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Shape Detection

We present a method to construct robust shape detectors | Overall approach:
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based on shading. The detectors consist of a PCA appear-
ance model which is analytically computed from the image
formation model.

e Score based on normalized residual variance
e Run on scale-pyramid to cope with large scale variations

Synthetic experiments

The detectors have been tested on all combinations of

lighting, BRDF and pose variations. Over 500 millions im-
age patches have been used.

e Use multiple models to cope with large pose changes

Contributions: e Train each model to cope with

e Extension of analytical/model-based PCA to include —FE =
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. - illumination changes sis is fitted and the variance of the re51d— O
e Shape detection prootf of concept through the construc- BRDE ch ual is computed. Q .
tion and evaluation of a sphere and a cylinder detector. ] Changes P I I ‘é
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Sh admg in Frequ ency Space Sphere and Cy“nder Detectors when computing ROC-curves. To summarize these results L ket
we plot the equal error rates. O
We model shading from surfaces with any isotropic BRDF | = To evaluate the method we have created detectors for two N N S
under any illumination. Using frequency space represen- = shape primitives, spheres and cylinders. rmconZn W B C%
tations, this shading can be expressed as a linear combina- o o oo s [
tion of basis functions. Training for Pose Variations T et e S
N The models were trained for micro-scale variations and -
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here sub-pixel translations. The eight cylinder models were ad- e
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b3, - BRDEF coefficients F mEE’, / The bases increasingly fit the shapes better than the nega-
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We use N = 2000 number of basis functions to be able to /! : :
. . . . Experiments on real images
represent shading from specular surfaces. Micro-Scale Sup-Pixel Micro- . o
Variations Translations Rotations We have created a dataset of 31 images containing three

spheres, one paper, one silver painted and one gold
painted which is more specular. The spheres are pho-

Model-Based PCA of Shading

Training for Lighting Variations

. . . . 5
The frequency space representation can be used to analyt- = The lighting variations were modeled with nine HDR illu- tographed in a number of different lighting conditions and B §
ically derive the principal components of the set of images = mination maps each undergoing all 3D rotations. scales. [T -
of a shape. The variations in the images are defined by the - - @ D
variations in the illumination and BRDF [4, 2, 3]. Training for BRDF Variations 8 .
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New Extension to Include Shape Variations Sparrow of varying specularity and surface roughness. dh)
The principal components are the eigenvectors of the im- Surface roughness: m -g =
age covariance matrix, >;. Using the frequency space rep- 0.8 0.6 04 02 0.1 In comparison with BSDS300 the spheres fit the model bet- = &
resentation this matrix can be computed as S 0.25 n n E n n ter. More components leads to better discrimination. c>>‘ 2
1= ses FsVeF,ps(s) 4’3% L e g "R seper sprer B

where ¢ R R oo BRI EEELL

V. - Lightfield and BRDF covariances % e F ik T remoos iﬁf’ 05
F, - Centered basis functions for shape s é 0.75 p n n - . ~ Z: S
ps(s) - Probability prior for shape s & ; n n - . . S
Eigenfaces from four 3D Meshes S O T N e " ks

The Resulting Models
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Sphere Basis Images
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