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Introduction

● Investigate packet forwarding performance of new PC 
hardware:
– Multi-core CPUs

– Multiple PCI-e buses

– 10G NICs

● Can we obtain enough performance to use open-source 
routing also in the 10Gb/s realm?



   

Measuring throughput

● Packet per second
– Per-packet costs

– CPU processing, I/O and memory latency, clock frequency

● Bandwidth
– Per-byte costs

– Bandwidth limitations of bus and memory
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Inside a router, PC-style

● Every packet goes twice over shared bus to the CPU
● Cheap, but low performance
● But lets increase the # of CPUs and # of buses!
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Block hw structure (set 1)



   

Hardware – Box (set 2)

AMD Opteron 2356 with one quad core 2.3GHz Barcelona 
CPUs on a TYAN 2927 Motherboard (2U)



   

Hardware - NIC

Intel 10g board Chipset 82598

Open chip specs.  Thanks Intel!
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Equipment summary

● Hardware needs to be carefully selected
● BifrostLinux on kernel 2.6.24rc7 with LC-trie forwarding
● Tweaked pktgen
● Set 1: AMD Opteron 2222 with two double core 3GHz CPUs 

on a Tyan Thunder n6650W(S2915) motherboard
● Set 2: AMD Opteron 2356 with one quad core 2.3GHz 

Barcelona CPUs on a TYAN 2927 Motherboard (2U)
● Dual PCIe buses 
● 10GE network interface cards.

– PCI Express x8 lanes based on Intel 82598 chipset



   

Experiments

● Transmission(TX)
– Upper limits on (hw) platform

● Forwarding experiments
– Realistic forwarding performance



   

Tx Experiments

● Goal:
– Just to see how much the hw can handle – upper limit

● Loopback tests over fibers
● Don't process RX packets just let MAC count them
● These numbers can give indication what forwarding capacity 

is possible
● Experiments:

– Single CPU TX single interface

– Four CPUs TX one interface each

Tested device



   

Tx single sender: Packets per second



   

Tx single sender: Bandwidth



   

Tx - Four CPUs: Bandwidth

SUM

Packet length: 1500 bytes

CPU 4CPU 3CPU 2CPU 1



   

TX experiments summary

● Single Tx sender is primarily limited by PPS at around 
3.5Mpps

● A  bandwidth of 25.8 Gb/s and a packet rate of 10 Mp/s using 
four CPU cores and two PCIe buses

● This shows that the hw itself allows 10Gb/s performance
● We also see nice symmetric Tx between the CPU cores.



   

Forwarding experiments
● Goal:

– Realistic forwarding performance

● Overload measurements (packets are lost)
● Single forwarding path from one traffic source to one traffic 

sink
– Single IP flow was forwarded using a single CPU. 

– Realistic multiple-flow stream with varying destination address 
and packet sizes using a single CPU.

– Multi-queues on the interface cards were used to dispatch 
different flows to four different CPUs.

Test Generator Sink deviceTested device



   

Single flow, single CPU: Packets per second



   

Single flow, single CPU: Bandwidth



   

Single sender forwarding summary

● Virtually wire-speed for 1500-byte packets
● Little difference between forwarding on same card, different 

ports, or between different cards

– Seems to be slightly better perf on same card, but not 
significant

● Primary limiting factor is pps, around 900Kpps
● TX has small effect on overall performance



   

Introducing realistic traffic

● For the rest of the experiments we introduce a more realistic 
traffic scenario

● Multiple packet sizes
– Simple model based on realistic packet distribution data

● Multiple flows (multiple dst IP:s)
– This is also necessary for multi-core experiments since NIC 

classification is made using hash algorithm on packet headers



   

Packet size distribution (cdf)

Real data from www.caida.org, Wide  aug 2008

http://www.caida.org/


   

Flow distribution

● Flows have size and duration distributions
● 8000 simultaneous flows
● Each flow 30 packets long

– Mean flow duration is 258 ms

● 31000 new flows per second
– Measured by dst cache misses

● Destinations spread randomly over 11.0.0.0/8
● FIB contains ~ 280K entries

– 64K entries in 11.0.0.0/8

● This flow distribution is relatively aggressive



   

Multi-flow and single-CPU: PPS & BW

Small routing table            280K entries
No ipfilters                         ipfilters enabled

max

min

Set 1 Set 2 Set 1 Set 2



   

Multi-Q experiments

● Use more CPU cores to handle forwarding
● NIC classification (Receiver Side Scaling RSS) uses hash 

algorithm to select input queue
● Allocate several interrupt channels, one for each CPU. 
● Flows are distributed evenly between CPUs 

– need aggregated traffic with multiple flows

● Questions:
– Are processing of flows evenly dispatched ? 

– Will performance increase as CPUs are added?



   

Multi-flow and Multi-CPU (set 1)

1 CPU            4 CPUs          CPU #1        CPU #2          CPU #3         CPU #4
Only 64 byte packets



   

Results MultiQ

● Packets are evenly distributed between the four CPUs.
● But forwarding using one CPU is better than using four CPUs!
● Why is this?



   

Profiling.

 

 samples  %        symbol name

 396100   14.8714  kfree

 390230   14.6510  dev_kfree_skb_irq

 300715   11.2902  skb_release_data

 156310    5.8686  eth_type_trans

 142188    5.3384  ip_rcv

 106848    4.0116  __alloc_skb

 75677     2.8413  raise_softirq_irqoff

 69924     2.6253  nf_hook_slow

 69547     2.6111  kmem_cache_free

 68244     2.5622  netif_receive_skb

samples  %        symbol name

1087576  22.0815  dev_queue_xmit

651777   13.2333  __qdisc_run

234205    4.7552  eth_type_trans

204177    4.1455  dev_kfree_skb_irq

174442    3.5418  kfree

158693    3.2220  netif_receive_skb

149875    3.0430  pfifo_fast_enqueue

116842    2.3723  ip_finish_output

114529    2.3253  __netdev_alloc_skb

110495    2.2434  cache_alloc_refill

Single CPU Multiple CPUs



   

Multi-Q analysis

● With multiple CPUs: TX processing is using a large part of the 
CPU making using more CPUs sub-optimal

● It turns out that the Tx and Qdisc code needs to be adapted 
to scale up performance 



   

MultiQ: Updated drivers

● We recently made new measurements (not in paper) using 
updated driver code

● We also used hw set 2 (Barcelona) to get better results
● We now see an actual improvement when we add one 

processor
● (More to come)



   

Multi-flow and Multi-CPU (set 2)

1 CPU                                       2 CPUs                                      4 CPUs



   

Conclusions

● Tx and forwarding results towards 10Gb/s performance using 
Linux and selected hardware

● For optimal results hw and sw must be carefully selected.
●  >25Gb/s Tx performance
● Near 10Gb/s wirespeed forwarding for large packets
● Identified bottleneck for multi-q and multi-core forwarding.
● If this is removed, upscaling performance using several CPU 

cores is possible to 10Gb/s and beyond.


