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Algorithmic Meta-Theorems

Algorithmic Theorems
Vertex Cover, Dominating Set, 3-Coloring are
solvable in linear time on graphs of constant
treewidth.
Vertex Cover, Feedback Vertex Set can be solved in
sub-exponential time on planar graphs
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Algorithmic Meta-Theorems

Algorithmic Meta-Theorems
All MSO-expressible problems are solvable in linear
time on graphs of constant treewidth.
All minor closed optimization problems can be
solved in sub-exponential time on planar graphs

Main uses: quick complexity classification tools,
mapping the limits of applicability for specific
techniques.
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Algorithmic Meta-Theorems

Algorithmic Meta-Theorems
All MSO-expressible problems are solvable in linear
time on graphs of constant treewidth.
All minor closed optimization problems can be
solved in sub-exponential time on planar graphs

Main uses: quick complexity classification tools,
mapping the limits of applicability for specific
techniques.

This talk: Algorithmic Meta-Theorems where the class
of problems is defined using logic.
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First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .
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First Order Logic on graphs

We express graph properties using logic

Basic vocabulary
Vertex variables: x, y, z, . . .
Edge predicate E(x, y), Equality x = y

Boolean connectives ∨,∧,¬

Quantifiers ∀,∃

Example: Dominating Set of size 2

∃x1∃x2∀yE(x1, y) ∨ E(x2, y) ∨ x1 = y ∨ x2 = y
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(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges
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(Monadic) Second Order Logic

MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

MSO1 logic: we can quantify over sets of vertices
only
MSO2 logic: we can quantify over sets of edges

Example: 2-coloring

∃V1∃V2∀x∀yE(x, y) → (x ∈ V1 ↔ y ∈ V2)
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The model checking problem

Problem: p-Model Checking
Input: Graph G and formula φ

Parameter: |φ|
Question: G |= φ?

For general graphs, this problem is W-hard even for FO
logic
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The model checking problem

Problem: p-Model Checking
Input: Graph G and formula φ

Parameter: |φ|
Question: G |= φ?

For general graphs, this problem is W-hard even for FO
logic

We are interested in finding tractable, i.e. FPT, cases
for more restricted classes of graphs.

The most famous such result is Courcelle’s theorem
which states that p-Model Checking for MSO2 logic is
FPT when also parameterized by the graph’s treewidth.
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Lower Bounds

Courcelle’s theorem states that deciding if G |= φ can be
done in time f(tw(G), φ) · |G|, for some function f .

Unfortunately, in the worst case this function is horrible!
[Frick and Grohe 2004]: There is no algorithm which
solves p-Model Checking on trees in time O(f(φ) · n)
for any elementary function f unless P=NP.
The lower bound applies also to FO logic, under the
stronger assumption FPT6=AW[*]

Motivation: see if things improve when one looks at
more restricted classes of graphs.
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Graph classes
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Some popular graph classes

FO logic is FPT for all,
MSO1 for the blue area,
MSO2 for the green area.

Lower bounds:
FO logic is
non-elementary for
trees, triply
exponential for binary
trees.
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Graph classes
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Some popular graph classes

FO logic is FPT for all,
MSO1 for the blue area,
MSO2 for the green area.

Lower bounds:
FO logic is
non-elementary for
trees, triply
exponential for binary
trees.

Our focus is on improving on the bottom.
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Summary of results

FO logic for graphs of bounded vertex cover is singly
exponential

FO logic for graphs of bounded max-leaf number is
singly exponential

MSO logic for graphs of bounded vertex cover is doubly
exponential

Tight lower bounds (under the ETH) for vertex cover

Generalize FO and MSO1 results to neighborhood
diversity
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Graphs with small Vertex Cover

A vertex cover is a set of vertices whose removal
makes the graph an independent set.

Usually viewed as just an optimization problem, but the
existence of a small vertex cover gives a graph a very
special form.

Small vertex cover trivially implies small treewidth.

It makes sense to study problems hard for treewidth
parameterized by vertex cover

Good example: Bandwidth
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Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.
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Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Intuition:
Model checking FO logic on general graphs is in XP:
each time we see a quantifier, we try all possible
vertices.
The existence of a vertex cover of size k partitions
the remainder of the graph into at most 2k sets of
vertices, depending on their neighbors in the vertex
cover.
Crucial point: Trying all possible vertices in a set is
wasteful. One representative suffices.
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Vertex cover - A warm-up

Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

Algorithm: For each of the q quantified vertex variables
in the formula try the following

Each of the vertices of the vertex cover (k choices)
Each of the previously selected vertices (q choices)

An arbitrary representative from each type (2k

choices)

Total time: O∗(k + q + 2k)q = O∗(2kq+q log q)
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Max-Leaf Number

The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.

Again, small max-leaf number implies a special
structure

Trivially, small degree and small treewidth
[Kleitman and West] A graph of max-leaf number k is
a sub-division of a graph of at most O(k) vertices.

Again, it makes sense to study problems hard for
treewidth parameterized by max-leaf number

Good example: Bandwidth
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FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

This is an important special case of max-leaf number
graphs. We cannot use the previous technique since
the vertex cover is high.
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FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Key intuition: if the path is very long, its precise length
does not matter.
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FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ
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FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ

By applying the lemma, any path can be shortened to
size 2q. Applying the trivial algorithm for FO logic gives
a time bound of O∗(2q

2

)
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FO logic on paths

Let us first try to solve this basic problem: Given a path
on n vertices and a FO sentence φ, decide if φ holds on
that path.

Lemma: If φ has q quantified vertex variables and
n ≥ 2q then Pn |= φ iff Pn−1 |= φ

By applying the lemma, any path can be shortened to
size 2q. Applying the trivial algorithm for FO logic gives
a time bound of O∗(2q

2

)

This is a classic idea related to Ehrenfaucht-Fraisse
games in logic.
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FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.
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number.

Lemma: If a topo-edge has length at least 2q it can be
shortened without affecting the truth value of any FO
sentence with at most q quantifiers.
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FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf
number.

Lemma: If a topo-edge has length at least 2q it can be
shortened without affecting the truth value of any FO
sentence with at most q quantifiers.

The graph can be reduced to size O(k22q) so the trivial
FO algorithm runs in 2O(q2+q log k)
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MSO logic for vertex cover (sketch)

Trivial algorithm: for each set variable, try all 2n subsets.

Use types: complexity comes down to nf(k,q), not good
enough!

Intuition: when selecting a set only the number of
vertices of each type matters.

Basic idea: prove that a lot of sets are equivalent for
MSO sentences with at most q quantifiers.

Intuition: the exact number of vertices from each
type matters only if it’s < 2q (or the complement has
size < 2q).

End result: 22
O(k+q)

(doubly exponential) algorithm.
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Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?
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Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Also: can the exponents in singly exponential running
times (2kq, 2q

2

) be improved?

We will show a lower bound argument that will resolve
the questions related to vertex cover in a negative way.
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Lower Bounds

Natural question: can doubly exponential be improved
to singly exponential?

Also: can the exponents in singly exponential running
times (2kq, 2q

2

) be improved?

We will show a lower bound argument that will resolve
the questions related to vertex cover in a negative way.

Our results will rely on the ETH

ETH: There is no 2o(n) algorithm for 3SAT.
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Reduction (sketch)

Reduction from 3-SAT to model checking.

Create a graph G to encode a propositional formula
with n variables.

G will have vertex cover O(logn). The MSO formula will
have constant size.

Each vertex of the vertex cover encodes one of the
bits in the index of the propositional variables.

A 22
o(k+q)

algorithm would then give 22
o(log n)

= 2o(n)

algorithm for 3SAT.

Same reduction works for FO logic, starting from
weighted 3-SAT.
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Neighborhood diversity

We have seen that we can prove stronger
meta-theorems for bounded vertex cover than we can
for bounded treewidth.

However, we are essentially only using one property of
bounded vertex cover graphs: the fact that vertices can
be partitioned into a small number of types.

This motivates the following definition:
The neighborhood diversity of a graph is the
minimum number nd(G) s.t. the vertices of G can be
partitioned in nd(G) sets with all vertices in each set
having the same type.

Observe that this is a strict superset! Example:
complete bipartite graphs.
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Graph classes

tw
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Neighborhood diversity is
a special case of
clique-width but
incomparable to
treewidth.

Our results for FO logic
and MSO1 logic can
trivially be extended to
nd.

MSO2 is FPT for ver-
tex cover (Courcelle) but
W-hard for clique-width.
What about nd?
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Conclusions - Open problems

Stronger meta-theorems (and some lower bounds) for
restrictions of treewidth.

MSO is doubly exponential for vc (upper and lower
bound).
FO is singly exponential for vc (upper and lower
bound) and for ml.

Interesting to continue this line of work for other such
graph classes or for other logics.

More concrete open problems:
MSO2 for nd
Lower bound for FO on max-leaf
MSO for max-leaf
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Thank you!
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