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Overview
We present a method to construct robust shape detectors
based on shading. The detectors consist of a PCA appear-
ance model which is analytically computed from the image
formation model.
Contributions:

Extension of analytical/model-based PCA to include
shape variations
Shape detection proof of concept through the construc-
tion and evaluation of a sphere and a cylinder detector.

Shading in Frequency Space
We model shading from surfaces with any isotropic BRDF
under any illumination. Using frequency space represen-
tations, this shading can be expressed as a linear combina-
tion of basis functions.

Ii =
∑N

k=1 ckEk(αi, βi),
where

ck = Lm
l b

q
op

Lm
l - Light field coefficients
bqop - BRDF coefficients

Ek(αi, βi) - Reflectance map basis functions
We use N = 2000 number of basis functions to be able to
represent shading from specular surfaces.

Model-Based PCA of Shading
The frequency space representation can be used to analyt-
ically derive the principal components of the set of images
of a shape. The variations in the images are defined by the
variations in the illumination and BRDF [4, 2, 3].

New Extension to Include Shape Variations
The principal components are the eigenvectors of the im-
age covariance matrix, ΣI . Using the frequency space rep-
resentation this matrix can be computed as

ΣI =
∑

s∈S FsVcFT
s ps(s)

where
Vc - Light field and BRDF covariances
Fs - Centered basis functions for shape s

ps(s) - Probability prior for shape s

Eigenfaces from four 3D Meshes
0.49 (0.485) 0.18 (0.661) 0.11 (0.768) 0.037 (0.805) 0.025 (0.83) 0.019 (0.849) 0.017 (0.867) 0.015 (0.882)

Human Skin BRDF
0.2 (0.202) 0.13 (0.331) 0.069 (0.401) 0.066 (0.467) 0.046 (0.513) 0.036 (0.549) 0.026 (0.575) 0.025 (0.599)

Torrance-Sparrow BRDF Mix

Shape Detection
Overall approach:

Score based on normalized residual variance
Run on scale-pyramid to cope with large scale variations
Use multiple models to cope with large pose changes
Train each model to cope with
- small scale and pose changes
- illumination changes
- BRDF changes

Sphere and Cylinder Detectors
To evaluate the method we have created detectors for two
shape primitives, spheres and cylinders.

Training for Pose Variations
The models were trained for micro-scale variations and
sub-pixel translations. The eight cylinder models were ad-
ditionally trained for micro-rotations.

Micro-Scale
Variations

Sup-Pixel
Translations

Micro-
Rotations

Training for Lighting Variations
The lighting variations were modeled with nine HDR illu-
mination maps each undergoing all 3D rotations.

Training for BRDF Variations
The BRDF variation were modeled with Torrance-
Sparrow of varying specularity and surface roughness.

Surface roughness: m
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The Resulting Models
0.34 (0.336) 0.34 (0.673) 0.1 (0.773) 0.055 (0.828) 0.051 (0.879) 0.022 (0.901) 0.022 (0.923) 0.013 (0.936) 0.013 (0.949) 0.01 (0.959)

Sphere Basis Images
0.77 (0.766) 0.14 (0.907) 0.031 (0.937) 0.021 (0.958) 0.014 (0.972) 0.011 (0.984) 0.0057 (0.989) 0.0035 (0.993)

Cylinder Basis Images (one of eight directions)

Examples
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Experiments

Synthetic experiments
The detectors have been tested on all combinations of
lighting, BRDF and pose variations. Over 500 millions im-
age patches have been used.

For each image patch the appearance ba-
sis is fitted and the variance of the resid-
ual is computed.
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Lambertian
TS: m = 0.8, kspec = 0.5
TS: m = 0.4, kspec = 0.5
TS: m = 0.2, kspec = 0.5
TS: m = 0.1, kspec = 0.5
TS: m = 0.8, kspec = 1
TS: m = 0.4, kspec = 1
TS: m = 0.2, kspec = 1
TS: m = 0.1, kspec = 1

The BSDS300 data set [1] is used as negative exemplars
when computing ROC-curves. To summarize these results
we plot the equal error rates.
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Lambertian
TS: m = 0.8, kspec = 0.5
TS: m = 0.4, kspec = 0.5
TS: m = 0.2, kspec = 0.5
TS: m = 0.1, kspec = 0.5
TS: m = 0.8, kspec = 1
TS: m = 0.4, kspec = 1
TS: m = 0.2, kspec = 1
TS: m = 0.1, kspec = 1

Sphere Detector
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Lambertian
TS: m = 0.8, kspec = 0.5
TS: m = 0.4, kspec = 0.5
TS: m = 0.2, kspec = 0.5
TS: m = 0.1, kspec = 0.5
TS: m = 0.8, kspec = 1
TS: m = 0.4, kspec = 1
TS: m = 0.2, kspec = 1
TS: m = 0.1, kspec = 1

Cylinder Detector
The bases increasingly fit the shapes better than the nega-
tive exemplars with an increasing number of components.

Experiments on real images
We have created a dataset of 31 images containing three
spheres, one paper, one silver painted and one gold
painted which is more specular. The spheres are pho-
tographed in a number of different lighting conditions and
scales.

In comparison with BSDS300 the spheres fit the model bet-
ter. More components leads to better discrimination.
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paper sphere
silver sphere
gold sphere
Lambertian
TS: m = 0.4, kspec = 0.5
TS: m = 0.2, kspec = 0.25
TS: m = 0.2, kspec = 0.5

Residual Variance
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paper sphere
silver sphere
gold sphere
Lambertian
TS: m = 0.4, kspec = 0.5
TS: m = 0.2, kspec = 0.25
TS: m = 0.2, kspec = 0.5

Equal Error
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