Algorithmic Meta-Theorems for Restrictions of Treewidth

Michael Lampis

Computer Science Dept.

Graduate Center, City University of New York

Algorithmic Meta-Theorems, Michael Lampis - p. 1/20

Algorithmic Meta-Theorems

- Algorithmic Theorems
 - Vertex Cover, Dominating Set, 3-Coloring are solvable in linear time on graphs of constant treewidth.
 - Vertex Cover, Feedback Vertex Set can be solved in sub-exponential time on planar graphs

Algorithmic Meta-Theorems

- Algorithmic Meta-Theorems
 - All MSO-expressible problems are solvable in linear time on graphs of constant treewidth.
 - All minor closed optimization problems can be solved in sub-exponential time on planar graphs
- Main uses: quick complexity classification tools, mapping the limits of applicability for specific techniques.

Algorithmic Meta-Theorems

- Algorithmic Meta-Theorems
 - All MSO-expressible problems are solvable in linear time on graphs of constant treewidth.
 - All minor closed optimization problems can be solved in sub-exponential time on planar graphs
- Main uses: quick complexity classification tools, mapping the limits of applicability for specific techniques.
- This talk: Algorithmic Meta-Theorems where the class of problems is defined using logic.

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, \ldots

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, \ldots
 - Edge predicate E(x, y), Equality x = y

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, \ldots
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor, \land, \neg

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, \ldots
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor, \land, \neg
 - Quantifiers \forall, \exists

Example:

- We express graph properties using logic
- Basic vocabulary
 - Vertex variables: x, y, z, \ldots
 - Edge predicate E(x, y), Equality x = y
 - Boolean connectives \lor, \land, \neg
 - Quantifiers \forall, \exists

Example: Dominating Set of size 2

 $\exists x_1 \exists x_2 \forall y E(x_1, y) \lor E(x_2, y) \lor x_1 = y \lor x_2 = y$

(Monadic) Second Order Logic

- ▶ MSO logic: we add set variables $S_1, S_2, ...$ and a ∈ predicate. We are now allowed to quantify over sets.
 - MSO₁ logic: we can quantify over sets of vertices only
 - MSO₂ logic: we can quantify over sets of edges

(Monadic) Second Order Logic

- ▶ MSO logic: we add set variables $S_1, S_2, ...$ and a ∈ predicate. We are now allowed to quantify over sets.
 - MSO₁ logic: we can quantify over sets of vertices only
 - MSO₂ logic: we can quantify over sets of edges

Example: 2-coloring

 $\exists V_1 \exists V_2 \forall x \forall y E(x, y) \to (x \in V_1 \leftrightarrow y \in V_2)$

The model checking problem

Problem: **p-Model Checking** Input: Graph *G* and formula ϕ Parameter: $|\phi|$ Question: $G \models \phi$?

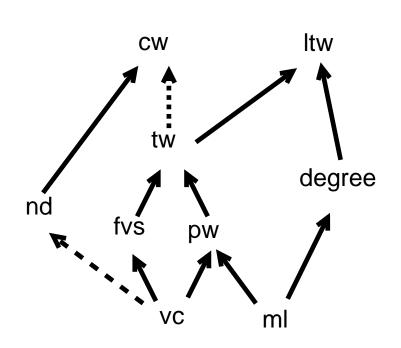
For general graphs, this problem is W-hard even for FO logic

The model checking problem

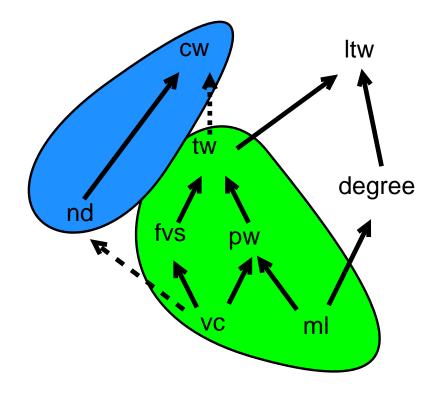
Problem: **p-Model Checking** Input: Graph *G* and formula ϕ Parameter: $|\phi|$ Question: $G \models \phi$?

- For general graphs, this problem is W-hard even for FO logic
- We are interested in finding tractable, i.e. FPT, cases for more restricted classes of graphs.
- The most famous such result is Courcelle's theorem which states that p-Model Checking for MSO₂ logic is FPT when also parameterized by the graph's treewidth.

- Courcelle's theorem states that deciding if $G \models \phi$ can be done in time $f(tw(G), \phi) \cdot |G|$, for some function f.
- Unfortunately, in the worst case this function is horrible!
 - [Frick and Grohe 2004]: There is no algorithm which solves p-Model Checking on trees in time $O(f(\phi) \cdot n)$ for any elementary function f unless P=NP.
 - The lower bound applies also to FO logic, under the stronger assumption FPT = AW[*]
- Motivation: see if things improve when one looks at more restricted classes of graphs.

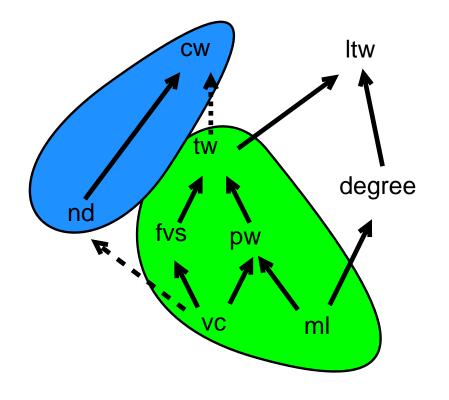


Some popular graph classes



Some popular graph classes

- FO logic is FPT for all,
 MSO₁ for the blue area,
 MSO₂ for the green area.
- Lower bounds:
 - FO logic is non-elementary for trees, triply exponential for binary trees.



Some popular graph classes

- FO logic is FPT for all,
 MSO₁ for the blue area,
 MSO₂ for the green area.
- Lower bounds:
 - FO logic is non-elementary for trees, triply exponential for binary trees.

Our focus is on improving on the bottom.

Summary of results

- FO logic for graphs of bounded vertex cover is singly exponential
- FO logic for graphs of bounded max-leaf number is singly exponential
- MSO logic for graphs of bounded vertex cover is doubly exponential
- Tight lower bounds (under the ETH) for vertex cover
- Generalize FO and MSO₁ results to neighborhood diversity

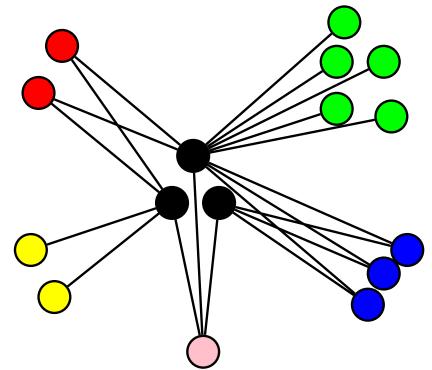
Graphs with small Vertex Cover

- A vertex cover is a set of vertices whose removal makes the graph an independent set.
- Usually viewed as just an optimization problem, but the existence of a small vertex cover gives a graph a very special form.
- Small vertex cover trivially implies small treewidth.
- It makes sense to study problems hard for treewidth parameterized by vertex cover
 - Good example: Bandwidth

Model checking FO logic on graphs of bounded vertex cover is singly exponential.

- Model checking FO logic on graphs of bounded vertex cover is singly exponential.
 - Intuition:
 - Model checking FO logic on general graphs is in XP: each time we see a quantifier, we try all possible vertices.
 - The existence of a vertex cover of size k partitions the remainder of the graph into at most 2^k sets of vertices, depending on their neighbors in the vertex cover.
 - Crucial point: Trying all possible vertices in a set is wasteful. One representative suffices.

Model checking FO logic on graphs of bounded vertex cover is singly exponential.



- Model checking FO logic on graphs of bounded vertex cover is singly exponential.
- Algorithm: For each of the q quantified vertex variables in the formula try the following
 - Each of the vertices of the vertex cover (k choices)
 - Each of the previously selected vertices (q choices)
 - An arbitrary representative from each type (2^k choices)
- Total time: $O^*(k+q+2^k)^q = O^*(2^{kq+q\log q})$

Max-Leaf Number

- The max-leaf number of graph ml(G) is the maximum number of leaves of any sub-tree of G.
- Again, small max-leaf number implies a special structure
 - Trivially, small degree and small treewidth
 - [Kleitman and West] A graph of max-leaf number k is a sub-division of a graph of at most O(k) vertices.
- Again, it makes sense to study problems hard for treewidth parameterized by max-leaf number
 - Good example: Bandwidth

- Let us first try to solve this basic problem: Given a path on n vertices and a FO sentence φ, decide if φ holds on that path.
- This is an important special case of max-leaf number graphs. We cannot use the previous technique since the vertex cover is high.

- Let us first try to solve this basic problem: Given a path on n vertices and a FO sentence φ, decide if φ holds on that path.
- Key intuition: if the path is very long, its precise length does not matter.

- Let us first try to solve this basic problem: Given a path on n vertices and a FO sentence φ, decide if φ holds on that path.
- Lemma: If ϕ has q quantified vertex variables and $n \ge 2^q$ then $P_n \models \phi$ iff $P_{n-1} \models \phi$

- Let us first try to solve this basic problem: Given a path on n vertices and a FO sentence φ, decide if φ holds on that path.
- Lemma: If ϕ has q quantified vertex variables and $n \ge 2^q$ then $P_n \models \phi$ iff $P_{n-1} \models \phi$
- By applying the lemma, any path can be shortened to size 2^q . Applying the trivial algorithm for FO logic gives a time bound of $O^*(2^{q^2})$

- Let us first try to solve this basic problem: Given a path on n vertices and a FO sentence φ, decide if φ holds on that path.
- Lemma: If ϕ has q quantified vertex variables and $n \ge 2^q$ then $P_n \models \phi$ iff $P_{n-1} \models \phi$
- By applying the lemma, any path can be shortened to size 2^q . Applying the trivial algorithm for FO logic gives a time bound of $O^*(2^{q^2})$
- This is a classic idea related to Ehrenfaucht-Fraisse games in logic.

FO logic for Max-Leaf

Generalize this idea to graphs of small max-leaf number.

FO logic for Max-Leaf

- Generalize this idea to graphs of small max-leaf number.
- Lemma: If a topo-edge has length at least 2^q it can be shortened without affecting the truth value of any FO sentence with at most q quantifiers.

FO logic for Max-Leaf

- Generalize this idea to graphs of small max-leaf number.
- Lemma: If a topo-edge has length at least 2^q it can be shortened without affecting the truth value of any FO sentence with at most q quantifiers.
- The graph can be reduced to size $O(k^2 2^q)$ so the trivial FO algorithm runs in $2^{O(q^2+q\log k)}$

MSO logic for vertex cover (sketch)

- Trivial algorithm: for each set variable, try all 2^n subsets.
- Use types: complexity comes down to n^{f(k,q)}, not good enough!
 - Intuition: when selecting a set only the number of vertices of each type matters.
- Basic idea: prove that a lot of sets are equivalent for MSO sentences with at most q quantifiers.
 - Intuition: the exact number of vertices from each type matters only if it's $< 2^q$ (or the complement has size $< 2^q$).
- End result: $2^{2^{O(k+q)}}$ (doubly exponential) algorithm.

Natural question: can doubly exponential be improved to singly exponential?

- Natural question: can doubly exponential be improved to singly exponential?
- Also: can the exponents in singly exponential running times (2^{kq} , 2^{q^2}) be improved?

- Natural question: can doubly exponential be improved to singly exponential?
- Also: can the exponents in singly exponential running times (2^{kq} , 2^{q^2}) be improved?
- We will show a lower bound argument that will resolve the questions related to vertex cover in a negative way.

- Natural question: can doubly exponential be improved to singly exponential?
- Also: can the exponents in singly exponential running times (2^{kq} , 2^{q^2}) be improved?
- We will show a lower bound argument that will resolve the questions related to vertex cover in a negative way.
- Our results will rely on the ETH

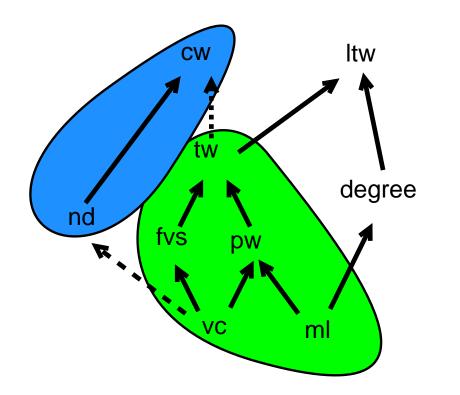
- Natural question: can doubly exponential be improved to singly exponential?
- Also: can the exponents in singly exponential running times (2^{kq} , 2^{q^2}) be improved?
- We will show a lower bound argument that will resolve the questions related to vertex cover in a negative way.
- Our results will rely on the ETH
- ETH: There is no $2^{o(n)}$ algorithm for 3SAT.

Reduction (sketch)

- Reduction from 3-SAT to model checking.
- Create a graph G to encode a propositional formula with n variables.
- G will have vertex cover $O(\log n)$. The MSO formula will have constant size.
 - Each vertex of the vertex cover encodes one of the bits in the index of the propositional variables.
- A $2^{2^{o(k+q)}}$ algorithm would then give $2^{2^{o(\log n)}} = 2^{o(n)}$ algorithm for 3SAT.
- Same reduction works for FO logic, starting from weighted 3-SAT.

Neighborhood diversity

- We have seen that we can prove stronger meta-theorems for bounded vertex cover than we can for bounded treewidth.
- However, we are essentially only using one property of bounded vertex cover graphs: the fact that vertices can be partitioned into a small number of types.
- This motivates the following definition:
 - The neighborhood diversity of a graph is the minimum number nd(G) s.t. the vertices of G can be partitioned in nd(G) sets with all vertices in each set having the same type.
- Observe that this is a strict superset! Example: complete bipartite graphs.



- Neighborhood diversity is a special case of clique-width but incomparable to treewidth.
- Our results for FO logic and MSO₁ logic can trivially be extended to nd.
- MSO₂ is FPT for vertex cover (Courcelle) but W-hard for clique-width. What about nd?

Conclusions - Open problems

- Stronger meta-theorems (and some lower bounds) for restrictions of treewidth.
 - MSO is doubly exponential for vc (upper and lower bound).
 - FO is singly exponential for vc (upper and lower bound) and for ml.
- Interesting to continue this line of work for other such graph classes or for other logics.
- More concrete open problems:
 - MSO_2 for nd
 - Lower bound for FO on max-leaf
 - MSO for max-leaf

Thank you!