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Abstract. The Traveling Salesman Problem is one of the most studied problems in computational
complexity and its approximability has been a long standing open question. Currently, the best known
inapproximability threshold known is 220

219
due to Papadimitriou and Vempala. Here, using an essentially

different construction and also relying on the work of Berman and Karpinski on bounded occurrence
CSPs, we give an alternative and simpler inapproximability proof which also improves the bound to
185
184
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the most widely studied algorithmic problems and
deriving optimal approximability results for it has been a long-standing question. Recently, there has
been much progress in the algorithmic front, after more than thirty years, at least in the important
special case where the instance metric is derived from an unweighted graph, often referred to as
Graphic TSP. The 3

2 -approximation algorithm by Christofides was the best known until Gharan et
al. gave a slight improvement [6] for Graphic TSP. Then an algorithm with approximation ratio
1.461 was given by Mömke and Svensson [9]. With improved analysis on their algorithm Mucha
obtained a ratio of 13

9 [10], while the best currently known algorithm has ratio 1.4 and is due to
Sebö and Vygen [15].

Nevertheless, there is still a huge gap between the guarantee of the best approximation algo-
rithms we know and the best inapproximability results. The TSP was first shown MAXSNP-hard
in [14], where no explicit inapproximability constant was derived. The work of Engerbretsen [5] and
Böckenhauer et al. [4] gave inapproximability thresholds of 5381

5380 and 3813
3812 respectively. Later, this

was improved to 220
219 in [13] by Papadimitriou and Vempala1. No further progress has been made

on the inapproximability threshold of this problem in the more than ten years since [12].
Overview: Our main objective in this paper is to give a different, less complicated inapprox-

imability proof for TSP than the one given in [12, 13]. The proof of [13] is very much optimized to
achieve a good constant: the authors reduce directly from MAX-E3-LIN2, a CSP for which optimal
inapproximability results are known, due to Håstad [7]. They take care to avoid introducing extra
gadgets for the variables, using only gadgets that encode the equations. Finally they define their
own custom expander-like notion on graphs to ensure consistency between tours and assignments.
Then the reduction is performed in essentially one step.

Here on the other hand we take the opposite approach, choosing simplicity over optimization.
We also start from MAX-E3-LIN2 but go through two intermediate CSPs. The first step in our
reduction gives a set of equations where each variable appears at most five times (this property
will come in handy in the end when proving consistency between tours and assignments). In this
step, rather than introducing something new we rely heavily on machinery developed by Berman
and Karpinski to prove inapproximability for bounded occurrence CSPs [1–3]. As a second step
we reduce to MAX-1-in-3-SAT2. The motivation is that the 1-in-3 predicate nicely corresponds
to the objectives of TSP, since we represent clauses by gadgets and the most economical solution
will visit all gadgets once but not more than once. Another way to view this step is that we use
MAX-1-in-3-SAT as an aid to design a TSP gadget for parity. Finally, we put it all together and
reduce from MAX-1-in-3-SAT to TSP.

This approach is (at least arguably) simpler than the approach of [13], since some of our ar-
guments can be broken down into independent pieces, arguing about the inapproximability of in-
termediate, specially constructed CSPs. We also benefit from re-using out-of-the box the amplifier
construction of [3]. Interestingly, putting everything together we end up obtaining a slightly better
constant than the one currently known, implying that there may still be some room for further
improvement. Though we are still a long way from an optimal inapproximability result, our results
show that there may still be hope for better bounds with existing tools. Exploring how far these

1 The reduction of [13] was first presented in [12], which (erroneously) claimed a better bound.
2 In fact it might be more appropriate to call this problem MAX-1-in-2/3-SAT, since most clauses will have size
2 and some will have size 3. However, we’ll stick with the simpler name.
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techniques can take us with respect to TSP (and also its variants, see for example [8]) may thus be
an interesting question.

The main result of this paper is given below and it follows directly from the construction of
section 4.1 and Lemmata 1,2.

Theorem 1. For all ε > 0 there is no polynomial-time (92.391.8 − ε)-approximation algorithm for TSP,
unless P=NP.

2 Preliminaries

We will denote graphs by G(V,E). All graphs are assumed to be undirected, loop-less and edge-
weighted, meaning that there is also a function w : E → R+. In some cases we will allow E to be
a multi-set, that is, we may allow parallel edges. In the case of a multi-set E that contains several
copies of some elements, when we write

∑
e∈E w(e) we mean the sum that has one term for each

copy. A (multi-)graph is Eulerian if there exists a closed walk that visits all its vertices and uses each
edge once. It is well known that a (multi-)graph is Eulerian iff it is connected and all its vertices
have even degree. We will use [n] to denote the set {1, 2, . . . , n}. We will use E[X] to denote the
expectation of a random variable X.

In the metric Traveling Salesman Problem (TSP) we are given as input an edge-weighted undi-
rected graph G(V,E). Let d(u, v), for u, v ∈ V denote the shortest-path distance from u, v. The
objective is to find an ordering v1, v2, . . . , vn of the vertices such that

∑n−1
i=1 d(vi, vi+1) + d(vn, v1) is

minimized.
Another, equivalent view of the TSP is the following: given an edge-weighted graph G(V,E) we

seek to find a multi-set ET consisting of edges from E such that the graph induced by ET spans V ,
is Eulerian and the sum of the weights of all edges in ET is minimized. It is not hard to see that
the two formulations are equivalent.

We generalize the Eulerian multi-graph formulation as follows: a multi-set ET of edges from E
is a quasi-tour iff the degrees of all vertices in the multi-graph GT (V,ET ) are even. The cost of a
quasi-tour is defined as

∑
e∈ET

w(e) + 2(c(GT )− 1), where c(GT ) denotes the number of connected
components of the multi-graph. It is not hard to see that a TSP tour can also be considered a
quasi-tour with the same cost, but in a weighted graph there could potentially be a quasi-tour that
is cheaper than the optimal tour.

2.1 Forced edges

As mentioned, we will view TSP as the problem of selecting edges from E to form a minimum-weight
multi-set ET that makes the graph Eulerian. It is easy to see that no edge will be selected more
than twice, since if an edge is selected three times we can remove two copies of it from ET and the
graph will still be Eulerian while we have improved the cost.

In our construction we would like to be able to stipulate that some edges are to be used at least
once in any valid tour. We can achieve this with the following trick: suppose that there is an edge
(u, v) with weight w that we want to force into every tour. We sub-divide this edge a large number
of times, say T − 1, that is, we remove the edge and replace it with a path of T edges going through
new vertices of degree two. We then redistribute the original edge’s weight to the T newly formed
edges, so that each has weight w/T . Now, any tour that fails to use two or more of the newly formed
edges must be disconnected. Any tour that fails to use exactly one of them can be augmented by
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adding two copies of the unused edge. This only increases the cost by 2w/T , which can be made
arbitrarily small by giving T an appropriately large value. Therefore, we may assume without loss
of generality that in our construction we can force some edges to be used at least once. Note that
these arguments apply also to quasi-tours.

3 Intermediate CSPs

In this section we will design and prove inapproximability for a family of instances of MAX-1-in-
3-SAT with some special structure. We will use these instances (and their structure) in the next
section where we reduce from MAX-1-in-3-SAT to TSP.

Let I1 be a system of m linear equations mod 2, each consisting of exactly three variables. Let
n be the total number of variables appearing in I1 and let the variables be denoted as xi, i ∈ [n].
Let B be the maximum number of times any variable appears. We will make use of the following
seminal result due to Håstad:

Theorem 2 ([7]).
For all ε > 0 there exists a B such that given an instance I1 as above it is NP-hard to decide

if there is an assignment that satisfies at least (1− ε)m equations or all assignment satisfy at most
(12 + ε)m equations.

3.1 Bounded Occurences

In I1 each variable appears at most a constant number of times B, where B depends on ε. We would
like to reduce the maximum number of occurrences of each variable to a small absolute constant.
For this, one typically uses some kind of expander or amplifier construction. Here we will rely on a
construction due to Berman and Karpinski that reduces the number of occurrences to 5.

Theorem 3 ([3]).
Consider the family of bipartite graphs G(L,R,E), where |L| = B, |R| = 0.8B, all vertices of

L have degree 4, all vertices of R have degree 5 and B is a sufficiently large multiple of 5. If we
select uniformly at random a graph from this family then with high probability it has the following
property: for any S ⊆ L ∪ R such that |S ∩ L| ≤ |L|

2 the number of edges in E with exactly one
endpoint in S is at least |S ∩ L|.

We now use the above construction to construct a system of equations where each variable
appears exactly 5 times. First, we may assume that in I1 the number of appearances of each variable
is a multiple of 5 (otherwise, repeat all equations four times). Also, by repeating all the equations
we can make sure that all variables appear at least B′ times, where B′ is a sufficiently large number
to make Theorem 3 hold.

For each variable xi in I1 we introduce the variables x(i,j), j ∈ [d(i)] and y(i,j), j ∈ [0.8d(i)]
where d(i) is the number of appearances of xi in the original instance. We call Xi = {x(i,j) | j ∈
[d(i)]} ∪ {y(i,j) | j ∈ [0.8d(i)]} the cloud that corresponds to xi. Construct a bipartite graph with
the property described in Theorem 3 with L = [d(i)], R = [0.8d(i)] (since d(i) < B is a constant
that depends only on ε this can be done in constant time by brute force). For each edge (j, k) ∈ E
introduce the equation x(i,j) + y(i,k) = 1. Finally, for each equation xi1 + xi2 + xi3 = b in I1, where
this is the j1-th appearance of xi1 , the j2-th appearance of xi2 and the j3-th appearance of xi3
replace it with the equation x(i1,j1) + x(i2,j2) + x(i3,j3) = b.
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Denote this instance by I2 and we have |I2| = 13m, with 12m equations having size 2. A
consistent assignment to a cloud Xi is an assignment that sets all x(i,j) to b and all y(i,j) to 1 − b.
By standard arguments using the graph of Theorem 3 we can show that an optimal assignment to
I2 is consistent (in each incosistent cloud set S to be the vertices with the minority assignment;
flipping all variables of S cannot make the solution worse). From this it follows that it is NP-hard
to distinguish if the maximum number of satisfiable equations is at least (13 − ε)m or at most
(12.5 + ε)m.

3.2 MAX-1-in-3-SAT

In the MAX-1-in-3-SAT problem we are given a collection of clauses (li∨ lj ∨ lk), each consisting of
at most three literals, where each literal is either a variable or its negation. A clause is satisfied by
a truth assighment if exactly one of its literals is set to True. The problem is to find an assignment
that satisfies the maximum number of clauses.

We would like to produce a MAX-1-in-3-SAT instance from I2. Observe that it is easy to turn
the size two equations x(i,j) + y(i,k) = 1 to the equivalent clauses (x(i,j) ∨ y(i,k)). We only need to
worry about the m equations of size three.

If the k-th size-three equation of I2 is x(i1,j1) + x(i2,j2) + x(i3,j3) = 1 we introduce three new
auxilliary variables a(k,i), i ∈ [3] and replace the equation with the three clauses (x(i1,j1) ∨ a(k,1) ∨
a(k,2)), (x(i2,j2) ∨ a(k,2) ∨ a(k,3)), (x(i3,j3) ∨ a(k,1) ∨ a(k,3)). If the right-hand-side of the equation is 0
then we add the same three clauses except we negate x(i1,j1) in the first clause. We call these three
clauses the cluster that corresponds to the k-th equation.

It is not hard to see that if we fix an assignment to x(i1,j1), x(i2,j2), x(i3,j3) that satisfies the k-th
equation of I2 then there exists an assignment to a(k,1), a(k,2), a(k,3) that satisfies the whole cluster.
Otherwise, at most two of the clauses of the cluster can be satisfied. Furthermore, in this case there
exist three different assignments to the auxilliary variables that satisfy two clauses and each leaves
a different clause unsatisfied.

From now on, we will denote by M the set of (main) variables x(i,j), by C the set of (checker)
variables y(i,j) and by A the set of (auxilliary) variables a(k,i). Call the instance of MAX-1-in-3-SAT
we have constructed I3. Note that it consists of 15m clauses and 8.4m variables.

4 TSP

4.1 Construction

We now describe a construction that encodes I3 into a TSP instance G(V,E). Rather than viewing
this as a generic construction from MAX-1-in-3-SAT to TSP, we will at times need to use facts
that stem from the special structure of I3. In particular, the fact that variables can be partitioned
into sets M,C,A, such that variables in M ∪ C appear five times and variables in A appear twice;
the fact that most clauses have size two and they involve one positive variable from M and one
positive variable from C; and also the fact that clauses of size three come in clusters as described
in the construction of I3.

As mentioned, we assume that the in the graph G(V,E) we may include some forced edges,
that is, edges that have to be used at least once in any tour. The graph includes a central vertex,
which we will call s. For each variable in x ∈ M ∪ C ∪ A we introduce two new vertices named
xL and xR, which we will call the left and right terminal associated with x. We add a forced edge
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Fig. 1. Example construction for the clause (x∨y)∧ (x∨ z). Forced edges are denoted by dashed lines. There are two
terminals for each variable and two gadgets that represent the two clauses. The True edges incident on the terminals
are re-routed through the gadgets where each variable appears positive. The False edges connect the terminals directly
since no variable appears anywhere negated.

from each terminal to s. For terminals that correspond to variables in M ∪ C this edge has weight
7/4, while for variables in A it has weight 1/2. We also add two (parallel) non-forced edges between
each pair of terminals, each having a weight of 1 (we will later break down at least one from each
pair of these, so the graph we will obtain in the end will be simple). Informally, these two edges
encode an assignment to each variable: we arbitrarily label one the True edge and the other the
False edge, the idea being that a tour should pick exactly one of these for each variable and that
will give us an assignment. We will re-route these edges through the clause gadgets as we introduce
them, depending on whether each variable appears in a clause positive or negative.

Now, we add some gadgets to encode the size-two clauses of I3. Let (x(i,j1) ∨ y(i,j2)) be a clause
of I3 and suppose that this is the k1-th clause that contains x(i,j1) and the k2-th clause that contains
y(i,j2), k1, k2 ∈ [5]. Then we add two new vertices to the graph, call them xk1(i,j1) and yk2(i,j2). Add
two forced edges between them, each of weight 3/2 (recall that forced edges represent long paths,
so these are not really parallel edges). Finally, re-route the True edges incident on xL(i,j1) and y

L
(i,j2)

through xk1(i,j1) and yk2(i,j2) respectively. More precisely, if the True edge incident on xL(i,j1) connects
it to some other vertex u, remove that edge from the graph and add an edge from xL(i,j1) to x

k1
(i,j1)

and an edge from xk1(i,j1) to u. All these edges have weight one and are non-forced (see Figure 1).
We use a similar gadget for clauses of size three. Consider a cluster (x(i1,j1) ∨ a(k,1) ∨ a(k,2)),

(x(i2,j2)∨a(k,2)∨a(k,3)), (x(i3,j3)∨a(k,1)∨a(k,3)) and suppose for simplicity that this is the fifth appear-
ance for all the main variables of the cluster. Then we add the new vertices x5(i1,j1), x

5
(i2,j2)

, x5(i3,j3)
and also the vertices a1(k,1), a

2
(k,1), a

1
(k,2), a

2
(k,2) and a

1
(k,3), a

2
(k,3). To encode the first clause we add two

forced edges of weight 5/4, one from x5(i1,j1) to a
1
(k,1) and one from x5(i1,j1) to a

1
(k,2). We also add a

forced edge of weight 1 from a1(k,1) to a
1
(k,2), thus making a triangle with the forced edges (see Figure

2). We re-route the True edge from aL(k,1) through a
1
(k,1) and a

2
(k,1). We do similarly for the other two

auxilliary variables and the main variables. Finally, for a cluster where x(i1,j1) is negated, we use
the same construction except that rather than re-routing the True edge that is incident on xL(i1,j1)
we re-route the False edge. This completes the construction.

4.2 From Assignment to Tour

Let us now prove one direction of the reduction and in the process also give some intuition about
the construction. Call the graph we have constructed G(V,E).
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Fig. 2. Example construction fragment for the cluster (x1 ∨ a1 ∨ a2)∧ (x2 ∨ a2 ∨ a3)∧ (x3 ∨ a1 ∨ a3). The False edges
which connect each pair of terminals and the forced edges that connect terminals to s are not shown.

Lemma 1. If there exists an assignment to the variables of I3 that leaves at most k equations
unsatisfied, then there is a tour of G with cost at most T = L+ k, where L = 91.8m.

Proof. Observe that by construction we may assume that all the unsatisfied clauses of I3 are in the
clusters and that at most one clause in each cluster is unsatisfied, otherwise we can obtain a better
assignment. Also, if an unsatisfied clause has all literals set to False we can flip the value of one
of the auxilliary variables without increasing the number of violated clauses. Thus, we may assume
that all clauses have a True literal. Also, we may assume that no clause has all literals set to True:
suppose that a clause does, then both auxilliary variables of the clause are True. We set them both
to False, gaining one clause. If this causes the two other clauses of the cluster to become unsatisfied,
set the remaining auxilliary variable to True. We conclude that all clauses have either one or two
True literals.

Our tour uses all forced edges exactly once. For each variable x set to True in the assignment
the tour selects the True edge incident on the terminal corresponding to x. If the edge has been
re-routed all its pieces are selected, so that we have selected edges that make up a path from xL to
xR. Otherwise, if x is set to False in the assignment the tour selects the corresponding False path.

Observe that this is a valid quasi-tour because all vertices have even degree (for each terminal
we have selected the forced edge plus one more edge, for gadget vertices we have selected the two
forced edges and possibly the two edges through which True or False was re-routed). Also, observe
that the tour must be connected, because each clause contains a True literal, therefore for each
gadget two of its external edges have been selected and they are part of a path that leads to the
terminals.

The cost of the tour is at most F +N+M+k, where F is the total cost of all forced edges in the
graph and N,M are the total number of variables and clauses respectively in I3. To see this, notice
that there are 2N terminals, and there is one edge incident on each and there areM clause gadgets,
M − k of which have two selected edges incident on them and k of which have four. Summing up,
this gives 2N +2M +2k, but then each unit-weight edge has been counted twice, meaning that the
non-forced edges have a total cost of N +M + k.

Finally, we have N = 8.4m, M = 15m and F = 3×12m+ 7
2 ×3m+ 7

2 ×5.4m+1×3m = 68.4m,
where the terms are respectively the cost of size-two clause gadgets, the cost of size-three clause
gadgets, the cost of edges connecting terminals to s for the main variables and for the auxilliary
variables. We have F +N +M = 91.8m. ut

4.3 From Tour to Assignment

We would like now to prove the converse of Lemma 1, namely that if a tour of cost L + k exists
then we can find an assignment that leaves at most k clauses unsatisfied. Because this is the more
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interesting part of the proof, let us first give some high-level intuition and in the process justify the
weights we have selected in our construction.

Informally, we could start from a simple base case: suppose that we have a tour such that all
edges of G are used at most once. It is not hard to see that this then corresponds to an assignment,
as in the proof of Lemma 1. So, the problem is how to avoid tours that may use some edges twice.

To this end, we first give some local improvement arguments that make sure that the number
of problematic edges, which are used twice, is limited. However, arguments like these can only take
us so far, and we would like to avoid having too much case analysis.

We therefore try to isolate the problem. For variables in M ∪ C which the tour treats honestly,
that is, variables which are not involved with edges used twice, we directly obtain an assignment
from the tour. For the other variables in M ∪C we pick a random value and then extend the whole
assignment to A in an optimal way. We want to show that the expected number of unsatisfied
clauses is at most k.

The first point here is that if a clause containing only honest variables turns out to be violated,
the tour must also be paying an extra cost for it. The difficulty is therefore concentrated on clauses
with dishonest variables.

By using some edges twice the tour is paying some cost on top of what is accounted for in L.
We would like to show that this extra cost is larger than the number of clauses violated by the
assignment. It is helpful to think here that it is sufficient to show that the tour pays an additional
cost of 5

2 for each dishonest variable, since main variables appear 5 times.
A crucial point now is that, by a simple parity argument, there has to be an even number of

violations (that is, edges used twice) for each variable (Lemma 4). This explains the weights we
have picked for the forced edges in size-three gadgets (54) and for edges connecting terminals to s
(74 = 5

4 +
1
2 or 5

4 extra to the cost already included in L for fixing the parity of the terminal vertex).
Two such violations give enough extra cost to pay for the expected number of unsatisfied clauses
containing the variable.

At this point, we could also set the weights of forced edges in size-two gadgets to 5
2 , which

would be split among the two dishonest variables giving 5
4 to each. Then, any two violations would

have enough additional cost to pay for the expected unsatisfied clauses. However, we are slightly
more careful here: rather than setting all dishonest variables in M ∪ C independently at random,
we pick a random but consistent assignment for each cloud. This ensures that all size-two clauses
with violations will be satisfied. Thus, it is sufficient for violations in them to have a cost of 3

2 : the
amount "paid" to each variable is now 3

4 = 5
4 −

1
2 , but the expected number of unsatisfied clauses

with this variable is also decreased by 1
2 since one clause is surely satisfied.

Let us now proceed to give the full details of the proof. Recall that if a tour of a certain cost
exists, then there exists also a quasi-tour of the same cost. It suffices then to prove the following:

Lemma 2. If there exists a quasi-tour of G with cost at most L+k then there exists an assignment
to the variables of I3 that leaves at most k clauses unsatisfied.

Before moving on to the proof of Lemma 2 let us make some easy observations. First, observe
that if a quasi-tour uses a unit-weight edge twice then we can remove both of these appearances of
the edge from the solution without increasing the cost, since the number of components can only
increase by one. Therefore, all (non-forced) edges of weight one are used at most once.

Second, if both forced edges of a gadget of size two are used twice then we can remove one
appearance of each from the solution, decreasing the cost. Similarly, in a gadget of size three if two
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forced edges are used twice then we can drop one copy of each and use the third edge twice, making
the tour cheaper. Therefore, in each gadget there is at most one forced edge that is used twice.

Third, if both forced edges that connect the terminals xL, xR to s are used twice, then we can
remove one appearance of each from the solution and replace them by the shortest path from xL

to xR that uses only non-forced unit weight edges. This has weight at most one for the auxilliary
variables and two for the rest, which in both cases is at most as much as the weight of the removed
edges.

Given a tour ET , we will say that a variable x is honestly traversed in that tour if all the forced
edges that involve it are used exactly once (this includes the forced edges incident on xL, xR and
xi, i ∈ [5]).

Let us prove two more useful facts.

Lemma 3. There exists an optimal tour where all forced edges between two different vertices that
correspond to two variables in A are used exactly once.

Proof. We refer the reader again to Figure 2. Suppose for contradiction that the edge (a11, a
1
2) is

used twice (the other cases are equivalent by symmetry since all vertices aji are connected to one
terminal and one other such vertex).

First, suppose that at least one of the edges that connect one of these two endpoints to a terminal
is selected, say the edge (aL1 , a

1
1). Then modify the solution by removing that edge and a copy of

the duplicate forced edge and adding a copy of (aL2 , a12), (s, aL2 ) and (s, aL1 ). This does not increase
the cost.

Second, suppose that both (s, aL1 ) and (s, aL2 ) are used twice in the tour. Then we can modify
the tour by dropping one copy of each and a copy of the duplicate gadget edge and adding (aL1 , a

1
1)

and (aL2 , a
1
2).

Finally, suppose that none of the previous two cases is true. Thus, neither of (aL1 , a11), (aL2 , a12)
is used in the tour. This means that (a11, a

2
1) and (a12, a

2
2) are both used to ensure that a11, a12 have

even degree. Also, one of the edges connecting a terminal to s is used once, say (s, aL1 ). This means
that the False edge incident to aL1 must be used to make the degree of aL1 even. Remove the False
edge and the edge (a11, a

2
1) from the tour and add the edges (aL1 , a

1
1) and (aR1 , a

2
1). This reduces to

the first case. ut

Lemma 4. In an optimal tour, if a variable is dishonest then it must be dishonest twice. More
precisely, the number of forced edges that involve the variable (either inside gadgets or connecting
terminals to s) and are used twice must be even.

Proof. Consider a variable x and first suppose that neither of the forced edges connecting s to the
terminals is used twice, but there is a single forced edge in a gadget that is used twice. It follows that
the vertex that corresponds to x in that gadget has an odd number of unit-weight edges incident
to it selected. The two terminals have a single selected unit-weight edge incident on them and all
other vertices that belong to x have an even number of incident unit-weight edges selected, since
their total degree is even. Thus, summing the number of selected unit-weight edges incident on all
the vertices that belong to x we get an odd number, which is a contradiction since we counted each
such edge exactly twice. A similar argument applies if one assumes that one of the forced edges
incident on the terminals is used twice and all other forced edges are used once. ut

Observe that it follows from Lemmata 3,4 that if all the main variables involved in a cluster are
honest then the auxilliary variables of that cluster are also honest. This holds because if the main
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variables are honest then by Lemma 3 no forced edge inside the gadgets of the cluster is used twice,
so by Lemma 4 and the fact that at least one of the forced edges incident on the terminals is used
once, the auxilliary variables are honest.

We would like now to be able to extract a good assignment even if a tour is not honest, thus
indirectly proving that honest tours are optimal.

Proof (Lemma 2).
Consider the following algorithm to extract an assignment from the tour: first, for each variable

in M ∪C that was traversed honestly give it the same truth-value as in the tour, that is, if the tour
selects the True edge incident on the corresponding terminal, set the variable to True, otherwise to
False. To decide on the value of the dishonest variables fromM ∪C produce n random bits bi, i ∈ [n]
(recall that n is the number of variables of I1, or the number of clouds in I3). For each i set all
dishonest variables x(i,j) to be equal to bi and all dishonest y(i,j) to be equal to 1− bi. This ensures
that size-two clauses that contain two dishonest variables are always satisfied, since these clauses
are always between two variables of the same cloud.

Let us also assign the auxilliary variables. If there is an assignment to the auxilliary variables of
a cluster that satisfies all three clauses select it. Otherwise, select an assignment that violates the
clause of a dishonest variable from M , if such a variable exists, and satisfies the other two. If all
main variables are honest, as we have argued the auxilliary variables are also honest, so pick the
corresponding assignment.

We now have a randomized assignment for I3, so let us upper-bound the expected number
of unsatisfied clauses. Let U be a random variable equal to the set of unsatisfied clauses and let
U = U1 ∪ U2 where U1 contains all the unsatisfied clauses that involve only honest variables from
M ∪ C and U2 the rest. (Note that U1 is not random.)

The cost of the quasi-tour we have is T ≤ F +N +M + k. Let EG be the set of forced gadget
edges that the tour uses twice. Let ES be the set of forced edges incident on s that the tour uses
twice. Let E1 be the set of unit-weight edges that the tour uses (recall that each is used once). Let
U ′1 be the set of clauses that correspond to gadgets the tour visits at least twice (meaning they have
at least four incident edges selected). Let U ′′1 be the set of clauses that correspond to gadgets the
tour does not visit (meaning that each forms its own connected component).

We have T =
∑

e∈ET
w(e) + 2(c(GT ) − 1) = F +

∑
e∈E1

w(e) +
∑

e∈EG
w(e) +

∑
e∈ES

w(e) +
2(c(GT )− 1).

By definition
∑

e∈E1
w(e) = |E1|. Let us try to lower-bound this quantity using arguments similar

to the proof of Lemma 1. After the selection of the forced edges there are 2N − |ES | terminals with
odd degree, so each has a selected unit-weight edge incident to it. There are |U ′1| gadgets with at
least four selected incident edges and M − |U ′1| − |U ′′1 | gadgets with two selected incident edges.
Summing up we get 2N − |ES | + 2M + 2|U ′1| − 2|U ′′1 |, but each edge is counted twice, so we have
|E1| ≥ N − 1

2 |ES |+M + |U ′1| − |U ′′1 |.
Using this fact we get T ≥ F+N+M+

∑
e∈EG

w(e)+
∑

e∈ES
(w(e)− 1

2)+|U
′
1|+2(c(GT )−1)−|U ′′1 |.

Now, observe that |U ′′1 | ≤ c(GT )−1, because each element of U ′′1 forms a component and there is
one component that is not an element of U ′′1 (the one that contains s). Thus, 2(c(GT )− 1)− |U ′′1 | ≥
|U ′′1 |. Combining this with the above we get T ≥ F +N +M +

∑
e∈EG

w(e) +
∑

e∈ES
(w(e)− 1

2) +
|U ′1|+ |U ′′1 |. Given the known upper-bound on the cost of the tour we have that k ≥

∑
e∈EG

w(e) +∑
e∈ES

(w(e)− 1
2) + |U

′
1|+ |U ′′1 |.

We now need to argue two facts and we are done. First |U1| ≤ |U ′1|+ |U ′′1 |. Recall that U1 is the
set of unsatisfied clauses that involve honest variables. Since the variables are traversed honestly
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their corresponding gadgets are either visited at least twice or not at all, so they are counted in |U ′1|
or in |U ′′1 |.

Second, we would like to show that E[|U2|] ≤
∑

e∈EG
w(e) +

∑
e∈ES

(w(e) − 1
2). Before we do

that, observe that if we show this then it follows that E[|U |] = E[|U2|] + |U1| ≤ k, so there must
exist an assignment that leaves no more than k clauses unsatisfied and we are done.

So, let us try to upper-bound E[|U2|], which is the expected number of unsatisfied clauses that
contain a dishonest variable. First, observe that if there are dishonest auxilliary variables in a cluster
by the construction of the assignment we have ensured that any unsatisfied clause must contain a
dishonest main variable. Therefore, it suffices to count the expected number of unsatisfied clauses
that contain a dishonest main variable.

Let us define a credit cr(x) for each dishonest main variable x. If a forced edge connecting a
terminal to s is used twice we give x a credit of 5/4 (which is equal to w(e)− 1

2 , since these edges
have weight 7

4). If a forced edge in a gadget that involves x and another main variable is used twice
we give x a credit of 3

4 (which is equal to w(e)/2). Finally, if a forced edge in a gadget that involves
x and an auxilliary variable is used twice we give x a credit of 5

4 (which is equal to w(e)). We define
cr(x) to be the sum of credits given to x in this process.

If D is the set of dishonest main variables then it is not hard to see that
∑

x∈D cr(x) ≤∑
e∈EG

w(e) +
∑

e∈ES
(w(e)− 1

2). All edges are counted once in the sum of credits, except for those
from EG that involve two main variables, for which each is credited half the weight.

We will now argue that the expected number of unsatisfied clauses that contain a variable x is at
most cr(x). Recall that clauses containing x and another dishonest main variable are by construction
satisfied, while clauses made up of x and one honest variable are satisfied with probability 1/2. Also,
clauses of size 3 that contain x are satisfied with probability at least 1/2, since with probability 1/2
the equation from which the cluster was obtained is satisfied. Thus, if cr(x) ≥ 5

2 we are done. We
know that x received at least two credits by Lemma 4, so cr(x) ≥ 3

2 , as the smallest credit is 3
4 . If

cr(x) = 3
2 then x must have received two credits that were shared with other dishonest variables.

Therefore, there are two clauses containing x which are surely satisfied, and out of the other three
the expected number of unsatisfied clauses is 3

2 ≤ cr(x). Similarly, if cr(x) = 2, then x shared a
credit with another variable at least once, so one clause is surely satisfied and the expected number
of unsatisfied clauses out of the other four is 2.

We therefore have E[|U2|] ≤
∑

x∈D cr(x) ≤
∑

e∈EG
w(e) +

∑
e∈ES

(w(e)− 1
2) and this concludes

the proof. ut

5 Conclusions

We have given an alternative and (we believe) simpler inapproximability proof for TSP, also mod-
estly improving the known bound. We believe that the approach followed here where the hardness
proof goes explicitly through bounded occurrence CSPs is more promising than the somewhat
ad-hoc method of [13], not only because it is easier to understand but also because we stand to
gain almost "automatically" from improvements in our understanding of the inapproximability of
bounded occurrence CSPs. In particular, though we used the 5-regular amplifiers from [3], any such
amplifier would work essentially "out of the box", and any improved construction could imply an
improvement in our bound. Nevertheless, the distance between the upper and lower bounds on the
approximability of TSP remains quite large and it seems that some major new idea will be needed
to close it.
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