Algorithmic Meta-theorems for Restrictions of
Treewidth

Michael Lampis

Computer Science Department,
Graduate Center, City University of New York
mlampis@gc.cuny.edu

Abstract. Possibly the most famous algorithmic meta-theorem is Cour-
celle’s theorem, which states that all MSO-expressible graph properties
are decidable in linear time for graphs of bounded treewidth. Unfor-
tunately, the running time’s dependence on the formula describing the
problem is in general a tower of exponentials of unbounded height, and
there exist lower bounds proving that this cannot be improved even if
we restrict ourselves to deciding FO logic on trees.

We investigate whether this parameter dependence can be improved by
focusing on two proper subclasses of the class of bounded treewidth
graphs: graphs of bounded vertex cover and graphs of bounded max-leaf
number. We prove stronger algorithmic meta-theorems for these more
restricted classes of graphs. More specifically, we show it is possible to
decide any FO property in both of these classes with a singly exponen-
tial parameter dependence and that it is possible to decide MSO logic
on graphs of bounded vertex cover with a doubly exponential parame-
ter dependence. We also prove lower bound results which show that our
upper bounds cannot be improved significantly, under widely believed
complexity assumptions. Our work addresses an open problem posed by
Michael Fellows.

1 Introduction

Algorithmic metatheorems are general statements of the form “All problems
sharing property P, restricted to a class of inputs I can be solved efficiently”.
The archetypal, and possibly most celebrated, such metatheorem is Courcelle’s
theorem which states that every graph property expressible in monadic second-
order (MSOs) logic is decidable in linear time if restricted to graphs of bounded
treewidth [3]. Metatheorems have been a subject of intensive research in the last
years producing a wealth of interesting results. Some representative examples of
metatheorems with a flavor similar to Courcelle’s can be found in the work of
Frick and Grohe [12], where it is shown that all properties expressible in first
order (FO) logic are solvable in linear time on planar graphs, and the work of
Dawar et al. [5], where it is shown that all FO-definable optimisation problems
admit a PTAS on graphs excluding a fixed minor (see [14] and [15] for more
results on the topic).

Many interesting extensions have followed Courcelle’s seminal result: for in-
stance, Courcelle’s theorem has been extended to logics more suitable for the ex-
pression of optimisation problems [1]. It has also been investigated whether it’s
possible to obtain similar results for larger graph classes (see [4] for a metatheo-
rem for bounded cliquewidth graphs, [11] for corresponding hardness results and
[17] for hardness results for graphs of small but unbounded treewidth). Finally,
lower bound results have been shown proving that the running times predicted
by Courcelle’s theorem can not be improved significantly in general [13].

This lower bound result is one of the main motivations of this work, because in
some ways it is quite devastating. Though Courcelle’s theorem shows that a vast
class of problems is solvable in linear time on graphs of bounded treewidth, the
“hidden constant” in this running time, that is, the running time’s dependence
on the input’s other parameters, which are the graph’s treewidth and the formula
describing the problem, is in fact (in the worst case) a tower of exponentials.
Unfortunately, in [13] it is shown that this tower of exponentials is unavoidable
even if we restrict ourselves to deciding FO logic on trees.

In this paper our aim is to investigate if it is possible to go aroung this harsh
lower bound by restricting the considered class of input graphs further. In other
words, we are looking for meta-theorems which would imply that all of FO or
MSO logic can be solved in time not only linear in the size of the graph, but
also depending more reasonably on the secondary parameters, if we are willing
to give up some of the generality of the class of bounded-treewidth graphs. We
concentrate on two graph classes: graphs of bounded vertex cover and graphs
of bounded max-leaf number. We note that the investigation of the existence of
stronger meta-theorems for these classes has been posed explicitly as an open
problem by Fellows in [7].

Though graphs of bounded vertex cover or max-leaf number are considerably
more restricted than bounded treewidth graphs, these classes are still interesting
from the algorithmic point of view and the complexity of hard problems param-
eterized by vertex cover or max-leaf number has been investigated in the past
([9], [8]). Furthermore, as mentioned, strong lower bounds are known to apply
to slightly more general classes: for bounded feedback vertex set and bounded
pathwidth graphs even FO logic is non-elementary, while even for binary trees
(thus for graphs of bounded treewidth and max degree) FO logic is at least
triply exponential (again by [13]). Bounded vertex cover and bounded max-leaf
number evade all these lower bound arguments so it’s natural to ask what is
exactly the complexity of FO and MSO logic for these classes of graphs?

The main results of this paper show that meta-theorems stronger than Cour-
celle’s can indeed be shown for these classes of graphs. In addition, we show
that our meta-theorems for vertex cover cannot be significantly improved under
standard complexity assumptions.

Specifically, for the class of graphs of vertex cover bounded by k we show
that

— All graph problems expressible with an FO formula ¢ can be solved in time
linear in the graph size and singly exponential in k and |¢|.

— All graph problems expressible with an MSO; formula ¢ can be solved in
time linear in the graph size and doubly exponential in &k and |@|.

— Unless n-variable 3SAT can be solved in time 2°(™) (that is, unless the Ex-
ponential Time Hypothesis fails), then no f(k, ¢) - poly(|G|) algorithm exists
to decide MSO logic on graphs for any f(k,¢) = PL

— Unless FPT=W][1], there is no algorithm which can decide if an FO formula
¢ with ¢ quantifiers holds in a graph G of vertex cover k in time f(k, q)n¢,
for any f(k,q) = 20(k+9),

Furthermore, for the class of graphs of max-leaf number bounded by k we
show that

— All graph problems expressible with an FO formula ¢ can be solved in time
linear in the graph size and singly exponential in k and |¢|.

Our upper bounds rely on techniques different from the standard dynamic
programming on decompositions usually associated with treewidth. For max-
leaf number we rely on the characterization of bounded max-leaf number graphs
from [16] also used heavily in [8] and the fact that FO logic has limited counting
power in paths. For vertex cover we exploit an observation that for FO logic
two vertices that have the same neighbors are “equivalent” in a sense we will
make precise. We state our results in this case in terms of a new graph “width”
parameter that captures this graph property more precisely than bounded vertex
cover. We call the new parameter neighborhood diversity, and the upper bounds
for vertex cover follow by showing that bounded vertex cover is a special case of
bounded neighborhood diversity. Our essentially matching lower bounds on the
other hand are shown for vertex cover. In the last section of this paper we prove
some additional results for neighborhood diversity, beyond the algorithmic meta-
theorems of the rest of the paper, which we believe indicate that neighborhood
diversity might be a graph structure parameter of independent interest and that
its algorithmic and graph-theoretic properties may merit further investigation.

2 Definitions and Preliminaries

Model Checking, FO and MSO logic In this paper we will describe algorith-
mic meta-theorems, that is, general methods for solving all problems belonging
in a class of problems. However, the presentation is simplified if one poses this
approach as an attack on a single problem, the model checking problem. In
the model checking problem we are given a logic formula ¢, expressing a graph
property, and a graph G, and we must decide if the property described by ¢
holds in G. In that case, we write G |= ¢. Clearly, if we can describe an efficient
algorithm for model checking for a specific logic, this will imply the existence
of efficient algorithms for all problems expressible in this logic. Let us now give
more details about the logics we will deal with and the graphs which will be our
input instances.

Our universe of discourse will be labeled, colored graphs. Specifically, we
assume that the first part of the input is an undirected graph G(V, E), a set
of labels L, each associated with a vertex of V and a set of subsets of V, C =
{C4,C4,...,C.}, which we refer to as color classes. The interesting case here is
unlabeled, uncolored graphs (that is, L = C = (}), but the additional generality
in the definition of the problem makes it easier to describe a recursive algorithm.

The formulas of FO logic are those which can be constructed using vertex
variables, denoted usually by x;,y;, . .., vertex labels denoted by [;, color classes
denoted by Cj;, the predicates E(x;,x;), z; € Cj, x; = x; operating on vertex
variables or labels, standard propositional connectives and the quantifiers 3,V
operating on vertex variables. The semantics are defined in the usual way, with
the E() predicate being true if (z;,z;) € E.

For MSO logic the additional propery is that we now introduce set variables
denoted by X; and allow the quantifiers and the € predicate to operate on them.
The semantics are defined in the obvious way.

If the set variables are allowed to range over sets of vertices only then the
logic is sometimes referred to as MSO;. A variation is MSOs logic, where one is
also allowed to use set variables that range overs sets of edges. To accomodate
for this case one also usually modifies slightly the definition of FO formulas to
allow edge variables and an incidence predicate I(v,e) which is true is true if
edge e is incident on vertex v.

Bounded Vertex Cover and neighborhood diversity We will work exten-
sively with graphs of bounded vertex cover, that is, graphs for which there exists
a small set of vertices whose removal also removes all edges. We will usually de-
note the size of a graph’s vertex cover by k. Note that there exist linear-time
FPT algorithms for finding an optimal vertex cover in graphs where k is small
(see e.g. [2]).

Our technique relies on the fact that in a graph of vertex cover k, the vertices
outside the vertex cover can be partitioned into at most 2* sets, such that all
the vertices in each set have exactly the same neighbors outside the set and each
set contains no edges inside it. Since we do not make use of any other special
property of graphs of small vertex cover, we are motivated to define a new graph
parameter, called neighborhood diversity, which intuitively seems to give the
largest graph family to which we can apply our method in a straightforward
way.

Definition 1. We will say that two vertices v,v' of a graph G(V, E) have the
same type iff they have the same colors and N(v) \ {v'} = N(v') \ {v}.

Definition 2. A colored graph G(V, E) has neighborhood diversity at most w,
if there exists a partition of V into at most w sets, such that all the vertices in
each set have the same type.

Lemma 1. If an uncolored graph has vertex cover at most k, then it has neigh-
borhood diversity at most 2F + k.

In Section 7 we will show that neighborhood diversity can be computed
in polynomial time and also prove some results which indicate it may be an
interesting parameter in its own right. However, until then our main focus will
be graphs of bounded vertex cover. We will prove most of our algorithmic results
in terms of neighborhood diversity and then invoke Lemma 1 to obtain our main
objective. We will usually assume that a partition of the graph into sets with
the same neighbors is given to us, because otherwise one can easily be found in
linear time by using the mentioned linear-time FPT algorithm for vertex cover
and Lemma 1.

Bounded Max-Leaf Number We say that a connected graph G has max-leaf
number at most [if no spanning tree of G has more than [leaves. The algorithmic
properties of this class of graphs have been investigated in the past [6, 10, 8]. In
this paper we rely heavily on a characterization of bounded max-leaf graphs by
Kleitman and West [16] which is also heavily used in [8].

Theorem 1. [16] If a graph G has maz-leaf number at most I, then G is a
subdivision of a graph on O(l) vertices.

What this theorem tells us intuitively is that in a graph G(V, E) with max-
leaf number [there exists a set .S of O(1) vertices such that G[V'\ S] is a collection
of O(I?) paths. Furthermore, only the internal vertices of the paths can be con-
nected to vertices of S in G.

It is well-known that a graph of max-leaf number at most [has a path
decomposition of width at most 2[. Furthermore, it must have maximum degree
at most /. Bounded max-leaf number graphs are therefore a subclass of the
intersection of bounded pathwidth and bounded degree graphs (in fact, they are
a proper subclass, as witnessed by the existence of say 2xn grids). Let us mention
again that deciding FO logic on binary trees has at least a triply exponential
parameter dependence, so the results we present for graphs of bounded max-leaf
number can also be seen as an improvement on the currently known results for
FO logic on bounded degree graphs, for this more restricted case.

3 FO Logic for Bounded Vertex Cover

In this Section we show how any FO formula can be decided on graphs of
bounded vertex cover, with a singly exponential parameter dependence. Our
main argument is that for FO logic, two vertices which have the same neigh-
bors are essentially equivalent. We will state our results in the more general case
of bounded neighborhood diversity and then show the corresponding result for
bounded vertex cover as a corollary.

Lemma 2. Let G(V, E) be a graph and ¢(x) a FO formula with one free vari-
able. Let v,v" € V be two distinct unlabeled vertices of G that have the same

type. Then G |= ¢(v) iff G | o(v').

Proof. (Sketch) Recall that the standard way of deciding an FO formula on
a graph is, whenever we encounter an existential quantifier to try all possible
choices of a vertex for that variable. This creates an n-ary decision tree with
height equal to the number of quantifiers in ¢(z). Every leaf corresponds to a
choice of vertices for the ¢ quantified variables, which makes the formula true or
false. Internal nodes are evaluated as the disjunction (for existential quantifiers)
or conjunction (for universal quantifiers) of their children.

It is possible to create a one-to-one correspondence between the trees for ¢(v)
and ¢(v'), by essentially exchanging v and v/, showing that ¢(v) and ¢(v’) are
equivalent. a

Theorem 2. Let ¢ be a FO sentence of quantifier depth q. Let G(V,E) be a
labeled colored graph with neighborhood diversity at most w and l labeled vertices.
Then, there is an algorithm that decides if G |= ¢ in time O((w +14 q)? - |¢|).

Corollary 1. There exists an algorithm which, given a FO sentence ¢ with g
variables and an uncolored, unlabeled graph G with vertex cover at most k, de-
cides if G = ¢ in time 20(Fataloga),

Thus, the running time is (only) singly exponential in the parameters, while
a straightforward observation that bounded vertex cover graphs have bounded
treewidth and an application of Courcelle’s theorem would in general have a non-
elementary running time. Of course, a natural question to ask now is whether it is
possible to do even better, perhaps making the exponent linear in the parameter,
which is (k 4 ¢). As we will see later on, this is not possible if we accept some
standard complexity assumptions.

4 FO Logic for Bounded Max-Leaf Number

In this section we describe a model checking algorithm for FO logic on graphs of
small max-leaf number. Our main tool is the mentioned observation that all but
a small fraction of the vertices have degree 2, and therefore (since we assume
without loss of generality that the graph is connected) induce paths. We call a
maximal set of connected vertices of degree 2 a topo-edge.

Our main argument is that when a topo-edge is very long (exponentially long
in the number of quantifiers of the first-order sentence we are model checking)
its precise length does not matter.

To make this more precise, let us first define a similarity relation on graphs.

Definition 3. Let Gy, G2, be two graphs. For a given q we will say that G1 and
Ga are g-similar and write G1 ~q Ga iff G1 contains a topo-edge of order at
least 2971 consisting of unlabeled vertices, call it P, and Gy can be obtained from
G1 by contracting one of the edges of P. We denote the transitive closure of the
relation ~q as ~y.

Our main technical tool is now the following lemma.

Lemma 3. Let ¢ be a FO formula with q quantifiers. Then, for any two graphs
G1,Gy if G1 ~¢ G then G1 = ¢ iff Go = ¢. Therefore, if G1 ~; Ga then
Gr o iff Gs = 0.

Now we are ready to state our main result of this section.

Theorem 3. Let G be a graph on n vertices with mazx-leaf number k and ¢ a
FO formula with q quantifiers. Then,2there exists an algorithm for deciding if
G | ¢ running in time poly(n) + 204 +alogk),

Proof. By applying Theorem 1 we know that G can be partitioned into a set of
at most O(k) vertices of degree at least 3 and a collection of paths. By applying
Lemma 3 we know that there exists a G’ such that G ~; G’ and G’ consists
of the same O(k) vertices of degree at least 3 and at most O(k?) paths whose
length is at most 2971, Of course, G’ can be found in time polynomial in n.
Now, we can apply the straightforward algorithm to model check ¢ on G’.
For every quantifier we have at most O(k+q)+O(k(k+q)29t1) choices, which is
20(a+logk) Exhausting all possibilities for each vertex gives the promised running
time. a

5 MSO Logic for Bounded Vertex Cover

First, let us state a helpful extension of the results of the Section 3. From the
following Lemma it follows naturally that the model checking problem for MSO;
logic on bounded vertex cover graphs is in XP, that is, solvable in polynomial
time for constant ¢ and k, but our objective later on will be to do better.

Lemma 4. Let ¢(X) be an MSO; formula with a free set variable X. Let G be a
graph and Sy, Se two sets of vertices of G such that all vertices of (S1\S2)U(S2\
S1) are unlabeled and have the same type and furthermore | Sy \ So| = |S2 \ S1].

Then G |= ¢(51) iff G = ¢(S2).
Our main tool in this section is the following lemma.

Lemma 5. Let ¢(X) be an MSO; formula with one free set variable X, qy
quantified vertex variables and qs quantified set variables. Let G be a graph and
S1,S2 two sets of vertices of G such that all vertices of (S1\ S2) U (S2\ S1) are
unlabeled and belong in the same type T'. Suppose that both |S1NT| and |S2aNT|
fall in the interval [295 gy, |T| — 2%5qy — 1]. Then G = ¢(S1) iff G = ¢(52).

Proof. (Sketch) We can assume without loss of generality that S; C Ss, thanks
to Lemma 4. In fact, we may assume that Sy = S U {u} for some vertex u and
repeated applications of the same argument yield the claimed result.

Our argument is that the truth of ¢(S;) and ¢(S2) can be decided by an
algorithm which checks for each set variable every combination of sizes that its
intersection has with each type and for each vertex variable one representative
of each type. If u is never picked as a representative then the algorithm must

give the same answer for ¢(S7) and ¢(S2). This can be guaranteed if the type
u belongs in always has more than qy vertices. Every time the algorithm picks
a value for a set variable, the type u belongs in is partitioned in two. Since the
only thing that matters to the algorithm is the size of the set’s intersection with
u’s type, we are free to select a set that puts uw in the larger of the two new
sub-types. Because S; N'T and S N'T have constrained sizes, we can always
guarantee that u is never selected. a

Theorem 4. There exists an algorithm which, given a graph G with [labels,
neighborhood diversity at most w and an MSOy formula ¢ with at most qg set

variables and qy vertex variables, decides if G |= ¢ in time 90(2% (wHhasav logav).

9.

Corollary 2. There exists an algorithm which, given an MSOy sentence ¢ with
q variables and an uncolored, unlabeled graph G with vertex cover at most k,
decides if G = ¢ in time 927,

Again, this gives a dramatic improvement compared to Courcelle’s theorem,
though exponentially worse than the case of FO logic. This is an interesting
point to consider because for treewidth there does not seem to be any major
difference between the complexities of model checking FO and MSO; logic.

The natural question to ask here is once again, can we do significantly better?
For example, perhaps the most natural question to ask is, is it possible to solve
this problem in 22" 9 As we will see later on, the answer is no, if we accept
some standard complexity assumptions.

Finally, let us briefly discuss the case of MSOs logic. In general this logic is
more powerful than MSOy, so it is not straightforward to extend Theorem 4 in
this case. However, if we are not interested in neighborhood diversity but just in
vertex cover we can observe that all edges in a graph with vertex cover of size
k have one of their endpoints in one of the k vertices of the vertex cover. Thus,
any edge set X can be written as the union of k edge sets. In turn, each of these
k edge sets can easily be replaced by vertex sets, without loss of information,
since we already know one of the endpoints of each of these edges. Using this
trick we can replace every edge set variable in an MSOs sentence with k vertex
set variables, thus obtaining a 927" algorithm for MSOs logic on graphs of
bounded vertex cover.

6 Lower Bounds

In this Section we will prove some lower bound results for the model checking
problems we are dealing with. Our proofs rely on a construction which reduces
SAT to a model checking problem on a graph with small vertex cover.

Given a propositional 3-CNF formula ¢, with n variables and m clauses, we
want to construct a graph G that encodes its structure, while having a small
vertex cover. The main problem is encoding numbers up to n with graphs of small

vertex cover but this can easily be achieved by using the binary representation
of numbers.

We begin constucting a graph by adding 7logn vertices, call them u; ;),1 <
i < 7,1 <j <logn. Add all edges of the form (u(; j),u, ;) (so we now have
log n disjoint copied of K7). Let Ny = {u(;) | 1 <j <logn}.

For every variable z; in ¢, add a new vertex to the graph, call it v;. Define for
every number i the set X (i) = {j | the j-th bit of the binary representation of i is 1}.
Add the edges (vi,u(1j)),j € X (i), that is connect every variable vertex with
the vertices of Ny that correspond to the binary representation of its index. Let
U = {v; | 1 <i < n} be the vertices corresponding to variables.

For every clause ¢; in ¢, add a new vertex to the graph, call it w;. If the
first literal in ¢; is a positive variable x then add the edges (w;, u(z jy,j € X (k).
If the first literal is a negated variable -y, add the edges (w;,u(s), € X (k).
Proceed in a similar way for the second and third literal, that is, if the second
literal is positive connect w; with the vertices that correspond to the binary
representation of the variable in N4, otherwise in N5. For the third literal do the
same with Ng or N7. Let W = {w; | 1 <1i < m} be the vertices corresponding
to clauses.

Finally, set the color classes to be {N1, N, ..., N7, U, W}.

Now, looking at the graph it is easy to see if a vertex v; corresponds to a
variable that appears positive in the clause represented by a vertex w;. They
must satisfy the formula

pos(vi,wy) = \/ Va(x € Ny — 3y((B(vi,z) < E(w;,y)) Ay € Ny AE(z,y)))
k=2,4,6

It is not hard to define neg(v;, w;) in a similar way. Now it is straight-forward
to check if ¢, was satisfiable:

p=3SNVzz e Sz cU)ANNwweW — Jzx € UA
((pos(z,w) Az € S)V (neg(z,w) ANz & 5)))

Clearly, ¢ holds in the constructed graph iff ¢, is satisfiable. S corresponds
to the set of variables set to true in a satisfying assignment. Let us also briefly
remark that it is relatively easy to eliminate the colors and labels from the
construction above, therefore the lower bounds given below apply to the natural
form of the problem.

Lemma 6. G |= ¢ iff ¢, is satisfiable. Furthermore, ¢ has size O(1) and G has
a vertex cover of size O(logn).

Theorem 5. Let ¢ be a MSO formula with q quantifiers and G a graph with
vertex cover k. Then, unless 3-SAT can be solved in time 2°") | there is no

algorithm which decides if G |= ¢ in time O(QQO(HQ) - poly(n)).

Theorem 6. Let ¢ be a FO formula with q, vertex quantifiers and G a graph
with vertex cover k. Then, unless FPT=W/[1], there is no algorithm which decides
if G l= ¢ in time O(200F+%) . poly(n)).

7 Neighborhood Diversity

In this Section we give some general results on the new graph parameter we have
defined, neighborhood diversity. We will use nd(G), tw(G), cw(G) and ve(G) to
denote the neighborhood diversity, treewidth, cliquewidth and minimum vertex
cover of a graph G. We will call a partition of the vertex set of a graph G into
w sets such that all vertices in every set share the same type a neighborhood
partition of width w.

First, some general results

Theorem 7. 1. Let V1, Vs, ..., V,, be a neighborhood partition of the vertices
of a graph G(V, E). Then each V; induces either a clique or an independent
set. Furthermore, for all i,j the graph either includes all possible edges from
Vi to V; or none.

2. For every graph G we have nd(G) < 2% +-vc(G) and cw(G) < nd(G)+1.
Furthermore, there exist graphs of constant treewidth and unbounded neigh-
borhood diversity and vice-versa.

3. There exists an algorithm which runs in polynomial time and given a graph
G(V,E) finds a neighborhood partition of the graph with minimum width.

Taking into account the observations of Theorem 7 we summarize what we
know about the graph-theoretic and algorithmic properties of neighborhood di-
versity and related measures in Figure 1.

cw
A
: FO |MSO |MSO;
tw Cliquewidth tow(w) [tow(w)|tow(w)
/ \ Treewidth tow(w) |tow(w)|tow(w)
nd fvs W Vertex Cover 20(w) |g201%) |20
‘~‘ P Neighborhood Diversity |poly(w)[2°™) |Open
-\ /
VvC

Fig. 1. A summary of the relations between neighborhood diversity and other graph
widths. Included are cliquewidth, treewidth, pathwidth, feedback vertex set and vertex
cover. Arrows indicate generalization, for example bounded vertex cover is a special case
of bounded feedback vertex set. Dashed arrows indicate that the generalization may
increase the parameter exponentially, for example treewidth w implies cliquewidth at
most 2. The table summarizes the best known model checking algorithm’s dependence
on each width for the corresponding logic.

There are several interesting points to make here. First, though our work
is motivated by a specific goal, beating the lower bounds that apply to graphs
of bounded treewidth by concentrating on a special case, it seems that what
we have achieved is at least somewhat better; we have managed to improve the
algorithmic meta-theorems that were known by focusing on a class which is not
necessarily smaller than bounded treewidth, only different. However, our class
is a special case of another known width which generalizes treewidth as well,
namely cliquewidth. Since the lower bound results which apply to treewidth
apply to cliquewidth as well, this work can perhaps be viewed more appropriately
as an improvement on the results of [4] for bounded cliquewidth graphs.

Second, is the case of MSOs logic. The very interesting hardness results
shown in [11] demonstrate that the tractability of MSO5 logic is in a sense the
price one has to pay for the additional generality that cliquewidth provides over
treewidth. It is natural to ask if the results of [11] can be strengthened to apply
to neighborhood diversity or MSO» logic can be shown tractable parameterized
by neighborhood diversity.

Though we cannot yet fully answer the above question related to MSOsy, we
can offer some first indications that this direction might merit further investi-
gation. In [11] it is shown that MSOs model checking is not fixed-parameter
tractable when the input graph’s cliquewidth is the parameter by considering
three specific MSOs-expressible problems and showing that they are W-hard.
The problems considered are Hamiltonian cycle, Graph Chromatic Number and
Edge Dominating Set. We can show that these three problems can be solved
efficiently on graphs of small neighborhood diversity. Since small neighborhood
diversity is a special case of small cliquewidth, where these problems are hard,
this result could be of independent interest.

Theorem 8. Given a graph G whose neighborhood diversity is w, there exist
algorithms running in time O(f(w) - poly(|G|)) that decide Hamiltonian cycle,
Graph Chromatic Number and Edge Dominating Set.

8 Conclusions and Open Problems

In this paper we presented algorithmic meta-theorems which improve the running
times implied by previously known meta-theorems for more restricted inputs. In
this way we have partially explored the trade-off which can be achieved between
running time and generality. This is an interesting area for further investigations
and much more can be done.

For bounded max-leaf number the complexity of MSO logic is unknown.
Quite likely, it is possible to improve upon the Courcelle’s theorem for this case
as well, but the problem remains open. Also, it would be nice to obtain a lower
bound for FO logic in this case showing that it is impossible to achieve 20((12),
i.e. that the exponent must be quadratic. For neighborhood diversity the most
interesting open problem is the complexity of MSOs.

Going further, it would also make sense to investigate whether restricting the
model checking problem to graphs of bounded vertex cover or max-leaf number

can also allow us to solve logics wider than MSQOs. Some indications that this
may be possible are given in [9]

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308-340, 1991.

J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex
cover. In R. Kralovic and P. Urzyczyn, editors, MFCS, volume 4162 of Lecture
Notes in Computer Science, pages 238-249. Springer, 2006.

B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Inf. Comput., 85(1):12-75, 1990.

B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125—
150, 2000.

A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Approximation schemes
for first-order definable optimisation problems. In LICS, pages 411-420. IEEE
Computer Society, 2006.

V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond. FPT is P-
Time Extremal Structure I. In H. Broersma, M. Johnson, and S. Szeider, editors,
ACiD, volume 4 of Texts in Algorithmics, pages 1-41. King’s College, London,
2005.

M. R. Fellows. Open problems in parameterized complexity, AGAPE spring school
on fixed parameter and exact algorithms, 2009.

M. R. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. A. Rosamond, and
S. Saurabh. The Complexity Ecology of Parameters: An Illustration Using
Bounded Max Leaf Number. Theory Comput. Syst., 45(4):822-848, 2009.

. M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph

layout problems parameterized by vertex cover. In S.-H. Hong, H. Nagamochi, and
T. Fukunaga, editors, ISAAC, volume 5369 of Lecture Notes in Computer Science,
pages 294-305. Springer, 2008.

M. R. Fellows and F. A. Rosamond. The Complexity Ecology of Parameters: An
Ilustration Using Bounded Max Leaf Number. In S. B. Cooper, B. Lowe, and
A. Sorbi, editors, CiFE, volume 4497 of Lecture Notes in Computer Science, pages
268—-277. Springer, 2007.

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Clique-width: on
the price of generality. In C. Mathieu, editor, SODA, pages 825-834. STAM, 2009.
M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6):1184-1206, 2001.

M. Frick and M. Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Logic, 130(1-3):3-31, 2004.

M. Grohe. Logic, graphs, and algorithms. FElectronic Colloguium on Computational
Complezity (ECCC), 14(091), 2007.

P. Hlineny, S. il Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-
width and their applications. Comput. J., 51(3):326-362, 2008.

D. Kleitman and D. West. Spanning trees with many leaves. SIAM Journal on
Discrete Mathematics, 4:99, 1991.

S. Kreutzer and S. Tazari. On brambles, grid-like minors, and parameterized in-
tractability of monadic second order logic. In SODA, 2010.

A Omitted Proofs

A.1 Proof of Lemma 1

Proof. Construct k singleton sets, one for each vertex in the vertex cover and at
most 2F additional sets, one for each subset of vertices of the vertex cover. Place
each of the vertices of the independent set in one of these sets, specifically the
one which corresponds to its neighborhood in the vertex cover. a

A.2 Proof of Lemma 2

Proof. Suppose without loss of generality that ¢(x) is in prenex normal form
and has quantifier depth ¢. We remind the reader that the computation for
¢(v) can be evaluated by means of a rooted n-ary computation tree of height
q, where n = |V/|. Informally, the children of the root represent the n possible
choices for the first quantified variable of the formula, their children the choices
for the second and so on. Each leaf represents a possible ¢g-tuple of choices for the
variables and makes the formula true or false. Internal nodes compute a value
either as the logical disjunction of their children (for existentially quantified
variables) or the logical conjunction (for universally quantified variables). The
value computed at the root is the truth value of ¢(v).

We will prove the statement by showing a simple correspondence between
the computation trees for ¢(v) and ¢(v’). Let T and T be the two trees, and
label every node of each tree at distance ¢ from the root with a different tuple
of i vertices of G (note that the labels of the tree are not to be confused with
the labels of G). Let swy o : U;—y V' = U=y, , V" be the “swap” function
which when given a tuple of vertices of V', returns the same tuple with all oc-
curences of v replaced by v’ and vice-versa. As a shorthand, when @ is a tuple
of vertices and u a vertex we will write (Q, u) to mean the tuple containing all
the elements of () with u added at the end. With this notation the children of a
node with label @ are the nodes with labels in the set {(Q,u) | uw € V'}.

Every leaf in both trees has a g-tuple as a label. Let Q1 be such a g-tuple
which is the label of a leaf in T" and sw, ,(Q1) the tuple we get from @Q; by
swapping v with v’. The claim is that the leaf of T with label @1 and the leaf of
T’ with label sw, . (Q1) evaluate to the same value. In other words, if we take
¢(v) and replace all quantified variables with the vertices of ()1 the formula will
evaluate to the same result as when we replace all the quantified variables of
@(v') with the vertices of sw,, »(Q1). This is true because ¢ is a boolean func-
tion of edge, color and equality predicates; color predicates and edge predicates
involving one of v, v’ with another vertex are unaffected by swapping v and v’,
since these two have the same neighbors and belong in the same color classes.
Equality predicates are also unaffected since all occurences of v are replaced by
v’ and vice-versa, thus equality predicates involving these two and some other
vertex will still evaluate to false, while predicates only involving these two will
be unaffected because equality is symmetric. Finally, edge predicates involving
only v and v’ are unaffected since E() is symmetric. Thus, we have established

a one-to-one correspondence between the leaves of T' and 7" via the function
SWy,y, Preserving truth values.

Now, we need to establish a correspondence between the internal nodes, again
via sw, . Consider a node of T' with label @7 and the node of T with label
SWy, (Q1). The children of the former have labels in the set C; = {(Q1,u) | u €
V}. The children of the latter have labels in Co = {(swy . (Q1),u) | u € V}.
It is not hard to see that Cy = {sw, . (Q) | @ € C1}, or in other words, the
correspondence between nodes is transferred up the levels of the trees.

The only remaining part is to establish that if two nodes in 7' and 7" have
labels corresponding via sw, ., then they compute the same value. We already
established this for the leaves. For internal nodes, this follows from the fact that
the sets of children of two corresponding nodes are also in one-to-one correspon-
dence via sw, s and that the nodes are both of the same type (existential or
universal) since only nodes at the same level can be corresponding. Thus, by an
inductive argument, all the children of the roots of the two trees compute the
same values and therefore ¢(v) and ¢(v') are equivalent. O

A.3 Proof of Theorem 2

Proof. We will rely heavily on Lemma 2 and describe an inductive argument.
If ¢ = 0 the problem is of course trivial so assume that ¢ > 0 and the theorem
holds for sentences of depth at most ¢ — 1. Also, assume wlog that ¢ is in prenex
normal form and furthermore, that ¢ = Jz1)(x), since the universal case can be
easily decided if we solve the existential case, by deciding on the negation of ¢.

Suppose that V' can be partitioned into Vi, Va,...V,, as required by the
definition of neighborhood diversity. Now, by Lemma 2 if v,v’ € V; for some 1,
and neither of the two is labeled then G = ¥ (v) iff G = ¢ (v’). Thus, we need
to model check at most (w + [) sentences of ¢ — 1 quantifiers to decide ¢: we
try replacing x with each of the [labeled vertices or with one arbitrarily chosen
representative from each V;. In the process we introduce a new label. Repeating
this process constructs a computation tree with at most Hg:_ol (w+1l+1) =
O ((w 41+ q)?) leaves. The result of the computation tree can be evaluated in
time linear in its size. ad

A.4 Proof of Lemma 3

Proof. We will prove the first statement by induction on ¢ and the second state-
ment follows directly from it. For ¢ = 0 the statement is trivial because ¢ can
only refer to labeled vertices and G1, G2 are identical with respect to these ver-
tices.

Suppose that the statement is true for at most ¢ — 1 quantifiers. It suffices
to show the statement for ¢ quantifiers for a formula ¢ of the form Jzi(x), and
the statement then easily follows for formulas which are boolean combinations
of formulas of at most ¢ — 1 quantifiers. So, suppose that G; | Jzip(z). This
means that there exists a vertex in G; such that if we label it with a new label

I to obtain a graph G (which is G; with the label | added) we have G} = ¥(l).
Now we must take cases for the vertex where [is placed.

If I is placed on a vertex outside of P then it is not hard to see that Ga = ¢: we
place [on the same vertex on G (and obtain G%) and now we have G| ~(4_1) G5
so from the inductive hypothesis G5 = ¢(1).

Now the interesting case is when [is placed on a vertex of P. Number the
vertices of P from 1 to | P|, starting from one of the endpoints of the path induced
by P. Partition P into two parts: P, contains the last 27 vertices and P; the
rest. In G2 we use the same numbering for the vertices of the path (of course
now the numbering is from 1 to |P| — 1, since on edge has been contracted).

Suppose that [is placed on a vertex of P;. We place [on the same vertex in
Go. Now, we have G} ~(4_1) G, because in both graphs P has been broken into
two paths P’ and P”. P’ has the same size on both (depending on the position
where [was placed) and P” has size at least 27 on G} and one less than that on
GY%. So, by the inductive hypothesis G} = (1) iff G4 | ¥(1).

Finally, if [is placed on a vertex of Py we place [on a vertex of Ga that has
the same distance from the end of the path and two g-similar graphs G, G} are
obtained, because the smaller part of the two into which P is broken has the
same size on both graphs and the larger has size at least 2¢. So by the inductive
hypothesis G} | ¢(1) iff G5 |= ¥(1).

The converse directions where we know that G2 |= ¢ and need to show that
this implies G = ¢ can be established with a similar argument. a

A.5 Proof of Lemma 4

Proof. The proof follows ideas similar to those of Lemma 2. Suppose that ¢(X)
has ¢ quantifiers in total, then it is possible to decide if G &= ¢(S) using a
computation tree such that for each quantified variable we have nodes in the
tree with n children and for each quantified set variable we have nodes with 2"
children, with each child corresponding to a possible choice for that variable.
Again, we can label each node of the tree with a tuple of at most ¢ elements,
but now the elements can be either individual vertices or sets of vertices.

Observe that it suffices to prove the claim when |S7 \ Sz = |S2 \ Si| =
1, because then we can apply the claim repeatedly to transform S; to Ss by
exchanging the different vertices one by one. So, suppose that S; \ S = v and
Sy \ S1 =0, and v and v’ have the same type.

Now, the sw,, .+ function of Lemma 2 can be extended to act on sets of vertices
in a straightforward way. Consider the computation trees for ¢(S1) and ¢(Sz).
Once again we must show that sw, ,s is a one-to-one correspondence between
the leaves of the two trees that preserves truth values. For edge and equality
predicates we can use the same arguments as in Lemma 2, so the only difference
can be with predicates of the form x € X. However, it is not hard to see that
the truth values of these is not affected when = # v,v" and also when X is one
of the supplied colors of the graph, since v, v’ have the same colors. Finally, the
truth value is also unaffected if X is a variable set, since sw, .+ is applied both

to vertex and set variables. Now, the correspondence is lifted up the levels of the
tree using similar arguments and this completes the proof. a

A.6 Proof of Lemma 5

Proof. We are dealing with the case where two sets are different, but their dif-
ferent elements are all of the same type. To give some intuition, in the base
case of gg = 0 for this particular type both sets have the property that the sets
themselves and their complements have at least gy vertices of the type. This
will prove important because ¢(X) will be a FO sentence after we decide on a
set for X and as we will see an FO sentence cannot distinguish between two
different large enough sets (informally, we could say that an FO sentence with ¢
quantifiers can only count up to ¢). We will show how to extend this to general
qs by shrinking the interval of sizes where we claim that sets are equivalent,
because every set variable X; essentially doubles the amount we can count, by
partitioning vertices into two sets, those in X; and those in its complement.

First, assume without loss of generality that |S;| < |S2|. Now because of
Lemma 4 we can further assume without loss of generality that S; C Sy, because
there exists a set S5 of the same size as Sy such that S; C S} and G |= ¢(S2)
iff G = ¢(S%). Furthermore, we may focus on the case where Sy = 57 U {u} for
some vertex u ¢ Sp, because if we prove the statement for sets whose sizes only
differ by 1, then we can apply it repeatedly to get the statement for sets which
have a larger difference.

We will now rely on Lemma 4 to construct an XP algorithm for deciding ¢(5S1)
and ¢(S2). The trivial algorithm we have already discussed would consider 2"
sets every time a set variable has to be assigned a value and n vertices every
time a vertex variable has to be assigned a value. However, because of Lemma 4
we can consider only O(2!n™) different assignments for a set variable. This is
because the equivalence between different sets of the same size established allows
us to sample one set for each combination of sizes that the set will have with
each of the w types (the 2! factor comes from the fact that labeled vetices are
“special” and we have to decide for each one individually). Note though that
deciding on an assignment of a set can in the worst case double w, since we
are adding a new color to the graph representing the set. Thus, for the next set
we would have to consider O(2'n?¥) choices and so on. Furthermore, from the
proof of Lemma 4 it is straightforward to derive a slightly stronger version of
Lemma 2 which holds for MSO sentences. Using this we conclude that we need
to check through w + [samples when we are deciding on a vertex variable and
this introduces a new label.

Suppose that we use the algorithm sketched above to decide ¢(S7) and ¢(S2).
The crucial point now is that this algorithm has a lot of freedom in picking the
sample sets and vertices it considers. In particular, when assigning value to a
vertex variable the algorithm can always avoid the vertex w if there are still other
vertices of the same type. It is not hard to see that if the algorithm never assigns u
to any vertex variable when deciding ¢(S57) and ¢(S2) the result will necessarily

be the same for both sentences. So we need to argue why the algorithm can
always avoid using u.

To achieve this we can exploit the freedom the algorithm has when picking
sets. Every time the algorithm picks a set to be considered the set of vertices
of the same type as wu is partitioned into two sets. Because it does not matter
which vertices are included in a set and only the size of the set’s partition with
a type matters, we can make sure that u is always placed in the larger of the
two new types by exchanging with another vertex appropriately. Because of the
restriction on the sizes of S7 and Sy we know that initially u belongs in a type
shared by at least 295qy other vertices. It is not hard to see that this invariant
is maintained by the algorithm when picking a set if we place w in the larger
of the two new types when picking a set and we pick a different sample from
its type when we pick a vertex. Thus, we have established that there exists an
algorithm that decides ¢(S1) and ¢(S2) without ever assigning u to a vertex
variable, which means that the algorithm must decide the same value for both
sentences. O

A.7 Proof of Theorem 4

Proof. Our algorithm now will rely heavily on Lemma 5. When picking an assign-
ment for a set variable, for each of the w types of vertices we need to decide on the
size of its intersection with the set. Because of Lemma 5 we can limit ourselves
to considering 295 +1qy different sizes for the first set, which gives (2¢5T1gy)®
choices for the first set variable. However, because every time we decide on a set
we start working on a graph with one more color, the number of vertex types may
at most double. From these we can derive an easy upper bound on the number
of alternatives we will consider for each set variable as 229 w(as+1+logav) Gince
we have gg set variables in total this gives 2¢s2*9w(as+1+logav) For each vertex
variable we have to consider at most 295w + [+ ¢y alternatives, so for all ¢
variables at most (225w + 1 + gy)?. The product of these two upper bounds is
an upper bound on the total number of alternatives our algorithm will consider,
giving the promised running time. a

A.8 Proof of Theorem 5

Proof. We have already observed that the construction we described has k =
O(logn). Since the construction can clearly be performed in polynomial time,
an algorithm running in time O(QQO(HQ) - poly(n)) would imply an algorithm for

SAT running in 2°(™ - poly(n). O

A.9 Proof of Theorem 6

Proof. We use the same construction, but begin our reduction from Weighted
3-SAT, a well-known W/[1]-hard parameterized problem. Suppose we are given a
3-CNF formula and a number w and we are asked if the formula can be satisfied

by setting exactly w of its variables to true. The formula ¢ we construct is exactly
the same, except that we replace the 35 with Jx13zs ... 3$U1(/\1§i<j§w x; # Tj)
and all occurences of z € S with \/,.,.,, ® = x;. It is not hard to see that the
informal meaning of ¢ now is to ask whether there exists a set of exactly w
distinct variables such that setting them to true makes the formula true.

We now have ¢, = w+0(1) so an algorithm running in time 2°*+4v).poly(n)
would imply an algorithm for Weighted 3-SAT running in 2°(*) - poly(n), and
thus that FPT=WT[1]. O

A.10 Proof of Theorem 7

Proof. For the first statement, to show that every V; induces either a clique or
an independent set, we may assume that |V;| > 3, otherwise the statement is
trivial. Suppose that some V; includes at least one edge (u,v). Then for every
other pair of vertices w,w’ we know that w must be connected to v since w
and u have the same type. With a symmetric argument we conclude that all
the edges (w,u), (w,v), (w',u), (w’',v) must exist in the graph. Finally, because
w and u have the same type and we concluded that (w’,u) is an edge, we must
have (w,w’) as well. This is true for any pair of vertices (w,w’) so if V; has at
least one edge it is a clique. Another way to see this observation is to say that
the property of two vertices having the same type is an equivalence relation.

For the edges between V; and Vj;, suppose that there exists at least an edge
(u,v) between them and let w € V;, w’ € V;. v has the same type as w’, therefore
(u,w’) must be an edge. Now, w has the same type as u so (w,w’) must also be
an edge, and once again this is true for any w, w’.

We have already shown the first part of the second statement. For the part
with cliquewidth, we remind the reader that the graphs of cliquewidth k are those
which can be constructed by repeated application of the following operations:
introducing a new vertex with a label in {1, ..., k}, joining all vertices of label i
with all vertices of label j, renaming all vertices of label 7 to label j and taking
disjoint union of two graphs of cliquewidth at most k. We must show how to
construct a graph in such a way starting from a neighborhood partition of width
w, using at most w + 1 labels. The labels in {1, ..., w} will only be used for the
vertices of the corresponding set in the partition, while the extra label will be
used to construct the cliques. For each V;, if V; is an independent set introduce
|V;| new vertices with label i. If V; is a clique repeat |V;| times: introduce a new
vertex of label w + 1, join all vertices of label 7 to w + 1 and rename w + 1 to 3.
After all the vertices have been introduced, for all ¢, j for which the graph had
all edges between V; and V; join the vertices labeled ¢ with those labeled j.

To see why treewidth is incomparable to neighborhood diversity consider the
examples of a complete bipartite graph K, ,, and a path on n vertices.

Finally, let us argue why neighborhood diversity is computable in polynomial
time. First, observe that neighborhood diversity is closed under the taking of
induced subgraphs, that is, if G'(V’, E’) is an induced subgraph of G(V, E) then
nd(G') < nd(G), because a neighborhood partition of G is also valid for G'. We
will work inductively: order the vertices of the input graph G in an arbitrary way

and suppose that we have found an optimal neighborhood partition of the graph
induced by the first k£ vertices into w sets, V1, Va, ..., V,,. From our observation
regarding induced subgraphs we know that the optimal partition of the graph
induced by the first k£ + 1 vertices will need at least w sets. Let v be the next
vertex. There are two cases: either v can be placed in some V; giving us a valid
and optimal neighborhood partition of the first £ 4+ 1 vertices or not, and this
can easily be verified in polynomial time. In the second case, there must exist
in each V; a vertex v; such that v; and u have different types. This means that
we have a set of w + 1 vertices which have mutually incompatible types, which
implies that the optimal neighborhood partition needs at least w + 1 sets. This
can be achieved by adding to the partition we have a new singleton set {u}. O

A.11 Proof of Theorem 8

Proof. We will make use of an auxiliary graph G’ on w vertices. Each vertex
of G’ corresponds to a set in an optimal neighborhood partition of G and two
vertices of G’ have an edge iff the corresponding sets of the partition of G have
all possible edges between them.

First, for the chromatic number. Observe that if a set V; of a neighborhood
partition of G induces an independent set, we can delete all of its vertices but
one, without affecting the graph’s chromatic number, because there always exists
an optimal coloring where all the vertices of V; take the same color. So, we can
assume without loss of generality that all the sets V; of a neighborhood partition
of G induce cliques (some of them of order one).

Consider now a coloring of the graph G’ with the following objective function:
for each color ¢ used, its weight is the size of the largest clique that corresponds
to a vertex of G’ colored with . The objective is to minimize the sum of the
weights of the colors used. It is not hard to see that this problem can be solved
in time O(w" - logn) by checking through all possible colorings of the vertices
of G’. Also, from such a coloring of G’ we can infer a coloring of G that uses as
many colors as the weight of the coloring: for every color ¢ used in G’ create a
new set of colors of size equal to the color’s weight. This is sufficient to color all
the cliques of G that correspond to vertices of G’ colored with 7.

What remains is to argue why this leads to an optimal coloring. Suppose we
have an optimal coloring of G and order the sets of a neighborhood partition in
order of decreasing size, that is, |[Vi| > |Va| > ... > |V,,|. We will say that V;
and V; have “similar” colors in this optimal coloring of G' when there is a color
that appears in both V; and Vj;. From the coloring of G we infer a coloring of
G’ as follows: while there are still uncolored vertices of G’, take the first set of
the partition of G (in order of size) that corresponds to a still uncolored vertex
of G'. Use a new color for its corresponding vertex in G’ and also for all the
vertices that correspond to sets with colors similar to it.

When we are done, we will have a proper coloring of G’, because if two sets
Vi,V are joined by an edge they cannot have similar colors. Furthermore, the
weight of the coloring of G’ we obtain is a lower bound on the number of colors
used in the original coloring of G we assumed. This is because when we pick a

set V; and use it to introduce a new color we know that it does not have similar
colors with any of the sets we have picked so far. Because all the sets picked
induce cliques and do not have similar colors (i.e. no color is reused) we know
that the original coloring of G uses at least as many colors as the sum of the
sizes of the sets picked. Thus, if our algorithm found that the optimal solution
to the weighted coloring problem for G’ has weight w, this means that w colors
are needed to color G, because a coloring of G with w — 1 colors would give a
solution to the coloring problem of G’ with weight at most w — 1.

For the Hamiltonian cycle problem, we will once again use the graph G’. We
define the weight of every vertex of G’ to be the size of its corresponding set
in the neighborhood partition of G. Now, the problem of finding a Hamiltonian
cycle in G can be reduced to the problem of finding a closed walk of G’, such
that every vertex that corresponds to an independent set is visited a number of
times exactly equal to its weight, while every vertex corresponding to a clique is
visited at least once and at most as many times as its weight.

This problem of looking for a walk on G’ can be solved in time O(n“’z).
Replace each edge with two directed arcs of opposite direction. Now, for each of
the at most w? arcs, we must decide how many times it will be used, a value
upper-bounded by n. If we have decided on such values for all arcs we can easily
check if a walk with the desired properties can be made from them. Replace each
arc with a number of parallel arcs of the same direction equal to the value decided
for it. Now, we can obtain a walk if the resulting multi-graph is Eulerian (that
is, all vertices have the same in-degree as out-degree) and also the in-degrees of
the vertices follow the conditions we have stated for the number of times the
vertex must be visited.

In order to improve this to an FPT algorithm, we rely on an old but seminal
result by Lenstra which states that the feasibility of an ILP programs of size n
with k variables can be solved in time f(k) - poly(n), i.e. bounded-variable ILP
is FPT (this is also the main tool used in [9]). This is a result that has attracted
considerable interest in the parameterized complexity community and it has long
been a topic of interest to find examples of its application. Here we observe that
in the above algorithm we are trying to decide on values for w? variables. For
each variable the constraints can easily be expressed as linear inequalities: for
each vertex we have to make sure that the in-degree is equal to the out-degree
and also that the in-degree falls in a specified interval. Therefore, by expressing
our problem as a system of linear inequalities we obtain an FPT algorithm.

Finally, in the edge dominating set problem, we are asked to find a set of
edges of minimum size such that all other edges share an endpoint with one
of the edges we selected. This problem is equivalent to the minimum maximal
matching problem, where we are trying to find a minimum size independent set of
edges that cannot be extended by picking another edge of the graph. To see why
the optimal solution to the edge dominating set problem is always a matching,
suppose that we have a solution S which includes two edges (u,v), (u,v’). Now,
if all the neighbors of v/ are incident on an edge of S we can simply remove
(u,v") from S and improve the size of the solution. If there is a neighbor w of v’

that is not incident on an edge of S we can replace (u,v’) with (w,v’) in S. To
see why a solution to the edge dominating set problem is a maximal matching,
suppose that it was not. Then there would be two unmatched vertices connected
by an edge, which would imply that this edge is not dominated.

Our algorithm will proceed as follows: for every minimal vertex cover V' of G’
repeat the following (there are at most 2% vertex covers to be considered): from
V'’ infer a vertex cover of G by placing into the vertex cover all the vertices that
belong in a type whose corresponding vertex is in V'. Also place in the vertex
cover all but one (arbitrarily chosen) vertex of every vertex type that induces
a clique but whose corresponding vertex is not in V’. Call the resulting vertex
cover of G V”. Find a maximum matching on the graph induced by V", call
it M;. Take the bipartite graph induced by the unmatched vertices of V"' and
V' \ V" and find a maximum matching there, call it Ms. The solution produced
is My U M. After repeating this for all vertex covers of G’, pick the smallest
solution.

Now we need to argue why this solution is optimal. Let S be an optimal
solution for G. We say that a set of the neighborhood partition V; is full if all of
its vertices are incident on edges of S. If we take in G’ the corresponding vertices
of the full sets of G, they must form a vertex cover of G/, otherwise there would be
two neighboring vertices with neither having any edge of S incident to it, which
would mean that S is not maximal. This is a vertex cover of G’ considered by
our algorithm, since our algorithm considers all vertex covers of G, call it V.
Let V” be again the vertex cover of G our algorithm derived from V' by also
including a minimal number of vertices from each remaining clique. Let V* be
the set of vertices of G incident on some edge of S, which must also be a vertex
cover of GG. Without loss of generality we will assume that V" C V*, because
the two vertex covers of G agree on taking all vertices of the full sets and V"
takes a minimal number of vertices from every other clique. Even if V* leaves
out a different vertex from some clique because all the vertices of the clique
have the same neighbors we can apply an exchanging argument and transform
S appropriately without increasing its size so that both sets leave out the same
vertex.

Now note that |Ms| < |V”| — 2|M1]. So our algorithm’s solution has size
at most |V”| — |Mi|. On the other hand the optimal solution S includes some
edges with both endpoints in V", call this set S;. Because M; is a maximum
matching, |S1| < |M;|. From what we have so far, the fact that all vertices of V*
are matched by S and the fact that V" is a vertex cover, so V*\ V" induces no
edges we have |V*| = |V*OV" |+ |V\V| = |[V"|+ |V =2|51] > 2|V"|—2| M.
This implies that |S| > |V”| — |M;| which concludes the proof. O

