

Towards 10Gb/s open-source routing

Olof Hagsand (KTH)
Robert Olsson (Uppsala U)

Bengt Görden (KTH)
Linuxkongress 2008

Introduction

● Investigate packet forwarding performance of new PC
hardware:
– Multi-core CPUs

– Multiple PCI-e buses

– 10G NICs

● Can we obtain enough performance to use open-source
routing also in the 10Gb/s realm?

Measuring throughput

● Packet per second
– Per-packet costs

– CPU processing, I/O and memory latency, clock frequency

● Bandwidth
– Per-byte costs

– Bandwidth limitations of bus and memory

Measuring throughput

overload

breakpoint

overload

drops

capacity

Line Card

Buffer
Memory

forwarder

Line Card

Buffer
Memory

forwarder

Line Card

Buffer
Memory

forwarder

Line Card

Buffer
Memory

forwarder

Inside a router, HW style

Specialized hardware: ASICs, NPUs, backplane with switching stages or
crossbars

CPU

RIB

CPU Card

Switched backplane

Inside a router, PC-style

● Every packet goes twice over shared bus to the CPU
● Cheap, but low performance
● But lets increase the # of CPUs and # of buses!

Line
Card

Line
Card

Line
Card

Buffer
MemoryCPU RIB

Shared bus backplane

Block hw structure (set 1)

Hardware – Box (set 2)

AMD Opteron 2356 with one quad core 2.3GHz Barcelona
CPUs on a TYAN 2927 Motherboard (2U)

Hardware - NIC

Intel 10g board Chipset 82598

Open chip specs. Thanks Intel!

Lab

Equipment summary

● Hardware needs to be carefully selected
● BifrostLinux on kernel 2.6.24rc7 with LC-trie forwarding
● Tweaked pktgen
● Set 1: AMD Opteron 2222 with two double core 3GHz CPUs

on a Tyan Thunder n6650W(S2915) motherboard
● Set 2: AMD Opteron 2356 with one quad core 2.3GHz

Barcelona CPUs on a TYAN 2927 Motherboard (2U)
● Dual PCIe buses
● 10GE network interface cards.

– PCI Express x8 lanes based on Intel 82598 chipset

Experiments

● Transmission(TX)
– Upper limits on (hw) platform

● Forwarding experiments
– Realistic forwarding performance

Tx Experiments

● Goal:
– Just to see how much the hw can handle – upper limit

● Loopback tests over fibers
● Don't process RX packets just let MAC count them
● These numbers can give indication what forwarding capacity

is possible
● Experiments:

– Single CPU TX single interface

– Four CPUs TX one interface each

Tested device

Tx single sender: Packets per second

Tx single sender: Bandwidth

Tx - Four CPUs: Bandwidth

SUM

Packet length: 1500 bytes

CPU 4CPU 3CPU 2CPU 1

TX experiments summary

● Single Tx sender is primarily limited by PPS at around
3.5Mpps

● A bandwidth of 25.8 Gb/s and a packet rate of 10 Mp/s using
four CPU cores and two PCIe buses

● This shows that the hw itself allows 10Gb/s performance
● We also see nice symmetric Tx between the CPU cores.

Forwarding experiments
● Goal:

– Realistic forwarding performance

● Overload measurements (packets are lost)
● Single forwarding path from one traffic source to one traffic

sink
– Single IP flow was forwarded using a single CPU.

– Realistic multiple-flow stream with varying destination address
and packet sizes using a single CPU.

– Multi-queues on the interface cards were used to dispatch
different flows to four different CPUs.

Test Generator Sink deviceTested device

Single flow, single CPU: Packets per second

Single flow, single CPU: Bandwidth

Single sender forwarding summary

● Virtually wire-speed for 1500-byte packets
● Little difference between forwarding on same card, different

ports, or between different cards

– Seems to be slightly better perf on same card, but not
significant

● Primary limiting factor is pps, around 900Kpps
● TX has small effect on overall performance

Introducing realistic traffic

● For the rest of the experiments we introduce a more realistic
traffic scenario

● Multiple packet sizes
– Simple model based on realistic packet distribution data

● Multiple flows (multiple dst IP:s)
– This is also necessary for multi-core experiments since NIC

classification is made using hash algorithm on packet headers

Packet size distribution (cdf)

Real data from www.caida.org, Wide aug 2008

http://www.caida.org/

Flow distribution

● Flows have size and duration distributions
● 8000 simultaneous flows
● Each flow 30 packets long

– Mean flow duration is 258 ms

● 31000 new flows per second
– Measured by dst cache misses

● Destinations spread randomly over 11.0.0.0/8
● FIB contains ~ 280K entries

– 64K entries in 11.0.0.0/8

● This flow distribution is relatively aggressive

Multi-flow and single-CPU: PPS & BW

Small routing table 280K entries
No ipfilters ipfilters enabled

max

min

Set 1 Set 2 Set 1 Set 2

Multi-Q experiments

● Use more CPU cores to handle forwarding
● NIC classification (Receiver Side Scaling RSS) uses hash

algorithm to select input queue
● Allocate several interrupt channels, one for each CPU.
● Flows are distributed evenly between CPUs

– need aggregated traffic with multiple flows

● Questions:
– Are processing of flows evenly dispatched ?

– Will performance increase as CPUs are added?

Multi-flow and Multi-CPU (set 1)

1 CPU 4 CPUs CPU #1 CPU #2 CPU #3 CPU #4
Only 64 byte packets

Results MultiQ

● Packets are evenly distributed between the four CPUs.
● But forwarding using one CPU is better than using four CPUs!
● Why is this?

Profiling.

 samples % symbol name

 396100 14.8714 kfree

 390230 14.6510 dev_kfree_skb_irq

 300715 11.2902 skb_release_data

 156310 5.8686 eth_type_trans

 142188 5.3384 ip_rcv

 106848 4.0116 __alloc_skb

 75677 2.8413 raise_softirq_irqoff

 69924 2.6253 nf_hook_slow

 69547 2.6111 kmem_cache_free

 68244 2.5622 netif_receive_skb

samples % symbol name

1087576 22.0815 dev_queue_xmit

651777 13.2333 __qdisc_run

234205 4.7552 eth_type_trans

204177 4.1455 dev_kfree_skb_irq

174442 3.5418 kfree

158693 3.2220 netif_receive_skb

149875 3.0430 pfifo_fast_enqueue

116842 2.3723 ip_finish_output

114529 2.3253 __netdev_alloc_skb

110495 2.2434 cache_alloc_refill

Single CPU Multiple CPUs

Multi-Q analysis

● With multiple CPUs: TX processing is using a large part of the
CPU making using more CPUs sub-optimal

● It turns out that the Tx and Qdisc code needs to be adapted
to scale up performance

MultiQ: Updated drivers

● We recently made new measurements (not in paper) using
updated driver code

● We also used hw set 2 (Barcelona) to get better results
● We now see an actual improvement when we add one

processor
● (More to come)

Multi-flow and Multi-CPU (set 2)

1 CPU 2 CPUs 4 CPUs

Conclusions

● Tx and forwarding results towards 10Gb/s performance using
Linux and selected hardware

● For optimal results hw and sw must be carefully selected.
● >25Gb/s Tx performance
● Near 10Gb/s wirespeed forwarding for large packets
● Identified bottleneck for multi-q and multi-core forwarding.
● If this is removed, upscaling performance using several CPU

cores is possible to 10Gb/s and beyond.

