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Abstract. We explore the possibility of recognizing the surface material
from a single image with unknown illumination, given the shape of the
surface.
Model-based PCA is used to create a low-dimensional basis to represent
the images. Variations in the illumination create manifolds in the space
spanned by this basis. These manifolds are learnt using captured illumi-
nation maps and the CUReT database. Classification of the material is
done by finding the manifold closest to the point representing the image
of the material.
Testing on synthetic data shows that the problem is hard. The materials
form groups where the materials in a group often are mis-classifed as one
of the other materials in the group. With a grouping algorithm we find
a grouping of the materials in the CUReT database. Tests on images of
real materials in natural illumination settings show promising results.

1 Introduction

The appearance of a surface depends on its shape, the illumination and the
material of the surface. In a normal vision task none of these properties are
known a priori. Despite that, human observers are very good at determining the
material of an object, even in the absence of texture. The estimation is done
purely based on the reflectance properties of the surface. We will explore if this
can be done computationally when there is no knowledge about the illumination,
but the shape of the object is known.

Recent research [2, 11, 10, 8] has shown that the reflected light from a Lam-
bertian surface can be represented with a low-dimensional model although the
variations in illumination are infinite. This is because the surface acts as a low-
pass filter on the incident illumination, making the images in practice lie in a
low-dimensional subspace. Other work, [12, 9], indicates that this holds for many
other types of surface reflectance, e.g. many of the materials in the CUReT
database, [3].

In this paper we classify the material of an object of known shape from a
single image, when the illumination is unknown. In [4] Dror et al recognizes
materials under similar assumptions. They use histograms of filter responses
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and rely on the structure of the specular reflections to classify the material. Our
approach is different in that we represent the images using a generative model,
allowing us to discriminate between materials without specular reflections such
as felt and velvet.

3

1-Felt 2-Polyester 3-Terrycloth 4-Rough Plastic 5-Leather 6-Sandpaper 7-Velvet 8-Pebbles

9-Frosted Glass 10-Plaster_a 11-Plaster_b 12-Rough Paper 13-Arti. Grass 14-Roof Shingle 15-Alu. Foil 16-Cork

17-Rough Tile 18-Rug_a 19-Rug_b 20-Styrofoam 21-Sponge 22-Lambswool 23-Lettuce Leaf 24-Rabbit Fur

25-Quarry Tile 26-Loofa 27-Insulation 28-Crum. Paper 33-Slate_a 34-Slate_b 35-Spheres 36-Limestone

37-Brick_a 39-Human Skin 41-Brick_b 43-Salt Crystals 45-Concrete_a 47-Stones 48-Brown Bread 49-Concrete_b

50-Concrete_c 52-White Bread 53-Plant 55-Orange Peel 59-Cracker_a 60-Cracker_b 61-Moss
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Fig. 1. Rendered images of materials from the CUReT database. Judging materials
from their reflectance properties can be very hard, as is in this case. If you disregard
the color many materials look very similar.

Fig. 1. Rendered images using BRDFs from the CUReT database. Classifying materials
from their reflectance properties can be very hard, as is in this case. If you disregard
the color many materials look very similar.

2 A Low-Dimensional Generative Model for Image
Irradiance

To find a basis to represent the images, we use the framework described in [9].
With this framework we can, for a given shape, construct a low-dimensional
basis that can represent the images of an object of a wide variety of materials
under more or less arbitrary illumination.

The basis is created using model-based PCA. Rather than performing PCA
on a set of captured images, the PCA is analytically derived from the image
formation model. This makes it possible to create a basis for a wide variety of
conditions using a set of captured illumination maps and a database of surface
reflectance functions (BRDF’s). The illumination maps are undergoing all 3D
rotations to take into account every possible lighting configuration.

The BRDF acts as a low-pass filter on the incident illumination, making the
reflected light band-limited. Hence, by formulating the image formation in fre-
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quency space we can derive a finite dimensional model of the image irradiance
even when the illumination is unknown and arbitrary. As in [2, 11] the illumi-
nation is represented by its spherical harmonics coefficients, Lm

l . The BRDF is
represented by its coefficients, bq

op, in the basis by Koenderink and van Doorn,
[5], based on the Zernike polynomials. Computing the image irradiance using
these representations leads to a basis for image irradiance E. At this point we
approximate the camera projection as orthographic which makes the image ir-
radiance uniquely determined by the surface normal (α, β). This results in the
representation

E(α, β) =
∑

i

ciEi(α, β) (1)

where ci = Lm
l bq

op (l, m, o, p and q are given by i due to an ordering of the
basis functions). The Eis are the image irradiance basis functions and are prod-
ucts of the Wigner D-functions (for real spherical harmonics) and the Zernike
polynomials. See [9] for their explicit form.

The basis can represent the image irradiance from any isotropic surface under
any illumination. In the general case an infinite number of basis functions are
needed, but for many materials which act as low-pass filters on the illumination,
the sum can be truncated and still be an accurate representation. This finite
representation allows us to analytically derive the principal components. The
variations in the illumination and surface reflectance properties are described by
the covariance matrices of their respective coefficients, Lm

l and bq
op. The resulting

principal components are linear combinations of the basis functions Ei. See [9]
for details.

When we use the PCA basis to represent images we assume that the illumi-
nation is the same for each point in the image. This assumptions is true if the
light source is distant. It is also necessary that there are no cast shadows or local
inter-reflections, which is true when the object shape is convex. For non-convex
objects this model is an approximation, where the quality of the approxima-
tion depends on the concavities and the material/illumination conditions. For
instance, bright objects will have stronger inter-reflections than dark objects.

An important property of model-based PCA is that we can relate the prin-
cipal components to the properties of the illumination and surface reflectance.
There is an explicit relation between the coefficients in the PCA basis to the
coefficients of the illumination and the BRDF. From the coefficients of illumi-
nation and BRDF, the coefficients, d, in the PCA space can be computed by a
simple matrix product

d = Ac. (2)

where the elements of c are ci = Lm
l bq

op. The PCA basis as well as the matrix
A are computed from the shape of object and the variations in the illumination
and BRDF.

Another important aspect of the PCA basis regards robustness. The first ba-
sis function is selected so that it maximizes the signal variance of the component
it represent. The subsequent basis functions maximize the same variance while
being orthogonal to all the previous functions. This means that the first basis
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function has the highest signal-to-noise ratio (SNR), on average, hence being the
most robust component to estimate. The following components will be less and
less robust to estimate. In other words, selecting the number of basis functions
to use is not just a question of saving computer memory and computation time,
but also a question of robustness and regularization.

3 Material Recognition

Our approach to material recognition is to estimate the coefficients in the ba-
sis described in the previous section from the images and compare them to a
database of known materials.

Since the illumination is not known we cannot calculate what the correspond-
ing coefficients should be for the materials in the database. We need to take into
account all possible illuminations and find the illumination-material pair that
best matches the image. For this to be possible it is necessary that the variations
in the coefficient space are much smaller than the variations in the illumination
(which are infinite). If this is true we can learn the variations in the coefficient
space with only a limited amount of training illuminations.

Smooth variations in the illumination result in a manifold of points in the
coefficient space. To learn these manifolds we take a set of illumination maps
and rotate them over all rotations. To store the manifolds we sample them by
sampling the rotation group SO(3) and calculate the coefficients for each sample
point for every illumination map and material.

The image is classified by finding the manifold which is closest to the point
representing the image. The procedure is very much the same as in [7].

3.1 Learning the Manifolds

The manifold for each material is learnt from a set of illumination maps that are
rotated over the full rotation group. The rotation group is sampled and for each
rotation (α, β, γ) the spherical harmonic coefficients of the rotated illumination
map are calculated. The point on the manifold is given by equation (2).

To sample the rotation group we sample the surface of a sphere and combine
it with a circle. The sphere is sampled by starting from an icosahedron inscribed
in the sphere. The icosahedron is recursively subdivided by projecting the mid-
point of each edge onto the surface of the sphere forming four new triangles for
each old triangle, [1]. The circle is sampled at a density as close as possible to
the sampling of the sphere.

3.2 Finding the Closest Manifold

To find the closest manifold to a point we simply go through all points on each
manifold and calculate the distance to the point to be classified. The distance
measure is the sum of squared differences in coefficient space.
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Felt
Velvet

Fig. 2. Sampled manifolds in the coefficient space of materials 1-Felt (blue rings) and
7-Velvet (red crosses) under one of the illumination maps undergoing all 3D rotations,
SO(3).

To aid our algorithm in being illumination invariant we take a number of
steps. The first element of the point is discarded. It corresponds to the constant
function of the basis and captures the variations in the ambient component of
the illumination. By discarding it the algorithm becomes independent of such
variations.

The remaining elements are normalized to get brightness independence. It
also means that we will not be able to differentiate between bright and dark
materials, although this could be added at a later stage by comparing the signal
variances of the images.

4 Discrimination of Materials in the CUReT database

Before we move on to real images we need to assess what can be done. How well
can materials be discriminated from their reflectance properties alone? Figure 1
demonstrates that many materials look similar to the human eye.

To test this we will analyze how well the materials in the CUReT database can
be discriminated in synthetic images, i.e. when there is no noise. The illumination
is considered to be unknown. The algorithm is tested on images generated from
one of the illumination maps, while the other illumination maps are used to build
the manifolds for classification. This is repeated for all nine illumination maps
(the leave-one-out principle).

We don’t actually need to generate any images. Using the low-dimensional
basis framework described in Section 2 we can directly from the illumination and
material coefficients compute the coefficients in the low-dimensional basis of the
image. This allows for extensive testing. Each of the 48 materials used is tested
with nine illumination maps, each under 462 different rotations, summing up to
a total of 200 000 images used for testing.

Figure 3 shows the classification rates for the different materials. The correct
classification rates, which can be seen in the diagonal, range between 5 and 80
percent. Materials with a high classification rate are 7-velvet and 61-moss which
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have particular reflectance properties. Glossy materials have in general a higher
recognition rate than matte materials.

What is interesting is that the materials seem to form groups, where a mate-
rial in a group systematically is being mis-classified as one of the other materials
in that same group. This becomes apparent when we order the materials in a
particular way. Figure 4 shows the exact same classification rates as Figure 3,
but with the materials ordered using a hierarchical grouping algorithm that will
be described in the next section. We begin to distinguish blocks in the diagonal
of the matrix. There is a large block of matte materials in the top left corner,
formed by the materials 1-Felt, 20-Styrofoam, ..., 24-Rabbit Fur. Following the
matte materials is a group of glossy materials, 4-Rough Plastic , ..., 15-Foil. Last
comes 7-Velvet and a group of velvet-like appearance (asperity scattering), 13-
Art. Grass, 19-Rug b and 61-Moss. Finally we have 35-Painted Spheres which
forms a group of its own.

4.1 Visual Grouping of the Materials

It is clear that we cannot expect to distinguish between some of the materials
in the CUReT database. Instead we can try to find groups in which to classify
the materials.

Using the matrix containing the classification rates we group the materials.
The grouping is done in a greedy fashion. We start with groups of single materi-
als. Then the two groups that maximize the average recognition rate are joined.
This is repeated until the desired number of groups is reached. To select the
number of groups one can e.g. look at the ratio between the recognition rates
and the rate of selecting the correct material by chance.

Dividing the CUReT database into 9 groups results in the grouping in Fig-
ure 5. We have labeled the groups according to the characteristics of their mem-
bers. All matte materials end up in one group. Materials having specular re-
flectance are split up in three groups. The last five groups are materials that
did not fit into any group. These materials have a high recognition rate on their
own.

More or less all the groups are sometimes mis-classified as matte materials.
This makes sense. In the testing we take all rotations of the illumination into
account. This means that sometimes the dominant light source in the scene
will be behind the object. Hence, there will be no specularity on the object to
differentiate it from a matte material.

5 Classifying the Material in Real Images

To test the algorithm we glued five different real materials onto cylinders, see
Figure 6. Cylinders were chosen due to the difficulty of gluing a non-stretchable
materials onto a sphere. The cylinders where photographed using a digital cam-
era in different illumination conditions, including outdoor sunny, outdoor cloudy
and indoor with indirect light from a window. Before classification the images
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Classified as

Is

15 2 1 2 1 1 0 1 7 1 2 4 1 4 1 3 0 0 1 3 0 2 1 1 2 6 0 7 1 0 1 1 1 4 0 1 1 1 3 4 2 2 3 0 2 3 2
1 13 3 1 0 2 0 3 1 1 4 1 3 3 0 3 0 2 4 1 2 2 0 4 0 1 1 2 0 0 1 1 2 1 0 2 2 2 7 3 2 2 2 0 3 7 3
2 2 8 1 0 3 1 4 1 2 3 1 2 4 0 2 0 3 2 2 1 2 0 2 0 2 0 2 0 0 1 1 2 1 0 4 2 3 6 5 3 5 2 0 4 5 2
2 1 1 17 2 0 0 1 6 1 3 7 0 2 1 1 0 0 1 2 0 1 0 1 1 6 1 9 0 1 0 3 0 2 1 0 1 1 2 6 2 1 1 2 2 4 1
1 1 0 8 19 0 0 1 4 0 2 11 0 1 1 2 4 0 1 1 0 2 2 0 1 2 3 3 0 2 1 7 0 3 0 0 1 1 1 2 1 0 0 7 1 1 1
1 2 3 0 0 5 1 4 1 5 6 1 4 3 0 1 0 1 3 1 1 1 0 3 0 2 0 1 0 0 0 1 2 1 0 2 3 4 5 4 4 3 3 0 7 9 2
0 0 0 0 0 1 60 0 0 0 2 0 6 0 1 0 0 0 6 0 1 1 0 2 0 1 1 0 1 0 0 1 1 0 0 0 1 2 1 1 0 0 3 0 0 4 3
1 1 2 1 0 4 1 7 1 3 7 1 3 4 0 1 0 1 3 1 1 1 0 3 0 2 0 0 0 0 0 1 2 1 0 2 4 6 4 5 3 2 3 0 7 9 2
3 1 0 3 2 0 1 0 22 0 2 2 0 2 4 2 0 0 1 2 0 1 2 1 8 3 8 3 2 2 0 1 0 4 1 1 1 0 1 2 2 1 1 2 1 2 2
2 1 1 1 0 4 0 5 2 7 8 1 1 3 0 1 0 1 0 1 1 0 0 3 0 3 0 1 0 0 0 1 1 1 0 2 3 5 4 8 4 3 3 0 7 7 1
2 2 1 1 0 3 0 5 2 5 13 1 0 3 0 1 0 1 0 1 0 1 0 3 0 3 0 1 0 0 0 1 2 0 0 1 4 5 4 7 3 2 5 0 7 9 0
3 1 1 10 4 0 0 1 6 0 3 20 1 1 1 2 0 0 1 2 0 1 0 0 1 6 1 7 0 1 0 3 0 3 1 0 0 1 2 4 1 1 1 2 1 4 1
0 2 0 0 0 1 2 1 0 0 0 0 50 0 0 0 0 1 22 0 0 1 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 2 9
3 1 2 1 0 2 1 3 4 1 3 1 0 13 0 3 1 1 0 1 1 3 0 3 2 2 0 1 1 0 3 1 3 1 0 2 4 7 4 4 5 1 2 0 6 2 1
1 0 0 1 1 0 1 0 6 0 1 3 1 0 40 0 1 0 0 0 0 0 2 0 13 1 2 1 10 1 1 0 0 1 6 0 0 0 1 0 1 0 0 1 0 0 1
1 5 3 1 0 1 0 3 2 1 3 1 3 4 0 7 1 2 4 3 2 4 1 2 0 1 1 2 0 0 3 2 2 3 0 2 2 2 7 3 2 1 3 0 2 5 4
0 1 0 3 12 0 1 0 4 0 2 3 0 1 0 2 27 0 1 1 0 1 2 0 0 1 4 1 0 2 1 10 0 3 0 0 0 0 1 1 0 0 1 6 1 1 0
2 3 6 1 1 2 1 3 2 2 3 2 3 4 0 3 0 4 3 2 1 2 0 3 0 1 0 3 0 0 1 2 1 1 0 3 2 3 5 4 3 3 3 0 4 6 3
0 0 0 0 0 0 1 1 0 0 0 0 12 0 0 0 0 0 55 0 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 3 14
4 2 2 3 1 1 1 2 4 1 2 2 2 3 0 2 0 1 2 9 1 1 0 1 1 5 0 7 0 0 1 2 1 2 0 2 1 1 4 5 3 4 3 0 2 5 2
1 3 3 1 0 2 1 3 1 2 4 0 3 3 0 2 0 2 6 0 6 3 0 4 0 1 0 1 0 0 3 1 4 1 0 4 2 5 8 2 1 1 2 0 3 6 3
1 3 2 1 0 0 1 2 1 0 3 0 4 3 0 2 0 1 6 0 4 19 0 5 0 1 1 1 1 0 8 1 2 1 0 4 1 3 5 1 1 1 2 0 1 3 4
1 0 0 1 4 0 0 0 7 0 0 1 0 1 5 1 4 0 0 0 0 1 35 0 5 1 9 0 1 8 1 1 0 3 4 0 0 0 0 0 1 0 0 3 0 0 0
0 1 1 0 0 1 1 3 0 1 2 0 5 1 0 1 0 1 10 0 1 5 0 34 0 0 0 0 0 0 4 1 2 0 0 2 2 6 2 1 1 0 0 0 2 4 4
2 0 0 1 1 0 0 0 14 0 2 3 0 2 7 1 1 0 1 0 0 1 2 0 23 4 4 2 5 2 1 2 0 2 3 0 0 0 1 1 2 0 1 2 1 2 2
3 1 1 4 1 1 0 1 8 1 4 3 0 2 1 1 0 0 1 1 0 1 0 1 2 23 0 9 0 0 0 1 0 1 0 1 1 1 3 7 2 2 1 0 2 5 1
1 0 0 3 3 0 0 0 13 0 0 4 0 1 3 1 2 0 0 1 0 1 5 0 5 1 24 1 1 9 0 1 0 4 1 0 0 0 1 1 1 0 0 6 0 1 0
5 1 1 6 1 1 0 2 7 1 3 3 1 3 1 2 0 0 1 3 0 1 0 1 1 9 0 14 0 1 1 2 0 2 0 1 1 1 4 5 3 4 1 0 2 4 1
2 0 0 0 0 0 1 0 8 0 1 1 0 3 14 2 0 0 1 1 0 1 1 0 6 2 2 1 33 3 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 2
0 0 0 2 1 0 0 0 7 0 0 1 0 1 4 0 1 0 0 1 0 0 9 0 3 0 10 1 4 32 0 1 0 3 8 0 0 0 0 0 1 0 1 4 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 6 0 5 0 1 0 0 1 8 1 4 0 0 1 0 1 1 53 0 2 1 1 4 0 1 1 0 1 0 0 0 0 0 1
2 2 0 8 3 0 1 2 2 0 2 4 1 3 0 3 2 0 1 2 0 2 0 1 0 2 1 2 0 0 1 28 1 3 0 1 1 2 2 3 1 1 1 1 1 4 1
1 2 1 0 0 2 1 4 1 2 4 0 4 3 0 1 0 1 6 0 3 2 0 4 0 1 0 0 0 0 3 1 9 1 0 3 3 8 6 2 1 1 3 0 4 9 3
6 2 1 2 1 0 1 2 5 0 2 4 2 2 0 5 0 0 1 2 0 3 1 1 1 1 1 4 0 1 2 3 0 24 0 2 1 1 2 2 1 0 2 1 1 3 3
1 0 0 1 1 0 0 0 5 0 0 0 0 2 7 0 2 0 1 0 0 1 8 0 5 1 5 1 7 10 1 0 0 3 30 0 0 0 0 0 1 0 0 2 0 0 1
1 2 4 1 0 2 0 4 1 2 3 1 3 5 0 2 0 2 2 1 2 2 0 4 0 1 0 2 0 0 2 2 2 1 0 7 2 5 6 2 4 2 2 0 5 5 2
2 1 1 1 0 3 1 6 2 3 7 1 0 4 0 1 0 1 1 1 1 1 0 4 0 2 0 1 0 0 0 1 3 1 0 2 6 6 5 6 3 2 4 0 7 8 1
1 1 1 1 0 2 1 4 1 3 6 0 0 4 0 1 0 1 1 0 2 1 0 7 0 1 0 0 0 0 1 1 5 1 0 2 3 21 4 2 3 1 2 0 6 6 1
2 4 4 1 0 2 0 3 1 2 4 0 3 3 0 1 0 2 6 0 3 3 0 3 0 1 0 1 0 0 1 1 3 1 0 2 2 3 11 3 2 1 3 0 3 8 3
2 1 1 2 0 3 0 5 3 4 6 1 1 4 0 1 0 1 1 2 0 1 0 2 0 4 0 3 0 0 0 1 1 1 0 1 3 3 4 16 3 4 3 0 4 7 1
3 1 2 1 0 4 0 4 3 5 6 1 0 6 0 1 0 1 0 1 1 1 0 2 1 3 0 1 0 0 1 1 2 1 0 2 3 5 4 7 6 3 3 0 8 4 1
3 2 4 0 0 3 1 3 2 2 4 2 2 4 0 2 0 1 2 3 1 2 0 2 0 4 0 4 0 0 0 1 1 1 0 2 1 2 4 6 3 9 2 0 5 6 2
2 2 1 1 0 3 0 3 2 4 6 1 5 2 0 1 0 2 5 2 1 1 0 2 1 2 0 1 0 0 0 1 3 1 0 1 3 2 6 4 1 2 12 0 3 8 3
1 0 0 6 11 0 0 1 8 0 1 6 0 1 1 1 5 0 0 1 0 1 3 0 1 1 7 2 0 4 0 3 0 4 2 0 0 0 1 2 1 0 1 18 0 1 1
2 1 2 0 0 3 1 5 2 3 6 1 2 4 0 0 1 1 3 1 1 1 0 3 0 2 0 1 0 0 0 1 3 1 0 1 4 6 5 4 4 3 3 0 9 8 2
1 2 1 1 0 3 1 5 1 3 9 0 5 0 0 0 0 1 6 1 1 1 0 2 0 2 0 0 0 0 0 1 2 1 0 1 3 4 4 2 0 1 5 0 2 26 3
0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 8 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 80
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24
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26
27
28
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35
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37
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45
47
48
49
50
52
53
55
59
60
61

1 Felt 11 Plaster_b 21 Sponge 35 Painted Spheres 50 Concrete_c
2 Polyester 12 Rough Paper 22 Lambswool 36 Limestone 52 White Bread
3 Terrycloth 13 Artificial Grass 23 Lettuce Leaf 37 Brick_a 53 Soleirolia Plant
4 Rough Plastic 14 Roof Shingle 24 Rabbit Fur 39 Human Skin 55 Orange Peel
5 Leather 15 Aluminium Foil 25 Quarry Tile 41 Brick_b 59 Cracker_a
6 Sandpaper 16 Cork 26 Loofa 43 Salt Crystals 60 Cracker_b
7 Velvet 17 Rough Tile 27 Insulation 45 Concrete_a 61 Moss
8 Pebbles 18 Rug_a 28 Crumpled Paper 47 Stones
9 Frosted Glass 19 Rug_b 33 Slate_a 48 Brown Bread
10 Plaster_a 20 Styrofoam 34 Slate_b 49 Concrete_b

Fig. 3. Recognition rates for the CUReT materials. Each row shows the classification
rates for a particular materials, e.g. the leftmost element in the first row is the rate
that material no. 1 is classified as materials no. 1, the second element is the rate the
material one is classified as material no. 2. The diagonal is the correct classification
rate. These results are discussed more in the text.
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Classified as

Is

15 3 2 7 6 4 2 1 0 1 3 0 3 1 4 2 1 4 3 1 1 2 2 1 1 2 3 1 2 4 1 0 0 1 7 2 0 1 0 0 1 1 0 1 1 2 1
4 9 4 7 5 2 2 2 1 2 2 1 4 1 3 1 1 5 3 1 1 2 3 2 1 2 5 1 3 2 1 0 0 2 4 1 0 0 0 0 0 0 1 2 2 2 1
3 3 9 4 4 1 2 4 1 2 2 1 4 1 4 2 2 6 2 3 2 5 3 3 1 4 6 2 0 2 0 0 0 1 2 0 0 0 0 0 0 0 1 2 2 2 0
5 3 4 14 9 2 1 1 0 1 2 0 4 0 3 1 1 5 1 1 1 2 3 2 1 3 4 1 6 3 1 0 0 2 7 1 0 0 1 0 1 0 0 1 1 1 1
3 1 2 9 23 1 1 1 0 1 1 0 3 0 2 1 1 7 1 1 1 2 2 1 1 4 5 1 4 3 1 0 0 1 8 2 0 0 0 0 1 0 0 0 1 1 0
6 2 0 4 1 24 2 1 0 2 5 0 2 0 2 3 1 2 2 0 0 1 1 2 1 2 3 1 2 4 1 1 0 3 5 1 1 1 1 0 0 0 1 2 1 3 2
1 1 2 2 1 1 13 3 2 2 3 2 7 2 3 2 2 3 2 2 1 3 2 3 2 4 7 4 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 3 4 3 1
2 2 5 2 2 1 2 8 3 4 2 1 6 2 4 2 3 5 2 3 2 4 3 4 2 3 5 2 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 2 2 2 1
2 2 3 3 1 1 3 6 4 3 3 1 5 1 4 2 3 4 3 2 2 4 3 3 2 3 6 3 1 2 1 0 0 2 2 0 0 0 0 0 0 0 1 3 3 3 1
1 1 2 2 1 1 2 4 2 7 2 2 6 2 5 2 5 2 2 2 2 5 4 4 2 3 5 4 1 1 0 0 0 2 1 0 0 0 0 0 0 0 0 3 2 2 2
1 3 1 2 1 3 5 3 2 2 7 2 7 2 4 4 2 3 3 1 1 2 2 3 2 3 5 2 1 1 0 0 1 2 2 0 1 1 0 0 0 0 0 3 4 4 3
1 0 1 1 1 1 3 3 2 4 2 6 8 4 3 3 5 2 2 2 2 3 1 3 2 4 6 4 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 3 6 3 3
2 0 1 1 1 1 4 4 2 2 1 3 11 3 3 3 3 3 3 2 2 3 2 3 2 4 8 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 3 6 3 1
1 0 1 0 1 1 2 1 1 3 1 3 6 9 3 2 8 2 3 2 2 4 1 4 3 4 9 4 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 4 6 3 3
3 1 1 1 2 1 1 2 1 2 3 1 4 3 13 3 7 4 2 2 1 6 5 3 4 3 2 3 1 1 0 0 1 1 4 2 0 0 0 0 0 1 1 0 0 1 3
1 0 1 1 1 1 3 2 1 4 2 4 5 2 3 19 3 1 2 0 0 1 1 2 1 3 3 5 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 4 6 4 8
1 0 1 0 1 1 1 1 1 2 1 2 4 5 4 1 21 2 2 2 3 6 3 4 3 6 6 7 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1
2 2 4 3 4 1 1 1 1 1 1 0 4 1 4 1 3 16 3 3 4 4 3 5 3 6 7 2 2 1 0 0 0 1 3 0 0 0 0 0 0 0 0 1 1 1 0
2 2 2 1 2 1 2 1 2 1 1 1 6 3 2 1 2 4 12 3 4 3 1 3 3 6 8 2 1 1 0 0 0 1 2 1 0 0 0 0 0 0 0 5 5 3 0
1 1 3 1 2 1 2 3 1 2 1 1 5 2 3 1 4 4 3 5 5 7 4 4 3 6 9 3 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 4 3 2 0
2 1 3 1 3 1 1 1 1 2 1 1 4 1 3 0 5 8 3 4 7 7 4 5 3 8 7 3 1 1 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 1 0
2 1 3 1 2 1 1 2 1 1 0 1 5 3 4 1 6 4 3 3 3 9 4 5 4 6 8 3 0 1 0 0 1 1 2 0 0 0 0 0 0 0 1 2 3 2 0
3 1 3 1 3 1 1 2 1 2 1 1 4 2 6 1 5 7 3 4 5 8 6 4 3 6 4 2 1 1 0 0 0 1 3 1 0 0 0 0 0 0 0 0 0 1 1
1 1 2 0 2 1 1 2 1 2 1 1 4 2 4 1 6 5 3 4 3 7 3 7 4 7 9 3 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 3 3 2 0
2 1 2 1 2 1 1 1 1 2 1 1 5 3 4 1 6 6 4 3 3 7 3 6 6 7 8 4 1 1 0 0 0 1 2 0 0 0 0 0 0 0 1 0 1 1 0
2 1 2 1 3 0 2 1 1 1 1 0 4 2 3 1 5 7 5 3 5 7 3 5 4 13 9 3 1 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 2 1 2 1 1 1 0 1 4 2 0 1 4 2 5 3 3 2 0 5 3 9 26 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 5 6 3 0
0 0 0 0 0 0 1 1 1 2 1 1 2 2 1 5 6 1 0 1 1 2 1 3 2 2 4 34 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 5 10 4 4
2 2 1 9 6 2 1 1 0 0 1 0 2 0 2 1 1 6 1 0 1 2 2 1 1 3 4 1 17 7 2 2 0 3 6 1 1 0 1 1 1 0 0 0 1 1 0
3 2 1 7 6 3 1 1 0 0 2 0 2 0 1 1 1 4 1 0 0 1 1 1 0 3 4 0 10 20 4 2 0 3 6 1 1 0 1 1 1 0 0 1 1 1 0
1 1 0 3 2 3 1 0 0 0 2 0 1 0 1 2 1 2 0 0 0 1 1 1 1 2 1 0 8 11 19 7 4 7 4 1 3 2 2 0 1 0 0 0 1 1 1
1 1 0 2 1 4 0 0 0 0 1 0 1 0 1 1 0 2 1 0 0 0 1 1 0 1 1 0 6 6 11 18 5 3 8 1 7 3 4 2 1 0 0 0 0 1 0
0 1 0 1 1 3 1 0 0 0 2 0 1 0 1 1 0 1 1 0 0 1 0 0 0 2 1 0 3 3 12 6 27 10 4 0 4 2 2 0 0 0 1 0 1 0 1
2 2 1 2 2 3 2 0 0 1 3 0 2 1 3 2 2 3 1 0 0 1 1 2 1 2 4 1 8 4 3 1 2 28 2 0 1 0 0 0 0 0 1 1 1 1 1
3 2 1 3 3 4 1 0 0 1 2 0 1 0 2 1 0 2 1 0 0 1 2 0 1 2 2 1 3 2 2 2 0 1 22 8 8 2 2 1 4 2 1 0 1 2 0
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1 1 0 1 1 4 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 3 4 3 6 2 1 13 5 24 5 9 1 3 1 0 0 0 0 0
1 0 0 0 1 3 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 4 3 4 1 7 5 9 35 8 4 5 1 0 0 0 0 1
0 1 0 1 0 3 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 2 1 1 4 1 1 7 3 10 9 32 8 4 4 0 0 0 1 0
1 0 0 1 1 3 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 2 2 0 5 5 5 8 10 30 7 7 0 0 1 1 1
1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 3 1 1 1 0 6 13 2 2 1 6 40 10 1 1 0 1 1
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1 0 0 0 0 1 0 0 1 4 5 1 1 2 6 8 1 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 53
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Fig. 4. When the classification rates from Figure 3 are sorted in a particular way a
pattern emerge. The materials form groups. Materials within a group often are classified
as one of the other materials in the same group. The largest group can be seen as a grey
block in the top left corner of the matrix. These are the matte materials, 1-Felt, 20-
Styrofoam, ..., 24-Rabbit Fur. After the matte materials comes a group of more glossy
materials, 12-Rough Plastic, ..., 36-Limestone. Next comes a group of shiny materials
9-Frosted Glass to 33-Slate a. Last is a group of materials with asperity type scattering,
7-Velvet, 13-Artificial Grass, 19-Rug b and 61-Moss.
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Classified as

Is

83 4 4 0 1 2 3 2 1

37 47 13 1 1 0 1 1 1

19 12 58 8 0 0 1 1 1

16 5 26 49 1 0 1 1 1

22 1 1 1 60 6 6 3 0

17 0 0 0 2 50 22 9 0

17 0 0 0 1 12 55 14 0

6 0 0 0 0 4 8 80 0

39 1 5 1 0 0 0 1 53

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Group Members Label

1 1, 2, 3, 6, 8, 10, ... Matte
2 4, 5, 12, 17, 36, 55 Glossy
3 9, 23, 25, 27, 34, 41 Shiny
4 15, 33 Shinier
5 7 Velvet
6 13 Art. Grass
7 19 Rug
8 61 Moss
9 35 Spheres

Fig. 5. Classification rates when the materials are grouped into nine groups. Not all
members were listed in the matte group due to space limitations, but this group con-
tains all materials that are not in the other groups.

were radiometricly calibrated, using the method in [6]. The geometry of the
cylinders were estimated by manually marking where in the image the cylinders
were.

Fig. 6. The algorithm was tested on images of cylinders with the pieces of five different
real materials glued onto them. Top row from left to right: felt, velvet 1, velvet 2,
leather and imitation leather. Bottom row: leather in five of the different illumination
conditions.

Using the framework from Section 2 we computed a basis for the cylinder.
A total of six basis functions were used in the experiments. The coefficients for
the image were estimated by projecting the image onto the basis. The image
was then classified by finding the closest manifold as described in Section 3. The
manifolds were this time learned using all nine illumination maps.

Figure 7 shows some of the images being classified. Note how well the basis
is able to represent the image irradiance in all cases.

A total of 84 images were used in the experiment. Table 1 summarizes the
results. As predicted by the synthetic experiments only a few of the images
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Fig. 7. Examples of classified images: (a)-(d) images for Felt. (a) calibrated gray image,
(b) reconstructed gray image (this is what the algorithm “sees”), (c) image and recon-
structed intensity profiles. (d) distances to the ten closest materials. Here the material
is correctly classified as felt. (e)-(h) show the same images for Velvet 1. The material is
here incorrectly classified as 24-Rabbit Fur, 7-Velvet comes third place. (i)-(l) images
for leather which in this case is classified as 41-Brick b, 5-Leather is the third closest
material. (m)-(p) imitation leather: classified as 55-Orange, 5-Leather on seventh place.
Notice how well the basis represent the irradiance for the different cases.
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where correctly classified on an individual basis. Felt and the two velvets have a
recognition rate of 5% to 7.7%, which is still several times greater than chance,
which is 1/48 ≈ 2.1%. When using the grouping in Figure 5 the recognition
rates are higher. Felt is to a large extent classified as matte. The leather here
is classified as Shiny or Shinier, while the leather in the database is categorized
as Glossy. This could be because our leather is shiner than the leather in the
database. Visually, at least, it appears so. The imitation leather is also mostly
classified as Shiny or Shinier.

So far the results match the synthetic results fairly well. The velvet however
does not. The synthetic results indicate that velvet should be fairly easy to
recognize, but in our experiments the two velvet cylinders are mostly classified
as matte. On the other hand, they are also often classified as one the groups
Grass, Rug and Moss, which have the same type of surface reflectance as Velvet.

Material Correct Matte Glossy Shiny Shinier Velvet Grass Rug Moss Spheres

Felt 7.7 77 7.7 0 15 0 0 0 0 0
Leather 0 25 6.2 44 19 6.2 0 0 0 0
Im. Leather 0 10 0 40 35 10 0 0 0 5
Velvet 1 5 55 0 5 5 5 10 10 10 0
Velvet 2 6.7 40 0 33 0 6.7 0 13 6.7 0

Table 1. Classification Rates for the Cylinder Images

6 Conclusions

We have investigated the problem of classifying the surface material from a single
image with unknown illumination, given the surface shape.

Recognizing materials from their reflectance properties is hard. We cannot
expect to distinguish between many of the materials in the CUReT database.
Instead we should find groups in which to classify the materials.

The grouping produced by our algorithm suggests that we can expect to dis-
tinguish between matte materials, special materials such as velvet and materials
of different grades of shininess.
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