
Noname manuscript No.
(will be inserted by the editor)

Algorithmic Meta-theorems for Restrictions of

Treewidth

Michael Lampis

the date of receipt and acceptance should be inserted later

Abstract Possibly the most famous algorithmic meta-theorem is Courcelle’s
theorem, which states that all MSO-expressible graph properties are decidable
in linear time for graphs of bounded treewidth. Unfortunately, the running
time’s dependence on the formula describing the problem is in general a tower
of exponentials of unbounded height, and there exist lower bounds proving
that this cannot be improved even if we restrict ourselves to deciding FO logic
on trees.

We investigate whether this parameter dependence can be improved by
focusing on two proper subclasses of the class of bounded treewidth graphs:
graphs of bounded vertex cover and graphs of bounded max-leaf number. We
prove stronger algorithmic meta-theorems for these more restricted classes of
graphs. More specifically, we show it is possible to decide any FO property
in both of these classes with a singly exponential parameter dependence and
that it is possible to decide MSO logic on graphs of bounded vertex cover
with a doubly exponential parameter dependence. We also prove lower bound
results which show that our upper bounds cannot be improved significantly,
under widely believed complexity assumptions. Our work addresses an open
problem posed by Michael Fellows.

1 Introduction

Algorithmic metatheorems are general statements of the form “All problems
sharing property P, restricted to a class of inputs I can be solved efficiently”.

A preliminary version of this paper appeared in ESA 2010

M. Lampis
Computer Science Department,
Graduate Center, City University of New York
E-mail: mlampis@gc.cuny.edu

2 Michael Lampis

The archetypal, and possibly most celebrated, such metatheorem is Cour-
celle’s theorem which states that every graph property expressible in monadic
second-order (MSO2) logic is decidable in linear time if restricted to graphs of
bounded treewidth [6]. Metatheorems have been a subject of intensive research
in the last years producing a wealth of interesting results. Some representative
examples of metatheorems with a flavor similar to Courcelle’s can be found
in the work of Frick and Grohe [17], where it is shown that all properties ex-
pressible in first order (FO) logic are solvable in linear time on planar graphs,
and the work of Dawar et al. [8], where it is shown that all FO-definable opti-
misation problems admit a PTAS on graphs excluding a fixed minor (see [19]
and [20] for more results on the topic). In all these works the defining prop-
erty P for the problems studied is given in terms of expressibility in a logic
language; in many cases metatheorems are stated with P being some other
problem property, for example whether the problem is closed under the taking
of minors. This approach, which is connected with the famous graph minor
project of Robertson and Seymour [25] has also led to a wealth of significant
and practical results, including the so called bi-dimensionality theory (see [9]
for an overview and also the recent results of [2]).

In this paper we focus on the study of algorithmic metatheorems in the
spirit of Courcelle’s theorem, where the class of problems we attack is defined
in terms of expressibility in a logic language. In this research area, many inter-
esting extensions have followed Courcelle’s seminal result: for instance, Cour-
celle’s theorem has been extended to logics more suitable for the expression of
optimisation problems [1]. It has also been investigated whether it’s possible
to obtain similar results for larger graph classes (see [7] for a metatheorem for
bounded cliquewidth graphs, [15,16] for corresponding hardness results and
[23] for hardness results for graphs of small but unbounded treewidth). Fi-
nally, lower bound results have been shown proving that the running times
predicted by Courcelle’s theorem can not be improved significantly in general
[18].

This lower bound result is one of the main motivations of this work, be-
cause in some ways it is quite devastating. Though Courcelle’s theorem shows
that a vast class of problems is solvable in linear time on graphs of bounded
treewidth, the “hidden constant” in this running time, that is, the running
time’s dependence on the input’s other parameters, which are the graph’s
treewidth and the formula describing the problem, is in fact (in the worst
case) a tower of exponentials. Unfortunately, in [18] it is shown that this tower
of exponentials is unavoidable even if we restrict ourselves to deciding FO logic
on trees.

In this paper our aim is to investigate if it is possible to go around this
harsh lower bound by restricting the considered class of input graphs further.
In other words, we are looking for meta-theorems which would imply that all
of FO or MSO logic can be solved in time not only linear in the size of the
graph, but also depending more reasonably on the secondary parameters, if we
are willing to give up some of the generality of the class of bounded-treewidth
graphs. We concentrate on two graph classes: graphs of bounded vertex cover

Algorithmic Meta-theorems for Restrictions of Treewidth 3

and graphs of bounded max-leaf number. We note that the investigation of the
existence of stronger meta-theorems for these classes has been posed explicitly
as an open problem by Fellows in [11].

Though graphs of bounded vertex cover or max-leaf number are consid-
erably more restricted than bounded treewidth graphs, these classes are still
interesting from the algorithmic point of view and the complexity of hard prob-
lems parameterized by vertex cover or max-leaf number has been investigated
in the past ([13], [12]). Furthermore, as mentioned, strong lower bounds are
known to apply to slightly more general classes: for bounded feedback vertex
set and bounded pathwidth graphs even FO logic is non-elementary, while
even for binary trees (thus for graphs of bounded treewidth and max degree)
FO logic is at least triply exponential (again by [18]). Bounded vertex cover
and bounded max-leaf number evade all these lower bound arguments so it’s
natural to ask what is exactly the complexity of FO and MSO logic for these
classes of graphs?

The main results of this paper show that meta-theorems stronger than
Courcelle’s can indeed be shown for these classes of graphs. In addition, we
show that our meta-theorems for vertex cover cannot be significantly improved
under standard complexity assumptions.

Specifically, for the class of graphs of vertex cover bounded by k we show
that

– All graph problems expressible with an FO formula φ can be solved in time
linear in the graph size and singly exponential in k and |φ|.

– All graph problems expressible with an MSO2 formula φ can be solved in
time linear in the graph size and doubly exponential in k and |φ|.

– Unless n-variable 3SAT can be solved in time 2o(n) (that is, unless the
Exponential Time Hypothesis fails), then no f(k) · poly(|G|) algorithm

exists to decide MSO logic on graphs of vertex cover k for any f(k) = 22o(k)

.
– Unless n-variable 3SAT can be solved in time 2o(n), there is no algorithm

which can decide if an FO formula φ with q quantifiers holds in a graph G
of vertex cover k in time f(k, q)nc, for any f(k, q) = 2o(kq).

Furthermore, for the class of graphs of max-leaf number bounded by k we
show that

– All graph problems expressible with an FO formula φ can be solved in time
linear in the graph size, polynomial in k and singly exponential in |φ|.

Our upper bounds rely on techniques different from the standard dynamic
programming on decompositions usually associated with treewidth. For max-
leaf number we rely on the characterization of bounded max-leaf number
graphs from [22] also used heavily in [12] and the fact that FO logic has
limited counting power in paths. For vertex cover we exploit an observation
that for FO logic two vertices that have the same neighbors are “equivalent”
in a sense we will make precise. We state our results in this case in terms
of a new graph “width” parameter that captures this graph property more

4 Michael Lampis

precisely than bounded vertex cover. We call the new parameter neighbor-
hood diversity, and the upper bounds for vertex cover follow by showing that
bounded vertex cover is a special case of bounded neighborhood diversity. Our
essentially matching lower bounds on the other hand are shown for vertex
cover. In the last section of this paper we prove some additional results for
neighborhood diversity, beyond the algorithmic meta-theorems of the rest of
the paper, which we believe indicate that neighborhood diversity might be a
graph structure parameter of independent interest and that its algorithmic
and graph-theoretic properties may merit further investigation.

2 Definitions and Preliminaries

2.1 Model Checking, FO and MSO logic

In this paper we will describe algorithmic meta-theorems, that is, general
methods for solving all problems belonging in a class of problems. However,
the presentation is simplified if one poses this approach as an attack on a
single problem, the model checking problem. In the model checking problem
we are given a logic formula φ, expressing a graph property, and a graph G,
and we must decide if the property described by φ holds in G. In that case,
we write G |= φ. Clearly, if we can describe an efficient algorithm for model
checking for a specific logic, this will imply the existence of efficient algorithms
for all problems expressible in this logic. Let us now give more details about
the logics we will deal with and the graphs which will be our input instances.

Our universe of discourse will be labeled, colored graphs. Specifically, we
assume that the first part of the input is an undirected graph G(V,E), a set
of labels L, each associated with a vertex of V and a set of subsets of V ,
C = {C1, C2, . . . , Cc}, which we refer to as color classes. Note that it could
be the case that several labels are assigned to the same vertex and that some
vertex belongs in several color classes. The interesting case here is unlabeled,
uncolored graphs (that is, L = C = ∅), but the additional generality in the
definition of the problem makes it easier to describe a recursive algorithm. We
include labels in our definition to allow our formulas to refer to some constant
vertices of the input graph.

The formulas of FO logic are those which can be constructed using vertex
variables, denoted usually by xi, yi, . . ., vertex labels denoted by li, color classes
denoted by Ci, the predicates E(xi, xj), xi ∈ Cj , xi = xj operating on vertex
variables or labels, standard propositional connectives and the quantifiers ∃,∀
operating on vertex variables. The semantics are defined in the usual way, with
the E() predicate being true if (xi, xj) ∈ E and labels being interpreted as
vertex constants corresponding to the vertices of the graph they are attached
to. We also sometimes extend notation slightly by using conditional quantified
variables: ∃x : ψ(x) (φ(x)) can be read as shorthand for ∃x(ψ(x)∧φ(x)), while
∀x : ψ(x) (φ(x)) is short for ∀x(ψ(x) → φ(x)).

Algorithmic Meta-theorems for Restrictions of Treewidth 5

For MSO logic the additional property is that we now introduce set vari-
ables denoted by Xi and allow the quantifiers and the ∈ predicate to operate
on them. The semantics are defined in the obvious way. If the set variables
are allowed to range over sets of vertices only, then the logic is referred to as
MSO1.

A variation is MSO2 logic. Here, first-order variables are allowed to range
over vertices or edges, and second-order variables range over sets of vertices
or edges. To keep the presentation simple we will use the letters ei, Fi for
variables which range over edges and sets of edges respectively and we assume
that it is clear from the context what domain each variable is quantified over.
We also add the incidence predicate I(v, e) which is true if edge e is incident
on vertex v. Observe that in the first-order case it does not make a difference
if one also allows quantification over edges or not, because any FO formula
that uses edge variables can be transformed to an equivalent formula that only
uses vertex variables: one simply replaces ∃e with ∃x∃y : E(x, y) while also
replacing I(v, e) with (v = x) ∨ (v = y). It is known that this is not possible
with MSO in general: there exist MSO2 expressible properties which are not
expressible in MSO1. However, we will use such a transformation that works
for graphs of small vertex cover.

2.2 Bounded Vertex Cover and neighborhood diversity

We will work extensively with graphs of bounded vertex cover, that is, graphs
for which there exists a small set of vertices whose removal also removes all
edges. We will usually denote the size of a graph’s vertex cover by k. Note that
there exist linear-time FPT algorithms for finding an optimal vertex cover in
graphs where k is small (see e.g. [4]). Recall that an algorithm is called fixed-
parameter tractable (FPT) if it runs in time f(k)nO(1) for some function f of
the parameter k.

Our technique relies on the fact that in a graph of vertex cover k, the
vertices outside the vertex cover can be partitioned into at most 2k sets, such
that all the vertices in each set have exactly the same neighbors outside the
set and each set contains no edges inside it. Since we do not make use of any
other special property of graphs of small vertex cover, we are motivated to
define a new graph parameter, called neighborhood diversity, which intuitively
seems to give the largest graph family to which we can apply our method in a
straightforward way.

Definition 1 We will say that two vertices v, v′ of a graph G(V,E) have the
same type iff they have the same colors and N(v) \ {v′} = N(v′) \ {v}, where
N(v) denotes the set of neighbors of v.

Lemma 1 Having the same type is an equivalence relation on the set of ver-
tices of a graph G.

Proof Obviously the relation is reflexive and symmetric, so we only need to
prove that it is transitive. Suppose u and v have the same type and also that

6 Michael Lampis

v and w have the same type. First, N(u)\{v} = N(v)\{u} and N(v)\{w} =
N(w) \ {v} from the definition. From this we have N(u) \ {v, w} = N(v) \
{u,w} = N(w) \ {u, v}. So, it suffices to show that if v is connected to one of
u,w it is connected to the other. But if u, v are connected then u,w are also
since v and w have the same type. Now, because u and v have the same type
and u,w are connected then v, w are also connected. ⊓⊔

Definition 2 A colored graph G(V,E) has neighborhood diversity at most w,
if there exists a partition of V into at most w sets, such that all the vertices
in each set have the same type.

Lemma 2 If an uncolored graph has vertex cover at most k, then it has neigh-
borhood diversity at most 2k + k.

Proof Construct k singleton sets, one for each vertex in the vertex cover and
at most 2k additional sets, one for each subset of vertices of the vertex cover.
Place each of the vertices of the independent set in one of these sets, specifically
the one which corresponds to its neighborhood in the vertex cover. ⊓⊔

In Section 7 we will show some more results about neighborhood diversity
which indicate it may be an interesting parameter in its own right. However,
until then our main focus will be graphs of bounded vertex cover. We will
prove most of our algorithmic results in terms of neighborhood diversity and
then invoke Lemma 2 to obtain our main objective. We will call a partition of
the vertex set of a graph G into w sets such that all vertices in every set share
the same type a neighborhood partition of width w. We will usually assume
that a neighborhood partition of the graph is given to us, because otherwise
one can easily be found in linear time by using the mentioned linear-time FPT
algorithm for vertex cover and Lemma 2.

2.3 Bounded Max-Leaf Number

We say that a connected graph G has max-leaf number at most l if no spanning
tree of G has more than l leaves. The algorithmic properties of this class of
graphs have been investigated in the past [10,14,12]. In this paper we rely
heavily on a characterization of bounded max-leaf graphs by Kleitman and
West [22] which is also heavily used in [12].

Theorem 1 [22] If a graph G has max-leaf number at most l, then G is a
subdivision of a graph on O(l) vertices.

What this theorem tells us intuitively is that in a graph G(V,E) with
max-leaf number l there exists a set S of O(l) vertices such that G[V \ S] is
a collection of O(l2) paths. Furthermore, only the endpoints of the paths can
be connected to vertices of S in G.

It is well-known that a graph of max-leaf number at most l has a path
decomposition of width at most 2l. Furthermore, it must have maximum degree

Algorithmic Meta-theorems for Restrictions of Treewidth 7

at most l. Bounded max-leaf number graphs are therefore a subclass of the
intersection of bounded pathwidth and bounded degree graphs (in fact, they
are a proper subclass, as witnessed by the existence of say 2 × n grids). Let
us mention again that model checking FO formulas on binary trees has at
least a triply exponential parameter dependence, so the results we present for
graphs of bounded max-leaf number can also be seen as an improvement on
the currently known results for FO logic on bounded degree graphs, for this
more restricted case.

3 FO Logic for Bounded Vertex Cover

In this Section we show how any FO formula can be decided on graphs of
bounded vertex cover number, with a singly exponential parameter depen-
dence. Our main argument is that for FO logic, two vertices which have the
same neighbors are essentially equivalent. We will state our results in the more
general case of bounded neighborhood diversity and then show the correspond-
ing result for bounded vertex cover as a corollary.

Lemma 3 Let G(V,E) be a graph and φ(x) a FO formula with one free vari-
able. Let v, v′ ∈ V be two distinct unlabeled vertices of G that have the same
type. Then G |= φ(v) iff G |= φ(v′).

Proof Let l be a new label which is not currently used in G. Let G1 be the
labeled graph we obtain from G if we associate l with v and G2 be the labeled
graph we obtain if we associate l with v′. Then the labeled graphs G1 and G2

are isomorphic (meaning that there is a one-to-one correspondence between
them that also respects the labels). Therefore, G1 |= φ(l) iff G2 |= φ(l). ⊓⊔

Theorem 2 Let φ be a FO sentence of quantifier depth q. Let G(V,E) be
a labeled colored graph with neighborhood diversity at most w and l labeled
vertices. Then, there is an algorithm that decides if G |= φ in time O((w +
l + q)q · |φ|), assuming that an optimal neighborhood partition is given with the
input.

Proof We will rely heavily on Lemma 3 and describe a recursive algorithm. If
q = 0 the problem is trivial, so assume q > 0. Assume wlog that φ is in prenex
normal form, φ = Qxψ(x) where Q is ∃ or ∀.

Suppose that V can be partitioned into V1, V2, . . . Vw as required by the
definition of neighborhood diversity. Now, by Lemma 3 if v, v′ ∈ Vi for some i,
and neither of the two is labeled then G |= ψ(v) iff G |= ψ(v′). Thus, it suffices
to recursively model check at most (w+l) sentences of q−1 quantifiers to decide
φ: we try replacing x with each of the l labeled vertices or with one arbitrarily
chosen nonlabeled representative from each Vi. If x is existentially quantified
we decide that G |= φ if at least one of the resulting sentences is true, while if x
is universally quantified we decide that G |= φ if all of the resulting sentences
are true. In the process we introduce a new label. Repeating this process

8 Michael Lampis

constructs a computation tree with at most
∏q−1

i=0 (w+ l+i) = O ((w + l + q)q)
leaves. The result of the computation tree can be evaluated in time linear in
its size. ⊓⊔

Corollary 1 There exists an algorithm which, given a FO sentence φ with q
variables and an uncolored, unlabeled graph G on n vertices with vertex cover
at most k, decides if G |= φ in time 2O(kq+q log q)|φ| + O(2kn).

Proof The second term in the running time comes from the basic FPT al-
gorithm for finding a vertex cover of size k. From this we can construct a
neighborhood partition and invoke Theorem 2 and Lemma 2. ⊓⊔

Thus, the running time is (only) singly exponential in the parameters, while
a straightforward observation that bounded vertex cover graphs have bounded
treewidth and an application of Courcelle’s theorem would in general have a
non-elementary running time. Of course, a natural question to ask now is
whether it is possible to do even better, perhaps making the exponent linear
in the parameter. As we will see later on, this is not possible if we accept some
standard complexity assumptions.

4 FO Logic for Bounded Max-Leaf Number

In this section we describe a model checking algorithm for FO logic on graphs
of small max-leaf number. Because we are not going to solve MSO logic on this
class of graphs, we can simplify things by assuming that our graphs only have
labels and not colors (i.e. all vertices are initially uncolored). Our main tool
is the mentioned observation that all but a small fraction of the vertices have
degree 2, and therefore (since we assume without loss of generality that the
graph is connected) induce paths. We call a maximal set of connected vertices
of degree 2 a topo-edge.

Our main argument is that when a topo-edge is very long (exponentially
long in the number of quantifiers of the first-order sentence we are model
checking) its precise length does not matter. Readers familiar with classical
results regarding Ehrenfeucht-Fraisse games and their use in proving negative
results for the expressive power of FO logic on paths will recognize that the
technique we use is an extension of this work to graphs of small max-leaf
number (for more information on E-F games see for example [21]).

First we define a similarity relation on graphs.

Definition 3 Let G1, G2, be two labeled graphs. For a given q we will say
that G1 and G2 are q-similar and write G1 ∼q G2 iff G1 contains a topo-edge
of order at least 2q+1 consisting of unlabeled vertices, call it P , and G2 can
be obtained from G1 by contracting one of the edges of P . We denote the
transitive closure of the relation ∼q as ∼∗

q .

Our main technical tool is now the following lemma.

Algorithmic Meta-theorems for Restrictions of Treewidth 9

Lemma 4 Let φ be a FO formula with q quantifiers. Then, for any two graphs
G1, G2 if G1 ∼q G2 then G1 |= φ iff G2 |= φ. Therefore, if G1 ∼∗

q G2 then
G1 |= φ iff G2 |= φ.

Proof We will prove the first statement by induction on q and the second
statement follows directly from it. For q = 0 the statement is trivial because
φ can only refer to labeled vertices and G1, G2 are identical with respect to
these vertices.

Suppose that the statement is true for at most q − 1 quantifiers. It suffices
to show the statement for q quantifiers for a formula φ of the form ∃xψ(x), and
the statement then easily follows for formulas which are boolean combinations
of formulas of at most q quantifiers. So, suppose that G1 |= ∃xψ(x). This
means that there exists a vertex in G1 such that if we label it with a new
label l to obtain a graph G′

1 (which is G1 with the label l added) we have
G′

1 |= ψ(l). Now we must take cases for the vertex where l is placed.
If l is placed on a vertex outside of P then it is not hard to see that

G2 |= φ: we place l on the same vertex on G2 (and obtain G′
2) and now we

have G′
1 ∼(q−1) G′

2 so from the inductive hypothesis G′
2 |= ψ(l).

Now the interesting case is when l is placed on a vertex of P . Number the
vertices of P from 1 to |P |, starting from one of the endpoints of the path
induced by P . Partition P into two parts: P2 contains the last 2q vertices and
P1 the rest. In G2 we use the same numbering for the vertices of the path
(of course now the numbering is from 1 to |P | − 1, since one edge has been
contracted).

Suppose that l is placed on a vertex of P1. We place l on the same vertex
in G2. Now, we have G′

1 ∼(q−1) G′
2, because in both graphs P has been broken

into two paths P ′ and P ′′. P ′ has the same size on both (depending on the
position where l was placed) and P ′′ has size at least 2q on G′

1 and one less
than that on G′

2. So, by the inductive hypothesis G′
1 |= ψ(l) iff G′

2 |= ψ(l).
Finally, if l is placed on a vertex of P2 we place l on a vertex of G2 that has

the same distance from the end of the path and two q-similar graphs G′
1, G

′
2

are obtained, because the smaller part of the two into which P is broken has
the same size on both graphs and the larger has size at least 2q. So by the
inductive hypothesis G′

1 |= ψ(l) iff G′
2 |= ψ(l).

The converse directions where we know that G2 |= φ and need to show
that this implies G1 |= φ can be established with a similar argument. ⊓⊔

Now we are ready to state our main result of this section.

Theorem 3 Let G be a graph on n vertices with max-leaf number k and φ a
FO formula with q quantifiers. Then, there exists an algorithm for deciding if
G |= φ running in time poly(n) + 2O(q2+q log k).

Proof By applying Theorem 1 we know that G can be partitioned into a set
of at most O(k) vertices of degree at least 3 and a collection of paths. By
applying Lemma 4 we know that there exists a G′ such that G ∼∗

q G′ and G′

consists of the same O(k) vertices of degree at least 3 and at most O(k2) paths

10 Michael Lampis

whose length is at most 2q+1. Of course, G′ can be found in time polynomial
in n.

Now, we can apply the straightforward algorithm to model check φ on G′.
The trivial algorithm takes time O(|V |q) = O((k22q+1)q) giving the promised
running time. ⊓⊔

5 MSO Logic for Bounded Vertex Cover

Here we will follow a similar strategy as in Section 3 proving that if there is
a very large number of vertices of a certain type in our graph then it is safe
to delete some of them without affecting the truth of the MSO sentence we
are trying to model check. To do this we first define another kind of similarity
relation on graphs.

Definition 4 Let G1, G2, be two labeled colored graphs. For given integers
qS , qV we will say that G1 and G2 are (qS , qV)-similar and write G1 ∼(qS ,qV) G2

iff G2 can be obtained by G1 by deleting an unlabeled vertex u and G1 contains
at least 2qS qV additional unlabeled vertices of the same type as u. We denote
the transitive closure of the relation ∼(qS ,qV) as ∼∗

(qS ,qV).

Lemma 5 Let φ be a MSO1 formula with qS set quantifiers and qV vertex
quantifiers. Then, for any two graphs G1, G2 if G1 ∼(qS ,qV) G2 then G1 |= φ
iff G2 |= φ. Therefore, if G1 ∼∗

(qS ,qV) G2 then G1 |= φ iff G2 |= φ.

Proof We will prove the first statement by induction on qS +qV and the second
statement will immediately follow. For qV = 0 the statement is trivial since
without vertex variables the formula may only refer to the labeled vertices
where G1 and G2 are identical so the statement is proved for qS + qV = 0.

Suppose that we have proved the statement for formulas with at most q
quantified (vertex and set) variables and we are given a formula φ with qS set
variables and qV vertex variables, where qS + qV = q + 1. We are also given
two graphs G1, G2 such that G1 ∼(qS ,qV) G2. The two interesting cases are
φ = ∃xψ(x) and φ = ∃Xψ(X) (i.e. φ begins with an existentially quantified
vertex or set variable) because the universal quantification case and boolean
combinations of simpler formulas follow directly if we deal with these.

First, assume that φ = ∃Xψ(X) and that G1 |= φ. So, there exists a set
S1 of vertices of G1 such that assigning a new color C to these, thus obtaining
a new colored graph G′

1, gives us G′
1 |= ψ(C). Let T be the type of vertices

of G1 where if we delete a vertex we obtain G2 (recall that |T | ≥ 2qS qV + 1).
We select a set S2 of vertices of G2 as follows: for every type other than T we
select the same number of vertices as S1 has selected from this type in G1.
From T , if S1 contains at most half the vertices of type T in G1 we place the
same number of vertices from that type of G2 in S2. Otherwise, we select from
type T one vertex less than S1 contains from that type in G1. We thus obtain
a graph G′

2 by coloring all the vertices of S2 with a new color C. Informally,
we can say that G′

1 and G′
2 are the same except that one of the types of G′

1

Algorithmic Meta-theorems for Restrictions of Treewidth 11

has one more vertex than the corresponding type of G′
2. Note that we have

made sure that this type has at least half the vertices of T . The claim now is
that G′

1 ∼(qS−1,qV) G′
2. To see this, observe that we can obtain G′

2 from G′
1 by

deleting a vertex which had type T in G1. If |S1 ∩ T | = |S2 ∩ T | that vertex is
one which did not receive the new color C, but this happens if at most half the
vertices did, meaning its type contains at least ⌈(2qS qV +1)/2⌉ = 2qS−1qV +1
vertices in G′

1. Otherwise, the vertex we can delete is one that received the
new color, which means in this case its type again contains at least 2qS−1qV +1
vertices. From the inductive hypothesis we now get G′

1 |= ψ(C) iff G′
2 |= ψ(C),

which gives G1 |= φ iff G2 |= φ. Similar arguments can be applied if we start
with the assumption G2 |= φ.

Second, if φ = ∃xψ(x) and G1 |= φ, there exists a vertex of G1 such that
assigning to it a new label l, thus obtaining a new graph G′

1, we have G′
1 |=

ψ(l). We assign the label l to a vertex of the same type in G2, obtaining G′
2.

Now, we have G′
1 ∼(qS ,qV −1) G′

2, because the number of unlabeled vertices in
the type where G1 and G2 differ has been decreased by at most one. Therefore,
it is now at least 2qS qV ≥ 2qS (qV − 1) + 1. By inductive hypothesis we get
G′

2 |= ψ(l) so G2 |= φ. Similar arguments can again be applied if we initially
assume that G2 |= φ. ⊓⊔

Theorem 4 Let G be a graph on n vertices with neighborhood diversity at
most w and φ be a MSO1 formula with qS set quantifiers and qV vertex quan-
tifiers. Then, given a neighborhood partition of G, there exists an algorithm
which can decide if G |= φ in time 2O(2qS wqV +qV log qV).

Proof Using Lemma 5 we can assume that no type has more than 2qS qV ver-
tices, otherwise we can delete one vertex and get an equivalent graph. Thus,
the total number of vertices is at most w2qS qV .

The trivial MSO1 model checking algorithm on a graph on n vertices would
take time O((2n)qS · nqV · |φ|) (try all possible cases for each set variable and
each vertex variable). Using the above bound on n gives the promised running
time. ⊓⊔

Corollary 2 There exists an algorithm which, given a MSO1 sentence φ with
q variables and an uncolored, unlabeled graph G with vertex cover at most k,

decides if G |= φ in time 22O(k+q)

+ O(2kn).

Again, this gives a dramatic improvement compared to Courcelle’s theo-
rem, though exponentially worse than the case of FO logic. This is an inter-
esting point to consider because for treewidth there does not seem to be any
major difference between the complexities of model checking FO and MSO1

logic.

The natural question to ask here is once again, can we do significantly
better? For example, perhaps the most natural question to ask is, is it possible

to solve this problem in 22o(k+q)

? As we will see later on, the answer is no, if
we accept some standard complexity assumptions.

12 Michael Lampis

Finally, let us briefly discuss the case of MSO2 logic. In general this logic is
more powerful than MSO1, so it is not straightforward to extend Theorem 4 in
this case. However, if we are not interested in neighborhood diversity but just
in vertex cover we can observe that all edges in a graph with vertex cover of
size k have one of their endpoints in one of the k vertices of the vertex cover.
Thus, any edge set X can be written as the union of k edge sets. In turn,
each of these k edge sets can easily be replaced by vertex sets, without loss of
information, since we already know one of the endpoints of each of these edges.
Using this trick we can replace every edge set variable in an MSO2 sentence

with k vertex set variables. This leads to a 22O(kq)

algorithm for MSO2 logic
on graphs of bounded vertex cover.

Lemma 6 Let φ be an MSO2 sentence with q quantifiers and G be a graph of
vertex cover k. Then, there exists an MSO1 sentence φ′ with O(kq) quantifiers
and a graph G′ with vertex cover k and k labeled vertices such that G |= φ iff
G′ |= φ′.

Proof We’ll first argue that edge and edge-set variables can be removed from
φ. G′ will simply be G with k labels l1, . . . , lk, each attached to a different
vertex of the vertex cover. Suppose wlog that φ is in prenex normal form,
and the edge-set variables which appear in φ are F1, . . . , Fm, while the edge
variables which appear are e1, . . . , ep. For the former, we replace their quan-
tifications QFi, where Q is ∃ or ∀, with k new quantified set variables for each:
QXi,1QXi,2 . . . QXi,k : (∧1≤j≤k∀x : x ∈ Xi,j(E(x, lj))). For edge variables, we
replace Qei with Qxei

Qyei
: E(xei

, yei
) where xei

, yei
are new vertex variables.

We continue by replacing every occurence of ei ∈ Fj with the formula
∨1≤i′≤k(xi = li′ ∧ yi ∈ Xj,i′), while we replace each occurence of I(x, ei) with
(x = xei

∨x = yei
). Thus, we are left with an MSO1 formula. It is not hard to

see that the new formula has at most k quantifiers for every quantifier of the
old formula. Its total size is also at most O(k|φ|).

Now φ′ is equivalent to φ because every valuation of the edge and edge-
set variables of φ corresponds to a valuation of the new variables of φ′ and
vice-versa.

⊓⊔

Corollary 3 There exists an algorithm which, given a MSO2 sentence φ with
q variables and an uncolored, unlabeled graph G with vertex cover at most k,

decides if G |= φ in time 22O(kq)

+ O(2kn).

6 Lower Bounds for Parameterizations by Vertex Cover

In this Section we will prove some lower bound results for the model checking
problems we are dealing with for vertex cover. Our proofs rely on a construction
which reduces SAT to a model checking problem on a graph with small vertex
cover.

Algorithmic Meta-theorems for Restrictions of Treewidth 13

Given a propositional 3-CNF formula φp with n variables and m clauses, we
want to construct a graph G that encodes its structure, while having a small
vertex cover. The main problem is encoding numbers up to n with graphs of
small vertex cover but this can be achieved by using the binary representation
of numbers. We will begin by constructing a colored graph and then briefly
describe how the reduction can be strengthend to apply to uncolored graphs as
well. Without loss of generality we will assume that n is a power of 2 (dummy
variables can be added to φp if necessary).

We begin constucting a graph by adding 7 log n vertices, call them u(i,j), 1 ≤
i ≤ 7, 1 ≤ j ≤ log n. Add all edges of the form (u(i,j), u(k,j)) (so we now have
log n disjoint copies of K7). Let Ni = {u(i,j) | 1 ≤ j ≤ log n}.

For every variable xi in φp add a new vertex to the graph, call it vi. Define
for every number i the set X(i) = {j | the j-th bit of the binary representation of i is 1}.
Add the edges (vi, u(1,j)), j ∈ X(i), that is, connect every variable vertex with
the vertices of N1 that correspond to the binary representation of its index.
Let U = {vi | 1 ≤ i ≤ n} be the vertices corresponding to variables.

For every clause ci in φp add a new vertex to the graph, call it wi. If the first
literal in ci is a positive variable xk then add the edges (wi, u(2,j)), j ∈ X(k). If
the first literal is a negated variable ¬xk, add the edges (wi, u(3,j)), j ∈ X(k).
Proceed in a similar way for the second and third literal, that is, if the second
literal is positive connect wi with the vertices that correspond to the binary
representation of the variable in N4, otherwise in N5. For the third literal
do the same with N6 or N7. Let W = {wi | 1 ≤ i ≤ m} be the vertices
corresponding to clauses.

Finally, set the color classes to be {N1, N2, . . . , N7, U,W}.
Now, looking at the graph it is easy to see if a vertex vi corresponds to a

variable that appears positive in the clause represented by a vertex wi. They
must satisfy the formula

pos(vi, wj) =
∨

k=2,4,6

∀x : x ∈ N1 (∃y : y ∈ Nk((E(vi, x) ↔ E(wj , y)) ∧ E(x, y))))

It is not hard to define neg(vi, wj) in a similar way. Now it is straight-
forward to check if φp was satisfiable:

φ = ∃S(∀x : x ∈ S(x ∈ U)) ∧ (∀w : w ∈ W (∃x : x ∈ U

(((pos(x,w) ∧ x ∈ S) ∨ (neg(x,w) ∧ x 6∈ S)))))

Clearly, φ holds in the constructed graph iff φp is satisfiable. S corresponds
to the set of variables set to true in a satisfying assignment. It is relatively
easy to eliminate the colors and labels from the construction above. Colors can
be reduced to labels by adding a labeled vertex for each color and connecting
all the vertices that had that color to the labeled vertex. Finally, labels can
also be eliminated by attaching a different FO-definable gadget to each labeled
vertex. In particular, observe that all the vertices in our construction now have

14 Michael Lampis

degree at least two. Thus, attaching a leaf to a vertex can be seen as labeling it
(this can be expressed in FO logic). Similarly, we attach two leaves to the next
vertex we want to label and so on. We only need a constant number of labels to
simulate the constant number of color classes our construction uses. Therefore
the lower bounds given below apply to the natural form of the problem.

Lemma 7 G |= φ iff φp is satisfiable. Furthermore, φ has size O(1) and G
has a vertex cover of size O(log n).

Proof Follows from the description of the construction. ⊓⊔

Theorem 5 Let G a graph with vertex cover k. Then, there exists a fixed
MSO formula φ such that, unless 3-SAT can be solved in time 2o(n), there is

no algorithm which decides if G |= φ in time O(22o(k)

· poly(n)).

Proof We have already observed that the construction we described has k =
O(log n). Since the construction can clearly be performed in polynomial time,

an algorithm running in time O(22o(k)

· poly(n)) would imply an algorithm for
SAT running in 2o(n) · poly(n). ⊓⊔

Note that, since the formula used in Theorem 5 is fixed, it is also implied

that a O(22o(k+q)

· poly(n)) algorithm would also give a sub-exponential algo-
rithm for SAT. Thus, Theorem 5 essentially matches the results of Corollary
2.

Theorem 6 Let φ be a FO formula with qv vertex quantifiers and G a graph
with vertex cover k. Then, unless 3-SAT can be solved in time 2o(n), there is
no algorithm which decides if G |= φ in time O(2o(kqv) · poly(n)).

Proof We use the same construction, but begin our reduction from Weighted 3-
SAT, a well-known W[1]-hard parameterized problem. Suppose we are given a
3-CNF formula and a number w and we are asked if the formula can be satisfied
by setting exactly w of its variables to true. The formula φ we construct is ex-
actly the same, except that we replace the ∃S with ∃x1∃x2 . . . ∃xw(

∧
1≤i<j≤w xi 6=

xj) and all occurences of x ∈ S with
∨

1≤i≤w x = xi. It is not hard to see that
the informal meaning of φ now is to ask whether there exists a set of exactly
w distinct variables such that setting them to true makes the formula true.

We now have qv = w+O(1) so an algorithm running in time 2o(kqv) ·poly(n)
would imply an algorithm for Weighted 3-SAT running in 2o(w log n) ·poly(n) =
no(w), and thus, by the results of [3] that there exists a sub-exponential algo-
rithm for 3-SAT. ⊓⊔

7 Neighborhood Diversity

In this Section we give some general results on the new graph parameter we
have defined, neighborhood diversity. We will use nd(G), tw(G), cw(G) and

Algorithmic Meta-theorems for Restrictions of Treewidth 15

vc(G) to denote the neighborhood diversity, treewidth, cliquewidth and mini-
mum vertex cover of a graph G. We will call a partition of the vertex set of a
graph G into w sets such that all vertices in every set share the same type a
neighborhood partition of width w.

First, some general results

Theorem 7 1. Let V1, V2, . . . , Vw be a neighborhood partition of the vertices
of a graph G(V,E). Then each Vi induces either a clique or an independent
set. Furthermore, for all i, j the graph either includes all possible edges from
Vi to Vj or none.

2. For every graph G we have nd(G) ≤ 2vc(G) + vc(G) and cw(G) ≤ nd(G) +
1. Furthermore, there exist graphs of constant treewidth and unbounded
neighborhood diversity and vice-versa.

3. There exists an algorithm which runs in polynomial time and given a graph
G(V,E) finds a neighborhood partition of the graph with minimum width.

Proof For the first statement, to show that every Vi induces either a clique
or an independent set, we may assume that |Vi| ≥ 3, otherwise the statement
is trivial. Suppose that some Vi includes at least one edge (u, v). Consider
another vertex w ∈ Vi. The vertex w has the same type as u, therefore (w, v)
must be an edge. Similarly, (w, u) must also be an edge, and generally all other
vertices in Vi are connected to both u and v. Finally, if w,w′ are two vertices
of Vi other than u, v it must be the case that (w,w′) is an edge, because
(u,w′) is an edge and u and w have the same type. Another way to see this
observation is to say that the property of two vertices having the same type
is an equivalence relation as observed in Lemma 1.

For the edges between Vi and Vj , suppose that there exists at least an
edge (u, v) between them and let w ∈ Vi, w′ ∈ Vj . v has the same type as w′,
therefore (u,w′) must be an edge. Now, w has the same type as u so (w,w′)
must also be an edge, and once again this is true for any w,w′.

We have already shown the first part of the second statement. For the
part with cliquewidth, we remind the reader that the graphs of cliquewidth k
are those which can be constructed by repeated application of the following
operations: introducing a new vertex with a label in {1, . . . , k}, joining all
vertices of label i with all vertices of label j, renaming all vertices of label
i to label j and taking disjoint union of two graphs of cliquewidth at most
k. We must show how to construct a graph in such a way starting from a
neighborhood partition of width w, using at most w + 1 labels. The labels in
{1, . . . , w} will only be used for the vertices of the corresponding set in the
partition, while the extra label will be used to construct the cliques. For each
Vi, if Vi is an independent set introduce |Vi| new vertices with label i. If Vi

is a clique repeat |Vi| times: introduce a new vertex of label w + 1, join all
vertices of label i to w + 1 and rename w + 1 to i. After all the vertices have
been introduced, for all i, j for which the graph had all edges between Vi and
Vj join the vertices labeled i with those labeled j.

To see why treewidth is incomparable to neighborhood diversity consider
the examples of a complete bipartite graph Kn,n and a path on n vertices.

16 Michael Lampis

Finally, let us argue why neighborhood diversity is computable in polyno-
mial time. As mentioned already, the property of two vertices having the same
type is an equivalence relation. The number of sets in an optimal partition is
equal to the number of equivalence classes, so we simply need to determine
these. It is easy to see that one can check if two vertices have the same type
in polynomial time, so dividing the vertices into equivalence classes can also
be done in polynomial time by checking all pairs of vertices. ⊓⊔

Taking into account the observations of Theorem 7 we summarize what we
know about the graph-theoretic and algorithmic properties of neighborhood
diversity and related measures in Figure 1.

FO MSO MSO2

Cliquewidth tow(w) tow(w) tow(w)
Treewidth tow(w) tow(w) tow(w)

Vertex Cover 2O(w) 22O(w)
22O(w)

Neighborhood Diversity poly(w) 2O(w) Open

Fig. 1 A summary of the relations between neighborhood diversity and other graph widths.
Included are cliquewidth, treewidth, pathwidth, feedback vertex set and vertex cover. Ar-
rows indicate generalization, for example bounded vertex cover is a special case of bounded
feedback vertex set. Dashed arrows indicate that the generalization may increase the param-
eter exponentially, for example a graph of treewidth w has cliquewidth at most O(2w) and
this is known to be tight. The table summarizes the best known model checking algorithm’s
dependence on each width for the corresponding logic.

There are several interesting points to make here. First, though this work
is motivated by a specific goal, beating the lower bounds that apply to graphs
of bounded treewidth by concentrating on a special case, it seems that the
results which can achieved are at least somewhat better; it is possible to prove
stronger meta-theorems by focusing on a class which is not necessarily smaller
than bounded treewidth, only different. However, this class is a special case of
another known width which generalizes treewidth as well, namely cliquewidth.
Since the lower bound results which apply to treewidth apply to cliquewidth
as well, this work can perhaps be viewed more appropriately as an improve-
ment on the results of [7] for bounded cliquewidth graphs when restricting our
attention to the more special case of bounded neighborhood diversity.

Second, there is the case of MSO2 logic. The very interesting hardness
results shown in [15,16] demonstrate that the tractability of MSO2 logic is in
a sense the price one has to pay for the additional generality that cliquewidth
provides over treewidth. It is natural to ask if these results can be strengthened
to apply to neighborhood diversity or MSO2 logic can be shown to be tractable
when parameterized by neighborhood diversity.

Algorithmic Meta-theorems for Restrictions of Treewidth 17

Though we cannot yet fully answer the above question related to MSO2, we
can offer some first indications that this direction might merit further inves-
tigation. In [15] it is shown that MSO2 model checking is not fixed-parameter
tractable when the input graph’s cliquewidth is the parameter by considering
three specific MSO2-expressible problems and showing that they are W-hard.
The problems considered are Hamiltonian cycle, Graph Chromatic Number
and Edge Dominating Set. We can show that these three problems admit FPT
algorithms on graphs of small neighborhood diversity (for Hamiltonian cycle
this is in fact an easy consequence of an old result from [5]). Since small neigh-
borhood diversity is a special case of small cliquewidth, where these problems
are hard, this result could be of independent interest.

Theorem 8 Given an n-vertex graph G whose neighborhood diversity is w,
there exist algorithms running in time O(f(w) · poly(n)) that decide Hamilto-
nian cycle, Graph Chromatic Number and Edge Dominating Set.

Proof We will make use of an auxiliary graph G′ on w vertices. Each vertex
of G′ corresponds to a set in an optimal neighborhood partition of G and two
vertices of G′ have an edge iff the corresponding sets of the partition of G have
all possible edges between them.

For Hamiltonian cycle we rely on the results of [5]. There it is shown that
the TSP problem is FPT parameterized by the number of cities even when
one has to visit each city a number of times given in the input. We take G′

and add a self-loop to every vertex that corresponds to a clique in G. The
number of times we want to visit each vertex of G′ is equal to the size of the
corresponding set of the neighborhood partition. We set the cost of each edge
to 1 and each non-edge to 2 and solve the resulting TSP instance on G′. G is
Hamiltonian iff there is a TSP tour on G′ with cost n.

Let us now show how to solve graph coloring. Observe that if a set Vi of a
neighborhood partition of G induces an independent set, we can delete all of
its vertices but one, without affecting the graph’s chromatic number, because
there always exists an optimal coloring where all the vertices of Vi take the
same color. So, we can assume without loss of generality that all the sets Vi

of a neighborhood partition of G induce cliques (some of them of order one).
We are now going to reformulate the problem, using the fact that in any

coloring of G every color class intersects each set of the neighborhood partition
in at most one vertex (since all the sets of the partition induce cliques). In
other words, every color class essentially coincides with an independent set of
G′. Let I be the set of all independent sets of G′ and let Vp be the set of
vertices of G′, each of which represents a set in the neighborhood partition
of G. Consider the following ILP with variables xI , I ∈ I (i.e. at most 2w

variables):

min
∑

I∈I

xI

s.t. ∀v ∈ Vp :
∑

I:v∈I

xI = |Vp|

18 Michael Lampis

Intuitively, in the above ILP the variables xI encode how many different
color classes coincide with the independent set I of G′ in a coloring of G.

We argue that the optimal solution to this problem is exactly the chromatic
number of G. First, suppose that there exists a coloring of G with c colors.
Every color class induces an independent set, so by looking at the collection of
sets of the neighborhood partition that the class intersects we have that every
color class corresponds to some I ∈ I. Several color classes may correspond
to the same set I, so we set xI to be equal to the number of color classes that
correspond to the set I. It should be easy to see then that

∑
xI = c. The

requirement that |Vi| =
∑

I:i∈I xI is satisfied because every vertex belongs in
exactly one color class.

For the other direction, suppose that there exist integers xI which satisfy
the ILP and

∑
xI = s. We can produce a coloring of G with s colors: as long

as there exists an I with xI > 0 select a new color and arbitrarily pick exactly
one uncolored vertex from each Vi with i ∈ I. Color these vertices with the
new color, and set xI := xI − 1. It is not hard to see that this algorithm will
use exactly s colors. It produces a valid coloring because in the beginning we
have |Vi| =

∑
I:i∈I xI and the equality continues to hold at each step if we

only count the uncolored vertices on the left-hand side of the equation.
Thus, intuitively we have reformulated the problem as one of selecting the

independent sets that will form the color classes. The main observation now
is that the possible choices for the independent sets are only 2w. Thus, we can
recast the problem as an Integer Linear Program with at most 2w variables
and w constraints for the equations |Vi| =

∑
I:i∈I xI . It follows from a seminal

result of Lenstra ([24]) that solving this can be performed in FPT time.
In the edge dominating set problem, we are asked to find a set of edges

of minimum size such that all other edges share an endpoint with one of
the edges we selected. This problem is equivalent to the minimum maximal
matching problem, where we are trying to find a minimum size independent
set of edges that cannot be extended by picking another edge of the graph.
To see why the optimal solution to the edge dominating set problem can
always be transformed to a matching, suppose that we have a solution S which
includes two edges (u, v), (u, v′). Now, if all the neighbors of v′ are incident
on an edge of S we can simply remove (u, v′) from S and improve the size
of the solution. If there is a neighbor w of v′ that is not incident on an edge
of S we can replace (u, v′) with (w, v′) in S. To see why a solution to the
edge dominating set problem can always be transformed to a matching that
is maximal, suppose that the matching we got was not maximal. Then there
would be two unmatched vertices connected by an edge, which would imply
that this edge is not dominated.

Our algorithm will proceed as follows: for every vertex cover V ′ of G′ repeat
the following (there are at most 2w vertex covers to be considered): from V ′

infer a vertex cover of G by placing into the vertex cover all the vertices that
belong in a type whose corresponding vertex is in V ′. Also place in the vertex
cover all but one (arbitrarily chosen) vertex of every vertex type that induces
a clique but whose corresponding vertex is not in V ′. Denote the resulting

Algorithmic Meta-theorems for Restrictions of Treewidth 19

vertex cover of G by V ′′. Find a maximum matching on the graph induced by
V ′′, call it M1. Take the bipartite graph induced by the unmatched vertices of
V ′′ and V \ V ′′ and find a maximum matching there, call it M2. The solution
produced is M1 ∪M2. After repeating this for all vertex covers of G′, pick the
smallest solution.

Now we need to argue why this solution is optimal. Let S be an optimal
solution for G. We say that a set of the neighborhood partition Vi is full if all
of its vertices are incident on edges of S. If we take in G′ the corresponding
vertices of the full sets of G, they must form a vertex cover of G′, otherwise
there would be two neighboring vertices with neither having any edge of S
incident to it, which would mean that S is not maximal. This is a vertex cover
of G′ considered by our algorithm, since our algorithm considers all vertex
covers of G′, call it V ′. Let V ′′ be again the vertex cover of G our algorithm
derived from V ′ by also including a minimal number of vertices from each
remaining clique. Let V ∗ be the set of vertices of G incident on some edge of
S, which must also be a vertex cover of G. Without loss of generality we will
assume that V ′′ ⊆ V ∗, because the two vertex covers of G agree on taking
all vertices of the full sets and V ′′ takes a minimal number of vertices from
every other clique. Even if V ∗ leaves out a different vertex from some clique
because all the vertices of the clique have the same neighbors we can apply
an exchanging argument and transform S appropriately without increasing its
size so that both sets leave out the same vertex.

Now note that |M2| ≤ |V ′′| − 2|M1|. So our algorithm’s solution has size
at most |V ′′| − |M1|. On the other hand the optimal solution S includes some
edges with both endpoints in V ′′, call this set S1. Because M1 is a maximum
matching, |S1| ≤ |M1|. From what we have so far, the fact that all vertices
of V ∗ are matched by S and the fact that V ′′ is a vertex cover, so V ∗ \ V ′′

induces no edges we have |V ∗| = |V ∗∩V ′′|+ |V ∗ \V ′′| = |V ′′|+ |V ′′|−2|S1| ≥
2|V ′′| − 2|M1|. This implies that |S| ≥ |V ′′| − |M1| which concludes the proof.

⊓⊔

8 Conclusions and Open Problems

In this paper we presented algorithmic meta-theorems for more restricted in-
puts, which improve the running times implied by previously known meta-
theorems. In this way we have partially explored the trade-off which can be
achieved between running time and generality. This is an interesting area for
further investigations and much more can be done.

For bounded max-leaf number the complexity of MSO logic is unknown.
Quite likely, it is possible to improve upon Courcelle’s theorem for this case
as well, but the problem remains open. Also, it would be nice to obtain a
lower bound for FO logic in the case of max-leaf showing that it is impossible
to achieve 2o(q2), i.e. that the exponent must be quadratic in the number of
quantifiers of the FO formula. For neighborhood diversity the most interesting
open problem is the complexity of MSO2.

20 Michael Lampis

Going further, it would also make sense to investigate whether restricting
the model checking problem to graphs of bounded vertex cover or max-leaf
number can also allow us to solve logics wider than MSO2. Some indications
that this may be possible are given in [13]

Acknowledgement: I would like to thank the anonymous reviewers for
offering various suggestions to improve this paper and catching errors in the
proofs of Theorems 7 and 8.

References

1. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308–340, 1991.

2. Hans Bodlaender, Fedor Fomin, Daniel Lokshtanov, Saket Saurabh Eelko Penninkx,
and Dimitrios Thilikos. (Meta) kernelization. In FOCS, 2009.

3. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear FPT reductions and
computational lower bounds. In László Babai, editor, STOC, pages 212–221. ACM,
2004.

4. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for
vertex cover. In Rastislav Kralovic and Pawel Urzyczyn, editors, MFCS, volume 4162
of Lecture Notes in Computer Science, pages 238–249. Springer, 2006.

5. S.S. Cosmadakis and C.H. Papadimitriou. The traveling salesman problem with many
visits to few cities. SIAM Journal on Computing, 13:99, 1984.

6. Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Inf. Comput., 85(1):12–75, 1990.

7. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimiza-
tion problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150,
2000.

8. Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Approximation
schemes for first-order definable optimisation problems. In LICS, pages 411–420. IEEE
Computer Society, 2006.

9. Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and
its algorithmic applications. Comput. J., 51(3):292–302, 2008.

10. Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, and Frances A.
Rosamond. FPT is P-Time Extremal Structure I. In Hajo Broersma, Matthew Johnson,
and Stefan Szeider, editors, ACiD, volume 4 of Texts in Algorithmics, pages 1–41. King’s
College, London, 2005.

11. Michael R. Fellows. Open problems in parameterized complexity, AGAPE spring school
on fixed parameter and exact algorithms, 2009.

12. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A.
Rosamond, and Saket Saurabh. The Complexity Ecology of Parameters: An Illustration
Using Bounded Max Leaf Number. Theory Comput. Syst., 45(4):822–848, 2009.

13. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and
Saket Saurabh. Graph layout problems parameterized by vertex cover. In Seok-Hee
Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors, ISAAC, volume 5369 of Lec-
ture Notes in Computer Science, pages 294–305. Springer, 2008.

14. Michael R. Fellows and Frances A. Rosamond. The Complexity Ecology of Parameters:
An Illustration Using Bounded Max Leaf Number. In S. Barry Cooper, Benedikt Löwe,
and Andrea Sorbi, editors, CiE, volume 4497 of Lecture Notes in Computer Science,
pages 268–277. Springer, 2007.

15. Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Clique-
width: on the price of generality. In Claire Mathieu, editor, SODA, pages 825–834.
SIAM, 2009.

16. F.V. Fomin, P.A. Golovach, D. Lokshtanov, and S. Saurabh. Intractability of clique-
width parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010.

Algorithmic Meta-theorems for Restrictions of Treewidth 21

17. Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-
decomposable structures. J. ACM, 48(6):1184–1206, 2001.

18. Markus Frick and Martin Grohe. The complexity of first-order and monadic second-
order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

19. Martin Grohe. Logic, graphs, and algorithms. Electronic Colloquium on Computational
Complexity (ECCC), 14(091), 2007.

20. Petr Hlinený, Sang il Oum, Detlef Seese, and Georg Gottlob. Width parameters beyond
tree-width and their applications. Comput. J., 51(3):326–362, 2008.

21. N. Immerman. Descriptive complexity. Springer Verlag, 1999.
22. D.J. Kleitman and D.B. West. Spanning trees with many leaves. SIAM Journal on

Discrete Mathematics, 4:99, 1991.
23. Stephan Kreutzer and Siamak Tazari. On brambles, grid-like minors, and parameterized

intractability of monadic second order logic. In SODA, 2010.
24. HW Lenstra Jr. Integer programming with a fixed number of variables. Mathematics

of operations research, pages 538–548, 1983.
25. Neil Robertson and Paul D. Seymour. Graph minors. I-XXIII. J. Comb. Theory, Ser.

B, 1983-2004.

