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Proof Complexity

e Original motivation: Program for showing P # NP

e More recently: Connections to SAT solving

e Key concerns in SAT solving: running time and memory
— Modelled by size and space in proof system

1. DPLL (+ clause learning)

— Corresponds to resolution proof system
— State of the art

2. Algebraic methods (Grobner bases)
— Corresponds to polynomial calculus
— Potentially better than DPLL

e This talk: Space complexity in polynomial calculus
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he General Set-Up

e Input: CNF formula F
ZTVYAEZVGV2)AZA(TV 2)

e Goal: Proof of unsatisfiability (refutation of )

e Refer to clauses of formula as axioms

e Focus on k-CNF formulas
(All clauses of size < k = 0O(1))
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Resolution

Think of proof as presented on whiteboard
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms

rVy

rV zVw
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms

rVy
e Use resolution rule

TVzVw C'Vax DVZ®
CvD
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms

T Vy _

B e Use resolution rule
TVZVw CVx DVT
yV zVuw ¢vD
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms

T Vy _

B e Use resolution rule
TVZVw CVzx DVT
yV zVuw CVvVD

e Erase clause
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms

B e Use resolution rule
TVZVw CVzx DVT

yVzVuw CVD

e Erase clause
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Resolution

Think of proof as presented on whiteboard

Derivation rules

e \Write down axioms

B e Use resolution rule
TVZVw CVzx DVT

yVzVuw CVD

e Erase clause
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Resolution — Measures

xVy Size: # of clauses in proof
TVYVzVw Space: # of clauses on board
yVzVuw

Mladen Mik&a (KTH) Towards an Understanding of Polynomial Calculus ICALP '13 5



Resolution — Measures

xVy Size: # of clauses in proof
TVYVzVw Space: # of clauses on board
yvzVvuw Width: # variables in largest clause
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Resolution — Measures

xVy Size: # of clauses in proof

TVYVzVuw Space: # of clauses on board

yvzVvuw Width: # variables in largest clause

This board: space = 3 & width = 4
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Resolution — Measures

xVy Size: # of clauses in proof

TVYVzVuw Space: # of clauses on board

yvzVvuw Width: # variables in largest clause

This board: space = 3 & width = 4

Size Width Space
exp(O(n)) O(n) O(n)
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Resolution — Measures

xVy Size: # of clauses in proof

TVYVzVuw Space: # of clauses on board

yvzVvuw Width: # variables in largest clause

This board: space = 3 & width = 4

log(Size) =< Width Space
exp(O(n)) O(n) O(n)

e Small size = small width
[Ben-Sasson, Wigderson '99]
e Small width == small size
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Resolution — Measures

xVy Size: # of clauses in proof

TVYVzVuw Space: # of clauses on board

yvzVvuw Width: # variables in largest clause

This board: space = 3 & width = 4

log(Size) < Width <  Space

exp(O(n)) O(n) O(n)
e Small size =— small width e Small space =— small width
[Ben-Sasson, Wigderson '99] Atserias, Dalmau '03]

e Small width = small size e Small width =~ small space
[Ben-Sasson, Nordstrom '08]
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Polynomial Calculus [CEIl '96, ABRW '00]

e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0
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Polynomial Calculus [CEIl '96, ABRW '00]

e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules

v —x =0 e Write down axioms
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Polynomial Calculus [CEIl '96, ABRW '00]

e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules

zv—T =0 e Write down axioms
zvz =0 e Multiplication 2=2
xp=0
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e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules
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Polynomial Calculus [CEIl '96, ABRW '00]

e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules

v —x =0 e Write down axioms
vz =0 e Multiplication p=0
xp=0

Tvz —xz =0 _ o _ _

e Linear combination 2=Y q_—O

ap+5q=0
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e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules
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e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules

v —x =0 e Write down axioms
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Polynomial Calculus [CEIl '96, ABRW '00]

e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules

7i< e \Write down axioms
vz =0 e Multiplication £2=2
xp=0

Tvz — 1z =0 _ L. _ _

e Linear combination 2=%_4=Y

ap+5q=0

xz =0

e Erase polynomial
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Polynomial Calculus [CEIl '96, ABRW '00]

e Simulates resolution; can be exponentially stronger

e Proof lines are polynomials over field F
— Encode axioms: xVyVvz — ZTyz=0

e Use additional axioms: z2 —x=0andz+7—1=0

Derivation rules

o \Write down axioms

rvz = ( e Multiplication 2=2
xp=0
Tvz — 1z = ( . . . — —
e Linear combination 2=Y q_—O
ap+5q=0

xz =0

e Erase polynomial
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Polynomial Calculus — Measures

zv—2 =0 Size: # of monomials in proof

Tvz =0 Space: # of monomials on board

Tvz —xz =0
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Polynomial Calculus — Measures
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Tvz =0 Space: # of monomials on board
Tvz — Tz =0 Degree: # variables in largest monomial
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Polynomial Calculus — Measures

zv—2 =0 Size: # of monomials in proof
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Polynomial Calculus — Measures

zv—2 =0 Size: # of monomials in proof
Tvz =0 Space: # of monomials on board
Tvz — Tz =0 Degree: # variables in largest monomial

This board: space = 5 & degree = 3

Size Degree Space

exp(O(n)) O(n) O(n)
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Polynomial Calculus — Measures

zv—2 =0 Size: # of monomials in proof
Tvz =0 Space: # of monomials on board
Tvz — Tz =0 Degree: # variables in largest monomial

This board: space = 5 & degree = 3

log(Size) =  Degree Space

Y

exp(O(n)) O(n) O(n)

e Small size = small degree
[Impagliazzo, Pudldk, Sgall '99]

e Small degree — small size
[Clegg, Edmonds, Impagliazzo '96]
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Polynomial Calculus — Measures

zv—2 =0 Size: # of monomials in proof
Tvz =0 Space: # of monomials on board
Tvz — Tz =0 Degree: # variables in largest monomial

This board: space = 5 & degree = 3

log(Size) =  Degree 777 Space

Y

exp(©(n)) O(n)

O(n)

e Small size = small degree
[Impagliazzo, Pudldk, Sgall '99]

e Small degree — small size
[Clegg, Edmonds, Impagliazzo '96]

e Small space = small degree?

e Small degree — small space?
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Our Results

e Small space (sort of) implies small degree

If F' requires degree w, then XORified
version of F' requires polynomial calculus space Q(w)
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If F' requires resolution width w, then XORified
version of F' requires polynomial calculus space Q(w)
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— Weaker: Requires XORification
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Our Results

e Small space (sort of) implies small degree

If F' requires resolution width w, then XORified
version of F' requires polynomial calculus space Q(w)

— Stronger: Holds for resolution width
— Weaker: Requires XORification

e Small degree does not imply small space

Exist formulas refutable in constant degree but
requiring linear space

e Also some other results (won't have time to cover):

— Space lower bounds for so-called Tseitin contradictions

— Provable limitations of current lower-bound techniques
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heorem 2 — Brief Overview

Exist formulas refutable in constant degree but
requiring linear space
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heorem 2 — Brief Overview

Exist formulas refutable in constant degree but
requiring linear space

e Focus on [y case

e Find formulas with:

— Large resolution width
— Small polynomial calculus degree

e Use full strength of Theorem 1 to get:

— Large polynomial calculus space
— While keeping degree small

Miaden Miksa (KTH) Towards an Understanding of Polynomial Calculus ICALP '13 9



heorem 1 and XORification

If F' requires resolution width w, then XORified
version of F' requires polynomial calculus space Q(w)

e XORification: Substitute variables with XOR (&)
e Expand to CNF formula

561 VCEQ\/yl \/yg /N

1 \/3?2\/y1 \/yz /N

)
r1 V2o VY \/yg)/\

)

)

1 VT2 VY Viys
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seitin Contradictions

e Linear equations on graph encoded as CNF formula

e Easy for polynomial calculus
— Add equations together using constant degree

e T[seitin on expander graphs — large resolution width
[Ben-Sasson, Wigderson '99]

Mladen Mik&a (KTH) Towards an Understanding of Polynomial Calculus ICALP '13 11



seitin Contradictions — XORIification

r+y=1
r+z=0
y+z=10
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seitin Contradictions — XORIification

x1+x2+y1+y2:1

c CUl—l—QSQ—FZl—I—ZQ:O
:L‘1 y1+y2+z1+z2:0
@@

e XOR substitution = edge doubling
e Still linear equations = still easy in polynomial calculus

e Expander graph = space lower bound
— Width lower bound 4+ XORification + Theorem 1
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seitin Contradictions — XORIification

x1+x2+y1+y2:1

c $1+$2+21—|—ZQIO
1 @ y1+y2+z1+z2:0
Q@

e X(|Exist formulas refutable in constant degree but
requiring linear space

e Still linear equations = still easy in polynomial calculus

e Expander graph = space lower bound
— Width lower bound 4+ XORification + Theorem 1
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heorem 1 — Brief Overview

If F' requires resolution width w, then XORified
version of F' requires polynomial calculus space Q(w)

e Characterization of resolution width by combinatorial game
[Atserias, Dalmau '03]

e PC space lower bounds via (other) combinatorial game
[Bonacina, Galesi '13]

e XORification of formulas

Run [AD '03] game on original formula as
subroutine of [BG '13] game on XORified formula

Mladen Mik&a (KTH) Towards an Understanding of Polynomial Calculus ICALP '13 13



Some Open Problems

Open Problem 1
Prove space lower bounds for 3-CNF formulas

e Nothing is known — only k-CNF lower bounds for k > 4
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Some Open Problems

Open Problem 1
Prove space lower bounds for 3-CNF formulas

—

e Nothing is known — only k-CNF lower bounds for k > 4

Open Problem 2
Extend techniques for lower bounding space

e Exist formulas that:
— Likely hard (e.g., functional pigeonhole principle)
— But [BG "13] provably doesn’t work
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Some Open Problems

Open Problem 1
Prove space lower bounds for 3-CNF formulas

—

e Nothing is known — only k-CNF lower bounds for k > 4

Open Problem 2
Extend techniques for lower bounding space

e Exist formulas that:
— Likely hard (e.g., functional pigeonhole principle)
— But [BG "13] provably doesn’t work

Open Problem 3
Does degree lower bound space?

—

e Might be helpful to characterize degree a la [AD '03]
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Concluding Remarks

e Key concerns in SAT solving: running time and memory
e Modelled by size and space in proof complexity

e Resolution well understood — key measure:

e Polynomial calculus less clear — role of ?

e This work: Sheds some light on space- relation

(Short version: picture seems very similar to resolution)

e Still many open problems in polynomial calculus
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Concluding Remarks

e Key concerns in SAT solving: running time and memory

\

e Modelled by size and space in proof ce Oﬂ\‘

N
e Resolution well understood — ,b\,&e’ €

O
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O
e This work: &' \X “nght on space- relation
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o Still n open problems in polynomial calculus
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