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Topic: Proof complexity

Focus: Polynomial calculus (Grdbner basis calculations)

Goal: Degree lower bounds (= Size lower bounds)
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Lower Bounds via Expansion

Standard approach: Lower
bounds from expansion.

Simplest example: Clause-variable
incidence graph (CVIG).
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Our Results

Main Theorem (Informal)

Graph structure on formula such that expansion implies hardness in
polynomial calculus.

Extends an approach from [Alekhnovich, Razborov '01].

Unifies (almost) all previous lower bounds.

Corollary J

Functional pigeonhole principle is hard for polynomial calculus.

Resolves question in [Razborov '02].
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Our Results

Main Theorem (Informal)

Graph structure on formula such that expansion implies hardness in
polynomial calculus.

Extends an approach from [Alekhnovich, Razborov '01].

Unifies (almost) all previous lower bounds.

Corollary J

Functional pigeonhole principle is hard for polynomial calculus.

Resolves question in [Razborov '02].

Warm-up: Use resolution to present main ideas and challenges.
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Resolution

o Input: CNF formula F
(zVTV2)AGVEA (VY AEVE) ATV 2)

@ Resolution rule:

CVz Dvz
CcvD

@ Goal: Proof of unsatisfiability (refutation) = Derive empty clause L

Refer to clauses of formula as axioms.
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Complexity Measures for Resolution

L TVYV 2 Axiom
Size: number of steps in proof 9 gVz Axiom
Width: size of the largest clause . e Res(1.2)
4. zVy Axiom
5. z Res(3,4)
6. TVZ Axiom
7. zTVz Axiom
8. T Res(6,7)
0. € Res(5, 8)
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Complexity Measures for Resolution

L. TVYV2 Axiom
Size: number of steps in proof 9 9 TVE Axiom
Width: size of the largest clause 3 . 2V Res(1.2)
Theorem (Ben-Sasson, Wigderson '99) 4. VY Axiom
Size 2> exp (Width) 5. x Res(3,4)
6. TVZ Axiom
7. TV z Axiom
8. T Res(6, 7)
0. € Res(5, 8)
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Complexity Measures for Resolution

L TVYVz Axiom

Size: number of steps in proof 9 9 TVz Axiom
Width: size of the largest clause 3 . 2V Res(1.2)

Theorem (Ben-Sasson, Wigderson '99) 4. TVy Axiom
Size 2> exp (Width) 5. x Res(3,4)

6. TVZ Axiom

Width lower bounds via expansion 7. TV 2 Axiom
argument. ) , Res(6,7)
0. € Res(5, 8)
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Example: Tseitin Formulas

Given set of equations over .

z+w=0
x+y=0
y+w+z=1
z=0
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Example: Tseitin Formulas

Given set of equations over .
Clauses

z 4+ w=0 rVw
3;’+y:0 TV w
y+w+z=1 vy

Z:O TVy

Encode as clauses.
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Example: Tseitin Formulas

Given set of equations over .

Clauses Variables
z 4+ w=0 TV w
x+y:0 TVw
y+w+z=1 vy .,
z=0 TVy

Encode as clauses.

Does CVIG expand? TVwVzE
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Example: Tseitin Formulas

Given set of equations over .

Clauses Variables
z 4+ w=0 TV w
x+y:0 TVw
y+w+z=1 vy
z=0 TVy

Encode as clauses.

Does CVIG expand? No! TVwVz ()
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Example: Tseitin Formulas

Given set of equations over .

Clauses Variables
z 4+ w=0 TV w
x+y:0 TVw
y+w+z=1 vy
z=0 TVy

Encode as clauses.
Does CVIG expand? No! TVwVE ()

Graph should encode equations
not clauses! :
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Constraint-Variable Incidence Graph

Have single vertex for each constraint on the left.

Put edge if variable appears in constraint.

Clauses Variables
Constraints Variables

r+w=0 T
T r+y=0 Y

Y
ytw+z=1 w

w
2=0 z
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Constraint-Variable Incidence Graph

Have single vertex for each constraint on the left.

Put edge if variable appears in constraint.

Clauses Variables
Constraints Variables

r+w=0 T
T r+y=0 Y

Y
ytw+z=1 w

w
2=0 z

The constraint-variable incidence graph expands!
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h of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

ytw+z=1 w
z=0 z
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h of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

ytw+z=1 w
z=0 z

@ For each clause, look at constraints needed to derive it.
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Proof Sketch of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

ytw+z=1 w
z=0 z

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
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Proof Sketch of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

y+w+z=1 w
z=0 z
TVwVZ

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
Halfway through: Clause C depending on medium-sized set S
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Proof Sketch of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

y+w+z=1 w
z=0 z
TVwVZ

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
Halfway through: Clause C depending on medium-sized set S

@ S has large boundary expansion = All boundary variables in C'
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of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

y+w+z=1 w
z=0 z
TVwVZ

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
Halfway through: Clause C depending on medium-sized set S

@ S has large boundary expansion = All boundary variables in C'

© Suppose not = not all of S needed for C
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of Tseitin Lower Bound

Constraints Variables
z+w=0 T
z+y=0 Y

y+w+z=1 w
z=0 z
TV w

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
Halfway through: Clause C depending on medium-sized set S

@ S has large boundary expansion = All boundary variables in C'

© Suppose not = not all of S needed for C; e.g., C doesn’t have z
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of Tseitin Lower Bound

Constraints Variables
r+w=0 1
1+1= O’ 1
14+0+1=1y¢ 0
z2=0 1
- X
1vO
TV w

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
Halfway through: Clause C depending on medium-sized set S

@ S has large boundary expansion = All boundary variables in C'

© Suppose not = not all of S needed for C; e.g., C doesn’t have z
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of Tseitin Lower Bound

Constraints Variables
r+w=0 1
1+1= O’ 1
1+0+0=14, 0
z2=0 0
= X
1vO
TV w

@ For each clause, look at constraints needed to derive it.

Axioms: 1 constraint needed
Contradiction L:  All constraints
Halfway through: Clause C depending on medium-sized set S

@ S has large boundary expansion = All boundary variables in C'

© Suppose not = not all of S needed for C; e.g., C doesn’t have z
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Resolution Lower Bounds

Resolution edge game on (P, x)
@ Adversary provides assignment p to all variables.
@ Can flip = to some b so that P is satisfied.
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Resolution Lower Bounds

Resolution edge game on (P, x)

@ Adversary provides assignment p to all variables.
@ Can flip z to some b so that P is satisfied.

Theorem (Ben-Sasson, Wigderson '99)

If from formula F = \pcr P, we can form graph G(F) such that
e G(F) is expanding, and
e for all edges (P, x), P is satisfied by flipping z,

then refuting F requires large width.
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Polynomial Calculus [CEI '96, ABRW '00]

Lines are polynomial equations over some field F.

@ Input: Polynomial equations encoding Boolean constraints
Clause encoded as: xVyVz — Tyz =0
Additional axioms: 22 —z=0and 2 +Z—1=0

@ Linear combination:
p=20 q=20

ap+ Bqg=0
e Variable multiplication:
p=0
zp=0

@ Goal: Derive 1 = 0 showing that constraints are unsatisfiable
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Complexity Measures for Polynomial Calculus

Size: number of monomials in proof

Degree: max degree of monomial

1. xy =10 Axiom

2. y=20 Axiom

3. y+y—1=0 Axiom
4. 7—1=0 Lin(2,3)
5. ay—xz=0 Mul(4,2)
6. z=0 Lin(1,5)
7. z+zZ+4+1=0 Axiom
8. Z4+1=0 Lin(6,7)
9. z=0 Axiom
10. 1=0 Lin(8,9)
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Complexity Measures for Polynomial Calculus

Size: number of monomials in proof 17
Degree: max degree of monomial
xy =0 Axiom
y=0 Axiom
y%i- y“— 1°=0 Axiom
7910 Lin23)

I B A T o
8
<
|
8
I

Mul(4, )
'L Lin(1,5)
2 z% 120 Axiom
ZH1'2 0 Lin(6,7)
7% Axiom
10. 'z Lin(8,9)
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Complexity Measures for Polynomial Calculus

Size: number of monomials in proof 17

Degree: max degree of monomial 2

1. xy =10 Axiom

2. y=20 Axiom

3. y+y—1=0 Axiom
4. 7—1=0 Lin(2,3)
5. ay—xz=0 Mul(4,z)
6. z=0 Lin(1,5)
7. z+zZ+4+1=0 Axiom
8. Z4+1=0 Lin(6,7)
9. z=0 Axiom
10. 1=0 Lin(8,9)
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4. 7—1=0 Lin(2,3)
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Complexity Measures for Polynomial Calculus

Size: number of monomials in proof 17
Degree: max degree of monomial 2
xy =10 Axiom
Theorem (Impagliazzo, Pudlak, Sgall '99) =0 Axiom
y+y—1=0 Axiom
7—1=0 Lin(2,3)
Mul(4, )
z=0  Lin(1,5)
r+Z+1=0 Axiom

Size 2> exp (Degree)

Used in:
@ Buss, Grigoriev, Impagliazzo, Pitassi '99

@ Ben-Sasson, Impagliazzo '99

© ® N e Ot W N
8
<
|
8
I
o

@ Alekhnovich, Razborov '01 Z+1= Lin(6,7)
o Galesi, Lauria '10 z=0 Axiom
10. 1=0 Lin(8,9)
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Complexity Measures for Polynomial Calculus

Size: number of monomials in proof 17
Degree: max degree of monomial 2

xy =0 Axiom
Theorem (Impagliazzo, Pudlak, Sgall '99) y=0 Axiom
y+y—1=0 Axiom

Size 2 exp (Degree) 7—1=0 Lin(2,3)

R B A o i o
8
<
|
8
I

Used in: Mul(4, z)
@ Buss, Grigoriev, Impagliazzo, Pitassi '99 T = Lin(1,5)
@ Ben-Sasson, Impagliazzo '99 r+Z+1=0 Axiom
o Alekhnovich, Razborov '01 Z+1=0  Lin(6,7)
o Galesi, Lauria '10 z=0 Axiom

10. 1=0 Lin(8,9)

Polynomial calculus exponentially stronger
than resolution.
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Polynomial Calculus Edge Game

Tseitin: linear equations = easy over Fy (Gaussian elimination)

Need stronger guarantee from constraint-variable incidence graph!
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Polynomial Calculus Edge Game

Tseitin: linear equations = easy over Fy (Gaussian elimination)
Need stronger guarantee from constraint-variable incidence graph!
Resolution graph:

@ Graph is boundary expander.

e Can play resolution edge game on every edge (P, x).
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Polynomial Calculus Edge Game

Tseitin: linear equations = easy over Fy (Gaussian elimination)
Need stronger guarantee from constraint-variable incidence graph!
Resolution graph:

@ Graph is boundary expander.

e Can play resolution edge game on every edge (P, x).

Need to play harder game!

Polynomial calculus edge game on (P, x)
@ Commit to assignment x = b ahead of time.

© Adversary provides assignment p to all variables.
© Flipping x = b satisfies P.

Can’t win this game for Tseitin.
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Main Theorem (Tentative Version)

If from formula 7 = A p.» P we can form G(F):
e G(F) is expanding, and
o for all edges (P, x), P fixed to true by z,

then refuting F requires large degree.
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Main Theorem (Tentative Version)

If from formula 7 = A p.» P we can form G(F):
e G(F) is expanding, and
o for all edges (P, x), P fixed to true by z,
then refuting F requires large degree.

Not enough to prove functional pigeonhole principle hard!
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Pigeonhole Principle (PHP)

Statement: n + 1 pigeons can fit into n holes

Variable x1 3 is true if pigeon 1 sits in hole 3
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Pigeonhole Principle (PHP)

Statement: n + 1 pigeons can fit into n holes

Variable x1 3 is true if pigeon 1 sits in hole 3

Pigeons Holes
T11VTon T21 VT3

11V T12VI3

N T ViIa1 To1 v Tan
\(/0 T11 VTq1 T31 VT4
T2V T22 V T2y ‘. T12VTa2 To2 VT3

XD T12VTsn TapVIap
31V T30V T3 g"‘\ T12V Tyo T3z VTyo

/’@ T13V Tas TasV Ty
a1V Ta2 V a3 (4

T13VT33 TazV Ty
T13VTas T33VTyg
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Pigeonhole Principle (PHP)

Statement: n + 1 pigeons can fit into n holes

Variable x1 3 is true if pigeon 1 sits in hole 3

Pigeons Holes

T11VTa1 To1V Ty
T11 V31 Loy V Ty
T11VTa1 T31V Ty

11 VT2V arg

a1V T22V Ta3 9‘%{ T19VTao TooVT3n
S 9@ T12V T3 TaoV Ty
231V X392V I35 g"‘\ T12V Tao T32V Tap

T13V Tas Loz V Ty
T13VT33 TazV Ty
T13VTy3 Ta3VTus

Ty1V TyaV Ty3 9/ @
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Pigeonhole Principle (PHP)

Statement: n + 1 pigeons can fit into n holes

Variable x1 3 is true if pigeon 1 sits in hole 3

Pigeons Holes
T11 VT To1 VT
11V 1,3 fii Vi 521 21 31
T V Ta3
231V T3 T3V Ty
T13VTa3 _
T2 \Y T43 @ 2,3 v T4,3

T13V T3
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Pigeonhole Principle (PHP)

Statement: n + 1 pigeons can fit into n holes

Variable x1 3 is true if pigeon 1 sits in hole 3

Pigeons Holes

TV 2@ Ty VT2
N =0 @i VI
o1V To3 @‘( To1 VT3
<\ T32 V Ty

) '9 o > - 5
31V 2323 \ T3V Ta3
)@ T3V Tas
T42 \ Tq3 @ 2,3 \ T4,3
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Pigeonhole Principle (PHP)

Variable x1 3 is true if pigeon 1 sits in hole 3

Pigeons Holes

TV 2@ Ty VT2
N =0 @i VI
o1V To3 g‘( To1 VT3
<\ T32 V Ty

< D T32 VI,
31V 2323 \ T3V Ta3
)@ T3V Tas
T42 \ Tq3 9 2,3 \ T4,3

Mladen Miksa (KTH)

Statement: n + 1 pigeons can fit into n holes

Constraints
r11 V213

To1V X23
r31V T3
Ty V Ty3
T11V T
T11 VT3
Ty V T3
T32V Ty2
T13V Ta3
T1,3V Tas3

Ta3 V Ty3

A Generalized Method for PC Degree Lower Bounds

CCC'15

Z1,1
T21
x31
x32
T2
x1,3
T3

Ty4,3

Variables

15/21



Pigeonhole Principle (PHP)

Statement: n + 1 pigeons can fit into n holes
Variable x1 3 is true if pigeon 1 sits in hole 3

Constraints Variables
211 V213 O

To1V X23 -
. 1,1
Pigeons Holes 31V T3
T21
11V 213 (D) T, yzm Ty2V Ty3 "
(D T1q V T31 — — 3,1
> = =5 T T
Zo1 V T g‘( Ty VT3, 1,1V T21 -_
. _(2) T32V Ta2 T1,1V T3 Tio
Ta1 V232 (@) [ T3V Tap Ty1 VT3 ’
B T13V Ta3 o VE T3
Ty V a3 (@) To3V Ty3 3,2 V T4, o
T13V Ta3 . ’
43

T1,3V Tas3
Ta3 V Ty3

Again CVIG not expanding!
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Mladen Miksa (KTH)

Constraints Variable groups

T11 VT3

{$1,17 2,1, $3,1}
Toq V Ta3

{303,27 904,2}
31V T30

{5E1,37 22,3, 554,3}
Ta2V Ty3

A Generalized Method for PC Degree Lower Bounds CCC'15
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints
r11 VT3

Ty V Tag3
T31 V T3

Tyo V Ta3

Mladen Miksa (KTH)

Variable groups Pigeons

T11V T13
{T11, 21,231}

To1 \Y X233 g
{13127 C5’4,2}

31V T32
{T13, 203,243}

4,2 \ X433

A Generalized Method for PC Degree Lower Bounds

CCC'15

T11 V Ta
T11 VT3
To1 VT3

T13V Tag
Z13V Ta3
To3 V Ty3
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!
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Constraints Variable groups

T11 VT3

{$1,17 2,1, $3,1}
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Ta2V Ty3

A Generalized Method for PC Degree Lower Bounds CCC'15

16/21



Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints Variable groups

T11 VT3

{$1,17 2,1, $3,1}
Toq V Ta3

{303,27 904,2}
31V X32

{$1,37 22,3, 554,3}
Ta2V Ty3

Change the game: Assign group so that hole axioms (FE) aren't violated!
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints Variable groups
T11 VT3

{331,17 Z2,1, $3,1}
Toq V Ta3

{I3,27 $4,2}
31V X32

{$1,37 T2,3, 554,3}
T2V Ta3

Change the game: Assign group so that hole axioms (FE) aren't violated!

Polynomial calculus edge game on (P, V) with FE
@ Commit to assignment py to variables in V' ahead of time.
@ Adversary provides assignment p to all variables that satisfies F.
© Flipping V' to py satisfies P A E.
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints Variable groups

T11 VT3

{331,17 2,1, $3,1}
Toq V Ta3

{I3,27 304,2}
31V X32

{$1,37 T2,3, 554,3}
Ta2V Ty3

Change the game: Assign group so that hole axioms (FE) aren't violated!

Polynomial calculus edge game on (P, V) with FE

@ Commit to assignment py to variables in V' ahead of time.
@ Adversary provides assignment p to all variables that satisfies F.
© Flipping V' to py satisfies P A E.
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints Variable groups

T11 VT3

{331,17 Z2,1, $3,1}
Toq V Ta3

{I3,27 304,2}
31V X32

{1,1,7}
Ta2V Ty3

Change the game: Assign group so that hole axioms (FE) aren't violated!

Polynomial calculus edge game on (P, V) with FE

@ Commit to assignment py to variables in V' ahead of time.
@ Adversary provides assignment p to all variables that satisfies F.
© Flipping V' to py satisfies P A E.
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints

Variable groups

1Lv_L

1,1, T
LvT v T

1, L
TV L A

J{J_,T,J_} {L, L, T}

J_\/J_x

Change the game: Assign group so that hole axioms (FE) aren't violated!

Polynomial calculus edge game on (P, V) with FE

@ Commit to assignment py to variables in V' ahead of time.

@ Adversary provides assignment p to all variables that satisfies F.
© Flipping V' to py satisfies P A E.
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together!

Constraints

Variable groups
vl
Lvi A
v v
VT ¢ v

Change the game: Assign group so that hole axioms (FE) aren't violated!

Polynomial calculus edge game on (P, V) with FE

@ Commit to assignment py to variables in V' ahead of time.

@ Adversary provides assignment p to all variables that satisfies F.
© Flipping V' to py satisfies P A E.
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Main Theorem

If from formula 7 = 7' A E, where 7' = A\ p_7 P, we can form G(F'):
e G(F') is expanding, and
o for all edges (P,V'), P is fixed to true by V without violating E,

then refuting F requires large degree.

Gives common framework for previous lower bounds.
e Expanding CNF [Alekhnovich, Razborov '01]
e Pigeonhole principle [Alekhnovich, Razborov '01]
e Graph ordering principle [Galesi, Lauria '10]
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Main Theorem
If from formula 7 = 7' A E, where 7' = A\ p_7 P, we can form G(F'):
e G(F') is expanding, and
o for all edges (P,V'), P is fixed to true by V without violating E,
then refuting F requires large degree.

Gives common framework for previous lower bounds.
e Expanding CNF [Alekhnovich, Razborov '01]
e Pigeonhole principle [Alekhnovich, Razborov '01]
e Graph ordering principle [Galesi, Lauria '10]

Proves functional PHP hard.
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PHP Variants
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PHP Variants

Pigeons Holes

r11 VT3 Tia V Ton
O T11 VT3

T21 V T23(2) To1 V T3
'@ T3V Ty

31V T323) TigV Tog
@ T3V Tag

T2 \ T3 @ €23 \ La,3
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PHP Variants

Pigeons Holes
r11 VT3 Ti1V Tog
D Ti1V Tsy
21V 23 (32 Ta1 VT3

T32V Ty2

) ) T13V Ta3
B T13V Tys
T2 \ T3 @ €23 \ La,3

@ Can have fat pigeons which are assigned to multiple holes.
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PHP Variants

Functionality =~ Pigeons Holes
T11 VT3 x11VT13 Ti1 Vs
(D T1,1 VT3,

To1 VT3 21V Ta3(D) To1 VT3
T32V Ty2

T31 VT3  x31VT32 ‘

, ’ T13V Ta3
- B B3 T13V Tas
Ty Va3 TV Taz @) Ta3V Ty

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).
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PHP Variants

Functionality =~ Pigeons Holes
T11 VT3 r11VIT13 Ti1 Vs
(D T1,1 VT3,

f;l \Y fzyg T21 \ X23 9 EZ,l \ f3,1
T32V Ty2

T3 VTgn 31V T3z GF

, - T13V Ta3
B B B3 T13V Tas
Ty2 VT3 T4V Taz @) Ta3V Ty

@ Can have fat pigeons which are assigned to multiple holes.
= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

Mladen Miksa (KTH) A Generalized Method for PC Degree Lower Bounds CCC'15 18/21



PHP Variants

Functionality
T11 VT3

To1VTa3
T31V T3z

Ty2V Ty3

Pigeons Holes

r11 VT3 Tia V Ton
O T11V T3y

21V 23 (32 T21 VT3
< T32V Ty2

31V T323) TigV Tog
B T13V Tys

Ty2 V Taz @) Ta3V Ty

Onto
r11V To1 VX3
T32V Ty

T3V T3V Tas

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Mladen Miksa (KTH)

A Generalized Method for PC Degree Lower Bounds

CCC'15
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PHP Variants

Functionality
T11 VT3

To1VTa3
T31V T3z

Ty2V Ty3

Pigeons Holes

r11 VT3 Tia V Ton
O T11V T3y

21V 23 (32 T21 VT3
< T32V Ty2

31V T323) TigV Tog
B T13V Tys

Ty2 V Taz @) Ta3V Ty

Onto
T11 VX211V T3
T30V Ty

T13V T3V Ty3

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).
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PHP Variants

Functionality
T11 VT3

To1VTa3
T31V T32

Ty2V Ty3

Pigeons Holes
T Vo 7 7,
L1V =13 Ty V Ty
O T11V T3
21V 23 (@) To1V T31
< T32V Ty
w31V T32 3) TisV Ty
B Ti3V Tyz
Tap V Ta3 (@) TagV Ty

Onto
T11 VX211V T3
T30V Ty

T13V T3V Ty3

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Functional PHP = PHP + Functionality

Mladen Miksa (KTH)
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PHP Variants

Functionality
T11 VT3

To1VTa3
T31V T3z

Ty2V Ty3

Pigeons Holes

11V 213 Tia V Ton
O T11V T3y

21V 23 (32 T21 VT3
< T32V Ty2

31V T323) TigV Tog
B T13V Tys

Zaz V Ta3 (3 Tag V Ty

Onto
T11 VX211V T3
T30V Ty

T13V T3V Ty3

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Functional PHP = PHP + Functionality
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PHP Variant

Functionality
T11 VT3

To1VTa3
T31V T3z

Ty2V Ty3

Pigeons Holes

T11V g Ty V Ty
O T11V T3

21V 23 (@) To1V T31
< T32V Ty

31V 232 (3) TV Tas
)@ T13V T3

Tap V Ta3 (@) TagV Ty

Onto
r11V To1 VX3
T32V Ty

T3V T3V Tas

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Functional PHP = PHP + Functionality
Onto-PHP = PHP + Onto

Mladen Miksa (KTH)
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PHP Variants

Functionality =~ Pigeons Holes Onto
T11 VT3 r11VIT13 Ti1 Vs
D T11VT31 11V x21VI3;1
f;l \Y fzyg T21 \ X23 9 EZ,l \ f3,1
T32VTyo 32V Ty

T31V T3z x31VT32 ‘

) ) T13V Ta3
_ _ B T13VTas T13V Ta3VTys3
Ta2 \Y T43 T2 \ T3 @ €23 \ La,3

@ Can have fat pigeons which are assigned to multiple holes.
= Add functionality axioms (makes mapping 1-to-1).
@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Functional PHP = PHP + Functionality
Onto-PHP = PHP + Onto
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PHP Variants

Functionality
T11 VT3

To1VTa3
T31V T32

Ty2V Ty3

Pigeons Holes

I11V$13 711¥721
(D T11 VT3,

I21\/x23 To1 VT3

"'9 T32V Ty2

4 > 8 \ 113\/723
)@
a2V Ta3 @)

T3V Tas
Taz V Ty

Onto
r11V To1 VX3
T32V Ty

T3V T3V Tas

@ Can have fat pigeons which are assigned to multiple holes.

= Add functionality axioms (makes mapping 1-to-1).

@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Functional PHP = PHP + Functionality
Onto-PHP = PHP + Onto
Onto-FPHP = PHP + Functionality + Onto
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PHP Varian

Functionality =~ Pigeons Holes Onto
T11 VT T1a VT3 D) Ti1 Vs
‘ Ill \/I31 1,1 VI2Y1 VI311
f;l \/Ezyg T21 \/1‘23 9’( le vxSl
9 T32VTa2 X32V Ty2

T13V To3
T3 \/I43 T13V T3V Ty3
Tos V Ty

T3 VTgn 31V T3z GF \

Ta2 VTaz  Ta2V Taz @)

@ Can have fat pigeons which are assigned to multiple holes.
= Add functionality axioms (makes mapping 1-to-1).
@ Can have hole with no pigeons.

= Add onto axioms (makes mapping onto).

Functional PHP = PHP + Functionality
Onto-PHP = PHP + Onto
Onto-FPHP = PHP + Functionality + Onto
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Hardness of PHP Variants

Variant Resolution Polynomial calculus

PHP

FPHP
Onto-PHP
Onto-FPHP
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Hardness of PHP Variants

Variant Resolution Polynomial calculus
PHP hard [Haken '85]

FPHP

Onto-PHP

Onto-FPHP
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Hardness of PHP Variants

Variant Resolution Polynomial calculus
PHP hard [Haken '85] hard [AR '01]
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Hardness of PHP Variants

Variant Resolution Polynomial calculus
PHP hard [Haken '85] hard [AR '01]
FPHP hard [Haken '85] ?

Onto-PHP  hard [Haken '85] hard [AR '01]
Onto-FPHP  hard [Haken '85] easy [Riis '93]

This work
Observe that [AR '01] proves hardness of Onto-PHP.
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Hardness of PHP Variants

Variant Resolution Polynomial calculus
PHP hard [Haken '85] hard [AR '01]
FPHP hard [Haken '85] hard [MN '15]

Onto-PHP  hard [Haken '85]
Onto-FPHP  hard [Haken '85]

hard [AR '01]
easy [Riis '93]

This work

Observe that [AR '01] proves hardness of Onto-PHP.

Prove that FPHP is hard in polynomial calculus.
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Open Problems
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Open Problems

@ Prove polynomial calculus lower bounds for other formulas!

For instance, graph coloring and independent set formulas.
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Open Problems

@ Prove polynomial calculus lower bounds for other formulas!

For instance, graph coloring and independent set formulas.

@ Prove size lower bounds via technique that doesn't use degree!
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Open Problems

@ Prove polynomial calculus lower bounds for other formulas!

For instance, graph coloring and independent set formulas.
@ Prove size lower bounds via technique that doesn't use degree!

e Find truly general method capturing all PC degree lower bounds!

We generalize part of [AR '01] that doesn't capture [BGIP '99].
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Generalized method for degree lower bounds
@ Unified framework for previous lower bounds.

@ Hardness of Functional PHP.

Further directions
@ Extend techniques to other formulas.

@ Devise non-degree-based size lower bound techniques.
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Generalized method for degree lower bounds
@ Unified framework for previous lower bounds.

@ Hardness of Functional PHP.

Further directions
@ Extend techniques to other formulas.

@ Devise non-degree-based size lower bound techniques.

Thank you for your attention!
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