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Abstract

We investigate a coloring problem, called ordered coloring, in grids and some other families of
grid-like graphs. Ordered coloring (also known as vertex ranking) is related to conflict-free coloring
and other traditional coloring problems. Such coloring problems can model (among others) efficient
frequency assignments in cellular networks. Our main technical results improve upper and lower bounds
for the ordered chromatic number of grids and related graphs. To the best of our knowledge, this is the
first attempt to calculate exactly the ordered chromatic number of these graph families.
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1 Introduction

In this paper we focus on the problem of computing efficient ordered colorings (also known as vertex
rankings) for grids and related graphs. Ordered colorings are defined as follows:

Definition 1.1 An ordered coloring ofG = (V,E) with k colors is a function C : V → {1, . . . , k} such that
for each simple path p in G the maximum color assigned to vertices of p occurs in exactly one vertex of p.

The problem of computing ordered colorings is a well-known and widely studied problem (see e.g. [9])
with many applications including VLSI design [10] and parallel Cholesky factorization of matrices [11]. The
problem is also interesting for the Operations Research community, because it has applications in planning
efficient assembly of products in manufacturing systems [8]. In general, it seems the vertex ranking problem
can model situations where interrelated tasks have to be accomplished fast in parallel (assembly from parts,
parallel query optimization in databases, etc.)

Another motivation for the study of ordered colorings comes from more recent research into an area of
coloring problems inspired by wireless mobile networks, called conflict-free (CF) colorings. The study of
conflict-free colorings originated in the work of Even et al. [6] and Smorodinsky [14]. Conflict-free coloring
models frequency assignment for cellular networks. A cellular network consists of two kinds of nodes: base
stations and mobile agents. Base stations have fixed positions and provide the backbone of the network;
they are modeled by vertices in V . Mobile agents are the clients of the network and they are served by base
stations. This is done as follows: Every base station has a fixed frequency; this is modeled by the coloring
C, i.e., colors represent frequencies. If an agent wants to establish a link with a base station it has to tune
itself to this base station’s frequency. Since agents are mobile, they can be in the range of many different
base stations. To avoid interference, the system must assign frequencies to base stations in the following
way: For any range, there must be a base station in the range with a frequency that is not reused by some
other base station in the range. One can solve the problem by assigning n different frequencies to the n base
stations. However, using many frequencies is expensive, and therefore, a scheme that reuses frequencies,
where possible, is preferable. CF-coloring problems have been the subject of many recent papers due to
their practical and theoretical interest (see e.g. [13, 7, 3, 5, 1]).

In the case where the ranges of the mobile agents are modeled by paths on the graph, the CF-coloring
problem is very closely connected to the vertex ranking problem as defined above, since every path contains
a uniquely colored vertex (i.e., a base station with a unique and maximum frequency). In fact, many ap-
proaches in the CF literature use ordered colorings because the latter are easier to argue about. In addition,
the topologies we study in this paper are of special interest in this setting because they can model frequency
assignment in a Manhattan-like environment,where base stations are approximately placed on a regular grid
and this gives us additional motivation to calculate the exact ordered chromatic number of the grid.

In general graphs, finding the exact ordered chromatic number of a graph is NP-complete [12] and there
is a O(log2 n) polynomial time approximation algorithm [2], where n is the number of vertices. Since the
problem is generally hard, it makes sense to study specific graph topologies and the focus of this paper
is the calculation of the ordered coloring number of several grid-like families of graphs. Our main focus
are grid graphs, which can be formally defined as follows: An m1 × m2 grid is a graph with vertex set
{0, . . . ,m1 − 1} × {0, . . . ,m2 − 1} and edge set {{(x1, y1), (x2, y2)} | |x1 − x2| + |y1 − y2| ≤ 1}. In a
standard drawing of the grid graph, vertex (x, y) is drawn at point (x, y) in the plane. The grid can also be
defined as the cartesian product of two paths Pm1 × Pm2 .

It is known [9] that for general planar graphs the ordered chromatic number is O(
√
n). Grid graphs are

planar and therefore the O(
√
n) bound applies. One might expect that, since the graph families we study

have a relatively simple and regular structure, it should be easy to calculate their ordered chromatic numbers.
This is why it is rather striking that, even though it is not hard to show upper and lower bounds that are only a
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small constant multiplicative factor apart, the exact value of these ordered chromatic numbers is not known.
The main contribution of this paper is to further improve on these upper and lower bounds and to the best of
our knowledge this is the first such attempt.

Paper organization. In the rest of this section we provide the necessary definitions and some preliminary
known results that will prove useful in the remainder. In Section 2 we present our results improving the
known upper bounds on the ordered chromatic number of grids, tori and related graphs, while Section 3
deals with the lower bounds. Conclusions and open problems are presented in Section 4.

1.1 Preliminaries

First, let us remark that Definition 1.1 is not the typical definition found in the literature. Instead the more
standard definition is:

Definition 1.2 An ordered k-coloring of a graphG is a functionC : V (G)→ {1, . . . , k} such that for every
pair of distinct vertices v, v′, and every path p from v to v′, if C(v) = C(v′), there is an internal vertex
v′′ of p such that C(v) < C(v′′). The ordered chromatic number of a graph G, denoted by χo(G), is the
minimum k for which G has an ordered k-coloring.

It is not hard to show that the two definitions are equivalent [9]. We prefer to use Definition 1.1 because
it is closer to the definition of CF-colorings. CF-coloring can be seen as a relaxation of ordered coloring:
In every path there must be a uniquely colored vertex, but its color does not necessarily need to be the
maximum occurring in the path.

A concept that will prove useful in the remainder (especially for proving lower bounds) is that of a graph
minor.

Definition 1.3 A graphX is a minor of Y , denoted asX 4 Y , if there is a subgraphG of Y , and a sequence
G0, . . . , Gk, with G0 = G and Gk = X , such that Gi = Gi−1/ei−1, where ei−1 ∈ E(Gi−1) (i.e., edge ei−1

is contracted in Gi−1), for i ∈ {1, . . . , k}. Edge contraction is the process of merging both endpoints of an
edge into a new vertex, which is connected to all neighbors of the two endpoints.

It is not difficult to prove, with the help of a recoloring argument, that the ordered chromatic number is
monotone with respect to minors.

Proposition 1.4 If X 4 Y , then χo(X) ≤ χo(Y ).

In the rest of this section we provide ordered colorings for some graphs with (relatively) few edges.

Chain. Ordered coloring of a chain is equivalent to CF-coloring a chain and is better known as conflict-
free coloring with respect to intervals [3]. Exactly, 1+blg nc colors are needed: For n = 2k−1, the coloring
is defined recursively as follows: The middle vertex receives the maximum color k so the left and right sides
(with 2k−1 − 1 vertices each) can freely use the same colors and are colored recursively.

Ring. To color a ring, we use the above coloring of a chain. We pick an arbitrary vertex v and color it with
a unique and maximum color. The remaining vertices form a chain that we color with the method described
above. This method colors a ring of n vertices with 2 + blg(n− 1)c colors.
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Grid. To color the m ×m grid, denoted by Gm, we can use the previous idea of the recursive coloring.
We simply divide the grid in 4 equal grids of half size and recursively color them using exactly the same
colors for each. To make this possible we should use unique colors in the middle row and column, as we did
for the middle vertex of the chain. So, we use m unique maximum colors for the middle row and then about
m
2 unique colors for the middle column (the same above and under the middle row). This method requires

about 3m colors. However, this coloring remains proper even if we add two edges in every internal face of
the standard drawing of Gm. This indicates that 3m is not optimal and in fact, in section 2, we improve the
above upper bound.

There is also a lower bound of χo(Gm) ≥ m from [9]. Another proof [2] is immediate from the fact that
the treewidth and pathwidth of a graph G are at most the minimum elimination tree height [11] of G. We
provide yet another proof, based on minors:

Proposition 1.5 If Gm is the m×m grid, χo(Gm) ≥ m.

Proof. By induction. Base: For m = 1, it is true, as χo(K1) = 1. For the inductive step, consider a
Hamilton path p of Gm, with m > 1. If Gm is ordered colored, then there is a vertex v with a unique color
in p (and thus in G). So, for some v, χo(Gm) = 1 + χo(Gm − v). However, for every v, Gm−1 4 Gm − v.
Therefore, from proposition 1.4, χo(G) ≥ 1 + χo(Gm−1) and from the inductive hypothesis, χo(G) ≥
1 +m− 1 = m. ut

In section 3, we improve the above lower bound.

2 Upper bounds

In this and the next section we show how to color several grid-like families of graphs. We are mainly
interested in the m × m (square) grid. In order to color the grid efficiently we rely on separators whose
removal leaves some subgraphs of the grid to be colored. The subgraphs we will rely on are the rhombus
Rx, the wide-side triangle Tx, and the right triangleOx. These are depicted in Figures 1, 2, and 3 and similar
formal definitions are not hard to infer. Another graph topology we will investigate is the torus, which is
a variation of the grid with wraparound edges added, connecting the last vertex of every row (and column)
with the first. The torus graph Ĝm can also be defined as the cartesian product of two cycles Cm × Cm. A
summary of our upper bound results can be seen on Table 1. It is interesting that the golden ratio φ ≈ 1.618
appears in some of these bounds.

graph upper bound based on
Gm 2.519m Rm, Om
Rm 1.500m -
Tm 1.118m Rm
Om 1.618m Tm
Ĝm 3.500m Rm

Table 1: Summary of upper bounds. The last column indicates on which upper bounds each result is based.

As was evident in the examples of the previous section, one strategy for constructing an ordered coloring
of a graph is to attempt to find a separator, that is, a set of vertices whose removal disconnects the graph. The
vertices of this set are all assigned distinct colors that will be the maximum colors used in the graph. This
way, we can recursively construct a coloring for the components formed by the deletion of the separator,
since paths connecting vertices from different components have a unique maximum vertex in the separator.
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The problem is then, to find a separator that is small and divides the graph into components of as low
chromatic number as possible.

In the proofs we give below, we partition the graphs with the help of separators. All results are in the
order of m, so without further mention we do not include terms logarithmic on m. These terms might
be introduced by constant additive terms in a recursive bound. We are also omitting, in most cases floors
and ceilings, because we are interested in asymptotic behavior. In that sense, a result like, for example,
χo(Gm) ≤ 2.67m should be read as an asymptotic upper bound of 2.67m± o(m).

In order to find improved upper bounds we need to find more intricate separators than those of the last
example of the previous section. The idea is to use separators along diagonals in the grid. We will also need
to find efficient colorings of some subgraphs that are left after we remove diagonal-like separators. That is
the reason why we first present efficient colorings for the rhombus and the triangles.

In the figures of the following sections thicker lines indicate the selection of separator vertices which
will receive unique and maximum colors. Thinner lines that lie on different sides of a thick line may reuse
the same color range.

2.1 Rhombi and Triangles

The rhombus. The rhombus Rx is the first subgraph of the grid shown in Figure 1. It has height x. We
have the following upper bound:

Proposition 2.1 χo(Rx) ≤ 3x/2.

Proof. Use a diagonal separator to cut the rhombus in half (x/2 unique colors are used), then cut also the
remaining parts in half with a diagonal separator (x/4 unique colors, used in both parts). This is shown
in figure 1. Therefore, we have the recursive formula χo(Rx) ≤ x/2 + x/4 + χo(Rbx/2c), which implies
χo(Rx) ≤ 3x/2. ut

x

x

0

m
7

2m
7

3m
7

4m
7

5m
7

6m
7

m

m
7

2m
7

3m
7

4m
7

5m
7

6m
7
m0

m
7

2m
7

3m
7

4m
7

5m
7

6m
7

m

m
7

2m
7

3m
7

4m
7

5m
7

6m
7
m

Figure 1: The rhombus subgraph Rx and its separation

x

Figure 2: The wide side triangle Tx and its separations

The wide side triangle. The triangle Tx is the subgraph of the grid shown in figure 2. Its long side has
length x. First, we give a simple upper bound:
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Proposition 2.2 χo(Tx) ≤ 7x/6 ≈ 1.167x.

Proof. See the first separation of the wide-side triangle in Figure 2. Use a separator diagonally, parallel to
one of the diagonal sides of the triangle Tx, with 2x/6 unique colors. In the two remaining parts, separate
diagonally by using separators parallel to the other diagonal side of the triangle Tx; each of those separators
uses x/6 unique colors. With one more use of x/6 unique colors, we end up with connected components
that are subgraphs of the rhombus R2x/6. Therefore, χo(Tx) ≤ 2x/6+x/6+x/6+χo(Rb2x/6c), and since
by proposition 2.1, χo(Rx) ≤ 3x/2, we have χo(Tx) ≤ 7x/6. ut

An improved upper bound can be obtained by the previous one, by making the observation that the
graph on the left of the thickest separator in Figure 2 is also a wide side triangle. Thus, we may try to color
it recursively in the same way. However, this would not improve the bound because the graph that remains
on the right side uses 5x

6 colors anyway. This indicates that the thickest separator would be better positioned
if we moved it slightly to the right, since it seems that the remaining graph on the right side requires more
colors.

Suppose that we move it slightly to the right, as in the last part of Figure 2 and that the ratio of its length
over the length of the long side of the triangle is w (previously we had w = 1/3). We will optimize with
respect to thisw. Now, the rhombi on the right have length x(1−2w), and the separators between them have
length x(1−2w)/2. From the previously shown upper bound for the rhombus, and the fact that we need two
sets of colors for the separators we conclude that the right part needs at most 5

2x(1− 2w) colors. Assuming
that the two parts are well balanced, the whole triangle needs at most wx+ 5

2x(1− 2w) colors. The triangle
formed on the left of the separator has length 2wx, thus from the above it needs 2w2x + 5

2(2wx)(1 − 2w)
and in order for the balancing assumption to hold this must be equal to the number of colors used in the right
part. Thus, we have 2w2 + 5w(1 − 2w) = 5

2(1 − 2w), which implies w = 5−
√

5
8 ≈ 0.345. It is not hard

to verify that using a separator of this length all the above arguments hold. Thus, we reach the following
conclusion:

Proposition 2.3 χo(Tx) ≤
√

5x/2 ≈ 1.118x.

The right triangle. The right triangle Ox is the subgraph of the grid shown in figure 3. It has height x.
We have the following upper bound:

Proposition 2.4 χo(Ox) ≤ φx =
√

5+1
2 x ≈ 1.618x.

Proof. See figure 3. Use a separator diagonally to form two wide side triangles whose long sides are of
length x. We have the formula χo(Ox) ≤ x/2 + χo(Tx) and since by proposition 2.2, χo(Tx) ≤

√
5x/2,

we have χo(Ox) ≤
√

5+1
2 x = φx, where we denote by φ the golden ratio. ut

x

x

Figure 3: The right triangle Ox and its separation
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Figure 4: 8m/3, 18m/7 and (7 + 2φ)m/4 upper bounds

2.2 Grids and tori

An 8m/3 upper bound for square grids. In the first part of figure 4, we show how an m×m grid has to
be partitioned with the help of separators to achieve an 8m/3 upper bound.

The separators use m, m/3, and m/3 colors. After the removal of the separators, the remaining compo-
nents are all subgraphs of a rhombus of height 2m/3. By proposition 2.1, each remaining component can
be colored with m colors. In total, 8m/3 colors are required:

Proposition 2.5 χo(Gm) ≤ 8m/3 ≈ 2.6667m.

An 18m/7 upper bound for square grids. In the second part of figure 4, we show how an m ×m grid
has to be partitioned with the help of separators to achieve an 18m/7 upper bound. The separators use m,
3m/7, 3m/7, m/7, and m/7 colors. Then, we have rhombi of height 2m/7 that remain and, by proposition
2.1, each rhombus can be colored with 3m/7 colors. In total, we have 18m/7 colors:

Proposition 2.6 χo(Gm) ≤ 18m/7 ≈ 2.5714m.

A (7+2φ)m/4 upper bound for square grids. In the third part of figure 4 we show how anm×m grid can
be partitioned to achieve a (7 + 2φ)m/4 upper bound. We will show in the following section that shrinking
this particular partition gives the best currently known result. The separators use m+m/2 +m/4 = 7m/4
unique colors. The remaining subgraphs of the grid to be colored are rhombi of height m/2 and right
triangles of height m/2.By propositions 2.1 and 2.4 they can be colored with 3m/4 and φm/2 colors
respectively. Therefore the total use of colors is 7m/4 + max(3m/4, φm/2) = (7 + 2φ)m/4.

Improving the upper bound by extending and shrinking colorings. The above upper bound may be
slightly improved by extending or shrinking the underlying grid. The reason is that, even though for the
most part the grid is partitioned into rhombi, different subgraphs are formed at its edges.

In the case of the 8m/3 and 18m/7 bounds, we can see that wide side triangles are formed. For each
of these we can use the same set of colors as for the rhombi formed further inside the grid, but since the
rhombi are of twice the size of the triangles extending the grid to the point where the triangles use the same
number of colors as the rhombi will not increase the total number of colors used. For example, for the 8m/3
coloring, if the coloring is extended by m

(
1√
5
− 1

3

)
in every side (up, down, left, right), then one can color

the new grid of side length m′ ≈ 1.228m with 4(13+3
√

5)
31 m′ colors. Thus:

Proposition 2.7 χo(Gm) ≤ 4(13+3
√

5)
31 m ≈ 2.544m.
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Figure 5: A 18m/7 coloring extended and a (7 + 2φ)m/4 coloring shrunk

In the case of the last coloring, we follow the opposite approach of shrinking the coloring. Four right
triangles are formed, each using more colors than the rhombi. Therefore, slightly shrinking the grid so that
the right triangles use the same number of colors as the rhombi improves the result. The optimal amount
of shrinking is x =

(
1
4 −

3
8φ

)
m from each side (up, down, left, right). The remaining grid has side

m′ ≈ 0.9635m and can be colored with 6 φ+1
2φ+3m

′ colors. Thus:

Proposition 2.8 χo(Gm) ≤ 6 φ+1
2φ+3m ≈ 2.519m.

Torus. An efficient coloring of the torus Ĝm is as follows: Use the two diagonals as separators (at most
2m vertices). The remaining two connected components are subgraphs of the rhombus Rm which can be
colored with at most 3m/2 colors. Therefore, we have the following proposition.

Proposition 2.9 χo(Ĝm) ≤ 2m+ 3m/2 = 3.5m.

Rectangular grids. Intuitively, a rectangular grid begins to resemble a chain when one of its dimensions
is much smaller than the other, i.e., m2 � m1. We may attempt to exploit this observation in the following
manner: given a grid with m1 rows and m2 columns, pick the m1-th column, the 2m1-th column, . . .,
the (bm2/m1c · m1)-th column. These

⌊
m2
m1

⌋
will be used as separators, thus partitioning the graph into

m1 ×m1 grids, which will use the same colors. However, they do not all need distinct colors, because we
can color them in a way similar to the coloring of a chain: the middle column receives the highest colors,
then we color recursively the columns to the left and those to the right. This results to an upper bound of
χo(Gm1,m2) ≤ m1

⌈
(1 + log(

⌊
m2
m1

⌋
))
⌉

+ χo(Gm1,m1).
However, the above upper bound can be further improved slightly. Instead of using columns as separators

we may use a zig-zag line starting from the top left corner and proceeding diagonally to the right until it
hits the bottom, the to the right and up again, and so on. This requires the same number of colors for the
separators, since we can still color them in a chain-like fashion, but now wide-side triangles are formed
(instead of grids), each of length 2m1, thus we reach the following conclusion:

Proposition 2.10 χo(Gm1,m2) ≤ m1

⌈
(1 + log(

⌊
m2
m1

⌋
))
⌉

+
√

5m

The above result is close to being optimal when m2 � m1 as we will see in the next section. However,
when m2 is not much larger than m1, more careful strategies need to be examined.
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3 Lower bounds

In the first part of this section we prove lower bounds on the ordered chromatic number of square grids and
tori. Then we move on to prove lower bounds for rectangular grids.

An important observation is the following: suppose we are given an optimal ordered coloring of a graph,
and let c1, c2, . . . , ck be the colors used, in decreasing order. If ci is the first color in this order assigned
to more than one vertex, then vertices with colors c1, . . . , ci−1 must form a separator, otherwise the path
connecting the two vertices of color ci would not have a unique maximum vertex. Thus, we can reason
about lower bound by reasoning about separators: examine cases on the size and shape of the separator
formed by the highest colors of an optimal coloring and then, for each case, argue that the size of the
separator plus the ordered chromatic number of one of the remaining components is higher than a desired
lower bound. Moreover, it is enough to consider only minimal separators, as shown in [4] (a separator S is
minimal if for every vertex v of S, S \ {v} is not a separator).

In order to argue that the ordered chromatic number of a remaining component is high we will rely
heavily on Proposition 1.4 and make use of induction.

We start with the torus lower bound, because the separators are simpler in this case.

Proposition 3.1 χo(Ĝm) ≥ 3m
2 (for m ≥ 2).

Proof. By induction: For m = 2 the proposition holds.
Suppose that we are given an optimal coloring of a torus Ĝm. Since the torus has no “sides” the separator

must enclose an area of the torus. The smallest possible such separator is a set of the form {(x − 1, y),
(x, y + 1), (x, y − 1), (x+ 1, y)}, i.e., four vertices enclosing a single vertex (we call this kind of separator
a cross). The length l of a separator will be max(|xi−xj |+1) for (xi, yi), (xj , yj) vertices of the separator.
Similarly the height of a separator is max(|yi − yj |+ 1). We distinguish between two cases:

Case 1: The separator formed by the highest colors encloses more than one vertex. Without loss of
generality, suppose that the separator’s length is at least as much as its height. Then the separator must
consist of at least 2l − 2 vertices. We also know that l > 3⇒ l ≥ 4, otherwise the separator would enclose
a single vertex only. Removing the separator will leave two components, one of which will have Ĝm−l as a
minor. Therefore, χo(Ĝm) ≥ 2l − 2 + χo(Ĝm−l) ≥ 3m

2 + l
2 − 2 ≥ 3m

2 .
Case 2: The separator formed by the highest colors is a cross. It is not hard to see intuitively that this

cannot lead to an optimal coloring, because our goal when using separators should probably be to balance
the chromatic number of the components that will be formed, since only the maximum one matters. To
show that this is the case, consider the following argument: let ci be the color of vertex (x, y − 1), that
is, a vertex outside the cross, but adjacent to two of its vertices. If it is unique, then χo(Ĝm) ≥ 4 + 1 +
χo(Ĝm−3), because the removal of the cross and this unique color leaves a graph with Ĝm−3 as a minor.
Thus, χo(Ĝm) ≥ 5+ 3m

2 −
9
2 >

3m
2 . Now, if it is not unique it must be separated from its other appearances

in the graph by a separator. If the separator is not a cross, similar reasoning as in case 1 proves the lower
bound. If it is, we have two crosses contained in a 5× 5 area. Therefore, χo(Ĝm) ≥ 8 + χo(Ĝm−5) > 3m

2 .
ut

We continue with a 4m/3 lower bound for square grids, where the separators might also contain vertices
on the sides of the grid (i.e., vertices with degree less than four).

Proposition 3.2 For m ≥ 2, χo(Gm) ≥ 4m
3 .

Proof. Since we want to prove a 4m/3 lower bound, we consider only separators of size |S| ≤ 4m/3. The
sides of the grid are the four paths ofm vertices with x = 0, x = m−1, y = 0, and y = m−1, respectively.
For the grid Gm we have the following cases of minimal separators.
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Case I: The separator does not contain any vertex of the sides. This case is similar to the case of the
torus. The size of the separator |S| = s ≥ 4 and G − S contains a Gm−(bs/2c+1) minor. Therefore, by
induction, with such a separator, at least s+ (4/3)(m− (bs/2c+ 1)) ≥ 4m/3 colors are needed (because
s ≥ 4).

Case II: The separator touches at most two adjacent sides (i.e., sides that share a common vertex) of the
grid. Then, |S| = s ≥ 2 and G − S contains a Gm−ds/2e subgraph. Therefore, by induction, with such a
separator, at least s+ (4/3)(m− ds/2e) ≥ 4m/3 colors are needed (because s ≥ 2).

Case III: The separator touches two non-adjacent sides. In that case, the separator has size |S| = s ≥ m.
Consider the four square grid subgraphs Gdm/2−s/6e of the grid Gm that touch the four corners of Gm. It
is not difficult to see that a separator of size s can not touch all four of the above subgraphs. Therefore, by
induction, with such a separator, at least s+ 4

3d
m
2 −

s
6e ≥ 4m/3 colors are needed (because s ≥ m). ut

Finally, we proceed to prove lower bounds for rectangular grids.

Proposition 3.3 χo(Gm1,2m1) ≥ 2m1

Proof. By induction. For m1 = 1 the proposition holds.
Let S be the separator formed by the highest colors. If |S| ≥ 2m1 then the proposition trivially holds.

If |S| < 2m1 then the separator can not touch both of the far sides of the grid. Thus, its removal will give
us a component having height m1. If |S| < m1 the separator cannot touch two sides that are opposite each
other. Therefore, its removal will give a graph with Gm1−(|S|/2),2m1−|S| as a minor and thus χo(Gm1,m2) ≥
|S|+ 2m1 − |S| = 2m1.

Finally, suppose that m1 ≤ |S| < 2m1. The separator can not span a length of more than |S| vertices,
therefore one of the components formed must have G(2m1−|S|)/2,m1

as a minor. Thus, χo(Gm1,2m1) ≥
|S|+ 2m1 − |S| = 2m1. ut

Proposition 3.4 χo(Gm1,m2) ≥ m1

⌊
log
(
m2
m1

+ 1
)⌋

Proof. First, note that for m2 < 7m1 the proposition follows from previous propositions. Therefore, we
will deal with m2 ≥ 7m1.

Let S be the separator formed by the highest colors. If S < m1 then the removal of S must leave a com-
ponent withGm1,m2−|S| as a minor. χo(Gm1,m2) ≥ |S|+χo(Gm1,m2−|S|) ≥ |S|+m1

⌊
log(m2−|S|

m1
+ 1)

⌋
>

m1

⌊
log(m2

m1
+ 1)

⌋
.

If m1 ≤ |S| ≤ m2 − 2m1 then, as in the previous proof, at least one Gm1,(m2−|S|)/2 minor is formed.

Thus, χo(Gm1,m2) ≥ |S| + χo(Gm1,(m2−|S|)/2) ≥ |S| + m1

⌊
log(m2−|S|

2m1
+ 1)

⌋
. It is not hard to verify,

using elementary calculus, that the latter is minimized when |S| = m1 in which case χo(Gm1,m2) ≥
m1 +m1

⌊
log(m2+m1

2m1
)
⌋

= m1

⌊
log(m2

m1
+ 1)

⌋
.

Finally, for m2 − 2m1 < |S|, let m2 = km1. Then |S| > (k− 2)m1, while log(m2
m1

+ 1) = log(k+ 1).
We have that, χo(Gm1,m2) ≥ |S| > (k − 2)m1, therefore if k − 2 > blog(k + 1)c the proposition holds.
But we know that k ≥ 7, which satisfies the previous inequality. ut

4 Open problems

The most important problem still left open is of course the exact value of χo(Gm). For small values of m
the correct answer seems to be 2m− 1. If this is true, it means that there is some room for improvement in
both the upper and the lower bounds.
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Another area for future research may be the online version of the problem, where vertices of the grid are
“activated” one by one, and the coloring must remain proper throughout the process. Relevant results in the
case of chains can be found in [1, 3].
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