logn = 1/n. A
union bound shows that asymptotically almost surely, none of the Bk happen.
Lemma 49 shows that the graph decomposes into n/m cycles of size at most 4m.

The lemma easily implies the lower bound.
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Theorem 51. Asymptotically almost surely, the space required to refute in PCR
any Tseitin formula on a random 4-regular graph on n vertices is Ω

(√
n/ logn

)
.

Proof. For reasons of symmetry, Lemma 50 implies that asymptotically almost
surely, a graph chosen according to H+H decomposes into cycles of size at most
4
√
n logn. Lemma 47 shows that asymptotically almost surely, the connectivity

expansion of the graph is at least Ω(n). Corollary 45 shows that asymptotically
almost surely, the graph is connected, and so the Tseitin formula is non-splitting.
Hence Theorem 10 gives a lower bound of Ω(

√
n/ logn).

Improved Lower Bound
In this section we improve the results of Section 7 by showing that refuting a
non-splitting Tseitin formula on a random 4-regular graph on n vertices requires
space Ω

(√
n
)
, asymptotically almost surely over the choice of the graph.

We use the general method of Section 7, with a different choice of m, namely
m = C

√
n for some constant C to be determined later. Thinking of Bk as an

indicator variable, let B =
∑n/m
k=1 Bk. Lemma 48 shows that E[B] ≤ e−C

2(n/m).
We will show that asymptotically almost surely, B ≤ 2e−C2(n/m). This implies
that the cycles Ck together cover most of the graph, and therefore Corollary 32
applies. The difficult part of the proof is showing that B is concentrated around its
mean.

Let p = Pr[Bk] (all the probabilities are the same). We need the following
strengthening of Lemma 48.

Lemma 52. Let p = Pr[Bk], where Bk is the event that Ik∩π(Ik) = ∅. As n −→∞,
we have that p −→ e−C

2 .

In order to show that B is concentrated around its mean, we show that for k 6= l,
the events Bk and Bl are asymptotically negatively correlated.

Lemma 53. For every k 6= l ∈ [n/m], Pr[Bk ∧Bl] ≤ p2 + o(1).

We prove both lemmas below, but first, let us see how they imply the desired
result. The idea is that since any two bad events are asymptotically negatively
correlated, the variance of B is small, and so Chebyshev’s inequality shows that B
is concentrated around its mean.

Lemma 54. Asymptotically almost surely, B ≤ 2e−C2(n/m).

Proof. We have E[B] = (n/m)p and

Var(B) = E[B2]− (E[B])2

= (n/m)p+ (n/m)(n/m− 1)(p2 + o(1))− (n/m)2p2

= (n/m)p(1− p) + o
(
(n/m)2) ,
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using Lemma 53. Chebyshev’s inequality shows that

Pr[|B − E[B]| > E[B]] ≤ Var(B)
E[B]2 ≤

(n/m)p+ o
(
(n/m)2)

(n/m)2p2 = o(1) , (7.3)

since p = Ω(1) by Lemma 52. Therefore asymptotically almost surely, B ≤ 2 E[B] =
2(n/m)p ≤ 2e−C2(n/m), using Lemma 48.

The preceding lemma shows that the fraction of bad indices (indices k such that
Bk holds) is small. Say that a block Ik is good if Bk and Bk+1 both hold, and say
that it is supergood if both Ik−1 and Ik are good. Lemma 49 associates a cycle Ck
with each good block Ik. If Ik is supergood, then the cycles Ck−1 and Ck together
cover the entire stretch of Ik, as the following lemma shows.

Lemma 55. Suppose that block Ik is supergood. Then the union of the cycles
Ck−1, Ck given by Lemma 49 contains the path of length m from min Ik to min Ik+1
in H(ι), as well as the path of length m from π(min Ik) to π(min Ik+1) in H(π).

Proof. The cycle Ck−1 contains the path from sk−1 < min Ik to sk in H(ι). The
cycle Ck contains the path from sk to sk+1 ≥ min Ik+1 in H(ι). Both paths
together cover the path from min Ik to min Ik+1 in H(ι). The argument for H(π) is
identical.

We can now prove an analogue of Lemma 50.

Lemma 56. Let m = C
√
n. Asymptotically almost surely, a graph chosen according

to H(ι) +H(π) decomposes into cycles of size at most 4m and t additional edges,
where t ≤ 12e−C2

n.

Proof. Lemma 54 shows that asymptotically almost surely, all but 6e−C2(n/m) of
the n/m blocks I1, . . . , In/m are supergood. Let C be the (disjoint) union of all
cycles Ck constructed using Lemma 49 for all good blocks Ik. The lemma shows
that each cycle has size at most 4m. Lemma 55 shows that C contains all but at
most 12e−C2

n edges of the graph.

Replacing Theorem 10 with its corollary, Lemma 56 easily implies the lower
bound.

Theorem 57. Asymptotically almost surely, the space required to refute in PCR
any Tseitin formula on a random 4-regular graph on n vertices is Ω

(√
n
)
.

Proof. For reasons of symmetry, Lemma 56 implies that asymptotically almost
surely, a graph chosen according to H+H decomposes into cycles of size at most
4C
√
n and t additional edges, where t ≤ 12e−C2

n. For an appropriate choice of C,
t ≤ (c2/2)n. Lemma 47 shows that asymptotically almost surely, the connectivity
expansion of the graph is at least c2n. Corollary 45 shows that asymptotically
almost surely, the graph is connected, and so the Tseitin formula is non-splitting.
Hence Corollary 32 gives a lower bound of Ω

(√
n
)
.

75



Technical Lemmas

We now turn to the proofs of Lemma 52 and Lemma 53. We start with the former.

Proof of Lemma 52. It is easy to check that for 0 ≤ x ≤ 1/2, 1 − x ≥ e−x−x
2 .

Therefore for large enough n,

p =
m−1∏

i=0

(
1− m

n− i

)
≥
(

1− m

n−m

)m
≥ exp

[
− m2

n−m −
m3

(n−m)2

]
. (7.4)

For large enough n, m ≤ n/2, and so m2/(n −m) = m2/n + m3/(n(n −m)) ≤
m2/n+ 2m3/n2. Similarly, m3/(n−m)2 ≤ 4m3/n2. Therefore, using e−x ≥ 1− x,

p ≥ exp
[
−m

2

n
− 6m

3

n2

]
= exp

[
−C2 − 6C3

√
n

]
≥ e−C2

(
1− 6C3
√
n

)
. (7.5)

Hence lim inf p ≥ e−C2 . Lemma 48 shows that also lim sup p ≤ e−C2 .

The proof of Lemma 53 is more involved. Recall that the lemma claims that
the events Bk and Bl are asymptotically negatively correlated. In fact, they are
asymptotically uncorrelated. Recall that Pr[Bk] is roughly equal to e−C2 . Given
the value of π on Ik, the probability Pr[Bl] depends on |π(Ik) ∩ Il|. Typically, this
intersection will be very small, and so Pr[Bl] is also roughly equal to e−C2 .

We will show that |π(Ik) ∩ Il| is typically small using an extension of the well-
known Chernoff bound due to Kabanets and Impagliazzo [IK10, Theorem 1.1],
attributed there to Panconesi and Srinivasan [PS97].

Theorem 58. Let X1, . . . , Xr be Boolean random variables such that for any set
S ⊆ [r], Pr[

∧
i∈S Xi] ≤ δ|S|. Then for γ ≥ δ,

Pr
[

r∑

i=1
Xi ≥ γr

]
≤ e−2r(γ−δ)2

.

The following lemma applies this bound to our situation (in an abstracted
version).

Lemma 59. Let a, b, c be integers such that a ≥ b, c, and let T be a random subset
of [a] of size b. For all ρ ≥ 1,

Pr[|T ∩ [c]| ≥ ρ(bc/a)] ≤ e−2c(ρ−1)2(b/a)2
.

Proof. For i ∈ [c], let Xi be the event that i ∈ T . For S ⊆ [c] such that |S| ≤ b,

Pr
T

[S ⊆ T ] =
(
a−|S|
b−|S|

)
(
a
b

) =
|S|−1∏

k=0

b− k
a− k ≤

(
b

a

)|S|
. (7.6)

Therefore we can apply Theorem 58 with r = c, δ = b/a and γ = ρ(b/a).
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We can now prove Lemma 53.

Proof of Lemma 53. We will show that Pr[Bl | Bk] ≤ p + o(1). This implies that
Pr[Bk ∧Bl] = Pr[Bk] Pr[Bl | Bk] ≤ p(p+ o(1)) = p2 + o(1).

Assuming the event Bk happens, π(Ik) is a random subset of [n] \ Ik of size m.
Plugging a = n−m and b = c = m in Lemma 59, we deduce that for all ρ ≥ 1,

Pr[|π(Ik) ∩ Il| ≥ ρC2 | Bk] ≤ e−2(ρ−1)2m(m/(n−m))2
(7.7)

≤ e−2(ρ−1)2m3/n2
= e−2C3(ρ−1)2/

√
n . (7.8)

Hence with probability 1− o(1) given Bk, D , |π(Ik) ∩ Il| ≤
√
m logm. Now

Pr[Bl | D = d] =
m−1∏

i=0

(
1− m− d

n− i

)
≤
(

1− m− d
n

)m
≤ e−m(m−d)/n . (7.9)

For 0 ≤ x ≤ 1, one can check that ex ≤ 1 + 2x. Hence

Pr[Bl | D ≤
√
m logm] ≤ e−m(m−

√
m logm)/n (7.10)

= e−C
2+m
√
m logm/n ≤ e−C2

(
1 + 2m

√
m logm
n

)
.

(7.11)

Using Lemma 52, we deduce that Pr[Bl | D ≤
√
m logm] ≤ e−C2 + o(1) = p+ o(1).

We conclude that Pr[Bl | Bk] = p+ o(1) and so Pr[Bk ∧Bl] = p2 + o(1).

Regular Graphs of Degree Larger Than Four
Wormald [Wor99, Corollary 4.17] showed that when d > 4, a random d-regular
graph can be obtained (up to contiguity) by taking the disjoint union of a random
4-regular graph and a random (d − 4)-regular graph, a result summarized in the
following theorem (see also [J LR00, Corollary 9.44]).

Theorem 60. For d > 4 we have Dd ≈ D4 ⊕Dd−4. Furthermore, the probability
that a uniformly random 4-regular graph and a uniformly random (d− 4)-regular
graph do not intersect tends to a positive constant.

A Tseitin formula on a random d-regular graph generated according to D4⊕Dd−4
is harder to refute than a Tseitin formula on a random 4-regular graph, and so we
can generalize Theorem 57 to random d-regular graphs for arbitrary d ≥ 4.

Theorem 61 (restatement of Theorem 11). Let d ≥ 4. Asymptotically almost
surely, the space required to refute in PCR any Tseitin formula on a random d-regular
graph on n vertices is Ω

(√
n
)
.
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Proof. If d = 4 then Theorem 57 already applies, so assume d > 4. Let G1 be
a random 4-regular graph, and let G2 be a random (d − 4)-regular graph. The
graph G = G1 + G2 is distributed according to D4 + Dd−4. We show below that
asymptotically almost surely, the space required to refute in PCR any Tseitin formula
on G is Ω

(√
n
)
. Since G1 and G2 are disjoint with constant probability according

to Theorem 60, the theorem follows.
Let α be an arbitrary assignment to the edges of G2. Observation 23 on page 65

shows that for every function f , Ts(G,χ)�α= Ts(G1, γ) for some other function
γ. By a restriction argument, any PCR refutation of Ts(G,χ) in space S can be
translated to a PCR refutation of Ts(G1, γ) in space at most S. Theorem 57 on
page 75 shows that asymptotically almost surely, we must have S = Ω

(√
n
)
.

8 Current Techniques and the Functional Pigeonhole
Principle

We now discuss the intrinsic limitations of the techniques employed so far. In
Section 8 we show that Bonacina-Galesi framework does not allow to prove PCR
space lower bounds for an interesting formula like functional pigeonhole principle.
In Section 8 we show that restricting to PC does not make the problem easier.

FPHP Formulas Do Not Have Extendible Families
One of the limits of the Bonacina-Galesi framework is that we cannot apply it
to formulas for which fixing a small set of variables causes a lot of unit clauses
propagation. Indeed, most of the lower bound strategies in this paper aim to
control this phenomenon (see for example Lemma 16). For the functional pigeonhole
principle these strategies do not work, as we now prove.

Definition 62. The functional pigeonhole principle on m pigeons and n holes is
the formula defined on variables xij for i ∈ [m] and j ∈ [n], made of the following
clauses:

∨

j∈[n]

xij for all i ∈ [m]; (pigeon axioms)

¬xij ∨ ¬xi′j for any i 6= i′ ∈ [m] and j ∈ [n]; (hole axioms)
¬xij ∨ ¬xij′ for any i ∈ [m] and j 6= j′ ∈ [n]. (functional axioms)

It is already known that this formula requires large space in resolution [BW01,
AD08]. It is natural to suspect that this formula is hard in terms of monomial space
as well. However, the Bonacina-Galesi framework is not strong enough to prove it.

Theorem 63 (restatement of Theorem 12). There is no r-extendible family
for FPHPm

n for r > 1.

78



Proof. Assume that there is an r-extendible family F for the formula FPHPm
n which

respects some satisfiable F ′ ⊆ FPHPm
n , for r > 1.

Let C be any clause in FPHPm
n \ F ′; such clause exists because FPHPm

n is a
contradiction. The extension property of F implies that there is a pair ({Q1}, H1) ∈
F , where H1 satisfies C.

Recall that 0 encodes true, and 1 encodes false. Pick a variable xij in Q1. In
H1 there is at least one partial assignment for which xij = 0, and for any such
assignment it holds that xi′j = 1 and xij′ = 1 for all i′ 6= i and j′ 6= j, otherwise an
initial clause would be false.

Indeed, fix v to be any of these variables (either xi′j or xij′); the clause ¬xij ∨¬v
is an axiom. If v 6∈ Q1 then this clause is not in F ′ because of the respectfulness of
F , and furthermore there is at least one assignment in H1 which does not satisfy it
(i.e., any assignment with xij = 0). The extension property of F guarantees that
there is ({Q1, Q2}, H1×H2) ∈ F with v ∈ Q2, such that H1×H2 satisfies ¬xij ∨¬v.
But this contradicts the fact that H1×H2 contains the assignment {xij = 1, v = 1},
which falsifies ¬xij ∨ ¬v.

It follows that {xi′j , xij′ | i′ 6= i and j′ 6= j} ⊆ Q1, and that H1 satisfies all
axioms involving either pigeon i or hole j. We have just shown that assuming some
xij ∈ Q1, we get {xi′j , xij′ | i′ ∈ [m], j′ ∈ [n]} ⊆ Q1. This choice was arbitrary, so
it follows that for any i ∈ [m], j ∈ [n], the variable xij is in Q1. In other words, Q1
contains all the variables. Since FPHPm

n \ F ′ is contradictory, every assignment in
H1 falsifies some clause, and so the extension property fails for any such clause. We
conclude that FPHPm

n has no 2-extendible family.

Formulas with Equal PC and PCR Space Complexities
Although finding an r-extendible family for the functional pigeonhole principle (and
hence proving a space lower bound) is not feasible, we might try and prove a weaker
PC space lower bound. However, as we have pointed out in Section 3, in the case of
functional pigeonhole principle this makes no difference. In this section, we prove
formally this result for a broader class of formulas that is captured by the following
definition.

Definition 64. We say that a CNF formula F is totally weight constrained if for
every variable x appearing in F there exists a clause Cx ∈ F with the following
properties:

1. All literals in Cx are positive;

2. x is one of the variables appearing in Cx;

3. For every two distinct variables y, z appearing in Cx, clause y ∨ z is in F .

For each variable x we refer to Cx as the x-neighborhood clause.
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In such formulas each negative literal can be replaced with a clause/monomial
consisting of only positive literals that has the same semantic meaning. Thus, we
can turn a PCR refutation into a PC refutation without any substantial loss of space.
In order for us to be able to show that such a refutation is a valid PC refutation we
need to show that there are PC derivations of these monomials that use small space.

Theorem 65. For a totally weight constrained CNF formula F , where each clause
has a costant number of negative literals, it holds that SpPC(F `⊥) = Θ(SpPCR(F `
⊥)).

Proof. We can easily see that PCR simulates PC with only a constant loss in space.
The only problem in the simulation could arise when downloading an axiom that
has negative literals. Nevertheless, it is not hard to prove that PCR can expand
every axiom to its PC form while respecting the stated space bound.

In the other direction, we prove that PC can simulate a PCR refutation of
F . Let π be a PCR refutation of F in space at most s. As F is a totally weight
constrained formula, for every variable x we can fix its x-neighborhood clause Cx.
Let us denote by N(x) the set of variables from Cx excluding x. We transform the
PCR refutation π into a PC refutation by replacing each negative literal x with the
monomial

∏
y∈N(x) y. Obviously this transformation preserves space and we need to

show that the transformed configurations form a backbone of a valid PC refutation.
If the PCR refutation deletes a polynomial, we delete the appropriate transformed

polynomial from the configuration in the PC refutation. Similarly, in the case of
linear combination steps we just deduce the linear combination of the transformed
polynomials. Hence, these two types of steps can be done without any loss in space.
In the case of multiplication with a literal, if the literal is positive we multiply the
appropriate transformed polynomial with the same literal. Otherwise, the literal is
negative and we multiply the polynomial with all the variables in N(x), where x
is the literal, while making sure to delete the intermediate polynomials when they
are no longer needed. In this way we derive the transformed polynomial in at most
O(s) space.

The axiom download steps are the only ones that remain. In the case of
Boolean axiom download, if we downloaded an axiom for a positive literal, we just
download the appropriate axiom in the PC refutation. Otherwise, the Boolean
axiom corresponds to some negative literal x and we need to derive the polynomial∏
y∈N(x) y

2 − ∏y∈N(x) y. This is done by downloading the Boolean axioms for
each y ∈ N(x) and combining them to get the transformed polynomial. Let B2 −B
be one of the intermediate polynomials in the derivation of the transformed Boolean
axiom, where B is a monomial formed by multiplying the variables in some subset
of N(x). Then, for some variable y not mentioned in B, we derive (By)2 −By by
downloading y2− y and taking the linear combination of y(B2−B) and B2(y2− y).
This PC derivation uses O(1) more monomials than the PCR axiom download.

When the PCR proof downloads the complementarity axiom 1 − x − x, the
corresponding PC proof needs to derive the polynomial 1 − x −∏y∈N(x) y. Let
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N(x) = {y1, . . . , yl}. We derive the transformed polynomial by successively deriving
polynomials

T (i) =
l∏

k=i+1
yk − x

l∏

k=i+1
yk −

∏

k

yk , (8.1)

for i = 1, . . . , l. Note that T (l) is our transformed polynomial. The first T (1) in the
PC proof can be derived by downloading the axiom (1− x)(1− y1) and multiplying
it with variables y2, . . . , yl in order to get T (1) + x

∏
k yk. Subtracting from it

the x-neighborhood clause Cx = x
∏
k yk we get T (1).

We proceed to derive T (i+ 1) from T (i) for all i. Similarly as before, we start by
downloading the axiom (1−x)(1−yi+1) and multiplying it with variables yi+2, . . . , yl
in order to get T (i+1)−T (i). Adding this polynomial to T (i) we derive the (i+1)st
polynomial T (i+ 1) in our derivation of the transformed complementarity axiom.
This PC derivation uses O(1) more monomials than the PCR proof and all axioms
of the form (1− x)(1− yi) exist because F is totally weight constrained.

In the case of axiom download step for a clause axiom, we again have two cases.
If all literals of the axiom are positive we download the corresponding axiom in the
PC proof. Otherwise, we can write the axiom as x1 · · ·xs · xs+1 · · ·xl, where s is
the number of its negative literals. Let us denote by A(i) the polynomial

A(i) =
∏

y1∈N(x1)

y1 · · ·
∏

yi∈N(xi)

yi(1− xi+1) · · · (1− xs)xs+1 · · ·xl , (8.2)

where i ranges over 0, . . . , s. Note that A(0) is the original PC axiom, while A(s)
is the transformed axiom that we want to derive. Also, let us denote by R(i) the
polynomial

R(i) =
∏

y1∈N(x1)

y1 · · ·
∏

yi−1∈N(xi−1)

yi−1 · (1− xi+1) · · · (1− xs)xs+1 · · ·xl , (8.3)

for i ranging from 1 to s, that is A(i) = R(i)
∏
yi∈N(xi) yi = R(i+ 1)(1− xi+1).

We first derive A(1) by deriving the transformed complementarity axiom 1−
x1 −

∏
y1∈N(x1) y1 for the variable x1 and multiplying it with R(1) in order to get

A(0)−A(1). Now we can get A(1) by subtracting the derived polynomial from the
PC axiom A(0).

We proceed to derive A(s) by deriving A(i + 1) from A(i) for all i from 1
to s − 1. This is again done by first deriving the appropriate complementarity
axiom 1− xi+1 −

∏
yi+1∈N(xi+1) yi+1 and multiplying it by R(i+ 1) in order to get

A(i)−A(i+1). Subtracting the derived polynomial from previously derived A(i), we
get the (i+1)st polynomial in our derivation. These steps use O(2s) monomials, which
is constant by the theorem hypothesis, and the PC derivation of the transformed
axiom uses at most O(1) monomials more than the PCR axiom download step.

Hence, the theorem follows. Also, although we have ignored the constants
involved in the simulation, these constants can be computed explicitly and are small.
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The only possible exception is the additive constant O(2s∗), where s∗ is the largest
number of negative literals in a clause of F .

An obvious example of the totally weight constrained formula is the functional
pigeonhole principle.

Corollary 66 (Restatement of Theorem 13). It holds that

SpPCR(FPHPm
n `⊥) = Θ(SpPC(FPHPm

n `⊥)) .

Proof. It is easy to see that FPHPm
n formula is totally weight constrained, as every

variable appears in some pigeon axiom that is constrained by the functional axioms.
Also, FPHPm

n has at most 2 negative literals in each clause and hence we have that
SpPCR(FPHPm

n `⊥) = Θ(SpPC(FPHPm
n `⊥)).

Actually, we can say even more about the space complexity of the functional
pigeonhole principle formulas. In [FLN+12], the authors prove that the PCR space
complexity of FPHPm

n is equal (up to constant factors) to the PCR space complexity
of the extended formula F̃PHPm

n , where F̃PHPm
n is the canonical equivalent 3-CNF

version7 of the formula FPHPm
n . Hence, we have that the PC space complexity

lower bound for FPHPm
n would actually lower bound the PCR space complexity

of F̃PHPm
n and give us the first PCR space lower bound for some family of 3-CNF

formulas.
This holds in greater generality for totally weight constrained formulas that also

fulfill the following technical condition: F is a weight-constrained CNF formula if
for each clause l1 ∨ l2 ∨ . . . ∨ lm of F with more than three literals, the formula also
contains clauses ¬li∨¬lj for all 1 ≤ i < j ≤ m. We stress the fact that the conditions
of being weight-constrained and totally weight constrained are incomparable.

Corollary 67. For a simultaneously weight-constrained and a totally weight con-
strained formula F , where each clause has a costant number of negative literals, it
holds that

SpPCR(F̃ `⊥) = Θ(SpPCR(F `⊥)) = Θ(SpPC(F `⊥)) .

9 Concluding Remarks

In this paper, following up on recent work in [BNT13, BG13, FLN+12, HN12], we
report further progress on understanding space complexity in polynomial calculus
and how the space measure is related to size and degree. Specifically, we separate size

7We substitute every clause l1 ∨ l2 ∨ . . . ∨ lk, which has more than three literals, with the
formula (l1 ∨ y1) ∧ (¬y1 ∨ l2 ∨ y2) ∧ . . . ∧ (¬yi−1 ∨ li ∨ yi) ∧ . . . ∧ (¬yk−1 ∨ lk) where for each
substituted clause all variables yi are new. The substituted formula is a 3-CNF and it is satisfiable
if and only if the original one is. It is also easy to deduce the original clause from the substituting
formula.
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and degree from space, and provide some circumstantial evidence for the conjecture
that degree might be a lower bound on space in PC/PCR. We also prove space
lower bounds for a large class of Tseitin formulas, a well-studied formula family for
which nothing was previously known regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs are
not optimal, however. And for the functional pigeonhole principle, we show that
the technical tools developed in [BG13] cannot prove any non-constant PCR space
lower bounds. Although we have not been able to prove this, we believe that similar
impossibility results should hold also for ordering principle formulas and for the
canonical 3-CNF version of the pigeonhole principle. Since all of these formulas
require large degree in PCR and large space in resolution, it is natural to suspect
that they should be hard for PCR space as well. The fact that arguments along the
lines of [BG13] do not seem to be able to establish this suggests that we are still far
from a combinatorial characterization of degree analogous to the characterization of
resolution width in [AD08].

It thus remains a major open problem to understand the relation between degree
and space in PC/PCR, and in particular whether degree is a lower bound on space
or not (or whether it even holds that resolution width provides a lower bound on
PCR space).

Also, our separations of size and degree on the one hand and space on the other
depend on the characteristic of the underlying field, in that the characteristic must
be chosen first and the formula family exhibiting the separation works only for this
specific characteristic. It would be satisfying to find formulas that provide such
separations regardless of characteristic. Natural candidates are (various flavours
of) ordering principle formulas or onto function pigeon principle formulas, or, for
potentially even stronger separations, pebbling formulas.

Finally, an intriguing question is how (monomial) space in PC/PCR is related
to (clause) space in resolution. There are separations known for size versus length
and degree versus width, and it would seem reasonable to expect that PCR should
be strictly stronger than resolution also with respect to space, but this is completely
open.8 The flipside of this question is to what extent space lower bound techniques
for resolution carry over to PC/PCR. Since so far we do not know of any counter-
examples, it is natural to ask, for instance, whether semiwide CNF formulas as
defined in [ABRW02] have high space complexity not only in resolution but also in
PCR.
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A PCR Space Lower Bounds from Extendible Families

For the sake of self-containment, in this appendix we give an exposition of the
Bonacina-Galesi framework [BG13] for proving space lower bounds in Polynomial
Calculus. We show how the existence of a r-extendible family for a large value of r
implies such bounds. This framework can actually prove space lower bounds for a
proof system that it stronger than PC or PCR.

Definition 68 (Functional Calculus (FC)). A functional calculus configuration
is a set of arbitrary Boolean functions over Boolean variables. There is a single
derivation rule, semantic implication, where g can be inferred from f1, . . . , fn if
every assignment that satisfies f1 ∧ · · · ∧ fn also satisfies g.

Verifying a proof in FC is coNP-complete, and so FC is not a proof system in
the sense of Cook and Reckhow [CR79] unless coNP = NP.

There are many different circuit representations of the same Boolean function,
so we need to choose a minimal representation in order to define clause space.

Definition 69. Let P be a FC configuration. A set of monomials U = {m1, . . . ,ms}
defines P if for every function f ∈ P there is a function g such that g(m1, . . . ,ms) ≡
f(x1, . . . , xn). The monomial space of P is the minimum size of a defining set of
monomials.

We can interpret polynomials in PCR as Boolean functions if we project them to
the Boolean ring F[x, x, y, y, . . .]/ Span

(
x2 − x, 1− x− x, x2 − x, y2 − y, . . .

)
. Fur-

thermore, the set of monomials in a PCR configuration counted without repetitions
is a defining set of monomials for a FC configuration. Therefore we can view every
proof in PCR as a proof in FC that uses at most the same space. In particular,
SpFC(F `⊥) ≤ SpPCR(F `⊥).

We now prove Theorem 6, following Bonacina and Galesi [BG13]. The general
plan of the proof is to consider a FC derivation of a formula F in small space,
and show that every configuration arising in the derivation is satisfiable. Since a
refutation ends with an unsatisfiable configuration, the derivation is not a refutation.

In order to show that every configuration arising in the derivation is satisfiable,
we maintain a satisfiability witness, in the form of a structured set of assignments
together with a CNF formula. The following definition captures the sense in which
a satisfiability witness guarantees that a board configuration is satisfiable. Fix a set
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of variables V and consider partitions and total assignments with respect to this
set. Recall that a total assignment assigns a value to each variable in V .

Definition 70. Let (Q,H) be a structured set of assignments, G be a CNF formula,
and P be a set of Boolean functions. We write G |=(Q,H) P if every total assignment
that extends some partial assignment in H and satisfies G also satisfies P.

In the proof, P is the contents of the board at a given point in the FC refutation,
and (Q,H), G together form a satisfiability witness. The CNF G is composed of
two parts: a satisfiable subset F ′ ⊂ F , which could be empty, and a 2-CNF M with
a very specific form given by the following definition.

Definition 71. Let M be a 2-CNF formula over the variables V . We say that M
is a transversal of a partial partition Q defined on V if M mentions exactly one
variable from each block Qi ∈ Q. (In particular, |Q| must be even and the number
of clauses in M is |Q|/2.)

A transversal CNF formula is always satisfiable, and so for F ′ = ∅, any board
configuration P that has a satisfiability witness of this form must in fact be satisfiable.
To handle an arbitrary F ′, we add the requirement that (Q,H) respect F ′. Finally,
we can formally define the concept of satisfiability witness.

Definition 72. Let P be a set of Boolean functions. A tuple (F ′;Q,H,M) is a
satisfiability witness for P if:

1. F ′ is a satisfiable CNF formula.

2. (Q,H) is a structured assignment set which respects F ′.

3. M is a 2-CNF formula which is a transversal of Q.

4. F ′ ∧M |=(Q,H) P.

The size of a satisfiability witness (F ′;Q,H,M) is |M |.

We single F ′ out since its value is fixed while Q,H,M are dynamic and change
throughout the FC refutation.

A FC refutation is composed of three kinds of steps: axiom download, inference
and erasure. It turns out that the first two steps are relatively easy to handle,
as long as we maintain the invariant that the size of the satisfiability witness is
O(Sp(P)). This invariant allows us to expand the witness in order to accommodate
new axioms as long as the monomial space is small enough, using the extension
property of extendible families.

Erasure is more difficult, since the monomial space of the configuration could
shrink, and in order to maintain the invariant, we need to shrink the witness as
well. This is accomplished by the following crucial lemma, which shows that if a
configuration has any satisfiability witness, then we can find another satisfiability
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witness for the configuration whose size is bounded in terms of the monomial space
of the configuration.

Because of the multiple representations technical issue we also need to use the
locality lemma in axiom download steps, but we could omit it in a proof of a space
lower bound for PCR. It is however a key piece in erasure steps.

Lemma 73 (Locality lemma). Suppose (F ′;Q,H,M) is a satisfiability wit-
ness for some set of Boolean functions P. There is another satisfiability witness
(F ′;Q′,H′,M ′) for P such that Q′ ⊆ Q, H′ = H�Q′ and |M ′| ≤ 2Sp(P).

Proof. In this proof Q[x] denotes the (unique) class in Q that contains variable x.
The starting point of the proof is understanding the relation between monomials

in a defining set of monomials U of P and clauses in M which underlies the property
F ′ ∧M |=(Q,H) P. A clause C ∈ M affects a monomial m ∈ U whenever the two
mention variables belonging to the same partition in Q. If a clause C does not affect
a monomial m, then the clause C puts no constraints on the value of m.

Formally, we construct a bipartite graph between a minimal defining set of
monomials U and the set of clauses in M (which we identify with M itself). We
draw an edge between m ∈ U and C ∈M whenever for some Q ∈ Q, both m and
C mention some variable in Q.

We break U into two parts: one part which is collectively affected by a small
number of clauses, and another part in which we can associate with each monomial
two clauses affecting it. To this end, let U1 be an inclusion-maximal set under the
constraint |N(U1)| ≤ 2|U1|, and let U2 = U \ U1. We partition M accordingly into
M1 = N(U1) and M2 = M \M1. As a slight modification of Hall’s marriage theorem
shows, the maximality of U1 implies that we can associate with each monomial in
U2 two unique clauses in M2 (that is, each clause in M2 is associated with at most
one monomial). In other words, there is a double matching from U2 to M2. (For
more details on this step, see [ABRW02, FLN+12, BG13].)

We construct the new 2-CNF M ′ out of two parts: M ′ = M1 ∪M ′2. The first
part M1, taken verbatim from M , takes care of U1. The other part M ′2, which we
construct from the double matching, takes care of U2.

The 2-CNF M ′2 consists of one clause Cm for every monomial m ∈ U2. In order
to define Cm, let xa ∨ yb and zc ∨ wd be the two clauses in M2 that are matched
to m in the double matching. Assume without loss of generality that m = resfm′,
where r ∈ Q[x] and s ∈ Q[z]. The clause Cm is defined as Cm = re ∨ sf .

By construction, |M ′| ≤ 2|U1| + |U2| ≤ 2|U | = 2Sp(P). Having defined M ′,
we complete the definition of the new satisfiability witness as follows. First, let
Q′ = {Q[x] | x ∈ Vars(M ′)}; this guarantees that M ′ is a transversal of Q′. Observe
that Q′ ⊆ Q. Second, let H′ = H�Q′ . It is easy to check that (F ′;Q′,H′,M ′))
satisfies the first three properties of a satisfiability witness. It remains to prove that
F ′ ∧M ′ |=(Q′,H′) P.

In order to show that F ′ ∧ M ′ |=(Q′,H′) P, we consider an arbitrary total
assignment α extending some partial assignment in H′ and satisfying F ′ ∧M ′. We
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will modify α to another total assignment β that extends some partial assignment
in H and satisfies F ′ ∧M , and furthermore has the property that β(m) = α(m)
for every m ∈ U . By assumption, F ′ ∧M |=(Q,H) P, and so β(P) = 0. Since
β(m) = α(m) for every m ∈ U , we conclude that α(P) = 0 as well.

We proceed to define β. For each clause xa ∨ yb in M2, we will define β on
Q[x],Q[y] using partial assignments from H, distinguishing two cases: the clause is
matched to some monomial in U2, or it is unmatched. The values of all the other
variables are taken directly from α.

Suppose m ∈ U2 is matched to the clauses xa ∨ yb and zc ∨wd and Cm = re ∨ sf ,
where Q[x] = Q[r] and Q[z] = Q[s]. (In other words, we are in exactly the same
situation described above while constructing M ′.) Define β on Q[x],Q[y],Q[z],Q[w]
using partial assignments from H satisfying re, yb, sf , wd. As a result, β satisfies
the clauses xa ∨ yb and zc ∨ wd and the monomial m.

For each unmatched clause xa ∨ yb in M2, we define β on Q[x] and Q[y] using
partial assignments from H satisfying xa and yb. As a result, β satisfies the clause
xa ∨ yb. Finally, complete the definition of β by defining β(x) = α(x) for any
hitherto undefined variable x. From the construction it is clear that β extends some
partial assignment in H.

In order to complete the proof, we need to show that β satisfies F ′∧M , and that
β agrees with α on all the monomials in U . We start by showing that β satisfies
F ′ ∧M . By construction, β satisfies the clauses in M2. Since β agrees with α
on variables mentioned in M1, β satisfies M1. Finally, let C ∈ F ′. Since (Q,H)
respects F ′, either the variables in C are disjoint from

⋃Q, or the variables in C
all belong to some Qi ∈ Q, and all assignments in the respective Hi ∈ H satisfy C.
In the former case, β agrees with α on variables mentioned in C, and so β satisfies
C. In the latter case, β satisfies C since β extends some partial assignment in H.

It remains to show that β(m) = α(m) for all monomials m ∈ U . In short, this is
true for monomials in U1 since α and β agree on all the relevant variables, and for
monomials in U2 since in both assignments they are reduced to zero. We proceed to
show this formally.

Suppose first that m ∈ U1. We claim that α(v) = β(v) for all variables v
mentioned in m. Indeed, if α(v) 6= β(v) then v ∈ Q[x] for some clause C = xa ∨ yb
in M2. Yet this implies that m is connected to C, contradicting the definition
of M2. We conclude that α and β agree on all variables mentioned in m, and so
α(m) = β(m) in this case.

Suppose next that m ∈ U2. We claim that α(m) = β(m) = 0. Let Cm = re ∨ sf ,
and recall that m is of the form m = resfm′. Thus α(m) = 0 since α satisfies Cm,
and β(m) = 0 since it satisfies re and sf by construction.

Theorem 74 (restatement of Theorem 6 [BG13]). Let F be a CNF formula
with an r-extendible family F with respect to some F ′ ⊆ F . Then SpFC(F `⊥) ≥
r/4.
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Proof. Let F be an r-extendible family with respect to some satisfiable F ′ ⊆ F . Let
π be a derivation from F in space Sp(π) < r/4. We will show that 1 /∈ π or, even
stronger, that every configuration Pt appearing in π is satisfiable.

We will maintain a satisfiability witness (F ′;Qt,Ht,Mt) for every configuration
Pt. Our satisfiability witnesses will satisfy two conditions: (Qt,Ht) ∈ F , and the
size bound |Mt| ≤ 2Sp(Pt). The existence of a satisfiability witness implies that Pt
is satisfiable. Indeed, let α ∈ Ht be some partial assignment that satisfies all the
literals in Mt. Since (Qt,Ht) respects F ′, each clause in F ′ is either already satisfied
by α or is completely disjoint from the domain of α. As F ′ is satisfiable, we can
extend α to a total assignment β which satisfies F ′. Hence, from F ′∧Mt |=(Qt,Ht) Pt
we have that β satisfies Pt, and so Pt is satisfiable.

We construct the satisfiability witnesses by induction. For t = 0, the satis-
fiability witness is (F ′; ∅, ∅, ∅). For the induction step, suppose we are given a
satisfiability witness (F ′;Q,H,M) for Pt. We will construct a satisfiability witness
(F ′;Q′,H′,M ′) for Pt+1. To simplify the notation, let P = Pt and P′ = Pt+1. We
distinguish three cases, which correspond to the three possible steps in the proof.

Axiom download. Let C be the downloaded clause, which we also regard as a
monomial. If C ∈ F ′ or every extension α of a partial assignment in H satisfies C,
then in particular F ′ ∧M |=(Q,H) P ∪ {C} = P′, and M ′ = M , Q′ = Q, H′ = H
form a satisfiability witness.

Otherwise, by hypothesis Sp(P′) < r/4 and so Sp(P) < r/4− 1. Indeed, if U is a
defining set of monomials of P, then U ∪{C} is a defining set of monomials of P′. By
the induction hypothesis, |Q| < r−1. By the extension property of extendible, there
exists a structured set of assignments (Q̃, H̃) ∈ F such that |Q̃| < r, (Q,H) 4 (Q̃, H̃)
and H̃ |= C. By assumption H 6|= C and so Q 6= Q̃. Let Q̃ = Q∪ {Q}.

The assignments corresponding to Q in H̃ will ensure that the clause C is
satisfied. Since we are going to add a new clause to M ′, we need to come up with
two new parts in Q′, and so we repeat the process. Let D be any axiom in F \ F ′
such that H̃ 6|= D; if no such axiom exists then F is satisfiable and the theorem
follows vacuously. Repeat the argument above and obtain a new disjoint set Q′ and
a structured set of assignments (Q′,H′) ∈ F .

Choose arbitrary variables x ∈ Q and y ∈ Q′, and let M ′ = M ∪ {x ∨ y}. By
construction, (F ′;Q′,H′,M ′) is a satisfiability witness for P′.

In both cases, Lemma 73 yields another satisfiability witness (F ′;Q′′,H′′,M ′′)
for P′ satisfying the size bound and with Q′′ ⊆ Q′, H′′ = H′�Q′′ . By the restriction
property of the extendible family, we have (Q′′,H′′) ∈ F .

Inference. It is enough to pick M ′ = M , Q′ = Q, H′ = H. The first three
properties in the definition of satisfiability witness continue to hold, while the last
property follows from the soundness of FC. Finally, the size bound trivially holds
since |P′| ≥ |P|.
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Erasure. Since FC is sound, (F ′;Q,H,M) is a satisfiability witness for P′ as well.
Hence Lemma 73 furnishes us with a satisfiability witness (F ′;Q′,H′,M ′) for P′
satisfying the size bound and with Q′ ⊆ Q, H′ = H�Q′ . By the restriction property
of extendible, (Q′,H′) ∈ F .
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Marc Vinyals. Towards an understanding of polynomial calculus: New
separations and lower bounds (Extended abstract). In Proceedings
of the 40th International Colloquium on Automata, Languages and
Programming (ICALP ’13), volume 7965 of Lecture Notes in Computer
Science, pages 437–448. Springer, July 2013.

[FLN+12] Yuval Filmus, Massimo Lauria, Jakob Nordström, Neil Thapen, and
Noga Ron-Zewi. Space complexity in polynomial calculus (Extended
abstract). In Proceedings of the 27th Annual IEEE Conference on
Computational Complexity (CCC ’12), pages 334–344, June 2012.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39(2-3):297–308, August 1985.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs:
Amplifying communication complexity hardness to time-space trade-offs
in proof complexity (Extended abstract). In Proceedings of the 44th
Annual ACM Symposium on Theory of Computing (STOC ’12), pages
233–248, May 2012.

[IK10] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of
concentration bounds. In Proceedings of the 13th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems
and 14th International Workshop on Randomization and Computation
(APPROX-RANDOM ’10), pages 617–631, 2010.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the
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From Small Space to Small Width in Resolution∗

Yuval Filmus1, Massimo Lauria2, Mladen Mikša2, Jakob Nordström2, and
Marc Vinyals2
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2KTH Royal Institute of Technology

Abstract

In 2003, Atserias and Dalmau resolved a major open question about
the resolution proof system by establishing that the space complexity of a
CNF formula is always an upper bound on the width needed to refute the
formula. Their proof is beautiful but uses a nonconstructive argument based
on Ehrenfeucht-–Fraïssé games. We give an alternative, more explicit, proof
that works by simple syntactic manipulations of resolution refutations. As
a by-product, we develop a “black-box” technique for proving space lower
bounds via a “static” complexity measure that works against any resolution
refutation—previous techniques have been inherently adaptive. We conclude
by showing that the related question for polynomial calculus (i.e., whether
space is an upper bound on degree) seems unlikely to be resolvable by similar
methods.

1 Introduction

A resolution proof for, or resolution refutation of, an unsatisfiable formula F in
conjunctive normal form (CNF) is a sequence of disjunctive clauses (C1, C2, . . . , Cτ ),
where every clause Ct is either a member of F or is logically implied by two previous
clauses, and where the final clause is the contradictory empty clause ⊥ containing no
literals. Resolution is arguably the most well-studied proof system in propositional
proof complexity, and has served as a natural starting point in the quest to prove
lower bounds for increasingly stronger proof systems on proof length/size (which for
resolution is the number of clauses in a proof).

∗This is a modified version of the paper [FLM+15], which appeared in ACM Transactions on
Computational Logic. The paper was first presented in the Proceedings of the 31st Symposium on
Theoretical Aspects of Computer Science (STACS ’14) [FLM+14].
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Resolution is also intimately connected to SAT solving in that it lies at the
foundation of state-of-the-art SAT solvers using so-called conflict-driven clause
learning (CDCL). This connection has motivated the study of proof space as a
second interesting complexity measure for resolution. The space usage at some
step t in a proof is measured as the number of clauses occurring before Ct that will
be used to derive clauses after Ct, and the space of a proof is obtained by taking
the maximum over all steps t.

For both of these complexity measures, it turns out that a key role is played by
the auxiliary measure of width, i.e., the size of a largest clause in the proof. In a
celebrated result, Ben-Sasson and Wigderson [BW01] showed that there are short
resolution refutations of a formula if and only if there are also (reasonably) narrow
ones, and almost all known lower bounds on resolution length can be (re)derived
using this connection. In 2003, Atserias and Dalmau (journal version in [AD08])
established that width also provides lower bounds on space, resolving a problem
that had been open since the study of space complexity of propositional proofs was
initiated in the late 1990s in [ABRW02, ET01]. This means that for space also,
almost all known lower bounds can be rederived by using width lower bounds and
appealing to [AD08]. This is not a two-way connection, however, in that formulas
of almost worst-case space complexity may require only constant width, as shown
in [BN08].

Our Contributions
The starting point of our work is the lower bound on space in terms of width
in [AD08]. This is a very elegant but also indirect proof in that it translates the
whole problem to Ehrenfeucht–Fraïssé games in finite model theory, and shows that
resolution space and width correspond to strategies for two opposite players in such
games. Unfortunately, this also means that one obtains essentially no insight into
what is happening on the proof complexity side (other than that the bound on space
in terms of width is true). It has remained an open problem to give a more explicit,
proof complexity theoretic argument.

In this paper, we give a purely combinatorial proof in terms of simple syntactic
manipulations of resolution refutations. To summarize in one sentence, we study
the conjunctions of clauses in memory at each time step in a small-space refutation,
negate these conjunctions and then expand them to conjunctive normal form again,
and finally argue that the new sets of clauses listed in reverse order (essentially)
constitute a small-width refutation of the same formula.1

This new, simple proof also allows us to obtain a new technique for proving
space lower bounds. This approach is reminiscent of [BW01] in that one defines
a static “progress measure” on refutations and argues that when a refutation
has made substantial progress it must have high complexity with respect to the

1We recently learned that a similar proof, though phrased in a slightly different language, was
obtained independently by Razborov [Raz14].
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proof complexity measure under study. Previous lower bounds on space have been
inherently adaptive and in that sense less explicit.

One important motivation for our work was the hope that a simplified proof
of the space-width inequality would serve as a stepping stone to resolving the
analogous question for the polynomial calculus proof system. Here the width of
clauses corresponds to the degree of polynomials, space is measured as the total
number of monomials of all polynomials currently in memory, and the problem is
to determine whether space and degree in polynomial calculus are related in the
same way as are space and width in resolution. A possible approach for attacking
this question was proposed in [BG13]. In [FLM+13] we obtained a result analogous
to [BN08] that there are formulas of worst-case space complexity that require only
constant degree. The question of whether degree lower bounds imply space lower
bounds remains open, however, and other results in [FLM+13] can be interpreted
as implying that the techniques in [BG13] probably are not sufficient to resolve this
question. Unfortunately, as discussed towards the end of this paper we also show
that it appears unlikely that this problem can be addressed by methods similar to
our proof of the corresponding inequality for resolution.

Outline of This Paper
The rest of this paper is organized as follows. After some brief preliminaries in
Section 2, we present the new proof of the space-width inequality in [AD08] in
Section 3. In Section 4 we showcase the new technique for space lower bounds by
studying so-called Tseitin formulas. Section 5 explains why we believe it is unlikely
that our methods will extend to polynomial calculus. Some concluding remarks are
given in Section 6.

2 Preliminaries

Let us start with a brief review of the preliminaries. The following material is
standard and can be found, e.g., in the survey [Nor13].

A literal over a Boolean variable x is either the variable x itself (a positive
literal) or its negation that is denoted either as ¬x or as x (a negative literal). We
define x = x. A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals and a term
T = a1 ∧ · · · ∧ ak is a conjunction of literals. We denote the empty clause by ⊥
and the empty term by ∅. The logical negation of a clause C = a1 ∨ · · · ∨ ak is the
term a1 ∧ · · · ∧ ak that consists of the negations of the literals in the clause. We will
sometimes use the notation ¬C or C for the term corresponding to the negation of a
clause C and ¬T or T for the clause negating a term T . A clause (term) is trivial if
it contains both a variable and its negation. For the proof systems we study, trivial
clauses and terms can always be eliminated without any loss of generality.

A clause C ′ subsumes another clause C if every literal from C ′ also appears
in C. A k-clause (k-term) is a clause (term) that contains at most k literals. A
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CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses, and a DNF formula
F = T1 ∨ · · · ∨ Tm is a disjunction of terms. A k-CNF formula (k-DNF formula)
is a CNF formula (DNF formula) consisting of k-clauses (k-terms). We think of
clauses, terms, and CNF formulas as sets: the order of elements is irrelevant and
there are no repetitions. We also assume that CNF formulas are non-trivial in
the sense that they do not contain the contradictory empty clause (this is just for
technical simplicity to avoid a pathological corner case).

Let us next describe a slight generalization of the resolution proof system by
Krajíček [Kra01], who introduced the family of r-DNF resolution proof systems,
denoted R(r), as an intermediate step between resolution and depth-2 Frege systems.
An r-DNF resolution configuration C is a set of r-DNF formulas. An r-DNF
resolution refutation of a CNF formula F is a sequence of configurations (C0, . . . ,Cτ )
such that C0 = ∅, ⊥ ∈ Cτ , and for 1 ≤ t ≤ τ we obtain Ct from Ct−1 by one of the
following steps:

Axiom download Ct = Ct−1 ∪ {A}, where A /∈ Ct−1 is a clause in F (sometimes
referred to as an axiom clause).

Inference Ct = Ct−1 ∪ {D}, where D /∈ Ct−1 is inferred by one of the following
rules (where G,H denote r-DNF formulas, T, T ′ denote r-terms, and a1, . . . , ar
denote literals):

r-cut (a1 ∧ · · · ∧ ar′) ∨G a1 ∨ · · · ∨ ar′ ∨H
G ∨H , where r′ ≤ r.

∧-introduction G ∨ T G ∨ T ′
G ∨ (T ∧ T ′) , as long as |T ∪ T ′| ≤ r.

∧-elimination G ∨ T
G ∨ T ′ for any non-empty T ′ ⊆ T .

Weakening G
G ∨H for any r-DNF formula H.

Erasure Ct = Ct−1 \ {D} for D ∈ Ct−1.

For r = 1 we obtain the standard resolution proof system. In this case the
only nontrivial inference rules are weakening and r-cut, where the former can be
eliminated without loss of generality (but is sometimes convenient to have for
technical purposes) and the latter simplifies to the resolution rule

C ∨ x D ∨ x
C ∨D . (2.1)

We identify a resolution configuration C with the CNF formula
∧
C∈C C.

The length L(π) of an r-DNF resolution refutation π is the number of download
and inference steps, and the space Sp(π) is the maximal number of r-DNF formulas
in any configuration in π. We define the length LR(r)(F ` ⊥) and the space
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SpR(r)(F `⊥) of refuting a formula F in r-DNF resolution by taking the minimum
over all refutations F with respect to the relevant measure. We drop the proof
system R(r) from this notation when it is clear from context.

For the resolution proof system, we also define the width W(π) of a resolution
refutation π as the size of a largest clause in π, and taking the minimum over all
resolution refutations we obtain the width W(F `⊥) of refuting F . We remark that
in the context of resolution the space measure defined above is sometimes referred
to as clause space to distinguish it from other space measures studied for this proof
system.

3 From Space to Width

In this section we present our new combinatorial proof that width is a lower bound
for clause space in resolution. The formal statement of the theorem is as follows.

Theorem 1 ([AD08]). Let F be a k-CNF formula and let π : F `⊥ be a resolution
refutation in clause space Sp(π) = s. Then there is a resolution refutation π′ of F
in width W(π′) ≤ s+ k − 3.

The proof idea is to take the refutation π in space s, negate the configurations
one by one, rewrite them as equivalent sets of disjunctive clauses, and list these sets
of clauses in reverse order. This forms the skeleton of the new refutation, where
all clauses have width at most s. To see this, note that each configuration in the
original refutation is the conjunction of at most s clauses. Therefore, the negation of
such a configuration is a disjunction of at most s terms, which is equivalent (using
distributivity) to a conjunction of clauses of width at most s. To obtain a legal
resolution refutation, we need to fill in the gaps between adjacent sets of clauses. In
this process the width might increase slightly from s to s+ k − 3.

Before presenting the full proof, we need some technical results. We start by
giving a formal definition of what we mean by a negated configuration.

Definition 2. The negated configuration neg(C) of a clause configuration C is
defined inductively as follows:

• neg(∅) = {⊥},

• neg(C ∪ {C}) = {D ∨ a | D ∈ neg(C) ; a ∈ C \D ; @B ∈ neg(C) s.t. B ∨ a  
D ∨ a}.

Note that this definition makes sure that neg(C) will not contain any trivial or
subsumed clauses, and it also yields that neg({⊥}) = ∅.

Each clause of the original configuration C contributes at most one literal to
each clause of the negated configuration neg(C). This implies an upper bound on
the width of the clauses in neg(C) as stated next.
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Observation 3. The width of any clause in the negated configuration neg(C) is at
most Sp(Ct) = |C|.

In our proofs we will use a different characterization of negated configurations
that is easier to work with. We state this characterization as a formal proposition.

Proposition 4. The negated configuration neg(C) is the set of all minimal (non-
trivial) clauses C such that ¬C implies the configuration C. That is,

neg(C) = {C | ¬C � C and for every C ′  C it holds that ¬C ′ 2 C} .

Proof. Let us fix the configuration C and let D denote the set of all minimal clauses
implying C. We prove that for each clause C ∈ neg(C) there is a clause C ′ ∈ D
such that C ′ ⊆ C and vice versa. The proposition then follows because by definition
neither D nor neg(C) contains subsumed clauses.

First, let C ∈ neg(C). By the definition of neg(C) we know that for every
clause D ∈ C the clause C contains the negation of some literal from D. Hence, ¬C
implies C as it is a conjunction of literals from each clause in C. By taking a minimal
clause C ′ ⊆ C such that ¬C ′ � C we have that C ′ ∈ D.

In the opposite direction, we want to show for any C ∈ D that C must contain
a negation of some literal in D for every clause D ∈ C. Assume for the sake of
contradiction that D ∈ C is a clause such that none of its literals has a negation
appearing in C. Let α be a total truth value assignment that satisfies ¬C (such an
assignment exists because C is non-trivial). By assumption, flipping the variables
in α so that they falsify D cannot falsify ¬C. Therefore, we can find an assignment
that satisfies ¬C but falsifies D ∈ C, which contradicts the definition of D. Hence, C
must contain a negation of some literal in D for every D ∈ C and by the definition
of neg(C) there is a C ′ ∈ neg(C) such that C ′ ⊆ C.

The following observation, which formalizes the main idea behind the concept of
negated configurations, is an immediate consequence of Proposition 4.

Observation 5. An assignment satisfies a clause configuration C if and only if it
falsifies the negated clause configuration neg(C). That is, C is logically equivalent
to ¬neg(C).

Recall that we want to take a resolution refutation π = (C0,C1, . . . ,Cτ ) and
argue that if π has small space complexity, then the reversed sequence of negated
configurations π′ = (neg(Cτ ),neg(Cτ−1), . . . ,neg(C0)) has small width complexity.
However, as noted above π′ is not necessarily a legal resolution refutation. Hence,
we need to show how to derive the clauses in each configuration of the negated
refutation without increasing the width by too much. We do so by a case analysis
over the derivation steps in the original refutation, i.e., axiom download, clause
inference, and clause erasure. The following lemma shows that for inference and
erasure steps all that is needed in the reverse direction is to apply weakening.
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Lemma 6. If C � C′, then for every clause C ∈ neg(C) there exists a clause
C ′ ∈ neg(C′) such that C is a weakening of C ′.

Proof. For any clause C in neg(C) it holds by Proposition 4 that ¬C � C. Since
C � C′, this in turns implies that ¬C � C′. Applying Proposition 4 again, we
conclude that there exists a clause C ′ ⊆ C such that C ′ ∈ neg(C′).

The only time in a refutation π = (C0,C1, . . . ,Cτ ) when it does not hold that
Ct−1 � Ct is when an axiom clause is downloaded at time t, and such derivation
steps will require a bit more careful analysis. We provide such an analysis in the
full proof of Theorem 1, which we are now ready to present.

Proof of Theorem 1. Let π = (C0,C1, . . . ,Cτ ) be a resolution refutation of F in
space s. For every configuration Ct ∈ π, let Dt = neg(Ct) denote the corresponding
negated configuration. By assumption, each Ct contains at most s clauses, and thus
Observation 3 guarantees that the clauses in Dt have width at most s. We need to
show how to transform the sequence of clause configurations π′ = (Dτ ,Dτ−1, . . . ,D0)
into a legal resolution refutation of width at most s+ k− 3. Let us assume first that
we are dealing with CNF formulas of width k ≥ 3, since this makes the argument
slightly easier to present. At the end of the proof, we will see how argue more
carefully to get rid of this assumption.

The initial configuration of the sequence π′ is Dτ , which is the empty set by
Definition 2. If Ct+1 follows from Ct by inference or erasure, then we can derive any
clause of Dt from a clause of Dt+1 by weakening, as proven in Lemma 6. If Ct+1
follows from Ct by axiom download, then we claim that we can derive Dt from Dt+1
in width at most s+ k− 3. Since the last configuration D0 of π′ contains the empty
clause ⊥ by Definition 2, we obtain a complete resolution refutation.

Hence, all that we need to do is to analyze what happens at axioms downloads.
We first observe that we can assume without loss of generality that prior to each
axiom download step the space of the configuration Ct is at most s− 2. Otherwise,
immediately after the axiom download step the proof π needs to erase a clause in
order to maintain the space bound s. If the clause erased is the one just downloaded,
we can obviously just ignore these two steps, and otherwise by reordering the axiom
download and clause erasure steps we get a valid refutation of F for which it holds
that Sp(Ct) ≤ s− 2.

Suppose Ct+1 = Ct ∪ {A} for some axiom A = a1 ∨ · · · ∨ a`, with ` ≤ k.
Consider now some clause C ∈ Dt \ Dt+1. By Observation 3 it holds that W(C) ≤
Sp(Ct) ≤ s− 2. To derive C we first download the axiom A and then show how to
obtain C from the clauses in Dt+1 ∪ {A}. Note that all clauses C ∨ ai for ai ∈ A
are either contained in or are weakenings of clauses in Dt+1. This follows easily
from Definition 2 as adding an axiom A to the configuration Ct results in adding
negations of literals from A to all clauses C ∈ Dt. Hence, we can obtain C by the
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following derivation:

A = a1 ∨ · · · ∨ a` C ∨ a1
C ∨ a2 ∨ · · · ∨ a` C ∨ a2

C ∨ a3 ∨ · · · ∨ a`
...

C ∨ a` C ∨ a`
C

(3.1)

When C is the empty clause, the width of this derivation is W(A) ≤ k. Otherwise,
it is upper-bounded by W(C) + W(A) − 1 ≤ s + k − 3. Since any resolution
refutation has space at least 3 (unless the formula contains the empty clause itself,
but our definitions explicitly disallowed such trivial formulas), we conclude that
the width of the derivation (3.1) is at most max(k, s + k − 3) = s + k − 3. This
in turn implies that the width of the resolution refutation constructed from π′ is
at most max(s, s + k − 3) = s + k − 3, where the last equality follows from the
assumption k ≥ 3, and this completes the proof.

If k < 3, however, we have s+ k − 3 < s, and so the argument above does not
quite suffice to establish the bound claimed in the theorem. This can be taken care
of by a postprocessing step as follows.2 Recall that inference and erasure steps
can only produce weakenings of clauses by Lemma 6, and axiom download steps
only occur when the space is at most s − 2. Consider the resolution refutation
constructed from π′ as above, and then erase all clause configurations obtained at
inference or erasure steps (i.e., via weakening) to obtain new refutation π′′. It is
straightforward to verify that this yields a legal refutation and that the width does
not increase (since π′′ contains a subset of the clauses in the previously constructed
refutation). After this step the only new clauses in π′′ that we need to derive at
each step are those resulting from axiom downloads in the original refutation π,
and as already noted the width of deriving such clauses as done in (3.1) is at most
max(k, s+ k − 3) = s+ k − 3. The theorem follows.

The proof of Theorem 1 also works for r-DNF resolution, although the bound
gets weaker as r grows. Let us state this as a theorem and sketch the proof.

Theorem 7. Let F be a k-CNF formula and π : F `⊥ be an r-DNF resolution
refutation of F in space Sp(π) ≤ s. Then there exists a resolution refutation π′ of
F in width at most W(π′) ≤ (s− 2)r + k − 1.

2Alternatively, once can simply observe directly that the theorem is true for k < 3. To see this,
note that any unsatisfiable 1-CNF formula is refutable by resolving some literal with its negation
in a single width-1 step. And any resolution derivation from a 2-CNF formula, unsatisfiable or not,
has width 2, since resolving two 2-clauses always yields another 2-clause. Hence, for k < 3 we have
that any unsatisfiable k-CNF formula can always be refuted in width at most k ≤ Sp(π) + k − 3
for any refutation π (using again that Sp(π) ≥ 3).
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Proof sketch. We define the negated configuration negR(r)(C) of an R(r)-configura-
tion inductively by setting negR(r)(∅) = {⊥} and

negR(r)(C ∪ {C}) =
{D∨T | D∈negR(r)(C);T ∈C;@B∈negR(r)(C) such that

B∨T  D∨T ;D∨T non-trivial} (3.2)

to make sure that negR(r)(C) contains no trivial or subsumed clauses. It is easy
to see that an r-DNF configuration of space s gets transformed into a resolution
configuration of width at most sr. We can prove that negR(r)(C) is the set of all
minimal clauses D such that ¬D � C for an r-DNF configuration C, which is an
analogue of Proposition 4. The proof is essentially the same except that we reason
using the terms of an r-DNF formula C ∈ C instead of its literals. With this version
of Proposition 4 proved, we can immediately generalize Lemma 6 to the r-DNF case.

The analogue of the proof of Theorem 1 follows easily from previous observations.
The inference and clause deletion steps follow by the generalized version of Lemma 6,
while the case of axiom download is the same as in the original proof because axioms
are clauses. Hence, running the negated r-DNF resolution refutation backwards
we get a resolution refutation of F . The width of this latter refutation is at most
(s− 2)r + k − 1, as we again consider only configurations that have space equal to
at most s − 2, and the inference steps in the case of axiom download can add at
most k − 1 to the width of the resulting resolution refutation. When k < 2r + 1,
an additional pruning step in which all weakenings are eliminated completes the
proof.

4 A Static Technique for Proving Space Lower Bounds

Looking at the proof complexity literature, the techniques used to prove lower
bounds for resolution length and width (e.g., [BW01, CS88, Hak85, Urq87]) differ
significantly from those used to prove resolution space lower bounds (e.g., [ABRW02,
BG03, ET01]) in that the former are static or oblivious while the latter are dynamic.

Lower bounds on resolution length typically have the following general structure:
if a refutation is too short, then we obtain a contradiction by applying a suitable
random restriction (the length of the proof figures in by way of a union bound); so
any refutation must be long. When proving lower bounds on resolution width, one
defines a complexity measure and uses the properties of this measure to show that
every refutation must contain a complex clause; in a second step one then argues
that such a complex clause must be wide.

In contrast, most lower bound proofs for resolution space use an adversary
argument. Assuming that the resolution derivation has small space, one constructs
a satisfying assignment for each clause configuration. Such assignments are updated
inductively as the derivation progresses, and one shows that the update is always
possible given the assumption that the space is small. This in turn shows that the
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(a) Labelled triangle graph.

(x ∨ y)
∧ (x ∨ y)
∧ (x ∨ z)
∧ (x ∨ z)
∧ (y ∨ z)
∧ (y ∨ z)

(b) Corresponding Tseitin formula.

Figure 2: Example Tseitin formula.

contradictory empty clause can never be reached, implying a space lower bound on
refutations. The essential feature separating this kind of proofs from the ones above
is that the satisfying assignments arising during the proof depend on the history
of the derivation; in contrast, the complexity measures in width lower bounds are
defined once and for all, as are the distributions of random restrictions in length
lower bounds.

In this section we present a static lower bound on resolution space. Our proof
combines the ideas of Section 3 and the complexity measure for clauses used
in [BW01]. We define a complexity measure for configurations which can be used
to prove space lower bounds along the lines of the width lower bounds mentioned
above.

This approach works in general in that any complexity measure for clauses can
be transformed into a complexity measure for configurations. This turns many
width lower bound techniques into space lower bound ones (e.g., width lower bounds
for random 3-CNF formulas.) In this section we give a concrete example of this for
Tseitin formulas, which are a family of CNFs encoding a specific type of systems of
linear equations; see Figure 2 for illustration.

Definition 8 (Tseitin formula). Let G = (V,E) be an undirected graph and
χ : V → {0, 1} be a function. Let us identify every edge e ∈ E with a variable xe,
and let us write PARITY v,χ to denote the canonical CNF encoding of the constraint∑
e3v xe = χ(v) (mod 2) for any vertex v ∈ V . Then the Tseitin formula over G

with respect to χ is Ts(G,χ) =
∧
v∈V PARITY v,χ.

When the degree of G is bounded by d, PARITY v,χ has at most 2d−1 clauses,
all of width at most d, and hence Ts(G,χ) is a d-CNF formula with at most 2d−1|V |
clauses. We say that a set of vertices U has odd (even) charge if

∑
u∈U χ(u) is odd

(even). A simple parity argument shows that when V (G) has odd charge, Ts(G,χ)
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is unsatisfiable. On the other hand, if G is connected then for each v ∈ V it is
always possible to satisfy the constraints PARITY u,χ for all u 6= v.

The hardness of Tseitin formulas are governed by the expansion properties of
the underlying graph.

Definition 9 (Edge expander). The graph G = (V,E) is an (s, δ)-edge expander
if for every set of vertices U ⊆ V such that |U | ≤ s it holds that |∂(U)| ≥ δ|U |,
where ∂(U) is the set of edges of G with exactly one vertex in U .

We next present a new technique of showing that if a graph G is a good edge
expander, then large space is needed to refute Ts(G,χ) in resolution. We remark that
this was originally proven in [ABRW02, ET01] (and with slightly better parameters,
as discussed below).

Theorem 10. For a Tseitin formula Ts(G,χ) over a d-regular (s, δ)-edge ex-
pander G it holds that Sp(Ts(G,χ) `⊥) ≥ δs/d.

For the rest of this section we fix a particular d-regular connected graph G
and a function χ with respect to which V (G) has odd charge, and consider the
corresponding Tseitin formula Ts(G,χ). The main tool used to prove Theorem 10 is
a complexity measure for configurations. We show that if G is a good expander, then
every refutation of Ts(G,χ) must have a configuration with intermediate measure.
We conclude the proof by showing that the space of a configuration is at least its
measure if the latter falls within a specific range of values.

We first define our configuration complexity measure for terms (i.e., configurations
consisting of unit clauses), and then extend it to general configurations. In words,
the term complexity measure is the smallest number of parity axioms of Ts(G,χ)
that collectively contradict the term, and the configuration complexity measure is
the maximum measure over all terms that imply the configuration.

Definition 11 (Configuration complexity measure). The term complexity
ν(T ) of a term T is ν(T ) = min

{
|V ′| : V ′ ⊆ V and T ∧∧v∈V ′ PARITY v,χ � ⊥

}
.

The configuration complexity measure µ(C) of a resolution configuration C is
defined as µ(C) = max {ν(T ) : T � C}. When C is contradictory we have µ(C) = 0.

Note that ν(T ) is a monotone decreasing function, since T ⊆ T ′ implies ν(T ) ≥
ν(T ′) by definition. Hence, we only need to look at minimal terms T for which T � C
in order to determine µ(C). These minimal terms are the negations of the clauses
in neg(C) (compare Proposition 4). We now introduce the convenient concept of
witness for the measure.

Definition 12 (Witness of measure). A witness of the measure ν(T ) of the
term T is a set of vertices V ∗ for which ν(T ) = |V ∗| and T ∧∧v∈V ∗ PARITY v,χ � ⊥.
Similarly, for configurations C a witness for µ(C) is a term T ∗ for which µ(C) = ν(T ∗)
and T ∗ � C.
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There is a big gap between the measure of the initial and final configurations of
a refutation, and we will see that the measure does not change much at each step.
Hence, the refutation must pass through a configuration of intermediate measure.
Formally, if G is connected then µ(∅) = |V |, because the empty term has measure
|V |, and µ(C) = 0 when ⊥ ∈ C.

To study how the measure changes during the refutation, we look separately at
what happens at each type of step. As in the proof of Theorem 1, we can deal with
inference and clause erasure steps together, whereas axiom downloads require more
work.

Lemma 13. If C � C′ then µ(C) ≤ µ(C′).

Proof. Let T ∗ be a witness for µ(C). Then, T ∗ � C and, hence, we also have
T ∗ � C′. Therefore, µ(C′) ≥ ν(T ∗), because µ(C′) is equal to the maximum value of
ν(T ) for terms T implying C′. As ν(T ∗) is equal to µ(C), the bound µ(C′) ≥ µ(C)
follows.

Lemma 14. For a clause A in Ts(G,χ) and a graph G of bounded degree d,
if C′ = C ∪ {A} then d · µ(C′) + 1 ≥ µ(C).

Proof. Fix a witness T ∗ for µ(C). Since µ(C) = ν(T ∗), to prove the lemma we need
to upper-bound the value ν(T ∗) by d · µ(C′) + 1.

For any literal a in A, we know that T ∗ ∧ a implies C′ because T ∗ implies
C and a implies A. Hence, it holds that µ(C′) ≥ ν(T ∗ ∧ a), and so it will be
sufficient to relate ν(T ∗) to the values ν(T ∗ ∧ a). To this end, we look at the set
of vertices V ∗ =

⋃
a∈A Va ∪ {vA}, where each Va is a witness for the corresponding

measure ν(T ∗ ∧ a), and vA is the vertex such that A ∈ PARITY vA,χ. Note
that by definition it holds that |Va| = ν(T ∗ ∧ a) for every a ∈ A, and also that
|V ∗| ≤ 1 +

∑
a∈A|Va|, which sum can in turn be bounded by d · µ(C′) + 1 because

A has at most d literals.
We conclude the proof by showing that T ∗ ∧ ∧v∈V ∗ PARITY v,χ � ⊥, which

establishes that ν(T ∗) ≤ |V ∗|. The implication holds because any assignment
either falsifies the clause A, and so falsifies PARITY vA,χ, or satisfies one of the
literals a ∈ A. But then we have as a subformula T ∗ ∧∧v∈Va

PARITY v,χ, which is
unsatisfiable by the definition of Va when a is true. The bound ν(T ∗) ≤ |V ∗| then
follows, and so µ(C) ≤ |V ∗| ≤ d · µ(C′) + 1.

The preceding results imply that every resolution refutation of the Tseitin formula
has a configuration of intermediate complexity. This holds because every refutation
starts with a configuration of measure |V | and needs to reach the configuration of
measure 0, as noted above, while at each step the measure drops by a factor of at
most 1/d by the lemmas we just proved. Let us state this formally as a corollary.

Corollary 15. For any resolution refutation π of a Tseitin formula Ts(G,χ) over a
connected graph G of bounded degree d and any positive integer r ≤ |V | there exists
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a configuration C ∈ π such that the configuration complexity measure is bounded
by r/d ≤ µ(C) ≤ r.

It remains to show that a configuration having intermediate measure must also
have large space. This part of the proof relies on the graph being an expander.

Lemma 16. Let G be an (s, δ)-edge expander graph. For every configuration C
satisfying µ(C) ≤ s it holds that Sp(C) ≥ δ · µ(C).

Proof. To prove the lemma, we lower-bound the size of a minimal witness T ∗ for
µ(C) and then use the bound Sp(C) ≥ |T ∗|. This inequality follows by noting that
at most one literal per clause in C is needed in the implying term T ∗.

Fix T ∗ to be a minimal witness for µ(C) and let V ∗ be a witness for ν(T ∗). Note
that |V ∗| = µ(C). We prove that T ∗ must contain a variable for every edge in ∂(V ∗).
Towards contradiction, assume that T ∗ does not contain some xe for an edge e in
∂(V ∗), and let ve be a vertex in V ∗ incident to e. Let α be an assignment that
satisfies T ∗ ∧∧v∈V ∗\{ve} PARITY v,χ. Such an assignment must exist as otherwise
V ∗ would not be a witness for ν(T ∗). We can modify α by changing the value of
xe so that PARITY ve,χ is satisfied. By the assumption, the new assignment α′
still satisfies T ∗ and

∧
v∈V ∗\{ve} PARITY v,χ as neither contains the variable xe.

Thus, we have found an assignment satisfying T ∗ ∧∧v∈V ∗ PARITY v,χ, which is a
contradiction.

Hence, the term T ∗ contains a variable for every edge in ∂(V ∗). Since G is an
(s, δ)-edge expander and |V ∗| ≤ s, the term T ∗ contains at least δ · |V ∗| variables.
From the inequality Sp(C) ≥ |T ∗| and the fact that |V ∗| = µ(C) it follows that
Sp(C) ≥ δ · µ(C) when µ(C) ≤ s.

The preceding lemma and Corollary 15 together imply Theorem 10, because
by Corollary 15 there is a configuration with measure between s/d and s, and this
configuration has space at least δs/d by Lemma 16.

We want to point out that Theorem 10 gives inferior results compared to a direct
application of Theorem 1 to known width lower bounds. The bounds that we get
are worse by a multiplicative factor of 1/d. One might have hoped to remove this
multiplicative factor by improving the bound in Lemma 14, but this is not possible
because this lemma is tight.

To see this, suppose that the graph G is a d-star: it consists of a center v
which is connected to d petals u1, . . . , ud by the edges e1, . . . , ed, the charge of the
center is χ(v) = 1, and the charges of the petals are χ(u1) = · · · = χ(ud) = 0. Let
A ∈ PARITY v,χ be the axiom A = xe1 ∨ · · · ∨ xed

. Taking C = ∅ and C′ = {A},
we have that µ(C) = d+ 1 while µ(C′) = 1. The latter equality holds because every
minimal term implying A is of the form xei , a term which is contradicted by the single
axiom xei ∈ PARITY ui,χ. Hence, we have an example where d · µ(C′) + 1 = µ(C),
which shows that Lemma 14 is tight.
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5 From Small Space to Small Degree in Polynomial
Calculus?

An intriguing question is whether an analogue of the bound in Theorem 1 holds also
for the stronger algebraic proof system polynomial calculus introduced in [CEI96].
In this context, it is more relevant to discuss the variant of this system presented
in [ABRW02], known as polynomial calculus (with) resolution or PCR, which we
briefly describe below.

In a PCR derivation, configurations are sets of polynomials in F[x, x, y, y, . . .],
where x and x are different formal variables. Each polynomial P appearing in a
configuration corresponds to the assertion P = 0. The proof system contains axioms
x2−x and x+ x− 1, which restrict the values of the variables to {0, 1}, and enforce
the complementarity of x and x. A literal has truth value true if it is equal to 0, and
truth value false if it is equal to 1. Each clause C is translated to a monomial m
with the property that m = 0 if and only if C is satisfied. For example, the clause
x ∨ y ∨ z is translated to the monomial xyz. There are two inference rules, linear
combination p q

αp+βq and multiplication p
xp , where p and q are (previously derived)

polynomials, the coefficients α, β are elements of F, and x is any variable (with or
without bar). These rules are sound in the sense that if the antecedent polynomials
evaluate to zero under some assignment, then so does the consequent polynomial.
A CNF formula F is refuted in PCR by deriving the constant term 1 from the
(monomials corresponding to the) clauses in F .

The size, degree and monomial space measures are analogues of length, width
and clause space in resolution (counting monomials instead of clauses). PCR can
simulate resolution refutations efficiently with respect to all of these measures.

Let us now discuss why the method we use to prove Theorem 1 is unlikely to
generalize to PCR. An example of formulas that seem hard to deal with in this way
are so-called pebbling contradictions, which we briefly describe next.

Pebbling contradictions are defined in terms of directed acyclic graphs (DAGs)
G = (V,E) with bounded fan-in, where vertices with no incoming edges are called
sources and vertices without outgoing edges sinks. Assume G has a unique sink z,
and associate a variable V to each vertex v ∈ V . Then the pebbling contradiction
over G consists of the following clauses:

• for each source vertex s, a clause s (source axioms),

• for each non-source vertex v, a clause
∨

(u,v)∈E u ∨ v (pebbling axioms),

• for the sink z, a clause z (sink axiom).

See Figure 4 for an illustration. Ben-Sasson [Ben09] showed that pebbling contradic-
tions exhibit space-width trade-offs in resolution in that they can always be refuted
in constant width as well as in constant space but that there are graphs for which
optimizing one of these measures necessarily causes essentially worst-case linear
behaviour for the other measure.
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(a) Pyramid graph Π2 of height 2.
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∧ v
∧ w
∧ (u ∨ v ∨ x)
∧ (v ∨ w ∨ y)
∧ (x ∨ y ∨ z)
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(b) Pebbling contradiction PebΠ2
.

Figure 4: Pebbling contradiction PebΠ2 for the pyramid graph Π2 of height 2.

There are two natural ways to refute pebbling contradictions in resolution. One
approach is to go “bottom-up” from sources to sinks in topological order, and derive
for each vertex v ∈ V (G) the unit clause v using the pebbling axiom for v and
the unit clauses for its predecessors. When the refutation reaches z it derives a
contradiction with the sink axiom z. See Figure 5(a) for an example. This refutation
can always be carried out in constant width but for some graphs requires large
space.

The other approach is a “top-down” refutation due to [Ben09] where one starts
with the sink axiom z and derives clauses of the form v1 ∨ · · · ∨ v`. A new clause
is derived by replacing any vertex vi in the old one by all its predecessors, i.e., by
resolving with the pebbling axiom for vi. Since G is acyclic we can repeat this
process until we get to the sources, for which the negated literals can be resolved
away using source axioms. This refutation is illustrated in Figure 5(b). It is not
hard to see that it can be performed in constant clause space, but it might require
large width.

A careful study now reveals that the transformation of configurations in our
proof of Theorem 1 maps either of the two refutations described above into the other
one. Instead of providing a formal argument, we encourage the reader to compute
the transformations of the refutations in Figures 5(a) and 5(b), observing that the
axioms are downloaded in opposite order in the two derivations. This observation
is the main reason why our proof does not seem to generalize to PCR, as we now
explain.

In PCR, we can represent any conjunction of literals a1 ∧ · · · ∧ar as the binomial
1−∏i ai. Using this encoding with the bottom-up approach yields a third refutation,
which has constant space but possibly large degree: the fact that a set of vertices
U “are true” can be stored as the high-degree binomial 1−∏v∈U v instead of as a
collection of low-degree monomials {v | v ∈ U}. Hence, there are constant space
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1. u Axiom
2. v Axiom
3. w Axiom
4. u ∨ v ∨ x Axiom
5. v ∨ x Res(1, 4)
6. x Res(2, 5)
7. v ∨ w ∨ y Axiom
8. w ∨ y Res(2, 7)
9. y Res(3, 8)

10. x ∨ y ∨ z Axiom
11. y ∨ z Res(6, 10)
12. z Res(9, 11)
13. z Axiom
14. ⊥ Res(12, 13)

(a) Bottom-up refutation of PebΠ2
.

1. z Axiom
2. x ∨ y ∨ z Axiom
3. x ∨ y Res(1, 2)
4. v ∨ w ∨ y Axiom
5. v ∨ w ∨ x Res(3, 4)
6. u ∨ v ∨ x Axiom
7. u ∨ v ∨ w Res(5, 6)
8. w Axiom
9. u ∨ v Res(7, 8)

10. v Axiom
11. u Res(9, 10)
12. u Axiom
13. ⊥ Res(11, 12)

(b) Top-down refutation of PebΠ2
.

Figure 5: Example resolution refutations of pebbling contradiction PebΠ2 .

PCR refutations of pebbling contradictions in both the bottom-up and the top-down
directions. This in turn means that if our proof method were to work for PCR, we
would need to find constant degree refutations in both directions. For the top-down
case it seems unlikely that such a refutation exists, since clauses of the form

∨
v∈U v

cannot be represented as low-degree polynomials.

6 Concluding Remarks

In this work, we present an alternative, more explicit, proof of the result by Atserias
and Dalmau [AD08] that space is an upper bound on width in resolution. Our
construction gives a syntactic way to convert a small-space resolution refutation into
a refutation in small width. We also exhibit a new “black-box” approach for proving
space lower bounds that works by defining a progress measure à la Ben-Sasson and
Wigderson [BW01] and showing that when a refutation has made medium progress
towards a contradiction it must be using a lot of space. We believe that these
techniques shed interesting new light on resolution space complexity and hope that
they will serve to increase our understanding of this notoriously tricky complexity
measure.

As an example of a question about resolution space that still remains open,
suppose we are given a k-CNF formula that is guaranteed to be refutable in constant
space. By [AD08] it is also refutable in constant width, and a simple counting
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argument then shows that exhaustive search in small width will find a polynomial-
length resolution refutation. But is there any way of obtaining such a short refutation
from a refutation in small space that is more explicit than doing exhaustive search?
And can we obtain a short refutation without blowing up the space by more than,
say, a constant factor? Known length-space trade-off results for resolution in
[BBI12, BN11, BNT13, Nor09] do not answer this question as they do not apply to
this range of parameters. Unfortunately, our new proof of the space-width inequality
cannot be used to resolve this question either, since in the worst case the resolution
refutation we obtain might be as bad as the one found by exhaustive search of
small-width refutations (or even worse, due to repetition of clauses). This would
seem to be inherent—a recent result [ALN14] shows that there are formulas refutable
in space and width s where the shortest refutation has length nΩ(s), i.e., matching
the exhaustive search upper bound up to a (small) constant factor in the exponent.

An even more intriguing question is how the space and degree measures are
related in polynomial calculus, as discussed in Section 5. Most relations between
length, space, and width in resolution carry over with little or no modification
to size, space, and degree, respectively, in polynomial calculus. So can it be that
space also yields an upper bound on degree in polynomial calculus? Or could
perhaps even the stronger claim hold that polynomial calculus space is an upper
bound on resolution width? These questions remain wide open, but in the recent
paper [FLM+13] we made some limited progress by showing that if a formula
requires large resolution width, then the “XORified version” of the formula requires
large polynomial calculus space. We refer to the introductory section of [FLM+13]
for a more detailed discussion of these issues.
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Long Proofs of (Seemingly) Simple Formulas∗

Mladen Mikša1 and Jakob Nordström1

1KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

In 2010, Spence and Van Gelder presented a family of CNF formulas
based on combinatorial block designs. They showed empirically that this
construction yielded small instances that were orders of magnitude harder for
state-of-the-art SAT solvers than other benchmarks of comparable size, but
left open the problem of proving theoretical lower bounds. We establish that
these formulas are exponentially hard for resolution and even for polynomial
calculus, which extends resolution with algebraic reasoning. We also present
updated experimental data showing that these formulas are indeed still hard
for current CDCL solvers, provided that these solvers do not also reason in
terms of cardinality constraints (in which case the formulas can become very
easy). Somewhat intriguingly, however, the very hardest instances in practice
seem to arise from so-called fixed bandwidth matrices, which are provably easy
for resolution and are also simple in practice if the solver is given a hint about
the right branching order to use. This raises the question of whether these
formulas could be examples of SAT instances for which CDCL with current
heuristics does not always search efficiently for short resolution proofs, despite
the theoretical results of [Pipatsrisawat and Darwiche 2011] and [Atserias,
Fichte, and Thurley 2011].

1 Introduction

Modern applied SAT solving is a true success story, with current state-of the art
solvers based on conflict-driven clause learning (CDCL) [BS97, MS99, MMZ+01]
having delivered performance improvements of orders of magnitude larger than
seemed possible just 15–20 years ago. From a theoretical perspective, however, the
dominance of the CDCL paradigm is somewhat surprising in that it is ultimately

∗This is a slightly revised and expanded version of the paper [MN14] which appeared in
Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14).
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based on the fairly weak resolution proof system [Bla37]. Since it is possible in
principle to extract a resolution refutation of an unsatisfiable formula from the
execution trace of a CDCL solver running on it, lower bounds on resolution refutation
length/size yield lower bounds on the running time of any CDCL solver trying to
decide this formula.1 By now, there is a fairly extensive literature on SAT instances
for which exponential lower bounds are known, imposing firm restrictions on what
kind of formulas the basic CDCL approach can hope to solve.

This suggests that an interesting question might be to turn the tables and ask for
maximally hard instances. What are the smallest CNF formulas, measured in size or
number of variables, that are beyond reach of the currently best solvers? Pigeonhole
principle (PHP) formulas were the first to be proven hard for resolution in the
breakthrough result by Haken [Hak85], but in terms of formula size N their hardness
scales only as exp

(
Ω
( 3
√
N
))
. Two formula families with refutation length exp(Ω(N))

are Tseitin formulas2 over so-called expander graphs and random k-CNF formulas,
as shown by Urquhart [Urq87] and Chvátal and Szemerédi [CS88], respectively. The
strongest lower bounds to date in terms of the explicit constant in the exponent
were established recently by Beck and Impagliazzo [BI13] for formulas encoding
inconsistent systems of linear equations.

Spence [Spe10] instead focused on empirical hardness and exhibited a family
of 3-CNF formulas that seem practically infeasible even for very small instances
(around 100 variables). These formulas can be briefly described as follows. Fix a set
of 4n+1 variables. Randomly partition the variables into groups of 4 plus one group
of 5. For each 4-group, write down the natural 3-CNF formula encoding the positive
cardinality constraint that at least 2 variables must be true, and for the 5-group
encode that a strict majority of 3 variables must be true. Do a second random
variable partition into 4-groups plus one 5-group, but now encode negative cardinality
constraints that the number of false variables is at least 2 and 3, respectively. By
a counting argument, the CNF formula consisting of the conjunction of all these
clauses must be unsatisfiable. Although [Spe10] does not present any theoretical
analysis, these formulas have a somewhat pigeonhole principle-like flavour and one
can intuitively argue that they would seem likely to be hard provided that every
moderately large set of positive cardinality constraints involves variables from many
different negative constraints.

This construction was further developed by Van Gelder and Spence in [VS10],
where the variable partitioning is done in terms of an n× n matrix with 4 non-zero
entries in each row and column except that one extra non-zero entry is added to
some empty cell. The variables in the formula correspond to the non-zero entries,
each row is a positive cardinality constraint on its non-zero entries just as before, and
each column provides a negative cardinality constraint. Equivalently, this formula

1Provided that the solver does not reason in terms of cardinality constraints or systems of
linear equations and does not introduce new variables to apply extended resolution, in which case
the theoretical lower bound guarantees no longer apply.

2Tseitin formulas encode the principle that the sum of the vertex indegrees in an undirected
graph is even.

118



can be constructed on a bipartite graph which is 4-regular on both sides except
that one extra edge is added. In addition, there is a “no quadrangles” requirement
in [VS10] that says that the graph contains no cycles of length 4. Just as above, it
seems reasonable to believe that such formulas should be hard for resolution if the
graph is a good expander. One such instance on 105 variables was issued by [VS10]
as a “challenge formula” to be solved by any SAT solver in less than 24 hours, and in
the concluding remarks the authors ask whether lower bounds on resolution length
can be proven for formulas generated in this way.

Our Theoretical Results
We show that the formulas in [Spe10, VS10] are exponentially hard for resolution if
the collection of constraints have a certain expansion property, and that random
instances of these formulas are expanding in this sense with overwhelming probability.
Let U denote the set of positive cardinality constraints and V the set of negative
constraints. Then we can represent the formulas in [VS10] (and [Spe10]) as bipartite
(multi-)graphs G = (U ∪̇ V,E), where edges are identified with variables and
x = (u, v) is an edge in E if x occurs in both u ∈ U and v ∈ V (note that this
is well-defined since each variable occurs in exactly one positive and one negative
constraint). Informally, we obtain the following lower bound for resolution (see
Theorem 7 for the formal statement).

Theorem 1 (Informal). If a 4-regular bipartite (multi-)graph G with one extra edge
added is a sufficiently good expander, then the formula in [VS10] generated from G (or
in [Spe10] if G is a multigraph) requires resolution refutations of length exp

(
Ω(n)

)
.

In particular, random instances of these formulas require resolution length exp
(
Ω(n)

)

asymptotically almost surely.

As a side note, we remark that the “no quadrangles” condition discussed above
is not necessary (nor sufficient) for this theorem to hold—the more general notion
of expansion is enough to guarantee that the formulas will be hard.

In one sentence, the proof works by reducing the formula to the pigeonhole
principle on a 3-regular bipartite graph, which is then shown to be hard by a slight
tweak of the techniques developed by Ben-Sasson and Wigderson [BW01]. A more
detailed (if still incomplete) proof sketch is as follows. Start by fixing any complete
matching in G (which can be shown to exist) and set all the matched edges plus
the added extra edge to true. Also, set all remaining edges incident to the unique
degree-5 vertex v∗ on the right to false (this satisfies the negative constraint for v∗,
which means that the corresponding clauses vanish). After this restriction, we are
left with n constraints on the left which require that at least 1 out of the remaining
3 variables should be true, whereas on the right we have n− 1 constraints which all
require that at most 1 remaining variable is true. But this is just a restricted PHP
formula where each pigeon can go into one of three holes. Since we had a bipartite
expander graph before restricting edges, and since not too many edges were removed,
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the restricted graph is still an expander. Now we can argue along the lines of [BW01]
to obtain a linear lower bound on the resolution width of refuting the formula, from
which an exponential length lower bound follows (and since restrictions can only
make formulas easier, this lower bound must also hold for the original formula).

In fact, using tools from [AR03] one can show that the formulas are hard not
only for resolution but also for polynomial calculus resolution [ABRW02, CEI96],
which adds the power of Gröbner basis computations to resolution.

Theorem 2 (Informal). For 4-regular bipartite (multi-)graphs with one extra
edge that are sufficiently good expanders the formulas in [Spe10, VS10] require
refutations of size exp

(
Ω(n)

)
in polynomial calculus resolution (PCR). In particular,

randomly sampled instances of these formulas require PCR refutation size exp
(
Ω(n)

)

asymptotically almost surely.

The technical details of this argument get substantially more involved, however.
Thus, although Theorem 1 is strictly subsumed by Theorem 2, we also present a
self-contained proof of the former theorem since it is much cleaner and simpler.

Our Empirical Results
On the practical side, we report results from running some current state-of-the-art
SAT solvers on random instances of the formulas constructed by Spence [Spe10]
and Van Gelder and Spence [VS10], as well as on so-called fixed bandwidth versions
of these formulas. The latter are formulas for which the non-zero entries on each
row in the matrix appear on the diagonal and at some fixed (and small) horizontal
offsets from the diagonal. Such matrices yield highly structured formulas, and as
pointed out in [VS10] it is not hard to show that these formulas have refutations in
polynomial length (and also constant width and space as defined in Section 2).

Our findings are that random instances of the formulas in [Spe10, VS10] are very
hard, and become infeasible for slightly above 100 variables. As could be expected,
the formulas in [VS10] are somewhat harder than the original formulas in [Spe10],
since the former are guaranteed not to have any multi-edges in the bipartite graph
representing the constraints and thus “spread out” variables better among different
constraints. However, to our surprise the formulas that are hardest in practice are
actually the ones generated from fixed bandwidth matrices. A priori, one possible
explanation could be that although the formulas are theoretically easy, the constants
hidden in the asymptotic notation are so bad that the instances are hard for all
practical purposes. This appears not to be the case, however—when the SAT solver
is explicitly given a good variable branching order the fixed bandwidth formulas
are solved much more quickly. Thus, this raises the question whether this could
perhaps be an example of formulas for which CDCL with current state-of-the-art
heuristics fails to search effectively for resolution proofs. This stands in intriguing
contrast to the theoretical results in [AFT11, PD11], which are usually interpreted
as saying that CDCL essentially harnesses the full power of resolution.
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We have also done limited experiments with feeding the formulas in [Spe10,
VS10] to Sat4j [LP10], the latest version of which can detect (small) cardinality
constraints [BLLM14]. It is not hard to see that if the SAT solver is given the power
to count, then it could potentially figure out quickly that it cannot possibly be the
case that a strict majority of the variables is both true and false simultaneously.
Indeed, this is also what happens, and in particular Sat4j solves the challenge
formula from [VS10] in less than a second.

Organization of This Paper
We start by reviewing some preliminaries in Section 2. In Section 3, we prove expo-
nential lower bounds in resolution for the formulas by Van Gelder and Spence [VS10],
and in Section 4 we describe how to modify this proof to also deal with Spence’s
original formulas [Spe10]. We extend all of these results to polynomial calculus
resolution in Section 5. In Section 6, we report our experimental results. Section 7
contains some concluding remarks.

2 Proof Complexity Preliminaries

In what follows, we give a brief overview of the relevant proof complexity background.
This material is standard and we refer to, e.g., the survey [Nor13] for more details.
All formulas in this paper are in conjunctive normal form (CNF), i.e., consist of
conjunctions of clauses, where a clause is a disjunction of positive literals (unnegated
variables) and negative literals (negated variables, denoted by overline). It is
convenient to view clauses as sets, so that there is no repetition of literals and order
is irrelevant. A k-CNF formula has all clauses of size at most k, which is always
assumed to be some fixed (and, in this paper, small) constant.

A resolution refutation π : F `⊥ of a formula F (sometimes also referred to as
a resolution proof for F ) is an ordered sequence of clauses π = (D1, . . . , Dτ ) such
that Dτ = ⊥ is the empty clause without literals, and each line Di, 1 ≤ i ≤ τ , is
either one of the clauses in F (an axiom clause) or is derived from clauses Dj , Dk

in π with j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C (2.1)

(where the clause B ∨ C is the resolvent of the clauses B ∨ x and C ∨ x on x). It is
also sometimes technically convenient to add a weakening rule

B
B ∨ C (2.2)

that allows adding literals to a previously derived clause.
With every refutation π we can associate a graph Gπ by having a sequence of

vertices vi labelled by the clauses Di on a line in order of increasing i, and with
edges from vj and vk to vi (or from vj to vi) if Di was derived by resolution from Dj
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and Dk (or by weakening from Dj). Note that there might be several occurrences of
a clause D in π, and if so each occurrence gets its own vertex in Gπ. The length (or
size) L(π) of a resolution refutation π is the number of clauses in π counted with
repetitions (i.e., the number of vertices in Gπ). The width W(C) of a clause C is
the number of literals |C|, and the width W(π) of a refutation π is the width of a
largest clause in π. The (clause) space of a refutation at step i is the number of
clauses Cj , j < i, with edges to clauses Ck, k ≥ i, plus 1 for the clause Ci derived
at this step. That is, intuitively space measures the number of clauses we need to
keep in memory at step i, since they were derived before step i but will be used to
infer new clauses after step i (or possibly at step i). The space Sp(π) of a refutation
is the maximum space over all steps in π. Taking the minimum over all resolution
refutations of a formula F , we obtain the length LR(F `⊥), width WR(F `⊥), and
space SpR(F `⊥) of refuting F , respectively. It is not hard to show that all use of
weakening can be eliminated from a resolution refutation without increasing any of
these measures.

Resolution can be extended with algebraic reasoning corresponding to Gröbner
basis computations to yield the proof system polynomial calculus resolution (PCR),
or more briefly just polynomial calculus.3 For some fixed field F (which would be
GF(2) in practical applications but can be any field in theory) we consider the
polynomial ring F[x, x, y, y, . . .] with x and x as distinct formal variables,4 and
translate clauses

∨
x∈L+ x ∨

∨
y∈L− y to monomials

∏
x∈L+ x ·

∏
y∈L− y. A PCR

refutation π of F is then an ordered sequence of polynomials π = (P1, . . . , Pτ ),
expanded out as linear combinations of monomials, such that Pτ = 1 and each line
Pi, 1 ≤ i ≤ τ , is one of the following:

• a monomial encoding a clause in F ;

• a Boolean axiom x2−x or complementarity axiom x+x− 1 for any variable x;

• a polynomial obtained from one or two previous polynomials in the sequence
by applying a linear combination

Q R

αQ+ βR
(2.3)

or multiplication
Q

xQ
(2.4)

for any α, β ∈ F and any variable x.
3Strictly speaking, PCR as defined in [ABRW02] is a slight generalization of polynomial

calculus [CEI96], but in the current paper we will not be too careful in distinguishing between the
two and the term “polynomial calculus” will refer to PCR unless specified otherwise.

4We remark that the distinct formal variables for negated literals, which is what [ABRW02]
added on top of [CEI96], are there for theoretical reasons only in order to get a more well-behaved
proof system. They would not appear in practical implementations of SAT solvers using Gröbner
basis computations. On the theoretical side, they only make the proof system stronger, however,
and so can only make our task of proving lower bounds harder.
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Because of the Boolean axioms, we can assume without loss of generality that all
polynomials in a PCR refutation are multilinear.

The size S(π) of a PCR refutation π is the number of monomials in π (counted
with repetitions), the degree Deg(π) is the maximal degree of any monomial ap-
pearing in π, and (monomial) space Sp(π) is defined in analogy with clause space,
only counting monomials (with repetitions) instead of clauses. Taking the minimum
over all PCR refutations of a CNF formula F , we define the size SPCR(F ` ⊥),
degree DegPCR(F `⊥), and space SpPCR(F `⊥) of refuting F in PCR. When the
proof system is clear from context, we will drop the subindices denoting resolution or
PCR, respectively. It is straightforward to show that PCR can simulate resolution
efficiently by simply mimicking the resolution steps in a refutation, and this simula-
tion can be done without any noticeable blow up in size/length, degree/width, or
space. There are formulas,5 however, for which PCR can be exponentially stronger
than resolution with respect to size/length.

A restriction ρ on F is a partial assignment to the variables of F . We use
Dom(ρ) to denote the set of variables assigned by ρ. In a restricted formula F�ρ
(or refutation π�ρ) all clauses satisfied by ρ are removed and all other clauses have
falsified literals removed. It is a well-known fact that restrictions preserve resolution
refutations, so that if π is a resolution refutation of F , then π�ρ is a refutation of
F�ρ (possibly using weakening) in at most the same length, width, and space. For
polynomials, we think of 0 as true and 1 as false. Thus, if a restriction satisfies a
literal in a monomial that monomial vanishes, and all falsified literals in a monomial
get replaced by 1 and vanish. Again it holds that if π is a PCR refutation of F ,
then π�ρ is a PCR refutation of F �ρ (after a simple postprocessing step to take
care of cancelling monomials and to adjust for that multiplication can only be done
one variable at a time). This restricted refutation will have at most the same size,
degree, and space (except possibly for a constant factor in size due to postprocessing
multiplications).

3 Theoretically Hard Formulas on Expander Graphs

In this section, we present a lower bound for the formulas in [VS10]. Let us start
by giving an explicit, formal definition of these formulas, which we will refer to as
subset cardinality formulas.

Definition 3 (Subset cardinality formula). Suppose that G = (U ∪̇ V,E) is a
4-regular bipartite (multi-)graph except that one extra edge has been added. Then
the subset cardinality formula SC (G) over G has variables xe, e ∈ E, and clauses:

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to u ∈ U ,

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to v ∈ V .

5Examples of such formulas are Tseitin formulas and onto functional pigeonhole principles, but
this is not relevant for the rest of this paper and so we do not discuss this in further detail here.
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1 1 0 1 0 0 0 1 0 1
0 1 1 0 1 0 0 0 1 0
0 0 1 1 0 1 0 0 0 1
1 0 0 1 1 0 1 0 0 0
0 1 0 0 1 1 0 1 0 0
0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1
1 0 0 0 1 0 0 1 1 0
0 1 0 0 0 1 0 0 1 1
1 0 1 0 0 0 1 0 0 1




(a) Matrix

(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,2 ∨ x1,10)
∧ (x1,1 ∨ x1,4 ∨ x1,8)

...
∧ (x3,10 ∨ x7,10 ∨ x9,10)
∧ (x3,10 ∨ x7,10 ∨ x10,10)
∧ (x3,10 ∨ x9,10 ∨ x10,10)
∧ (x7,10 ∨ x9,10 ∨ x10,10)

(b) Formula

Figure 2: Example of a fixedbandwidth matrix of size 10 and the corresponding
formula.

An example of a formula based on the fixed bandwidth matrix is given in
Figure 2. As noted before, an easy counting argument shows that these formulas are
unsatisfiable. Intuitively, the hardness of proving this unsatisfiability should depend
on the structure of the underlying graph G. We remind the reader that compared
to [VS10], the “no quadrangles” condition mentioned in Section 1 is missing in
Definition 3. This is because this condition is neither necessary nor sufficient to
obtain lower bounds. Expressed in terms of the graph G, what quadrangle-freeness
means is that there are no 4-cycles, which is essentially saying that no constraints
in G have a very “localized structure.” However, the fixed bandwidth formulas
already discussed in Section 1 can be constructed to be quadrangle-free, but are
still guaranteed to be easy for resolution. Therefore, in order for our lower bound
proof to go through we need the more general condition that the graph G should be
an expander as defined next.

Definition 4 (Expander). A bipartite graph G = (U ∪̇V,E) is an (s, δ)-expander
if for each vertex set U ′ ⊆ U, |U ′| ≤ s, it holds that |N(U ′)| ≥ δ|U ′|, where
N(U ′) = {v ∈ V | ∃(u, v) ∈ E for u ∈ U ′} is the set of neighbours of U ′.

The key idea in our lower bound proof is to apply a suitably chosen restriction to
reduce subset cardinality formulas to so-called graph pigeonhole principle formulas
PHP(G). These formulas are also defined in terms of bipartite graphs G = (U ∪̇V,E)
and encode that every “pigeon” vertex on the left, i.e., in U , needs to have at least
one of the edges incident to it set to true, while every “hole” vertex on the right,
i.e., in V , must have at most one edge incident to it set to true. Formally, PHP(G)
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is a CNF formula over variables xu,v, for every edge in (u, v) ∈ E, consisting of the
following axioms:
∨

v∈N(u)

xu,v for all u ∈ U (pigeon axioms)

(3.1)
xu,v ∨ xu′,v for all v ∈ V and (u, v), (u′, v) ∈ E, where u 6= u′ (hole axioms)

(3.2)

Ben-Sasson and Wigderson [BW01] showed that random instances of such for-
mulas are hard for resolution if the left degree is at least 5, and modifying their
techniques slightly we prove that left degree 3 is sufficient provided that the graphs
have good enough expansion. The proof is by showing a resolution width lower
bound and then applying the lower bound on length in terms of width in [BW01].
An analogous result can also be proven for polynomial calculus by using techniques
from Alekhnovich and Razborov [AR03] to obtain a degree lower bound and then
applying the lower bound on size in terms of degree in Impagliazzo et al. [IPS99],
which yields the following lemma.

Lemma 5. Suppose that G = (U ∪̇V,E) is a 3-regular
(
εn, 3

2 +δ
)
-expander for some

constant ε, δ > 0 and |U | = |V | = n, and let G′ be the graph obtained by removing
any vertex from V in G and its incident edges. Then the resolution refutation length
of the graph pigeonhole principle PHP(G′) is exp(Ω(n)), and the same bound holds
for PCR size.

We first show how Lemma 5 can be used to establish the lower bound for subset
cardinality formulas. In order to do this, we need the following standard lemma for
regular bipartite graphs, the proof of which is provided for completeness.

Lemma 6 ([BM08]). Every d-regular bipartite graph has a perfect matching.

Proof. Let U ′ ⊆ U be an arbitrary set of left vertices and let E1 be the set of edges
incident to U ′. Let V ′ = N(U ′) and let E2 be the set of edges incident to V ′. It
holds that E2 ⊇ E1 and, hence, |E2| ≥ |E1|. By the d-regularity of the graph we
have that |E1| = d|U ′| and |E2| = d|V ′|. Hence, it holds that |V ′| ≥ |U ′| for every
U ′ ⊆ U , which by Hall’s theorem implies the existence of a matching.

Theorem 7. Suppose that G = (U ∪̇ V,E) is a 4-regular
(
εn, 5

2 + δ
)
-expander for

|U | = |V | = n and some constants ε, δ > 0, and let G′ be obtained from G by adding
an arbitrary edge from U to V . Then any polynomial calculus refutation of SC (G′)
must have size exp

(
Ω(n)

)
(and hence the same lower bound holds for resolution

length).

Proof. We want to restrict the subset cardinality formula SC (G′) to get a graph
pigeonhole principle formula. By Lemma 6 it holds that G has a perfect matching.
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Fix such a matching M and let M ′ = M ∪ {(u′, v′)}, where (u′, v′) denotes the edge
added to G. We apply the following restriction ρ to SC (G′):

ρ
(
x(u,v)

)
=





> if (u, v) ∈M ′,
⊥ if v = v′ and (u, v′) /∈M ′,
∗ otherwise (i.e., the variable is unassigned).

(3.3)

This reduces the original formula SC (G′) to PHP(G′′) on the graph G′′ obtained
by removing the matching M and also the vertex v′ with incident edges from G. To
see this, consider what happens with the clauses encoding the constraints.

For every vertex u ∈ U \ {u′}, which has four edges ei, 1 ≤ i ≤ 4, incident to it,
we have the clauses

{xe1 ∨ xe2 ∨ xe3 , xe1 ∨ xe2 ∨ xe4 , xe1 ∨ xe3 ∨ xe4 , xe2 ∨ xe3 ∨ xe4} (3.4)

in SC (G′). After applying the restriction ρ, the one edge that is in the matching M
will be set to true, satisfying all of these clauses but one. For instance, if e4 ∈M
then only the clause xe1 ∨ xe2 ∨ xe3 remains, which corresponds to the pigeon axiom
for the vertex u in G′′. If in addition u is one of the vertices neighbouring v′, the
remaining constraint will shrink to a 2-clause. The constraint corresponding to u′ is
similarly reduced. In this case, we have five incident edges ei, 1 ≤ i ≤ 5, and two of
them are set to true. If, for instance, we have e4 ∈ M and e5 = (u′, v′), then the
only clause that is not satisfied is xe1 ∨ xe2 ∨ xe3 , which corresponds to the pigeon
axiom for the vertex u′ in G′′.

For a constraint v ∈ V \ {v′} with neighbours ei, 1 ≤ i ≤ 4, the clause set is the
same as for U \ {u′} except that every variable is negated. If e4 ∈ M , then after
the restriction we are left with the set of clauses

{xe1 ∨ xe2 ∨ xe3 , xe1 ∨ xe2 , xe1 ∨ xe3 , xe2 ∨ xe3} . (3.5)

where the last three clauses are the hole axioms for the vertex v in G′′ and the first
clause can be ignored since it follows by weakening of any of the other clauses. Since
ρ satisfies the constraint v′ the clauses encoding this constraint vanish. This shows
that SC (G′)�ρ is indeed equal to PHP(G′′).

Now all that remains is to observe that G′′ can be obtained by removing a right
vertex from a 3-regular bipartite (εn, 3

2 + δ)-expander. This is so since deleting
the matching M from G decreases all vertex degrees from 4 to 3 and lowers the
expansion factor by at most an additive 1. Applying Lemma 5 we conclude that
PHP(G′′) requires polynomial calculus size (and hence resolution length) exp

(
Ω(n)

)
.

As restrictions do not increase the length/size of refutations, the same lower bound
must hold also for SC (G′).

It remains to prove Lemma 5. Below we give a full proof of the lemma for
resolution, while the argument for polynomial calculus is given in Section 5. For
both resolution and polynomial calculus we need a stronger notion of expansion as
defined next.
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Definition 8 (Boundary expander). A bipartite graph G = (U ∪̇ V,E) is an
(s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds that
|∂(U ′)| ≥ δ|U ′|, where v ∈ ∂(U ′) if there is exactly one vertex u ∈ U ′ that is a
neighbour of v.

We have the following connection between usual expansion and boundary expan-
sion, a proof of which is provided for completeness.

Proposition 9. Every d-regular (s, δ)-expander is also an (s, 2δ − d)-boundary
expander.

Proof. For any set U ′ ⊆ U, |U ′| ≤ s, we have that d|U ′| edges are spread among
at least δ|U ′| neighbours. After each of the neighbours gets one edge we have
at most (d − δ)|U ′| edges left to spread. Hence, we are guaranteed that at least
δ|U ′|−(d−δ)|U ′| = (2δ−d)|U ′| neighbours do not get a new edge and are neighbours
of exactly one vertex in U ′.

With this stronger notion of expansion and the following theorem from [BW01]
we can prove Lemma 5 by lower bounding refutation width.

Theorem 10 ([BW01]). For any constant k and an unsatisfiable k-CNF formula
F with n variables it holds that L(F `⊥) = exp

(
Ω
(
W(F `⊥)2/n

))
.

Proof of Lemma 5 for resolution. Since by Proposition 9 G is an (εn, 2δ)-boundary
expander, even after removing a vertex in V it must hold for G′ that every set of
vertices U ′′ ⊆ U , |U ′′| ≤ εn satisfies |∂G′(U ′′)| ≥ 2δ|U ′′| − 1.

Let us also observe that the connected component Gc = (U c ∪̇ V c, Ec) of G to
which the vertex v′ belongs must be a 3-regular graph with |U c| > εn. This is so
since if |U c| ≤ εn, it would follow from the expansion of G that |V c| = |NGc(U c)| ≥( 3

2 + δ
)
|U c| > |U c|. But |U c| 6= |V c| implies that Gc cannot be a 3-regular bipartite

graph, which is a contradiction. Furthermore, for every proper subset U ′′ ( U c

it must hold that |N(U ′′)| > |U ′′|, since otherwise U ′′ and its neighbours N(U ′′)
would form a disconnected component in Gc. Hence, when we remove the vertex
v′ from Gc we have |N(U ′′)| ≥ |U ′′| for every proper subset U ′′ ( U c. By Hall’s
theorem, this implies that every proper subset U ′′ ( U c has a matching in Gc. This
shows that any refutation of PHP(G′) must use all the pigeons in Gc, i.e., at least
εn pigeon axiom clauses, to show that PHP(G′) is unsatisfiable, since the formula
becomes satisfiable if just one of these pigeon axioms is removed.

Now we can employ the progress measure on refutations developed in [BW01]
to show that the width of refuting PHP(G′) is lower bounded by εδn − 1. To
every clause Ci in a refutation we assign a measure that represents the size of a
minimal subset U ′′ of pigeons U ′ such that the formula PHP(G′�U ′′) implies Ci,
where PHP(G′�U ′′) is a subformula of PHP(G′) that consists of pigeon axioms for
vertices in U ′′ and all hole axioms.

Axioms have measure at most 1, while the measure of an empty clause is greater
than εn, as every subformula of PHP(G′) that has at most εn pigeon axioms is
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satisfiable. Moreover, by a simple application of the union bound it is easy to see
that the progress measure can at most double at each resolution step. Hence, in any
refutation of PHP(G′) there is a clause C∗ having measure between εn/2 and εn.

We can now argue by expansion and show that C∗ has at least εδn− 1 variables.
Let U∗ be a set of pigeons that defines the measure of C∗, that is the measure
of C∗ is equal to |U∗| and PHP(G′�U∗) implies C∗. Fix v∗ to be some hole in
∂G′(U∗) and let u∗ be the unique pigeon in U∗ that has v∗ as one of its neighbors.
By minimality of U∗, there exists an assignment that falsifies C∗, but satisfies the
subformula PHP(G′�U∗\{u∗}) where we removed the pigeon axiom for u∗. If we
modify this assignment by setting xu∗,v∗ to true and all other xu,v∗ that mention hole
v∗ to false, we get an assignment that satisfies PHP(G′�U∗). Hence, this assignment
must also satisfy C∗. As we changed only the variables that mention v∗, it follows
that C∗ needs to contain at least one of the variables xu,v∗ for the hole v∗ ∈ ∂G′(U∗).
This holds for every hole in ∂G′(U∗) and hence C∗ has at least 2δ|U∗| − 1 variables,
which is greater than εδn− 1.

By appealing to the lower bound on length in terms of width in Theorem 10 we
obtain a lower bound on the resolution refutation length of exp

(
Ω(n)

)
.

This proves that the formulas in [VS10] are hard for resolution if the underlying
graph is an expander. In order to establish that randomly sampled instances of such
formulas are hard, we just need the fact that randomly sampled graphs are likely to
be expanders. This follows by a theorem from [HLW06] in which it is proved that
random regular bipartite graphs are excellent expanders almost surely, except that
in their model these graphs are not necessarily simple but can have multiple edges.
However, if one conditions on the fact that the produced graph is simple, then the
resulting distribution is uniform over random graphs. Since it can also be shown for
a graph sampled randomly according to this distribution that the probability that
the graph is simple is bounded away from zero (see, e.g., [BS13, Jan13]), we obtain
the result that we need that a graph sampled uniformly at random from the set of
all 4-regular bipartite graphs is an expander almost surely.

Theorem 11 ([HLW06]). Let d ≥ 3 be a fixed integer. Then for every δ, 0 < δ < 1
2 ,

there exists an ε > 0 such that almost all d-regular bipartite graphs G with n vertices
on each side are

(
εn, d− 3

2 + δ
)
-expanders.

Corollary 12. The formula SC (G) for a random 4-regular bipartite graph G with
an arbitrary extra edge added requires polynomial calculus refutations (and hence
also resolution refutations) of exponential size asymptotically almost surely.

Proof. Use Theorem 11 with d = 4 together with Theorem 7.

In the next section we discuss how to extend these results to formulas from
[Spe10], which are defined on random permutations instead of bipartite graphs.
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4 Theoretically Hard Formulas on Random Permutations

Previously we have defined subset cardinality formulas for bipartite graphs. However,
in order to define formulas in [Spe10] we need to extend the previous definition to a
definition based on permutations. To achieve this we define the following relation
between permutations and bipartite multigraphs, where we use [n] to denote the set
{1, 2, . . . , n}.

Definition 13 (Multigraph from permutation). For a permutation σ on [4n],
G(σ) = (U ∪̇ V,E) is a bipartite multigraph such that

• U = {{σ(1), σ(2), σ(3), σ(4)}, {σ(5), σ(6), σ(7), σ(8)}, . . . , {σ(4n− 3), σ(4n−
2), σ(4n− 1), σ(4n)}},

• V = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {4n− 3, 4n− 2, 4n− 1, 4n}}, and

• for every u ∈ U and v ∈ V , there are |u ∩ v| edges (u, v) in E.

If σ is a permutation on [4n + 1], then the last sets of U and V additionally
have elements σ(4n + 1) and 4n + 1, respectively. That is, the last elements are
{σ(4n− 3), σ(4n− 2), σ(4n− 1), σ(4n), σ(4n+ 1)} ∈ U and {4n− 3, 4n− 2, 4n−
1, 4n, 4n+ 1} ∈ V . The edges are defined accordingly.

We can view the multigraph from the previous definition as assigning 4 outgoing
edges to every vertex on the left and right, except for the last vertices which might
have 5 edges assigned to them. To define how the edges connect to each other we
number the edges on the right from 1 to 4n+ 1, while on the left we number them
according to the permutation σ. The two edges are then merged into a single edge
if they share the same number.

In Definition 13 we defined the multigraph for permutations on [4n] and on
[4n + 1] as we use both in the proof, although only the 4n + 1 case gives us the
formulas in [Spe10].

Definition 14 ([Spe10]). For a permutation σ on [4n+ 1] numbers, the formula
SC ∗(σ) is a subset cardinality formula on the multigraph G(σ).

Let us now translate the definitions and proofs of the previous section from
the graph case to the multigraph case. Ordinary and boundary expansion for
multigraphs are defined similarly as in the case of graphs, and the relation between
the two is the same as in Proposition 9.

Definition 15 (Expansion). A bipartite multigraph G = (U ∪̇ V,E) is an (s, δ)-
expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds that |N(U ′)| ≥ δ|U ′|.

Definition 16 (Boundary expansion). A bipartite multigraph G = (U ∪̇ V,E)
is an (s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds
that |∂(U ′)| ≥ δ|U ′|, where v ∈ ∂(U ′) if there is exactly one vertex u ∈ U ′ that is
the neighbor of v (possibly connected to v by multiple edges).
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Proposition 17. Every d-regular multigraph (s, δ)-expander is also a multigraph
(s, 2δ − d)-boundary expander.

Proof. For any set U ′ ⊆ U, |U ′| ≤ s, we have that d|U ′| edges are spread among
at least δ|U ′| neighbors. After each of the neighbors gets one edge we have at
most (d − δ)|U ′| edges left to spread. Hence, we are guaranteed that at least
δ|U ′| −

(
(d − δ)|U ′|

)
= (2δ − d)|U ′| neighbors do not get a new edge and are

neighbors of exactly one vertex in U ′.

Furthermore it is easy to check that the proof of Lemma 6, which states that we
can always find a matching in a regular bipartite graph, works for multigraphs.

Lemma 18 ([BM08]). Every regular bipartite multigraph has a perfect matching.

Because we are dealing with multigraphs, restricting SC ∗(σ) might not yield
a pigeonhole principle formula that is based on a 3-regular graph. Nevertheless,
the regularity requirement in Lemma 5 is not essential and can be replaced. As
regularity was only used to establish the satisfiability of every subformula of bounded
size, we can exchange it with the requirement that every subset U ′ of pigeons of
bounded size has a matching. With this modification to Lemma 5 we have the same
lower bound.

Lemma 19. Suppose that G = (U ∪̇ V,E) is a bipartite graph with bounded left
degree and that ε, δ > 0 are constants such that

• |U | = n and |V | = n− 1,

• for every set U ′ ⊆ U of size |U ′| ≤ εn, there is a matching of U ′ into V , and

• for every set U ′ ⊆ U of size |U ′| ≤ εn, it holds that |∂(U ′)| ≥ 2δ|U ′| − 1.

Then, every resolution/polynomial calculus resolution refutation of the graph pigeon-
hole principle PHP(G) has length/size exp(Ω(n)).

Before we can finally state our theorem, we need one more definition. This one
provides a mapping from permutations on [n] to permutations on [n− 1].

Definition 20. For a permutation σ on [n], a permutation reduction Rσ is a
function that returns a permutation σ′ on [n− 1] defined as follows:

σ′(i) =
{
σ(n), σ(i) = n

σ(i), otherwise
,

for every i in [n− 1].

Thus, permutation σ′ is formed by taking σ and replacing the occurrence of n in
σ with its last element, that is σ(n). Now we can state our lower bound for formulas
in [Spe10].
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Theorem 21. Suppose that σ is a permutation on [4n+ 1] such that G(Rσ(σ)) is
a multigraph

(
εn, 5

2 + δ
)
-expander for some ε, δ > 0. Then any polynomial calculus

refutation of SC ∗(σ) must have size exp(Ω(n)) (and hence the same lower bound
holds for resolution length).

Proof. As in the case of SC (G), we restrict SC ∗(σ) to a graph pigeonhole principle
formula. In order for us to be able to uniquely refer to the edges of the multigraph
G(σ) we label each edge with an index i, so that an edge ei connects vertices u ∈ U
and v ∈ V only if i is in both u and v.

Let us now relate the multigraph G(Rσ(σ)) to G(σ). If σ(4n + 1) = 4n + 1,
then G(Rσ(σ)) is the multigraph we get from G(σ) by removing the edge e4n+1.
Otherwise, G(Rσ(σ)) is the multigraph we get from G(σ) by removing two distinct
edges eσ(4n+1) and e4n+1, and then connecting the degree 3 vertices that result from
this removal.

For the multigraph G(σ), let u∗ and v∗ be degree 5 vertices in U and V ,
respectively. Let vu∗ be the vertex in V that contains σ(4n + 1), so that vu∗ is
connected to u∗ by the edge eσ(4n+1). Note that it is possible that vu∗ is equal
to v∗. We now find a matching M in G(σ) that does not contain neither of the
edges eσ(4n+1) nor e4n+1, which might be the same edge. This follows by applying
Lemma 18 to the graph G(Rσ(σ)) and noting that every edge in G(Rσ(σ)), except
at most one, appears also in G(σ). In forming M we can avoid this added edge by
applying the lemma twice in succession and, out of the two produced matchings,
picking the matching that does not contain the edge which is not in G(σ). Let M ′
then be equal to M ∪ {eσ(4n+1)}.

We apply the following restriction ρ to the formula SC ∗(σ):

ρ (xe) =





> if e ∈M ′
⊥ if e is incident to vu∗ and e /∈M ′
∗ otherwise

. (4.1)

This restriction reduces the original formula to the graph pigeonhole principle
formula on the multigraph expander G′. The analysis of what happens to clauses is
similar to the proof of Theorem 7. Every vertex in U needs at least 2 of its edges to
be true, except u∗ which needs at least 3. After setting all the edges in M ′ to true,
the vertices in U require just 1 of their remaining edges to be true. Hence, they are
equal to pigeon axioms. The vertices in V initially need at most 2 of their edges
to be true and setting the edges in the matching M to true drops this bound to at
most 1. Furthermore, setting eσ(4n+1) to true ensures that the vertex vu∗ , incident
to eσ(4n+1), can only be satisfied by setting its remaining edges to false. Hence,
in the restriction ρ we satisfy vu∗ , while the remaining vertices in V are left with
constraints that correspond to the hole axioms.

To prove that the multigraph G′ is a good expander, we show that it has
as a subgraph a multigraph G′′ obtained by removing the matching M and the
vertex vu∗ from the multigraph G(Rσ(σ)). The restriction ρ removes the edges in
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the matching M and the vertex vu∗ from the multigraph G(σ). The only edge that
might exist in G(Rσ(σ)) and not in G(σ) is the edge that we add to connect the
degree 3 vertices that result from removing e4n+1 and eσ(4n+1). But, this added
edge is incident to vu∗ and hence we remove it when producing G′′. Also, the
matching M exists in G(Rσ(σ)) as well, so it gets removed to get G′′. Hence, G′′
is a subgraph of G′. To simplify the rest of the argument we assume that G′ is
actually equal to G′′. Note that the additional edge G′ could have can only help
out with expansion and the existence of the matching.

As G(Rσ(σ)) is a 4-regular multigraph (εn, 5
2 + δ)-expander, by Proposition 17

it holds that every subset of vertices U ′′ ⊆ U ′, |U ′′| ≤ εn, in G′ has a boundary of
size |∂(U ′′)| ≥ 2δ|U ′′| − 1. Also, by the argument analogous to the one in Lemma 5
we have that every subset U ′′ ⊆ U ′, |U ′′| ≤ εn, in G′ has a matching. Thus, the
conditions of Lemma 19 are almost satisfied, except that G′ is a multigraph and
not a graph. The last issue can be solved by applying another restriction that for
each pair of vertices u ∈ U ′ and v ∈ V ′ sets to false all of the edges between u and
v except one. The resulting formula is a graph pigeonhole principle formula that
satisfies conditions in Lemma 19.

Hence, by applying Lemma 19 we conclude that any polynomial calculus refuta-
tion of SC ∗(σ), where G(Rσ(σ)) is an expander, requires size exp(Ω(n)).

To prove that randomly generated SC ∗(σ) formulas require exponential size to
refute note that the proof of Theorem 11 in [HLW06] already works for multigraphs
G(σ), where σ is a random permutation on [4n]. Hence, the only difference is that
SC ∗(σ) formulas are based on random permutations on [4n+ 1] instead of [4n], but
the following relation between σ and Rσ(σ) resolves this issue.

Proposition 22. If σ is chosen uniformly at random from the set of all permutations
on [n], then Rσ(σ) is uniformly distributed among the set of all permutations on
[n− 1].

Proof. We show that for any permutation σ′ on [n − 1], there are n distinct per-
mutations σi∗ on [n] such that Rσ(σi∗) = σ′. To see this, set i∗ to be any index
between 1 and n, and construct the permutation σi∗ on n as follows

σi∗(i) =





n if i = i∗

σ′(i∗) if i = n

σ′(i) otherwise
. (4.2)

It is easy to see that Rσ(σi∗) = σ′ for every i∗, and that all σi∗ are distinct. Moreover,
the set of permutations σi∗ includes all the permutations on [n] that can map to
σ′. This follows by counting. As there are n distinct permutations σi∗ for every
permutation σ′ on [n − 1], taking all of them gives us n! distinct permutations
accounting for all permutations on [n].
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Hence, for a uniformly random distribution over permutations σ on [n], the
reduction Rσ(σ) produces a uniformly random distribution over permutations on
[n− 1].

Corollary 23. The formula SC ∗(σ) for a random permutation on [4n+ 1] requires
polynomial calculus refutations of exponential size asymptotically almost surely.

Proof. As previously noted, the proof of Theorem 11 works for multigraphs con-
structed from random permutations on [4n]. Also, by Proposition 22 it follows
that for every uniformly random permutation σ on [4n + 1], the permutation
Rσ(σ) is uniformly random on [4n] and, hence, the multigraph G(Rσ(σ)) is an(
εn, 5

2 + δ
)
-expander asymptotically almost surely. Therefore, by Theorem 21, the

formula SC ∗(σ) based on a random permutation σ requires exp(Ω(n)) size to refute
asymptotically almost surely.

5 Size Lower Bound for Polynomial Calculus

In order to prove the lower bound from Lemma 19, we only need to slightly modify
the lower bound for degree from [AR03] and the result immediately follows. However,
in subsequent work [MN15] we have developed a generalized approach to proving
degree lower bounds, which we use to prove the lower bound in this work. To
transform the degree lower bound into the size lower bound we will use the following
theorem.

Theorem 24 ([IPS99]). Let F be an unsatisfiable CNF formula of width W(F )
over n variables. Then

SPCR(F `⊥) = exp
(

Ω
(

(DegPCR(F `⊥)−W(F ))2

n

))
.

The key idea in [MN15] is to construct a bipartite graph that makes explicit the
constraints encoded in a CNF formula. In doing this we need to keep track of how
certain partial assignments affect the clauses of the formula. We use the notation
Vars(C) and Vars(F ) to denote the set of variables appearing in a clause C or a
formula F , respectively.

Definition 25. We say that a partial assignment ρ respects a CNF formula E if
for every clause C in E either Vars(C) ∩ Dom(ρ) = ∅ or ρ satisfies C. A set of
variables V respects a CNF formula E if there exists an assignment ρ with domain
Dom(ρ) = V that respects E.

Definition 26 (Respectful satisfaction). Let F and E be CNF formulas and
let V be a set of variables. We say that F is E-respectfully satisfiable by V if there
exists an assignment ρ with domain Dom(ρ) = V that satisfies F and respects E,
and that such an assignment ρ E-respectfully satisfies F .
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Another way of stating the previous definition is that we have an autarky ρ for
E (i.e., an assignment which satisfies all clauses in E which it touches) that satisfies
the formula F .

Definition 27 (Bipartite (U ,V)E-graph [MN15]). Let E be a CNF formula,
U be a set of CNF formulas, and V be a family of sets of variables V that respect
E. Then the (bipartite) (U ,V)E-graph is a bipartite graph with left vertices F ∈ U ,
right vertices V ∈ V, and edges between F and V if Vars(F ) ∩ V 6= ∅.

Furthermore, for every edge (F, V ) in the graph we say that F and V are
E-respectful neighbours if F is E-respectfully satisfiable by V . Otherwise, they are
E-disrespectful neighbours.

To denote the set of all neighbours V ∈ V of a formula F in the (U ,V)E-graph,
we use the standard graph notation N(F ).

Definition 28 (Respectful boundary). For a (U ,V)E-graph and a subset U ′ ⊆ U ,
the E-respectful boundary ∂E(U ′) of U ′ is the family of variable sets V ∈ V such
that each V ∈ ∂E(U ′) is an E-respectful neighbour of some clause set F ∈ U ′ but is
not a neighbour (respectful or disrespectful) of any other clause set F ′ ∈ U ′ \ {F}.

As it makes the notation more convenient, we will interpret subsets U ′ ⊆
U as CNF formulas

∧
F∈U ′

∧
C∈F C. The lower bound in [MN15] follows if the

(U ,V)E-graph is a good expander and if every variable does not appear in too many
sets in V, as defined next.

Definition 29 (Respectful boundary expander). A (U ,V)E-graph is said to
be an (s, δ, ξ, E)-respectful boundary expander , or just an (s, δ, ξ, E)-expander for
brevity, if for every set U ′ ⊆ U , |U ′| ≤ s, it holds that |∂E(U ′)| ≥ δ|U ′| − ξ.

Definition 30. The overlap of a variable x with respect to a family of variable sets
V is ol(x,V) = |{V ∈ V : x ∈ V }| and the overlap of V is ol(V) = maxx{ol(x,V)},
i.e., the maximum number of sets V ∈ V containing any particular variable x.

The concept above is also referred to as the “maximum degree” in the literature.

Theorem 31 ([MN15]). Let a (U ,V)E-graph be an (s, δ, ξ, E)-expander with over-
lap ol(V) = d and such that for all U ′ ⊆ U , |U ′| ≤ s, it holds that U ′∧E is satisfiable.
Then any polynomial calculus refutation of the formula U ∧E requires degree strictly
greater than (δs− 2ξ)/(2d).

To prove that the pigeonhole principle formula from Lemma 19 gives a lower
bound on polynomial calculus degree, we just need to construct the appropriate
(U ,V)E-graph and prove that it satisfies the conditions of Theorem 31.

Proof of Lemma 19. The (U ,V)E-graph for PHP(G) is formed by taking U to be
the set of pigeon axioms (3.1), E to consist of the hole axioms (3.2), and V to be
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the collection of variable sets Vv = {xu,v | u ∈ N(v)} partitioned with respect to
the holes v ∈ V .

We can check that this (U ,V)E-graph is isomorphic to the graph G and that all
neighbours in the (U ,V)E-graph are E-respectful. First note that the variables in
a pigeon axiom Fu ∈ U mention exactly the holes N(u) from the neighbourhood
of u ∈ U in G. Hence, it holds that N(Fu) = {Vv ∈ V | v ∈ N(u)}. To see that all
neighbours are E-respectful take a pigeon axiom Fu ∈ U and one of its neighbouring
variables sets Vv ∈ N(Fu). Then, the assignment ρ that sets xu,v to true and all
other variables in Vv to false E-respectfully satisfies Fu. The pigeon axiom Fu is
satisfied because it contains the variable xu,v that is set to true, while every hole
axiom in E that mentions xu,v contains another variable xu′,v ∈ Vv which is set to
false and hence the hole axioms are satisfied as well. Moreover, this argument shows
that all Vv ∈ V are E-respectful. Thus, we have shown that the (U ,V)E-graph is
isomorphic to G and that all neighbours are E-respectful.

It follows that the (U ,V)E-graph is an (εn, 2δ, 1, E)-respectful boundary expander
by the assumption of the theorem. To apply Theorem 31 we are left with showing
that U ′ ∧ E is satisfiable for every U ′ ⊆ U , |U ′| ≤ εn. To establish this claim we use
the assumption of the lemma which states that any set U ′ of size |U ′| ≤ εn has a
matching in G. For any U ′, |U ′| ≤ εn, we have a corresponding set of pigeons U ′ in
G such that U ′ = {Fu | u ∈ U ′} of the same size |U ′| = |U ′|. We know that this set
has some matching M in G. We can satisfy U ′ ∧ E by taking the assignment that
sets variables xu,v to true if (u, v) ∈M and to false otherwise. All pigeon axioms
in U ′ correspond to matched pigeons and hence have a variable that is set to true.
All hole axioms in E are satisfied because the only variables that were set to true
follow the matching M and, hence, each hole has at most one of its neighbouring
pigeons assigned to it. Thus U ′ ∧ E is satisfiable whenever |U ′| ≤ εn.

As every Vv ∈ V has only variables that mention a single hole v, it holds
that the overlap ol(V) = 1. Applying Theorem 31 we get that any polynomial
calculus resolution refutation of PHP(G) requires degree at least εδn− 1. Applying
Theorem 24 we get the exponential lower bound on the size of refuting PHP(G),
which proves our lemma.

6 Empirical Results on SAT Solver Performance

For our experiments we used the SAT solvers Glucose 2.2 [Glu], March-rw [Mar],
and Lingeling-ala [Lin]. The experiments were run under Linux on a computer with
two quad-core AMD Opteron 2.2 GHz CPUs (2374 HE) and 16 GB of memory,
where only one solver was running on the computer at any given time. We limited
the solver running time to 1 hour per instance and the solvers access to memory
was restricted to 8 GB.6 For the experiments with fixed variable ordering we used a

6The reason is that each of two CPUs has its own primary memory bank, which is half of the
memory available to the computer. Hence, relaxing the memory limit would allow access to the
slower memory of the second CPU which would add more noise to the measurements.
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version of MiniSat 2.2.0 [Min] modified so that the solver always branches on unset
variable in fixed order.

The CNF formula instances were obtained as follows:

1. The formulas SC ∗(σ) from [Spe10] were generated by taking one fixed partition
of [4n+ 1] into {1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {4n− 3, 4n− 2, 4n− 1, 4n, 4n+ 1}
and one random partition into 4-groups plus one 5-group, and then encod-
ing positive and negative cardinality constraints, respectively, on these two
partitions.

2. For the formulas SC (G) from [VS10] we started with a random (non-bipartite)
4-regular graph, took the bipartite double cover (with two copies vL, vR of
each vertex v and edges (uL, vR) for all edges (u, v) in the original graph), and
finally added an additional edge.7

3. The fixed bandwidth formulas were constructed from an n× n matrix with
ones in the first row on positions 1, 2, 4, 8 and zeroes everywhere else, and
with every subsequent row being a cyclic shift one step to the right of the
preceding row. Finally, an extra one was added to the top right cell of the
matrix if this was a zero, and otherwise to the nearest cell containing a zero.8

For each CNF formula we ran each SAT solver three times (with different random
seeds), and for randomly generated formulas we ran on three different CNF formulas
for each parameter value. Randomly generated formulas were generated with density
4.5. Out of the formulas that were solved by at least one of the solvers there were 389
unsatisfiable instances and 33 satisfiable. For formulas with at least 200 variables
there were 280 unsatisfiable instances and 7 satisfiable, while the largest satisfiable
instance had 357 variables. The values in the plots are the medians of these values.
We also performed exactly the same set of experiments on randomly shuffled version
of the formulas (with randomly permuted clauses, variables, and polarities), but
this random shuffling did not affect the results in any significant way and so we do
not display these plots.

We present the results of our experiments in Figure 3 with one subplot per
solver.9 As can be seen from these plots, all three versions of the formulas become
infeasible for around 100–120 variables. Comparing to our experiments on random
3-CNF formulas and Tseitin formulas on random 3-regular graphs in Figure 4, it
should be clear that all three flavours of the formulas from [Spe10, VS10] that we
investigated were substantially harder than random formulas. Notice that for Tseitin
formulas we do not present results for March and that Lingeling was run without

7We remark that, strictly speaking, this does not yield uniformly random instances but we
just wanted to obtain some instances with “good enough” randomness (and hence expansion) on
which we could run experiments.

8Note that this construction yields quadrangle-free instances for large enough n, except possibly
for quadrangles involving the added extra top-right entry.

9The code for generating the CNF instances and complete data for the experiments can be
found at http://www.csc.kth.se/~jakobn/publications/sat14/.
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Figure 3: SAT solver performance on variants of the formulas in [Spe10, VS10].
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Figure 4: SAT solver performance on two well-known hard formula families.

Gaussian elimination. The reason is that March and Lingeling with Gaussian
elimination solve Tseitin formulas in less than a second for even the largest instances
we have tried.

Comparing random instances of formulas SC ∗(σ) from [Spe10] and SC (G)
from [VS10] with fixed bandwidth instances, we can see that the easiest ones
are SC ∗(σ) while SC (G) are somewhat harder. This is as expected—by construc-
tion, for formulas SC (G) we are guaranteed that no pair of positive and negative
constraints share more than one variable, whereas for formulas SC ∗(σ) it could hap-
pen in principle that a positive and a negative constraint act on two, three, or even
four common variables. Somewhat counter-intuitively, however, the instances that
are hardest in our practical experiments are the theoretically easy fixed bandwidth
formulas.
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In order to investigate whether the hardness of fixed bandwidth formulas could
be attributed to hidden constants in the asymptotics—i.e., that the polynomial
upper bounds on resolution length are so large in practice that the fixed bandwidth
formulas are infeasible for all practical purposes—we ran a modified version of
MiniSat on these formulas which always branched on variables row by row and in
every row column by column. Intuitively, this seems to be the appropriate variable
ordering if one is to recover the polynomial-length resolution refutation presented
in [VS10]. And indeed, MiniSat run on fixed bandwidth formulas with fixed variable
ordering performed much better than any of the other solvers on random instances
of SC ∗(σ) and SC (G) formulas. (We also verified that fixed variable ordering is not
a good idea in general—as expected, MiniSat with fixed variable ordering performs
poorly on random instances of SC ∗(σ) and SC (G) formulas.) However, while our
variable ordering gives faster running times for fixedbandwidth formulas, it can be
significantly improved. Using a different ordering, as for instance one suggested by
[Elf15], gives significantly better results than the ones produced by our ordering.

Given the latest advances in SAT solving technology, with solvers going beyond
resolution by incorporating elements of algebraic reasoning (Gröbner bases) and
geometric reasoning (pseudo-Boolean solvers), a natural question is whether the
formulas in [Spe10, VS10] remain hard for such solvers.

Regarding algebraic solvers, we are not aware of any general-purpose solvers that
can compete with CDCL solvers, but as mentioned the theoretical lower bounds that
we prove for resolution hold also for polynomial calculus, which is a proof system for
formalizing the reasoning in solvers based on Gröbner basis computations. Also, one
can note that the algebraic reasoning in terms of Gaussian elimination in Lingeling
does not seem to help.

For pseudo-Boolean solvers, which can be seen to search for proofs in (more or
less restricted version of) the cutting planes proof system [CCT87], the story could
potentially be very different. As noted multiple times already, the formulas SC ∗(σ)
and SC (G) are just encodings of a fairly simple counting principle, and in contrast
to resolution and polynomial calculus the cutting planes proof system knows how
to count. Thus, pseudo-Boolean solvers with enough well-developed methods of
cardinality constraints reasoning should have the potential to solve these formulas
quickly. This indeed appears to be the case as reported in [BLLM14], and our own
(albeit limited) experiments also show this.

7 Concluding Remarks

In this work, we establish that the formulas constructed by Spence [Spe10] and
Van Gelder and Spence [VS10] are exponentially hard for resolution and also for
polynomial calculus resolution (PCR), which extends resolution with Gröbner basis
computations. Formally, we prove that if the bipartite (multi-)graph describing
the constraints encoded by the formula is expanding, then this implies exponential
lower bounds on proof size in resolution and PCR. Furthermore, we show that
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random instances of these formulas are almost surely expanding, meaning that the
exponential lower bound applies with high probability.

We also investigate the performance of some current state-of-the-art SAT solvers
on these formulas, and find that small instances are indeed much harder than, e.g.,
random 3-CNF formulas with the same number of variables. Somewhat surprisingly,
however, the very hardest formulas in our experiments are versions of the formulas
in [Spe10, VS10] generated from fixed bandwidth matrices. This is intriguing, since
such formulas are easy for resolution, and since the current conventional wisdom
(based on [AFT11, PD11]) seems to be that CDCL solvers can search efficiently
for short resolution proofs. In view of this, an interesting (albeit very speculative)
question is whether perhaps these fixed bandwidth matrix formulas could be used
to show formally that CDCL with VSIDS, 1UIP, and phase saving, say, does not
polynomially simulate resolution.

Since the formulas in [Spe10, VS10] encode what is in essence a fairly simple
counting argument, SAT solvers that can reason efficiently with cardinality con-
straints could potentially solve these formulas fast. This indeed turns out to be the
case for the latest version of Sat4j [BLLM14]. It would be interesting to investigate
whether the formulas in [Spe10, VS10] could be slightly obfuscated to make them
hard also for solvers with cardinality constraints. If so, this could yield small
benchmark formulas that are hard not only for standard CDCL solvers but also for
solvers extended with algebraic and/or geometric reasoning.

Another candidate construction of small but very hard CNF formulas is the
one presented by Markström [Mar06]. It would be interesting to investigate what
theoretical hardness results can be established for these formulas (for resolution
and proof systems stronger than resolution) and how the practical hardness scales
compared to the constructions by Spence and Van Gelder [Spe10, VS10]. In partic-
ular, an interesting question is whether these formulas, too, become easy for CDCL
solvers enhanced with cardinality constraints reasoning.
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A Generalized Method for Proving Polynomial Calculus
Degree Lower Bounds∗
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Abstract

We study the problem of obtaining lower bounds for polynomial calculus
(PC) and polynomial calculus resolution (PCR) on proof degree, and hence
by [Impagliazzo et al. ’99] also on proof size. [Alekhnovich and Razborov ’03]
established that if the clause-variable incidence graph of a CNF formula F is
a good enough expander, then proving that F is unsatisfiable requires high
PC/PCR degree. We further develop the techniques in [AR03] to show that if
one can “cluster” clauses and variables in a way that “respects the structure”
of the formula in a certain sense, then it is sufficient that the incidence graph
of this clustered version is an expander. As a corollary of this, we prove that
the functional pigeonhole principle (FPHP) formulas require high PC/PCR
degree when restricted to constant-degree expander graphs. This answers
an open question in [Razborov ’02], and also implies that the standard CNF
encoding of the FPHP formulas require exponential proof size in polynomial
calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial
calculus, as shown in [Riis ’93], both FPHP and Onto-PHP formulas are hard
even when restricted to bounded-degree expanders.

1 Introduction

In one sentence, proof complexity studies how hard it is to certify the unsatifiability
of formulas in conjunctive normal form (CNF). In its most general form, this is
the question of whether coNP can be separated from NP or not, and as such it still
appears almost completely out of reach. However, if one instead focuses on concrete
proof systems, which can be thought of as restricted models of (nondeterministic)
computation, then fruitful study is possible.
∗This is an updated and strengthened full-length version of the paper [MN15], which appeared

in the Proceedings of the 30th Annual Computational Complexity Conference (CCC ’15).
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Resolution and Polynomial Calculus

Perhaps the most well-studied proof system is resolution [Bla37], in which one
derives new disjunctive clauses from a CNF formula until an explicit contradiction
is reached, and for which numerous exponential lower bounds on proof size have
been shown (starting with [Hak85, Urq87, CS88]). Many of these lower bounds can
be established by instead studying the width of proofs, i.e., the size of a largest
clause appearing in the proofs, and arguing that any resolution proof for a certain
formula must contain a large clause. It then follows from a result by Ben-Sasson
and Wigderson [BW01] that any resolution proof must also consist of very many
clauses. Research since [BW01] has led to a well-developed machinery for showing
width lower bounds, and hence also size lower bounds.

The focus of the current paper is the slightly more general proof system polynomial
calculus resolution (PCR). This proof system was introduced by Clegg et al. [CEI96]
in a slightly weaker form that is usually referred to as polynomial calculus (PC)
and was later extended by Alekhnovich et al. [ABRW02]. In PC and PCR clauses
are translated to multilinear polynomials over some (fixed) field F, and a CNF
formula F is shown to be unsatisfiable by proving that the constant 1 lies in the
ideal generated by the polynomials corresponding to the clauses of F . Here the size
of a proof is measured as the number of monomials in a proof when all polynomials
are expanded out as linear combinations of monomials, and the width of a clause
corresponds to the (total) degree of the polynomial representing the clause. Briefly,
the difference between PC and PCR is that the latter proof system has separate
formal variables for positive and negative literals over the same variable. Thanks to
this, one can encode wide clauses into polynomials compactly regardless of the sign
of the literals in the clauses, which allows PCR to simulate resolution efficiently.
With respect to the degree measure polynomial calculus and polynomial calculus
resolution are exactly the same, and furthermore the degree needed to prove in
polynomial calculus that a formula is unsatisfiable is at most the width required in
resolution.

In a work that served, interestingly enough, as a precursor to [BW01], Impagliazzo
et al. [IPS99] showed that strong lower bounds on the degree of PC proofs are
sufficient to establish strong size lower bounds. The same proof goes through for
PCR, and hence any lower bound on proof size obtained via a degree lower bound
applies to both PC and PCR. In this paper, we will therefore be somewhat sloppy
in distinguishing the two proof systems, sometimes writing “polynomial calculus” to
refer to both systems when the results apply to both PC and PCR.

In contrast to the situation for resolution after [BW01], the paper [IPS99] has not
been followed by a corresponding development of a generally applicable machinery
for proving degree lower bounds. For fields of characteristic distinct from 2 it
is sometimes possible to obtain lower bounds by doing an affine transformation
from {0, 1} to the “Fourier basis” {−1,+1}, an idea that seems to have appeared
first in [Gri98, BGIP01]. For fields of arbitrary characteristic Alekhnovich and
Razborov [AR03] developed a powerful technique for general systems of polynomial

148



equations, which when restricted to the standard encoding of CNF formulas F yields
that polynomial calculus proofs require high degree if the corresponding bipartite
clause-variable incidence graphs G(F ) are good enough expanders. There are many
formula families for which this is not true, however. One can have a family of
constraint satisfaction problems where the constraint-variable incidence graph is an
expander—say, for instance, for an unsatisfiable set of linear equations mod 2—but
where each constraint is then translated into several clauses when encoded into
CNF, meaning that the clause-variable incidence graph G(F ) will no longer be
expanding. For some formulas this limitation is inherent—it is not hard to see that
an inconsistent system of linear equations mod 2 is easy to refute in polynomial
calculus over F2, and so good expansion for the constraint-variable incidence graph
should not in itself be sufficient to imply hardness in general—but in other cases it
would seem that some kind of expansion of this sort should still be enough, “morally
speaking,” to guarantee that the corresponding CNF formulas are hard.1

Pigeonhole Principle Formulas
One important direction in proof complexity, which is the reason research in this
area was initiated by Cook and Reckhow [CR79], has been to prove superpolynomial
lower bounds on proof size for increasingly stronger proof systems. For proof systems
where such lower bounds have already been obtained, however, such as resolution
and polynomial calculus, a somewhat orthogonal research direction has been to
try to gain a better understanding of the strengths and weaknesses of a given
proof system by studying different combinatorial principles (encoded in CNF) and
determining how hard they are to prove for this proof system.

It seems fair to say that by far the most extensively studied such combinato-
rial principle is the pigeonhole principle. This principle is encoded into CNF as
unsatisfiable formulas claiming that m pigeons can be mapped in a one-to-one
fashion into n holes for m > n, but there are several choices exactly how to do
this encoding. The most basic pigeonhole principle (PHP) formulas have clauses
saying that every pigeon gets at least one pigeonhole and that no hole contains two
pigeons. While these formulas are already unsatisfiable for m ≥ n+ 1, they do not
a priori rule out that there might be “fat” pigeons residing in several holes. The
functional pigeonhole principle (FPHP) formulas perhaps correspond more closely
to our intuitive understanding of the pigeonhole principle in that they also contain

1In a bit more detail, what is shown in [AR03] is that if the constraint-variable incidence
graph for a set of polynomial equations is a good expander, and if these polynomials have high
immunity—i.e., do not imply other polynomials of significantly lower degree—then proving that
this set of polynomial equations is inconsistent in polynomial calculus requires high degree. CNF
formulas automatically have maximal immunity since a clause translated into a polynomial does
not have any consequences of degree lower than the width of the clause in question, and hence
expansion of the clause-variable incidence graph is sufficient to imply hardness for polynomial
calculus. Any polynomial encoding of a linear equation mod 2 has a low-degree consequence
over F2, however—namely, the linear equation itself—and this is why [AR03] (correctly) fails to
prove lower bounds in this case.
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functionality clauses specifying that every pigeon gets exactly one pigeonhole and
not more. Another way of making the basic PHP formulas more constrained is
to add onto clauses requiring that every pigeonhole should get a pigeon, yielding
so-called onto-PHP formulas. Finally, the most restrictive encoding, and hence the
hardest one when it comes to proving lower bounds, are the onto-FPHP formulas
containing both functionality and onto clauses, i.e., saying that the mapping from
pigeons to pigeonholes is a perfect matching. Razborov’s survey [Raz02] gives a
detailed account of these different flavours of the pigeonhole principle formulas and
results for them with respect to various proof systems—we just quickly highlight
some facts relevant to this paper below.

For the resolution proof system there is not much need to distinguish between
the different PHP versions discussed above. The lower bound by Haken [Hak85] for
formulas with m = n+ 1 pigeons can be made to work also for onto-FPHP formulas,
and more recent works by Raz [Raz04a] and Razborov [Raz03, Raz04b] show that
the formulas remain exponentially hard (measured in the number of pigeonholes n)
even for arbitrarily many pigeons m.

Interestingly enough, for polynomial calculus the story is very different. The
first degree lower bounds were proven by Razborov [Raz98], but for a different
encoding than the standard translation from CNF, since translating wide clauses
yields initial polynomials of high degree. Alekhnovich and Razborov [AR03] proved
lower bounds for a 3-CNF version of the pigeonhole principle, from which it follows
that the standard CNF encoding requires proofs of exponential size. However,
as shown by Riis [Rii93] the onto-FPHP formulas with m = n + 1 pigeons are
easy for polynomial calculus. And while the encoding in [Raz98] also captures the
functionality restriction in some sense, it has remained open whether the standard
CNF encoding of functional pigeonhole principle formulas translated to polynomials
is hard (this question has been highlighted, for instance, in Razborov’s open problems
list [Raz15]).

Another way of modifying the pigeonhole principle is to restrict the choices
of pigeonholes for each pigeon by defining the formulas over a bipartite graph
H = (U

.∪ V,E) with |U | = m and |V | = n and requiring that each pigeon u ∈ U
goes to one of its neighbouring holes in N(u) ⊆ V . If the graph H has constant left
degree, the corresponding graph pigeonhole principle formula has constant width
and a linear number of variables, which makes it possible to apply [BW01, IPS99] to
obtain exponential proof size lower bounds from linear width/degree lower bounds.
A careful reading of the proofs in [AR03] reveals that this paper establishes linear
polynomial calculus degree lower bounds (and hence exponential size lower bounds)
for graph PHP formulas, and in fact also graph Onto-PHP formulas, over constant-
degree expanders H. Razborov lists as one of the open problems in [Raz02] whether
this holds also for graph FPHP formulas, i.e., with functionality clauses added, from
which exponential lower bounds on polynomial calculus proof size for the general
FPHP formulas would immediately follow.
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Our Results
We revisit the technique developed in [AR03] for proving polynomial calculus degree
lower bounds, restricting our attention to the special case when the polynomials are
obtained by the canonical translation of CNF formulas.

Instead of considering the standard clause-variable incidence graph G(F ) of a
CNF formula F (with clauses on the left, variables on the right, and edges encoding
that a variable occurs in a clause) we construct a new graph G′ by clustering
several clauses and/or variables into single vertices, reflecting the structure of the
combinatorial principle the CNF formula F is encoding. The edges in this new
graph G′ are the ones induced by the original graph G(F ) in the natural way, i.e.,
there is an edge from a left cluster to a right cluster in G′ if any clause in the left
cluster has an edge to any variable in the right cluster in G(F ). We remark that
such a clustering is already implicit in, for instance, the resolution lower bounds
in [BW01] for Tseitin formulas (which is essentially just a special form of unsatisfiable
linear equations) and graph PHP formulas, as well as in the graph PHP lower bound
for polynomial calculus in [AR03].

We then show that if this clustering is done in the right way, the proofs in [AR03]
still go through and yield strong polynomial calculus degree lower bounds when G′
is a good enough expander.2 It is clear that this cannot work in general—as already
discussed above, any inconsistent system of linear equations mod 2 is easy to refute
in polynomial calculus over F2, even though for a random instance of this problem
the clauses encoding each linear equation can be clustered to yield an excellent
expander G′. Very informally (and somewhat incorrectly) speaking, the clustering
should be such that if a cluster of clauses F ′ on the left is a neighbour of a variable
cluster V on the right, then there should exist an assignment ρ to V such that
ρ satisfies all of F ′ and such that for the clauses outside of F ′ they are either satisfied
by ρ or left completely untouched by ρ. Also, it turns out to be helpful not to
insist that the clustering of variables on the right should be a partition, but that we
should allow the same variable to appear in several clusters if needed (as long as
the number of clusters for each variable is bounded).

This extension of the lower bound method in [AR03] makes it possible to present
previously obtained polynomial calculus degree lower bounds in [AR03, GL10, MN14]
in a unified framework. Moreover, it allows us to prove the following new results:

1. If a bipartite graph H = (U ∪̇ V,E) with |U | = m and |V | = n is a boundary
expander (a.k.a. unique-neighbour expander), then the graph FPHP formula
over H requires proofs of linear polynomial calculus degree, and hence expo-
nential polynomial calculus size.

2. Since FPHP formulas can be turned into graph FPHP formulas by hitting
them with a restriction, and since restrictions can only decrease proof size, it

2For a certain twist of the definition of expander that we do not describe in full detail here
in order to keep the discussion at an informal, intuitive level. The formal description is given in
Section 3.
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follows that FPHP formulas require proofs of exponential size in polynomial
calculus.

This fills in the last missing pieces in our understanding of the different flavours
of pigeonhole principle formulas with n+ 1 pigeons and n holes for polynomial
calculus. Namely, while Onto-FPHP formulas are easy for polynomial calculus, both
FPHP formulas and Onto-PHP formulas are hard even when restricted to expander
graphs.

Organization of This Paper
After reviewing the necessary preliminaries in Section 2, we present our extension
of the Alekhnovich–Razborov method in Section 3. In Section 4, we show how this
method can be used to rederive some previous polynomial calculus degree lower
bounds as well as to obtain new degree and size lower bounds for functional (graph)
PHP formulas. We conclude in Section 5 by discussing some possible directions for
future research.

2 Preliminaries

Let us start by giving an overview of the relevant proof complexity background.
This material is standard and we refer to, for instance, the survey [Nor13] for more
details.

A literal over a Boolean variable x is either the variable x itself (a positive literal)
or its negation ¬x or x (a negative literal). We define x = x. We identify 0 with true
and 1 with false. We remark that this is the opposite of the standard convention
in proof complexity, but it is a more natural choice in the context of polynomial
calculus, where “evaluating to true” means “vanishing.” A clause C = a1 ∨ · · · ∨ ak
is a disjunction of literals. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. The width W(C) of a clause C is the number of literals |C| in it, and the
width W(F ) of the formula F is the maximum width of any clause in the formula.
We think of clauses and CNF formulas as sets, so that order is irrelevant and there
are no repetitions. A k-CNF formula has all clauses of size at most k, where k is
assumed to be some fixed constant.

In polynomial calculus resolution the goal is to prove the unsatisfiability of a
CNF formula by reasoning with polynomials from a polynomial ring F[x, x, y, y, . . .]
(where x and x are viewed as distinct formal variables) over some fixed field F. The
results in this paper hold for all fields F regardless of characteristic. In what follows,
a monomial m is a product of variables and a term t is a monomial multiplied by
an arbitrary non-zero field element.

Definition 1 (Polynomial calculus resolution (PCR) [CEI96, ABRW02]).
A polynomial calculus resolution (PCR) refutation π : F `⊥ of a CNF formula F
(also referred to as a PCR proof for F ) over a field F is an ordered sequence of
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polynomials π = (P1, . . . , Pτ ), expanded out as linear combinations of monomials,
such that Pτ = 1 and each line Pi, 1 ≤ i ≤ τ , is either

• a monomial
∏
x∈L+ x ·

∏
y∈L− y encoding a clause

∨
x∈L+ x∨

∨
y∈L− y in F (a

clause axiom);

• a Boolean axiom x2−x or complementarity axiom x+x− 1 for any variable x;

• a polynomial obtained from one or two previous polynomials in the sequence
by linear combination Q R

αQ+βR or multiplication Q
xQ for any α, β ∈ F and any

variable x.

If we drop complementarity axioms and encode each negative literal x as (1− x),
the proof system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π = (P1, . . . , Pτ ) is the number of
monomials in π (counted with repetitions),3 the degree Deg(π) is the maximal
degree of any monomial appearing in π, and the length L(π) is the number τ of
polynomials in π. Taking the minimum over all PCR refutations of a formula F ,
we define the size SPCR(F `⊥), degree DegPCR(F `⊥), and length LPCR(F `⊥) of
refuting F in PCR (and analogously for PC).

We write Vars(C) and Vars(m) to denote the set of all variables appearing in a
clause C or monomial (or term) m, respectively and extend this notation to CNF
formulas and polynomials by taking unions. We use the notation 〈P1, . . . , Pm〉 for
the ideal generated by the polynomials Pi, i ∈ [m]. That is, 〈P1, . . . , Pm〉 is the
minimal subset of polynomials containing all Pi that is closed under addition and
multiplication by any polynomial. One way of viewing a polynomial calculus (PC
or PCR) refutation is as a calculation in the ideal generated by the encodings of
clauses in F and the Boolean and complementarity axioms. It can be shown that
such an ideal contains 1 if and only if F is unsatisfiable.

As mentioned above, we have DegPCR(F ` ⊥) = DegPC(F ` ⊥) for any CNF
formula F . This claim can essentially be verified by taking any PCR refutation of F
and replacing all occurrences of y by (1− y) to obtain a valid PC refutation in the
same degree. Hence, we can drop the subscript from the notation for the degree
measure. We have the following relation between refutation size and refutation
degree (which was originally proven for PC but the proof of which also works
for PCR).

Theorem 2 ([IPS99]). Let F be an unsatisfiable CNF formula of width W(F )
over n variables. Then

SPCR(F `⊥) = exp
(

Ω
(

(Deg(F `⊥)−W(F ))2

n

))
.

3We remark that the natural definition of size is to count monomials with repetition, but all
lower bound techniques known actually establish slightly stronger lower bounds on the number of
distinct monomials.
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Thus, for k-CNF formulas it is sufficient to prove strong enough lower bounds
on the PC degree of refutations to establish strong lower bounds on PCR proof size.

Furthermore, it will be convenient for us to simplify the definition of PC so
that axioms x2 − x are always applied implicitly whenever possible. We do this by
defining the result of the multiplication operation to be the multilinearized version
of the product. This can only decrease the degree (and size) of the refutation,
and is in fact how polynomial calculus is defined in [AR03]. Hence, from now on
whenever we refer to polynomials and monomials we mean multilinear polynomials
and multilinear monomials, respectively, and polynomial calculus is defined over the
(multilinear) polynomial ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉.

It might be worth noticing that for this modified definition of polynomial calculus
it holds that any (unsatisfiable) k-CNF formula can be refuted in linear length (and
hence, in constrast to resolution, the size of refutations, rather than the length,
is the right measure to focus on). This is not hard to show, and in some sense is
probably folklore, but since it does not seem to be too widely known we state it for
the record and provide a proof.

Proposition 3. Any unsatisfiable k-CNF formula F has a (multilinear) polynomial
calculus refutation of length linear in the size of the formula F .

Proof. We show by induction how to derive polynomials Pj = 1−∏j
i=1(1− Ci) in

length linear in j, where we identify the clause Ci in F =
∧m
i=1 Ci with the polynomial

encoding of this clause. The end result is the polynomial Pm = 1−∏m
i=1(1−Ci). As

F is unsatisfiable, for every 0-1 assignment there is at least one Ci that evaluates to 1
and hence Pm evaluates to 1. Thus, Pm is equal to 1 on all 0-1 assignments. However,
it is a basic fact that every function f : {0, 1}n → F is uniquely representable as a
multilinear polynomial in F[x1, . . . , xn] (since the multilinear monomials span this
vector space and are linearly independent, they form a basis). Therefore, it follows
that Pm is syntactically equal to the polynomial 1.

The base case of the induction is the polynomial P1 that is equal to C1. To
prove the induction step, we need to show how to derive

Pj+1 = 1−
j+1∏

i=1
(1− Ci) = 1− (1− Cj+1)(1− Pj) = Pj + Cj+1 − Cj+1Pj (2.1)

from Pj and Cj+1 in a constant number of steps. To start, we derive Cj+1Pj from
Pj , which can be done with a constant number of multiplications and additions
since the width/degree of Cj+1 is upper-bounded by the constant k. We derive
Pj+1 in two more steps by first taking a linear combination of Pj and Cj+1Pj to get
Pj − Cj+1Pj and then adding Cj+1 to this to obtain Pj − Cj+1Pj + Cj+1 = Pj+1.
The proposition follows.

We will also need to use restrictions. A restriction ρ on F is a partial assignment
to the variables of F . We use Dom(ρ) to denote the set of variables assigned by
ρ. In a restricted formula F�ρ all clauses satisfied by ρ are removed and all other
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clauses have falsified literals removed. For a PC refutation π restricted by ρ we
have that if ρ satisfies a literal in a monomial, then that monomial is set to 0 and
vanishes, and all falsified literals in a monomial get replaced by 1 and disappear. It
is not hard to see that if π is a PC (or PCR) refutation of F , then π�ρ is a PC (or
PCR) refutation of F�ρ, and this restricted refutation has at most the same size,
degree, and length as the original refutation.

3 A Generalization of the Alekhnovich–Razborov Method
for CNFs

Many lower bounds in proof complexity are proved by arguing in terms of expan-
sion. One common approach is to associate a bipartite graph G(F ) with the CNF
formula F with clauses on one side and variables on the other and with edges
encoding that a variable occurs in a clause (the so-called clause-variable incidence
graph mentioned in the introduction). The method we present below, which is an
extension of the techniques developed by Alekhnovich and Razborov [AR03] (but
restricted to the special case of CNF formulas), is a variation on this theme. As
already discussed, however, we will need a slightly more general graph construction
where clauses and variables can be grouped into clusters. We begin by describing
this construction.

A Generalized Clause-Variable Incidence Graph
The key to our construction of generalized clause-variable incidence graphs is to
keep track of how clauses in a CNF formula are affected by partial assignments.

Definition 4 (Respectful assignments and variable sets). We say that a
partial assignment ρ respects a CNF formula E, or that ρ is E-respectful, if for every
clause C in E either Vars(C) ∩Dom(ρ) = ∅ or ρ satisfies C. A set of variables V
respects a CNF formula E if there exists an assignment ρ with Dom(ρ) = V that
respects E.

Example 5. Consider the CNF formula E = (x1∧x2)∧(x1∧x3)∧(x1∧x4)∧(x1∧x5)
and the subsets of variables V1 = {x1, x2, x3} and V2 = {x4, x5}. The assignment
ρ2 to V2 setting x4 and x5 to true respects E since it satisfies the clauses containing
these variables, and hence V2 is E-respectful. However, V1 is not E-respectful since
setting x1 will affect all clauses in E but cannot satisfy both x1 ∧ x4 and x1 ∧ x5.

Definition 6 (Respectful satisfaction). Let F and E be CNF formulas and
let V be a set of variables. We say that F is E-respectfully satisfiable by V if there
exists a partial assignment ρ with Dom(ρ) = V that satisfies F and respects E.
Such an assignment ρ is said to E-respectfully satisfy F .

Using a different terminology, Definition 4 says that ρ is an autarky for E,
meaning that ρ satisfies all clauses in E which it touches, i.e., that E�ρ⊆ E after we
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remove all satisfied clauses in E�ρ. Definition 6 ensures that the autarky ρ satisfies
the formula F .

Recall that we identify a CNF formula
∧m
i=1 Ci with the set of clauses {Ci | i ∈

[m]}. In the rest of this section we will switch freely between these two perspectives.
We also change to the notation F for the input CNF formula, to free up other letters
that will be needed in notation introduced below.

To build a bipartite graph representing the CNF formula F , we will group the
formula into subformulas (i.e., subsets of clauses). In what follows, we write U to
denote the part of F that will form the left vertices of the constructed bipartite
graph, while E denotes the part of F which will not be represented in the graph
but will be used to enforce respectful satisfaction. In more detail, U is a family of
subformulas F of F where each subformula is one vertex on the left-hand side of
the graph. We also consider the variables of F to be divided into a family V of
subsets of variables V . In our definition, U and V do not need to be partitions of
clauses and variables in F , respectively. This is not too relevant for U because we
will always define it as a partition, but it turns out to be useful in our applications
to have sets in V share variables. The next definition describes the bipartite graph
that we build and distinguishes between two types of neighbour relations in this
graph.

Definition 7 (Bipartite (U ,V)E-graph). Let E be a CNF formula, U be a set
of CNF formulas, and V be a family of sets of variables V that respect E. Then the
(bipartite) (U ,V)E-graph is a bipartite graph with left vertices F ∈ U , right vertices
V ∈ V, and edges between F and V if Vars(F ) ∩ V 6= ∅. For every edge (F, V ) in
the graph we say that F and V are E-respectful neighbours if F is E-respectfully
satisfiable by V . Otherwise, they are E-disrespectful neighbours.

We will often write (U ,V)E as a shorthand for the graph defined by U , V, and
E as above. We will also use standard graph notation and write N(F ) to denote
the set of all neighbours V ∈ V of a vertex/CNF formula F ∈ U . It is important to
note that the fact that F and V are E-respectful neighbours can be witnessed by
an assignment that falsfies other subformulas F ′ ∈ U \ {F}.

We can view the formation of the (U ,V)E-graph as taking the clause-variable
incidence graph G(F) of the CNF formula F , throwing out a part of F , which we
denote E, and clustering the remaining clauses and variables into U and V. The
edge relation in the (U ,V)E-graph follows naturally from this view, as we put an
edge between two clusters if there is an edge between any two elements of these
clusters. The only additional information we need to keep track of is which clause
and variable clusters are E-respectful neighbours or not.

Definition 8 (Respectful boundary). For a (U ,V)E-graph and a subset U ′ ⊆ U ,
the E-respectful boundary ∂E(U ′) of U ′ is the family of variable sets V ∈ V such
that each V ∈ ∂E(U ′) is an E-respectful neighbour of some clause set F ∈ U ′ but is
not a neighbour (respectful or disrespectful) of any other clause set F ′ ∈ U ′ \ {F}.
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It will sometimes be convenient to interpret subsets U ′ ⊆ U as CNF formulas∧
F∈U ′

∧
C∈F C, and we will switch back and forth between these two interpretations

as seems most suitable. We will show that a formula F =
∧
F∈U

∧
C∈F C∧E = U∧E

is hard for polynomial calculus with respect to degree if the (U ,V)E-graph has a
certain expansion property as defined next.

Definition 9 (Respectful boundary expander). A (U ,V)E-graph is said to
be an (s, δ, ξ, E)-respectful boundary expander , or just an (s, δ, ξ, E)-expander for
brevity, if for every set U ′ ⊆ U , |U ′| ≤ s, it holds that |∂E(U ′)| ≥ δ|U ′| − ξ.

Note that an (s, δ, ξ, E)-respectful boundary expander is a standard bipartite
boundary expander except for two modifications:

• We measure expansion not in terms of the whole boundary but only in terms
of the respectful boundary4 as described in Definition 8.

• Also, the size of the boundary |∂E(U ′)| on the right does not quite have to
scale linearly with the size of the vertex set |U ′| on the left. Instead, we
allow an additive loss ξ in the expansion. In our applications, we can usually
construct graphs with good enough expansion so that we can choose ξ = 0,
but for one of the results we present it will be helpful to allow a small slack
here.

Before we state our main theorem we need one more technical definition, which
is used to ensure that there do not exist variables that appear in too many variable
sets in V. We remark that the concept below is also referred to as the “maximum
degree” in the literature, but since we already have degrees of polynomials and
vertices in this paper we prefer a new term instead of overloading “degree” with a
third meaning.

Definition 10. The overlap of a variable x with respect to a family of variable sets
V is ol(x,V) = |{V ∈ V : x ∈ V }| and the overlap of V is ol(V) = maxx{ol(x,V)},
i.e., the maximum number of sets V ∈ V containing any particular variable x.

Given the above definitions, we can state the main technical result in this paper
as follows.

Theorem 11. Let F =
∧
F∈U

∧
C∈F C ∧ E = U ∧ E be a CNF formula for which

(U ,V)E is an (s, δ, ξ, E)-expander with overlap ol(V) = d, and suppose furthermore
4Somewhat intriguingly, we will not see any disrespectful neighbours in our applications in

Section 4, but the concept of respectfulness is of crucial importance for the main technical result in
Theorem 11 to go through. One way of seeing this is to construct a (U ,V)E-graph for an expanding
set of linear equations mod 2, where U consists of the (CNF encodings of) the equations, V consists
of one variable set for each equation containing exactly the variables in this equation, and E is
empty. Then this (U ,V)E-graph has the same boundary expansion as the constraint-variable
incidence graph, but Theorem 11 does not apply (which it should not do) since this expansion is
not respectful.
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that for all U ′ ⊆ U , |U ′| ≤ s, it holds that U ′ ∧E is satisfiable. Then any polynomial
calculus refutation of F requires degree strictly greater than (δs− 2ξ)/(2d).

In order to prove this theorem, it will be convenient to review some algebra. We
do so next.

Some Algebra Basics
We will need to compute with polynomials modulo ideals, and in order to do so
we need to have an ordering of monomials (which, as we recall, will always be
multilinear).

Definition 12 (Admissible ordering). We say that a total ordering ≺ on the
set of all monomials over some fixed set of variables is admissible if the following
conditions hold:

• If Deg(m1) < Deg(m2), then m1 ≺ m2.

• For any m1,m2, and m such that m does not share any variables with m1 or
m2 and m1 ≺ m2, it holds that mm1 ≺ mm2.

Two terms t1 = α1m1 and t2 = α2m2 are ordered in the same way as their underlying
monomials m1 and m2.

One example of an admissible ordering is to first order monomials with respect
to their degree and then lexicographically. For the rest of this section we only need
that ≺ is some fixed but arbitrary admissible ordering, but the reader can think of
the degree-lexicographical ordering without any particular loss of generality. We
write m1 4 m2 to denote that m1 ≺ m2 or m1 = m2.

Definition 13 (Leading, reducible, and irreducible terms). For a polynomial
P =

∑
i ti, the leading term LT (P ) of P is the largest term ti according to ≺. Let

I be an ideal over the polynomial ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. We
say that a term t is reducible modulo I if there exists a polynomial Q ∈ I such that
t = LT (Q) and that t is irreducible modulo I otherwise.

The following fact is not hard to verify.

Fact 14. Let I be an ideal over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. Then any
multilinear polynomial P ∈ F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉 can be written
uniquely as a sum Q+R, where Q ∈ I and R is a linear combination of irreducible
terms modulo I.

This is what allows us to reduce polynomials modulo an ideal in a well-defined
manner.
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Definition 15 (Reduction operator). Let P be any multilinear polynomial in
the ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉 and let I be an ideal over the same
ring. The reduction operator RI is the operator that when applied to P returns the
sum of irreducible terms RI(P ) = R such that P −R ∈ I.

We conclude our brief algebra review by stating two observations that are more
or less immediate, but are helpful enough for us to want to highlight them explicitly.

Observation 16. For any two ideals I1, I2 such that I1 ⊆ I2 and any two polyno-
mials P , P ′ it holds that RI2(P ·RI1(P ′)) = RI2(PP ′).

Proof. Let
P ′ = Q′ +R′ (3.1)

for Q′ ∈ I1 and R′ a linear combination of irreducible terms over I1. Let

P ·RI1(P ′) = PR′ = Q+R (3.2)

for Q ∈ I2 and R a linear combination of irreducible terms over I2. Then

PP ′ = PQ′ + PR′ = PQ′ +Q+R (3.3)

where PQ′ +Q ∈ I2. By the uniqueness in Fact 14, we conclude that the equality
RI2(PP ′) = R = RI2(P ·RI1(P ′)) holds.

Observation 17. Suppose that the term t is irreducible modulo the ideal I and let
ρ be any partial assignment of variables in Vars(t) to values in F such that t�ρ 6= 0.
Then t�ρ is also irreducible modulo I.

Proof. Let mρ be the product of all variables in t assigned by ρ and let α = mρ�ρ,
where by assumption we have α 6= 0. If there is a polynomial Q ∈ I such that
LT(Q) = t�ρ, then α−1mρQ ∈ I and LT(α−1mρQ) = t, contradicting that t is
irreducible.

Proof Strategy
Let us now state the lemma on which we base the proof of Theorem 11.

Lemma 18 ([Raz98]). Let F be any CNF formula and D ∈ N+ be a positive
integer. Suppose that there exists a linear operator R on multilinear polynomials
over Vars(F) with the following properties:

1. R(1) 6= 0.

2. R(C) = 0 for (the translations to polynomials of) all axioms C ∈ F .

3. For every term t with Deg(t) < D and every variable x it holds that R(xt) =
R(xR(t)).
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Then any polynomial calculus refutation of F (and hence any PCR refutation of F)
requires degree strictly greater than D.

The proof of Lemma 18 is not hard. The basic idea is that R will map all axioms
to 0 by property 2, and further derivation steps in degree at most D will yield
polynomials that also map to 0 by property 3 and the linearity of R. But then
property 1 implies that no derivation in degree at most D can reach contradiction.

To prove Theorem 11, we construct a linear operator RG that satisfies the condi-
tions of Lemma 18 when the (U ,V)E-graph G is an expander. First, let us describe
how we make the connection between polynomials and the given (U ,V)E-graph. We
remark that in the rest of this section we will identify a clause C with its polynomial
translation and will refer to C as a (polynomial) axiom.

Definition 19 (Term and polynomial neighbourhood). The neighbourhood
N(t) of a term t with respect to (U ,V)E is N(t) = {V ∈ V | Vars(t)∩V 6= ∅}, i.e., the
family of all variable sets containing variables mentioned by t. The neighbourhood
of a polynomial P =

∑
i ti is N(P ) =

⋃
iN(ti), i.e., the union of the neighbourhoods

of all terms in P .

To every polynomial we can now assign a family of variable sets V ′. But we
are interested in the axioms that are needed in order to produce that polynomial.
That is, given a family of variable sets V ′, we would like to identify the largest
set of axioms U ′ that could possibly have been used in a derivation that yielded
polynomials P with Vars(P ) ⊆ ⋃V ∈V′ V . This is the intuition behind the next
definition.5

Definition 20 (Polynomial support). For a given (U ,V)E-graph and a family
of variable sets V ′ ⊆ V, we say that a subset U ′ ⊆ U is (s,V ′)-contained if |U ′| ≤ s
and ∂E(U ′) ⊆ V ′.

We define the polynomial s-support Sups(V ′) of V ′ with respect to (U ,V)E , or
just s-support of V ′ for brevity, to be the union of all (s,V ′)-contained subsets
U ′ ⊆ U , and the s-support Sups(t) of a term t is defined to be the s-support of N(t).

We will usually just speak about “support” below without further qualifying this
term, since the (U ,V)E-graph G will be clear from context. The next observation
follows immediately from Definition 20.

Observation 21. Support is monotone in the sense that if t ⊆ t′ are two terms,
then it holds that Sups(t) ⊆ Sups(t′).

Once we have identified the axioms that are potentially involved in deriving
P , we define the linear operator RG as the reduction modulo the ideal generated
by these axioms as in Definition 15. We will show that under the assumptions in
Theorem 11 it holds that this operator satisfies the conditions in Lemma 18. Let us

5We remark that Definition 20 is a slight modification of the original definition of support
in [AR03] that was proposed by Yuval Filmus [Fil14].
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first introduce some notation for the set of all polynomials that can be generated
from some axioms U ′ ⊆ U .

Definition 22. For a (U ,V)E-graph and U ′ ⊆ U , we write IE(U ′) to denote the
ideal generated by the polynomial axioms in U ′ ∧ E.6

Definition 23 ((U ,V)E-graph reduction). For a given (U ,V)E-graph G, the
(U ,V)E-graph reduction RG on a term t is defined as RG(t) = RIE(Sups(t))(t). For
a polynomial P , we define RG(P ) to be the linear extension of the operator RG
defined on terms.

Looking at Definition 23, it is not clear that we are making progress. On the
one hand, we have defined RG in terms of standard reduction operators modulo
ideals, which is nice since there is a well-developed machinery for such operators.
On the other hand, it is not clear how to actually compute using RG . The problem
is that if we look at a polynomial P =

∑
i ti and want to compute RG(P ), then

as we expand RG(P ) =
∑
iRG(ti) we end up reducing terms in one and the same

polynomial modulo a priori completely different ideals. How can we get any sense
of what P reduces to in such a case? The answer is that if our (U ,V)E-graph is a
good enough expander, then this is not an issue at all. Instead, it turns out that
we can pick a suitably large ideal containing the support of all the terms in P and
reduce P modulo this larger ideal instead without changing anything. This key
result is proven in Lemma 28 below. To establish this lemma, we need to develop a
better understanding of polynomial support.

Some Properties of Polynomial Support
A crucial technical property that we will need is that if a (U ,V)E-graph is a
good expander in the sense of Definition 9, then for small enough sets V ′ all
(s,V ′)-contained subsets U ′ ⊆ U as per Definition 20 are of at most half of the
allowed size.

Lemma 24. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that
|V ′| ≤ δs/2− ξ. Then it holds that every (s,V ′)-contained subset U ′ ⊆ U is in fact
(s/2,V ′)-contained.

Proof. As |U ′| ≤ s we can appeal to the expansion property of the (U ,V)E-graph to
derive the inequality |∂E(U ′)| ≥ δ|U ′| − ξ. In the other direction, we can obtain an
upper bound on the size of ∂E(U ′) by noting that for any (s,V ′)-contained set U ′
it holds that |∂E(U ′)| ≤ |V ′|. If we combine these bounds and use the assumption
that |V ′| ≤ δs/2 − ξ, we can conclude that |U ′| ≤ s/2, which proves that U ′ is
(s/2,V ′)-contained.

6That is, IE(U ′) is the smallest set I of multilinear polynomials that contains all axioms
in U ′ ∧ E and that is closed under addition of P1, P2 ∈ I and by multiplication of P ∈ I by
any multilinear polynomial over Vars(U ∧ E) (where as before the resulting product is implicitly
multilinearized).
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Even more importantly, Lemma 24 now allows us to conclude that for a small
enough subset V ′ on the right-hand side of (U ,V)E it holds that in fact the whole
polynomial s-support Sups(V ′) of V ′ on the left-hand side is (s/2,V ′)-contained.

Lemma 25. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that
|V ′| ≤ δs/2 − ξ. Then the s-support Sups(V ′) of V ′ with respect to (U ,V)E is
(s/2,V ′)-contained.

Proof. We show that for any pair of (s,V ′)-contained sets U1,U2 ⊆ U their union
U1 ∪ U2 is also (s,V ′)-contained. First, by Lemma 24 we have |U1|, |U2| ≤ s/2 and
hence |U1 ∪ U2| ≤ s. Second, it holds that ∂E(U1), ∂E(U2) ⊆ V ′, which implies that
∂E(U1∪U2) ⊆ V ′, because taking the union of two sets can only shrink the boundary.
This establishes that U1 ∪ U2 is (s,V ′)-contained.

By induction on the number of (s,V ′)-contained sets we can conclude that the
support Sups(V ′) is (s,V ′)-contained as well, after which one final application of
Lemma 24 shows that this set is (s/2,V ′)-contained. This completes the proof.

What the next lemma says is, roughly, that if we reduce a term t modulo an ideal
generated by a not too large set of polynomials containing some polynomials outside
of the support of t, then we can remove all such polynomials from the generators of
the ideal without changing the irreducible component of t.

Lemma 26. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U
is such that U ′ ⊇ Sups(t) and |U ′| ≤ s. Then for any term t′ with N(t′) ⊆
N(Sups(t)) ∪N(t) it holds that if t′ is reducible modulo IE(U ′), it is also reducible
modulo IE(Sups(t)).

Proof. If U ′ is (s,N(t))-contained, then by Definition 20 it holds that U ′ ⊆ Sups(t)
and there is nothing to prove. Hence, assume U ′ is not (s,N(t))-contained. We claim
that this implies that we can find a subformula F ∈ U ′ \Sups(t) with a neighbouring
subset of variables V ∈

(
∂E(U ′) ∩N(F )

)
\N(t′) in the respectful boundary of U ′ but

not in the neighbourhood of t′. To argue this, note that since |U ′| ≤ s it follows from
Definition 20 that the reason U ′ is not (s,N(t))-contained is that there exist some
F ∈ U ′ and some set of variables V ∈ N(F ) such that V ∈ ∂E(U ′) \N(t). Moreover,
the assumption U ′ ⊇ Sups(t) implies that such an F cannot be in Sups(t). Otherwise
there would exist an (s,N(t))-contained set U∗ such that F ∈ U∗ ⊆ Sups(t) ⊆ U ′,
from which it would follow that V ∈ ∂E(U ′)∩N(U∗) ⊆ ∂E(U∗) ⊆ N(t), contradicting
V /∈ N(t). We have shown that F /∈ Sups(t) ⊆ U ′ and V ∈ ∂E(U ′) ∩N(F ), and by
combining these two facts we can also deduce that V /∈ N(Sups(t)), since otherwise
V could not be contained in the boundary of U ′. In particular, this means that
V /∈ N(t′) ⊆ N(Sups(t)) ∪N(t), which establishes the claim made above.

Fixing F and V such that F ∈ U ′ \ Sups(t) and V ∈
(
∂E(U ′) ∩N(F )

)
\N(t′),

our second claim is that if F is removed from the generators of the ideal, it still
holds that if t′ is reducible modulo IE(U ′), then this term is also reducible modulo
IE(U ′ \ {F}). Given this second claim we are done, since we can then argue by
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induction over the elements in U ′ \ Sups(t) and remove them one by one to arrive at
the conclusion that every term t′ with N(t′) ⊆ N(Sups(t)) ∪N(t) that is reducible
modulo IE(U ′) is also reducible modulo IE(Sups(t)), which is precisely what the
lemma says.

We proceed to establish this second claim. The assumption that t′ is reducible
modulo IE(U ′) means that there exists a polynomial P ∈ IE(U ′) such that t′ =
LT (P ). Since P is in the ideal IE(U ′) it can be written as a polynomial combination
P =

∑
i PiCi of axioms Ci ∈ U ′ ∧ E for some polynomials Pi. If we could hit

P with a restriction that satisfies (and hence removes) F while leaving t′ and
(U ′ \ {F}) ∧ E untouched, this would show that t′ is the leading term of some
polynomial combination of axioms in (U ′ \ {F}) ∧ E. This is almost what we are
going to do.

As our restriction ρ we choose any assignment with domain Dom(ρ) = V that
E-respectfully satisfies F . Note that at least one such assignment exists since
V ∈ ∂E(U ′)∩N(F ) is an E-respectful neighbour of F by Definition 8. By the choice
of ρ it holds that F is satisfied, i.e., that all axioms in F are set to 0. Furthermore,
none of the axioms in U ′ \ {F} are affected by ρ since V is in the boundary of U ′.7
As for axioms in E it is not necessarily true that ρ will leave all of them untouched,
but by assumption ρ respects E and so any axiom in E is either satisfied (and
zeroed out) by ρ or is left intact. It follows that P �ρ can be be written as a
polynomial combination P�ρ=

∑
i

(
Pi�ρ

)
Ci, where Ci ∈ (U ′ \ {F}) ∧ E, and hence

P�ρ∈ IE(U ′ \ {F}).
To see that t′ is preserved as the leading term of P �ρ, note that ρ does not

assign any variables in t′ since V /∈ N(t′). Hence, t′ = LT (P�ρ), as ρ can only make
the other terms smaller with respect to ≺. This shows that there is a polynomial
P ′ = P �ρ∈ IE(U ′ \ {F}) with LT(P ′) = t′, and hence t′ is reducible modulo
IE(U ′ \ {F}). The lemma follows.

We need to deal with one more detail before we can prove the key technical
lemma that it is possible to reduce modulo suitably chosen larger ideals without
changing the reduction operator, namely (again roughly speaking) that reducing a
term modulo an ideal does not introduce any new variables outside of the generators
of that ideal.

Lemma 27. Suppose that U∗ ⊆ U for some (U ,V)E-graph and let t be any term.
Then it holds that N

(
RIE(U∗)(t)

)
⊆ N(U∗) ∪N(t).

Proof. Let P = RIE(U∗)(t) be the polynomial obtained when reducing t mod-
ulo IE(U∗) and let V ∈ V be any set such that V /∈ N(U∗) ∪N(t). We show that
V /∈ N(P ).

By the definition of (U ,V)E-graphs there exists an assignment ρ to all of the
variables in V that respects E. Write t = Q+ P with Q ∈ IE(U∗) and P a linear

7Recalling the remark after Definition 7, we note that we can ignore here if ρ happens to falsify
axioms in U \ U ′.
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combination of irreducible monomials as in Fact 14 and apply the restriction ρ to
this equality. Note that t�ρ= t as V is not a neighbour of t. Moreover, Q�ρ is in
the ideal IE(U∗) because ρ does not set any variables in U∗ and every axiom in E
sharing variables with V is set to 0 by ρ. Thus, t can be written as t = Q′ + P�ρ,
with Q′ ∈ IE(U∗). As all terms in P are irreducible modulo IE(U∗), they remain
irreducible after restricting P by ρ by Observation 17. Hence, it follows that P�ρ= P
by the uniqueness in Fact 14 and P cannot contain any variable from V . This in
turn implies that every set V ∈ N(P ) is contained in N(U∗) ∪N(t).

Now we can state the formal claim that enlarging the ideal does not change the
reduction operator if the enlargement is done in the right way.

Lemma 28. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is
such that U ′ ⊇ Sups(t) and |U ′| ≤ s. Then it holds that RIE(U ′)(t) = RIE(Sups(t))(t).

Proof. We prove that RIE(U ′)(t) = RIE(Sups(t))(t) by applying the contraposi-
tive of Lemma 26. Recall that this lemma states that any term t′ that is re-
ducible modulo IE(U ′) and where N(t′) ⊆ N(Sups(t)) ∪ N(t) is also reducible
modulo IE(Sups(t)). Since every term t′ in RIE(Sups(t))(t) is irreducible mod-
ulo IE(Sups(t)) and since by applying Lemma 27 with U∗ = Sups(t) we have that
N(t′) ⊆ N(Sups(t))∪N(t), it follows that t′ is also irreducible modulo IE(U ′). This
shows that RIE(U ′)(t) = RIE(Sups(t))(t) as claimed, and the lemma follows.

Putting the Pieces in the Proof Together
Now we have just a couple of lemmas left before we can prove Theorem 11, which
as discussed above will be established by appealing to Lemma 18.

Lemma 29. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then
for any term t with Deg(t) ≤ (δs− 2ξ)/(2d) it holds that |Sups(t)| ≤ s/2.

Proof. Because of the bound on the overlap ol(V) we have that the size of N(t) is
bounded by δs/2− ξ. An application of Lemma 25 now yields the desired bound
|Sups(t)| ≤ s/2.

Lemma 30. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. For
any term t with Deg(t) < b(δs− 2ξ)/(2d)c, any term t′ occurring in RIE(Sups(t))(t),
and any variable x, it holds that RIE(Sups(xt′))(xt′) = RIE(Sups(xt))(xt′).

Proof. We show that Sups(xt′) ⊆ Sups(xt) and |Sups(xt)| ≤ s, which then allows
us to apply Lemma 28 and prove the lemma. To prove that Sups(xt′) is a subset
of Sups(xt), we show that Sups(xt′)∪Sups(xt) is (s,N(xt))-contained in the sense of
Definition 20. From this it follows that Sups(xt′) ⊆ Sups(xt′)∪Sups(xt) = Sups(xt).

Towards this goal, as Deg(t′) ≤ Deg(t) we first observe that we can apply
Lemma 29 to deduce that |Sups(xt′)| ≤ s/2 and |Sups(xt)| ≤ s/2, and hence
|Sups(xt′) ∪ Sups(xt)| ≤ s, which satisfies the size condition for containment. It
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remains to show that ∂E
(
Sups(xt′) ∪ Sups(xt)

)
⊆ N(xt). From Lemma 27 we have

that N(t′) ⊆ N(Sups(t))∪N(t). As N(xt′) = N(x)∪N(t′) and Sups(t) ⊆ Sups(xt)
by the monotonicity in Observation 21, it follows that

N(xt′) = N(x)∪N(t′) ⊆ N(x)∪N(Sups(t))∪N(t) ⊆ N(Sups(xt))∪N(xt) . (3.4)

If we now consider the E-respectful boundary of the set Sups(xt′) ∪ Sups(xt), it
holds that

∂E (Sups(xt′) ∪ Sups(xt)) =
= (∂E (Sups(xt′)) \N (Sups(xt))) ∪ (∂E (Sups(xt)) \N (Sups(xt′)))
⊆ (N (xt′) \N (Sups(xt))) ∪ (N (xt) \N (Sups(xt′)))
⊆ N (xt) ,

(3.5)

where the first line follows from the boundary definition in Definition 8, the second
line follows by the property of s-support that ∂E(Sups(xt)) ⊆ N(xt), and the last
line follows from (3.4). Hence, Sups(xt′) ∪ Sups(xt) is (s,N(xt))-contained.

As discussed above, we can now apply Lemma 28 to reach the desired conclusion
that the equality RIE(Sups(xt′))(xt′) = RIE(Sups(xt))(xt′) holds.

Now we can prove our main technical theorem.

Proof of Theorem 11. Recall that the assumptions of the theorem are that we have a
(U ,V)E-graph for a CNF formula F =

∧
F∈U F∧E such that (U ,V)E is an (s, δ, ξ, E)-

expander with overlap ol(V) = d and that furthermore for all U ′ ⊆ U , |U ′| ≤ s, it
holds that

∧
F∈U ′ F ∧E is satisfiable. We want to prove that no polynomial calculus

derivation from
∧
F∈U F ∧ E = U ∧ E of degree at most (δs− 2ξ)/(2d) can reach

contradiction.
First, if removing all axiom clauses from U ∧ E with degree strictly greater

than (δs− 2ξ)/(2d) produces a satisfiable formula, then the lower bound trivially
holds. Otherwise, we can remove these large-degree axioms and still be left with a
(U ,V)E-graph that satisfies the conditions above. In order to see this, let us analyze
what happens to the (U ,V)E-graph if an axiom is removed from the formula.

Removing axioms from E only relaxes the conditions on respectful satisfiability
while keeping all edges in the graph, so the conditions of the theorem still hold. In
removing axioms from U we have two cases: either we remove all axioms from some
subformula F ∈ U or we remove only a part of this subformula. In the former case,
it is clear that we can remove the vertex F from the structure without affecting
any of the conditions. In the latter case, we claim that any set V ∈ V that is an
E-respectful neighbour of F remains an E-respectful neighbour of the formula F ′
in which large degree axioms have been removed. Clearly, the same assignments
to V that satisfy F also satisfy F ′ ⊆ F . Also, V must still be a neighbour of F ′,
for otherwise F ′ would not share any variables with V , which would imply that no
assignment to V could satisfy F ′ and hence F . This would contradict the assumption

165



that V is an E-respectful neighbour of F . Hence, we conclude that removal of
large-degree axioms can only improve the E-respectful boundary expansion of the
(U ,V)E-graph.

Thus, let us focus on a (U ,V)E-graph G that has all axioms of degree at most
(δs− 2ξ)/(2d). We want to show that the operator RG from Definition 23 satisfies
the conditions of Lemma 18, from which Theorem 11 immediately follows. We can
note right away that the operator RG is linear by construction.

To prove that RG(1) = RIE(Sups(1))(1) 6= 0, we start by observing that the size
of the s-support of 1 is upper-bounded by s/2 according to Lemma 29. Using the
assumption that for every subset U ′ of U , |U ′| ≤ s, the formula U ′ ∧E is satisfiable,
it follows that 1 is not in the ideal IE(Sups(1)) and hence RIE(Sups(1))(1) 6= 0.

We next show that RG(C) = 0 for any axiom clause C ∈ U ∧ E (where we
recall that we identify a clause C with its translation into a linear combination
of monomials). By the preprocessing step above it holds that the degree of C is
bounded by (δs − 2ξ)/(2d), from which it follows by Lemma 29 that the size of
the s-support of every term in C is bounded by s/2. Since C is the polynomial
encoding of a clause, the leading term LT (C) contains all the variables appearing in
C.8 Hence, the s-support Sups(LT (C)) of the leading term contains the s-support
of every other term in C by Observation 21 and we can use Lemma 28 to conclude
that RG(C) = RIE(Sups(LT(C)))(C). If C ∈ E, this means we are done because
IE(Sups(LT (C))) contains all of E, implying that RG(C) = 0.

For C ∈ U we cannot immediately argue that C reduces to 0, since (in contrast
to [AR03]) it is not immediately clear that Sups(LT (C)) contains C. The problem
here is that we might worry that C is part of some subformula F ∈ U for which the
boundary ∂E(F ) is not contained in N(LT (C)) = Vars(C), and hence there is no
obvious reason why C should be a member of any (s,N(LT (C)))-contained subset
of U . However, in view of Lemma 28 (applied, strictly speaking, once for every
term in C) we can choose some F ∈ U such that C ∈ F and add it to the s-support
Sups(LT (C)) to obtain a set U ′ = Sups(LT (C))∪{F} of size |U ′| ≤ s/2+1 ≤ s such
that RIE(Sups(LT(C)))(C) = RIE(U ′)(C). Since IE(U ′) contains C as a generator we
conclude that RG(C) = RIE(U ′)(C) = 0 also for C ∈ U .9

It remains to prove the last property in Lemma 18 stating that RG(xt) =
RG(xRG(t)) for any term t such that Deg(t) < b(δs− 2ξ)/(2d)c. We can see that

8We remark that this is the only place in the proof where we are using that C is (the encoding
of) a clause.

9Actually, a slighly more careful argument reveals that C is always contained in Sups(LT(C)).
This is so since for any F ∈ U with C ∈ F it holds that any neighbours in N(F ) \N(LT(C)) have
to be disrespectful, and so such an F always makes it into the support. However, the reasoning
gets a bit more involved, and since we already needed to use Lemma 28 anyway we might as well
apply it once more here.
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this holds by studying the following sequence of equalities:

RG(xRG(t)) =
∑

t′∈RG(t)

RG(xt′)
[
by linearity

]

=
∑

t′∈RG(t)

RIE(Sups(xt′))(xt′)
[
by definition of RG

]

=
∑

t′∈RG(t)

RIE(Sups(xt))(xt′)
[
by Lemma 30

]

= RIE(Sups(xt))(xRG(t))
[
by linearity

]

= RIE(Sups(xt))(xRIE(Sups(t))(t))
[
by definition of RG

]

= RIE(Sups(xt))(xt)
[
by Observation 16

]

= RG(xt)
[
by definition of RG

]

Thus, RG satisfies all the properties of Lemma 18, from which the theorem follows.

Let us next show that if the slack ξ in Theorem 11 is zero, then the condition
that U ′ ∧E is satisfiable for sufficiently small U ′ is already implied by the expansion.

Lemma 31. If a (U ,V)E-graph is an (s, δ, 0, E)-expander and Vars(U ∧ E) =⋃
V ∈V V , then for any U ′ ⊆ U , |U ′| ≤ s, the formula U ′ ∧ E is satisfiable.

Proof. Let U ′ ⊆ U be any subset of size at most s. First, we show that we can find a
subset V ′ ⊆ N(U ′) and an assignment ρ to the set of variables

⋃
V ∈V′ V such that ρ

E-respectfully satisfies U ′. We do this by induction on the number of formulas in U ′.
As the (U ,V)E-graph is an (s, δ, 0, E)-expander it follows that |∂E(U ′)| ≥ δ|U ′| > 0
for any non-empty subset U ′ and hence there exists a formula F ∈ U ′ and a variable
set V ′ such that V ′ is an E-respectful neighbour of F and is not a neighbour of
any formula in U ′ \ {F}. Therefore, there is an assignment ρ to the variables in
V ′ that E-respectfully satisfies F . By the induction hypothesis there also exists
an assignment ρ′ that E-respectfully satisfies U ′ \ {F} and does not assign any
variables in V ′ as V ′ /∈ N(U ′ \ {F}). Hence, by extending the assignment ρ′ to the
variables in V ′ according to the assignment ρ, we create an assignment to the union
of variables in some subset of N(U ′) that E-respectfully satisfies U ′.

We now need to show how to extend this to an assignment satisfying also E.
To this end, let ρU ′ be an assignment that E-respectfully satisfies U ′ and assigns
the variables in

⋃
V ∈V′ V for some V ′ ⊆ N(U ′). By another induction over the

size |V ′′ \ V ′| of families V ′′ ⊇ V ′, we show that there is an assignment ρV′′ to the
variables

⋃
V ∈V′′ V that E-respectfully satisfies U ′ for every V ′ ⊆ V ′′ ⊆ V. When

V ′′ = V ′, we just take the assignment ρU ′ . We want to show that for any V ′ ∈ V \V ′′
we can extend ρV′′ to the variables in V ′ so that the new assignment E-respectfully
satisfies U ′. As V ′ respects E, there is an assignment ρV ′ to the variables V ′ that
satisfies all affected clauses in E. We would like to combine ρV ′ and ρV′′ into
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one assignment, but this requires some care since the intersection of the domains
V ′ ∩

(⋃
V ∈V′′ V

)
could be non-empty. Consider therefore the subassignment ρ∗V ′

of ρV ′ that assigns only the variables in V ′ \
(⋃

V ∈V′′ V
)
. We claim that extending

ρV′′ by ρ∗V ′ creates an assignment that respects E. This is because every clause
in E that has a variable in V ′ and was not already satisfied by ρV′′ cannot have
variables in V ′ ∩

(⋃
V ∈V′′ V

)
(if so, ρV′′ would have been E-disrespectful) and hence

every such clause must be satisfied by the subassignment ρ∗V ′ .
Thus, we can find an assignment to all the variables ∪V ∈VV that E-respectfully

satisfies U ′. As V includes all the variables in E it means that E is also fully satisfied.
Hence, U ′ ∧ E is satisfiable and the lemma follows.

This allows us to conclude this section by stating the following version of
Theorem 11 for the most commonly occuring case with standard expansion without
any slack.

Corollary 32. Suppose that (U ,V)E is an (s, δ, 0, E)-expander with overlap ol(V) =
d such that Vars(U ∧ E) =

⋃
V ∈V V . Then any polynomial calculus refutation of the

formula
∧
F∈U F ∧ E requires degree strictly greater than δs/(2d).

Proof. This follows immediately by plugging Lemma 31 into Theorem 11.

4 Applications

In this section, we demonstrate how to use the machinery developed in Section 3 to
establish degree lower bounds for polynomial calculus. Let us warm up by reprov-
ing the bound from [AR03] for CNF formulas F whose clause-variable incidence
graphs G(F) are good enough expanders. We first recall the expansion concept used
in [AR03] for ordinary bipartite graphs.

Definition 33 (Bipartite boundary expander). A bipartite graph G = (U ∪̇
V,E) is a bipartite (s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤
s, it holds that |∂(U ′)| ≥ δ|U ′|, where the boundary ∂(U ′) =

{
v ∈ V : |N(v)∩U ′| =

1
}
consists of all vertices on the right-hand side V that have a unique neighbour

in U ′ on the left-hand side.

We can simply identify the (U ,V)E-graph with the standard clause-variable
incidence graph G(F) to recover the degree lower bound in [AR03] as stated next.

Theorem 34 ([AR03]). For any CNF formula F and any constant δ > 0 it holds
that if the clause-variable incidence graph G(F) is an (s, δ)-boundary expander,
then the polynomial calculus degree required to refute F in polynomial calculus is
Deg(F `⊥) > δs/2.

Proof. To choose G(F) as our (U ,V)E-graph, we set E to be the empty formula, U
to be the set of clauses of F interpreted as one-clause CNF formulas, and V to be
the set of variables partitioned into singleton sets. As E is an empty formula every
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set V respects it. Also, every neighbour of some clause C ∈ U is an E-respectful
neighbour because we can set the neighbouring variable so that the clause C ∈ U is
satisfied. Under this interpretation G(F) is an (s, δ, 0, E)-expander, and hence by
Corollary 32 the degree of refuting F is greater than δs/2.

As the second application, which is more interesting in the sense that the
(U ,V)E-graph is nontrivial, we show how the degree lower bound for the ordering
principle formulas in [GL10] can be established using this framework. For an
undirected (and in general non-bipartite) graph G, the graph ordering principle
formula GOP(G) says that there exists a totally ordered set of |V (G)| elements
where no element is minimal, since every element/vertex v has a neighbour u ∈ N(v)
which is smaller according to the ordering. Formally, the CNF formula GOP(G) is
defined over variables xu,v, u, v ∈ V (G), u 6= v, where the intended meaning of the
variables is that xu,v is true if u < v according to the ordering, and consists of the
following axiom clauses:

xu,v ∨ xv,w ∨ xu,w u, v, w ∈ V (G), u 6= v 6= w 6= u (transitivity) (4.1a)
xu,v ∨ xv,u u, v ∈ V (G), u 6= v (anti-symmetry) (4.1b)
xu,v ∨ xv,u u, v ∈ V (G), u 6= v (totality) (4.1c)
∨

u∈N(v)

xu,v v ∈ V (G) (non-minimality) (4.1d)

We remark that the graph ordering principle on the complete graph Kn on
n vertices is the (linear) ordering principle formula LOPn (also known as a least
number principle formula, or graph tautology in the literature), for which the non-
minimality axioms (4.1d) have width linear in n. By instead considering graph
ordering formulas for graphs G of bounded degree, one can bring the initial width of
the formulas down so that the question of degree lower bounds becomes meaningful.

To prove degree lower bounds for GOP(G) we need the following extension of
boundary expansion to the case of non-bipartite graphs.

Definition 35 (Non-bipartite boundary expander). A graph G = (V,E) is an
(s, δ)-boundary expander if for every subset of vertices V ′ ⊆ V (G), |V ′| ≤ s, it holds
that |∂(V ′)| ≥ δ|V ′|, where the boundary ∂(V ′) =

{
v ∈ V (G)\V ′ :

∣∣N(v)∩V ′
∣∣ = 1

}

is the set of all vertices in V (G) \ V ′ that have a unique neighbour in V ′.

We want to point out that the definition of expansion used by Galesi and Lauria
in [GL10] is slightly weaker in that they do not require boundary expansion but just
vertex expansion (measured as |N(V ′) \ V ′| for vertex sets V ′ with |V ′| ≤ s), and
hence their result is slightly stronger than what we state below in Theorem 36. With
some modifications of the definition of E-respectful boundary in (U ,V)E-graphs it
would be possible to match the lower bound in [GL10], but it would also make the
definitions more cumbersome and so we choose not to do so here.
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Theorem 36 ([GL10]). For a non-bipartite graph G that is an (s, δ)-boundary
expander it holds that Deg(GOP(G) `⊥) > δs/4.

Proof. To form the (U ,V)E-graph for GOP(G), we let E consist of all transitivity
axioms (4.1a), anti-symmetry axioms (4.1b), and totality axioms (4.1c). The non-
minimality axioms (4.1d) viewed as singleton sets form the family U , while V is the
family of variable sets Vv for each vertex v containing all variables that mention v,
i.e., Vv = {xu,w | u,w ∈ V (G), u = v or w = v}.

For a vertex u, the neighbours of a non-minimality axiom Fu =
∨
v∈N(u) xv,u ∈ U

are variable sets Vv where v is either equal to u or a neighbour of u in G. We
can prove that each Vv ∈ N(Fu) is an E-respectful neighbour of Fu (although the
particular neighbour Vu will not contribute in the proof of the lower bound). If
v 6= u, then setting all the variables xv,w ∈ Vv to true and all the variables xw,v ∈ Vv
to false (i.e., making v into the minimal element of the set) satisfies Fu as well as all
the affected axioms in E. If v = u, we can use a complementary assignment to the
one above (i.e., making v = u into the maximal element of the set) to E-respectfully
satisfy Fu. Observe that this also shows that all Vv ∈ V respect E as required by
Definition 7.

By the analysis above, it holds that the boundary ∂(V ′) of some vertex set V ′ in
G yields the E-respectful boundary ∂E

(⋃
u∈V ′ Fu

)
⊇ {Vv | v ∈ ∂(V ′)} in (U ,V)E .

Thus, the expansion parameters for (U ,V)E are the same as those for G and we can
conclude that (U ,V)E is an (s, δ, 0, E)-expander.

Finally, we note that while V is not a partition of the variables of GOP(G), the
overlap is only ol(V) = 2 since every variable xu,v occurs in exactly two sets Vu
and Vv in V . Hence, by Corollary 32 the degree of refuting GOP(G) is greater than
δs/4.

With the previous theorem in hand, we can prove (a version of) the main result
in [GL10], namely that there exists a family of 5-CNF formulas witnessing that
the lower bound on size in terms of degree in Theorem 2 is essentially optimal.
That is, there are formulas over N variables that can be refuted in polynomial
calculus (in fact, in resolution) in size polynomial in N but require degree Ω

(√
N
)
.

This follows by plugging expanders with suitable parameters into Theorem 36. By
standard calculations (see, for example, [HLW06]) one can show that there exist
constants γ, δ > 0 such that randomly sampled graphs on n vertices with degree
at most 5 are (γn, δ)-boundary expanders in the sense of Definition 35 with high
probability. By Theorem 36, graph ordering principle formulas on such graphs yield
5-CNF formulas over Θ

(
n2) variables that require degree Ω(n). Since these formulas

have polynomial calculus refutations in size O
(
n3) (just mimicking the resolution

refutations constructed in [Stå96]), this shows that the bound in Theorem 2 is
essentially tight. The difference between this bound and [GL10] is that since a
weaker form of expansion is required in [GL10] it is possible to use 3-regular graphs,
yielding families of 3-CNF formulas.
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Let us now turn our attention back to bipartite graphs and consider different
flavours of pigeonhole principle formulas. We will focus on formulas over bounded-
degree bipartite graphs, where we will convert standard bipartite boundary expansion
as in Definition 33 into respectful boundary expansion as in Definition 9. For a
bipartite graph G = (U ∪̇ V,E) the axioms appearing in the different versions of
the graph pigeonhole principle formulas are as follows:

∨

v∈N(u)

xu,v u ∈ U (pigeon axioms) (4.2a)

xu,v ∨ xu′,v v ∈ V, u, u′ ∈ N(v), u 6= u′, (hole axioms) (4.2b)
xu,v ∨ xu,v′ u ∈ U, v, v′ ∈ N(u), v 6= v′ (functionality axioms) (4.2c)
∨

u∈N(v)

xu,v v ∈ V (onto axioms) (4.2d)

The “plain vanilla” graph pigeonhole principle formula PHP(G) is the CNF formula
over variables {xu,v | (u, v) ∈ E} consisting of clauses (4.2a) and (4.2b); the
graph functional pigeonhole principle formula FPHP(G) contains the clauses of
PHP(G) and in addition clauses (4.2c); the graph onto pigeonhole principle formula
Onto-PHPG contains PHP(G) plus clauses (4.2d); and the graph onto functional
pigeonhole principle formula Onto-FPHPG consists of all the clauses (4.2a)–(4.2d).

We obtain the standard versions of the PHP formulas by considering graph
formulas as above over the complete bipartite graph Kn+1,n. In the opposite
direction, for any bipartite graph G with n+ 1 vertices on the left and n vertices
on the right we can hit any version of the pigeonhole principle formula over Kn+1,n
with the restriction ρG setting xu,v to false for all (u, v) /∈ E(G) to recover the
corresponding graph pigeonhole principle formula over G. When doing so, we will
use the observation from Section 2 that restricting a formula can only decrease the
size and degree required to refute it.

As mentioned in Section 1, it was established already in [AR03] that good bipar-
tite boundary expanders G yield formulas PHP(G) that require large polynomial
calculus degree to refute. We can reprove this result in our language—and, in fact,
observe that the lower bound in [AR03] works also for the onto version Onto-PHPG—
by constructing an appropriate (U ,V)E-graph. In addition, we can generalize the
result in [AR03] slightly by allowing some additive slack ξ > 0 in the expansion
in Theorem 11. This works as long as we have the guarantee that no too small
subformulas are unsatisfiable.

Theorem 37. Suppose that G = (U ∪̇ V,E) is a bipartite graph with |U | = n and
|V | = n− 1 and that δ > 0 is a constant such that

• for every set U ′ ⊆ U of size |U ′| ≤ s there is a matching of U ′ into V , and

• for every set U ′ ⊆ U of size |U ′| ≤ s it holds that |∂(U ′)| ≥ δ|U ′| − ξ.
Then Deg(Onto-PHPG `⊥) > δs/2− ξ.

171



Proof sketch. The (U ,V)E-graph for PHP(G) is formed by taking U to be the set of
pigeon axioms (4.2a), E to consist of the hole axioms (4.2b) and onto axioms (4.2d),
and V to be the collection of variable sets Vv = {xu,v | u ∈ N(v)} partitioned with
respect to the holes v ∈ V . It is straightforward to check that this (U ,V)E-graph is
isomorphic to the graph G and that all neighbours in (U ,V)E are E-respectful (for∨
v∈N(u) xu,v ∈ U and Vv for some v ∈ N(u), apply the partial assignment sending

pigeon u to hole v and ruling out all other pigeons in N(v) \ {u} for v). Moreover,
using the existence of matchings for all sets of pigeons U ′ of size |U ′| ≤ s we can
prove that every subformula U ′ ∧ E is satisfiable as long as |U ′| ≤ s. Hence, we
can apply Theorem 11 to derive the claimed bound. We refer to the upcoming
full-length version of [MN14] for the omitted details.

Theorem 37 is the only place in this paper where we use non-zero slack for
the expansion. The reason that we need slack is so that we can establish lower
bounds for another type of formulas, namely the subset cardinality formulas studied
in [Spe10, VS10, MN14]. A brief (and somewhat informal) description of these
formulas is as follows. We start with a 4-regular bipartite graph to which we add
an extra edge between two non-connected vertices. We then write down clauses
stating that each degree-4 vertex on the left has at least 2 of its edges set to true,
while the single degree-5 vertex has a strict majority of 3 incident edges set to
true. On the right-hand side of the graph we encode the opposite, namely that all
vertices with degree 4 have at least 2 of its edges set to false, while the vertex with
degree 5 has at least 3 edges set to false. A simple counting argument yields that
the CNF formula consisting of these clauses must be unsatisfiable. Formally, we
have the following definition (which strictly speaking is a slightly specialized case of
the general construction, but again we refer to [MN14] for the details).

Definition 38 (Subset cardinality formulas [VS10, MN14]). Suppose that
G = (U ∪̇ V,E) is a bipartite graph that is 4-regular except that one extra edge
has been added between two unconnected vertices on the left and right. Then the
subset cardinality formula SC (G) over G has variables xe, e ∈ E, and clauses:

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any u ∈ U ,

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any v ∈ V .

To prove lower bounds on refutation degree for these formulas we use the standard
notion of vertex expansion on bipartite graphs, where all neighbours on the left are
counted and not just unique neighbours as in Definition 33.

Definition 39 (Bipartite expander). A bipartite graph G = (U ∪̇ V,E) is
a bipartite (s, δ)-expander if for each vertex set U ′ ⊆ U, |U ′| ≤ s, it holds that
|N(U ′)| ≥ δ|U ′|.

The existence of such expanders with appropriate parameters can again be
established by straightforward calculations (as in, for instance, [HLW06]).
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Theorem 40 ([MN14]). Suppose that G = (U ∪̇ V,E) is a 4-regular bipartite(
γn, 5

2 + δ
)
-expander for |U | = |V | = n and some constants γ, δ > 0, and let G′ be

obtained from G by adding an arbitrary edge between two unconnected vertices in U
and V . Then refuting the formula SC (G′) requires degree Deg(SC (G′) `⊥) = Ω(n),
and hence size SPCR(SC (G′) `⊥) = exp

(
Ω(n)

)
.

Proof sketch. The proof is by reducing to graph PHP formulas and applying The-
orem 37 (which of course also holds with onto axioms removed). We fix some
complete matching in G, which is guaranteed to exist in regular bipartite graphs,
and then set all edges in the matching as well as the extra added edge to true. Now
the degree-5 vertex v∗ on the right has only 3 neighbours and the constraint for v∗
requires all of these edges to be set to false. Hence, we set these edges to false
as well which makes v∗ and its clauses vanish from the formula. The restriction
leaves us with n vertices on the left which require that at least 1 of the remaining
3 edges incident to them is true, while the n− 1 vertices on the right require that
at most 1 out of their incident edges is true. That is, we have restricted our subset
cardinality formula to obtain a graph PHP formula.

As the original graph is a (γn, 5
2 + δ)-expander, a simple calculation can convince

us that the new graph is a boundary expander where each set of vertices U ′ on
the left with size |U ′| ≤ γn has boundary expansion |∂(U ′)| ≥ 2δ|U ′| − 1. Note the
additive slack of 1 compared to the usual expansion condition, which is caused by the
removal of the degree-5 vertex v∗ from the right. Now we can appeal to Theorem 37
(and Theorem 2) to obtain the lower bounds claimed in the theorem.

Let us conclude this section by presenting our new lower bounds for the functional
pigeonhole principle formulas. As a first attempt, we could try to reason as in the
proof of Theorem 37 (but adding the axioms (4.2c) and removing axioms (4.2d)).
The naive idea would be to modify our (U ,V)E-graph slightly by substituting the
functionality axioms for the onto axioms in E while keeping U and V the same.
This does not work, however—although the sets Vv ∈ V are E-respectful, the only
assignment that respects E is the one that sets all variables xu,v ∈ Vv to false. Thus,
it is not possible to satisfy any of the pigeon axioms, meaning that there are no
E-respectful neighbours in (U ,V)E . In order to obtain a useful (U ,V)E-graph, we
instead need to redefine V by enlarging the variable sets Vv, using the fact that V is
not required to be a partition. Doing so in the appropriate way yields the following
theorem.

Theorem 41. Suppose that G = (U ∪̇ V,E) is a bipartite (s, δ)-boundary expander
with left degree bounded by d. Then it holds that refuting FPHP(G) in polynomial
calculus requires degree strictly greater than δs/(2d). It follows that if G is a bipartite
(γn, δ)-boundary expander with constant left degree and γ, δ > 0, then any polynomial
calculus (PC or PCR) refutation of FPHP(G) requires size exp(Ω(n)).

Proof. We construct a (U ,V)E-graph from FPHP(G) as follows. We let the set
of clauses E consist of all hole axioms (4.2b) and functionality axioms (4.2c). We

173



define the family U to consist of the pigeon axioms (4.2a) interpreted as singleton
CNF formulas. For the variables we let V = {Vv | v ∈ V }, where for every hole
v ∈ V the set Vv is defined by

Vv =
{
xu′,v′

∣∣u′ ∈ N(v) and v′ ∈ N(u′)
}
. (4.3)

That is, to build Vv we start with the hole v on the right, consider all pigeons u′
on the left that can go into this hole, and finally include in Vv for all such u′ the
variables xu′,v′ for all holes v′ incident to u′. We want to show that (U ,V)E as
defined above satisfies the conditions in Corollary 32.

Note first that every variable set Vv respects the clause set E since setting all
variables in Vv to false satisfies all clauses in E mentioning variables in Vv. It is
easy to see from (4.3) that when a hole v is a neighbour of a pigeon u, the variable
set Vv is also a neighbour in the (U ,V)E-graph of the corresponding pigeon axiom
Fu =

∨
v∈N(u) xu,v. These are the only neighbours of the pigeon axiom Fu, as each

Vv contains only variables mentioning pigeons in the neighbourhood of v. In other
words, G and (U ,V)E share the same neighbourhood structure.

Moreover, we claim that every neighbour Vv of Fu is an E-respectful neighbour.
To see this, consider the assignment ρu,v that sets xu,v to true and the remaining
variables in Vv to false. Clearly, Fu is satisfied by ρu,v. All axioms in E not
containing xu,v are either satisfied by ρu,v or left untouched, since ρu,v assigns all
other variables in its domain to false. Any hole axiom xu,v ∨ xu′,v in E that does
contain xu,v is satisfied by ρu,v since xu′,v ∈ Vv for u′ ∈ N(v) by (4.3) and this
variable is set to false by ρu,v. In the same way, any functionality axiom xu,v ∨ xu,v′
containing xu,v is satisfied since the variable xu,v′ is in Vv by (4.3) and is hence
assigned to false. Thus, the assignment ρu,v E-respectfully satisfies Fu, and so Fu
and Vv are E-respectful neighbours as claimed.

Since our constructed (U ,V)E-graph is isomorphic to the original graph G and
all neighbour relations are respectful, the expansion parameters of G trivially carry
over to respectful expansion in (U ,V)E . This is just another way of saying that
(U ,V)E is an (s, δ, 0, E)-expander.

To finish the proof, note that the overlap of V is at most d. This is so since a
variable xu,v appears in a set Vv′ only when v′ ∈ N(u). Hence, for all variables xu,v
it holds that they appear in at most |N(u)| ≤ d sets in V . Now the conclusion that
any polynomial calculus refutation of FPHP(G) requires degree greater than δs/(2d)
can be read off from Corollary 32. In addition, the exponential lower bound on the
size of a refutation of FPHP(G) when G is a (γn, δ)-boundary expander G with
constant left degree follows by plugging the degree lower bound into Theorem 2.

It is not hard to show (again we refer to [HLW06] for the details) that there
exist bipartite graphs with left degree 3 which are (γn, δ)-boundary expanders
for γ, δ > 0 and hence our size lower bound for polynomial calculus refutations
of FPHP(G) can be applied to them. Moreover, if |U | = n+ 1 and |V | = n, then we
can identify some bipartite graph G that is a good expander and hit FPHPn+1

n =
FPHP(Kn+1,n) with a restriction ρG setting xu,v to false for all (u, v) /∈ E to obtain
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FPHPn+1
n �ρG

= FPHP(G). Since restrictions can only decrease refutation size, it
follows that size lower bounds for FPHP(G) apply also to FPHPn+1

n , yielding the
second lower bound claimed in Section 1.

Theorem 42. Any polynomial calculus or polynomial calculus resolution refutation
of (the standard CNF encoding of) the functional pigeonhole principle FPHPn+1

n

requires size exp(Ω(n)).

5 Concluding Remarks

In this work, we extend the method developed by Alekhnovich and Razborov [AR03]
for proving degree lower bounds on refutations of CNF formulas in polynomial
calculus. Instead of looking at the clause-variable incidence graph G(F ) of the
formula F as in [AR03], we allow clustering of clauses and variables and reason in
terms of the incidence graph G′ defined on these clusters. We show that the CNF
formula F requires high degree to be refuted in polynomial calculus whenever this
clustering can be done in a way that “respects the structure” of the formula and so
that the resulting graph G′ has certain expansion properties.

This provides us with a unified framework within which we can reprove previ-
ously established degree lower bounds in [AR03, GL10, MN14]. More importantly,
this also allows us to obtain a degree lower bound on the functional pigeonhole
principle defined on expander graphs, solving an open problem from [Raz02]. It
immediately follows from this that the (standard CNF encodings of) the usual
functional pigeonhole principle formulas require exponential proof size in polynomial
calculus resolution, resolving a question on Razborov’s problems list [Raz15] which
had (quite annoyingly) remained open. This means that we now have an essen-
tially complete understanding of how the different variants of pigeonhole principle
formulas behave with respect to polynomial calculus in the standard setting with
n+ 1 pigeons and n holes. Namely, while Onto-FPHP formulas are easy, both
FPHP formulas and Onto-PHP formulas are exponentially hard in n even when
restricted to bounded-degree expanders.

A natural next step would be to see if this generalized framework can also be
used to attack other interesting formula families which are known to be hard for
resolution but for which there are currently no lower bounds in polynomial calculus.
In particular, can our framework or some modification of it prove a lower bound
for refuting the formulas encoding that a graph does not contain an independent
set of size k, which were proven hard for resolution in [BIS07]? Or what about the
formulas stating that a graph is k-colorable, for which resolution lower bounds were
established in [BCMM05]?

Returning to the pigeonhole principle, we now understand how different encodings
behave in polynomial calculus when we have n+ 1 pigeons and n holes. But what
happens when we increase the number of pigeons? For instance, do the formulas
become easier if we have n2 pigeons and n holes? (This is the point where lower
bound techniques based on degree break down.) What about arbitrary many
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pigeons? In resolution these questions are fairly well understood, as witnessed by
the works of Raz [Raz04a] and Razborov [Raz01, Raz03, Raz04b], but as far as we
are aware they remain wide open for polynomial calculus.

Finally, we want to point out an intriguing contrast between our work and that
of Alekhnovich and Razborov. As discussed in the introduction, the main technical
result in [AR03] is that when the incidence graph of a set of polynomial equations is
expanding and the polynomials are immune, i.e., have no low-degree consequences,
then refuting this set of equations is hard with respect to polynomial calculus degree.
Since clauses of width w have maximal immunity w, it follows that for a CNF
formula F expansion of the clause-variable incidence graph G(F ) is enough to imply
hardness. A natural way of interpreting our work would be to say that we simply
extend this result to a slightly more general constraint-variable incidence graph. On
closer inspection, however, this analogy seems to be misleading, and since we were
quite surprised by this ourselves we want to elaborate briefly on this.

For the functional pigeonhole principle, the pigeon and functional axioms for a
pigeon u taken together imply the polynomial equation

∑
v∈N(u) xu,v = 1 (summing

over all holes v ∈ N(u) to which the pigeon u can fly). Since this is a degree-1
consequence, it shows that the pigeonhole axioms in FPHP formulas have lowest
possible immunity modulo the set E consisting of hole and functionality axioms.
Nevertheless, our lower bound proof still works, and only needs expansion of the
constraint-variable graph although the immunity of the constraints is non-existent.

On the other hand, the constraint-variable incidence graph of a random set of
parity constraints is expanding asymptotically almost surely, and since over fields
of characteristic distinct from 2 parity constraints have high immunity (see, for
instance, [Gre00]), the techniques in [AR03] can be used to prove strong degree
lower bounds in such a setting. However, it seems that our framework of respectful
boundary expansion is inherently unable to establish this result. The problem is
that (as discussed in the footnote after Definition 9) it is not possible to group
variables together in such a way as to ensure respectful neighbourhood relations. At
a high level, it seems that the main ingredient needed for our technique to work
is that clauses/polynomials and variables can be grouped together in such a way
that the effects of assignments to a group of variables can always be contained
in a small neighbourhood of clauses/polynomials, which the assignments (mostly)
satisify, and do not propagate beyond this neighbourhood. Functional pigeonhole
principle formulas over bounded-degree graphs have this property, since assigning a
pigeon u to a hole v only affects the neighbouring holes of u and the neighbouring
pigeons of v, respectively. There is no such way to contain the effects locally when
one starts satisfying individual equations in an expanding set of parity constraints,
however, regardless of the characteristic of the underlying field.

In view of this, it seems that our techniques and those of [AR03] are closer
to being orthogonal rather than parallel. It would be desirable to gain a deeper
understanding of what is going on here. In particular, in comparison to [AR03],
which gives clear, explicit criteria for hardness (is the graph expanding? are the
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polynomials immune?), our work is less explicit in that it says that hardness is
implied by the existence of a “clustered clause-variable incidence graph” with the
right properties, but gives no guidance as to if and how such a graph might be built.
It would be very interesting to find more general criteria of hardness that could
capture both our approach and that of [AR03], and ideally provide a unified view
of these lower bound techniques.
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