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1 Abstract

We present Linux performance results on selected PC haedfearlP packet forwarding in 10Gb/s
speeds. In our experiments, we use Bifrost Linux on a moite NUMA PC architecture with multiple
DMA channels, dual PCle buses and 10GE network interfac#scar

Our experiments were divided into TX and forwarding expeting. The purpose of the TX experi-
ments was to explore hardware capabilities, while the med the forwarding experiments was to give
realistic bandwidth and packet rate numbers.

Our results show that 10Gb/s transmission rate is obtanabivirespeed for down to 250 byte
packets. Further, single-flow forwarding experiments gigirsingle CPU core show a forwarding rate
of around 900 Kp/s resulting in near wire-speed for largazkpts. Traffic with more realistic packet
distribution with packet filters and large FIBs enabled shawWorwarding bandwith around 4.5Gb/s.

We also show how multiple queues on the receive side werdyedatributed over multiple CPU
cores. We identify a remaining bottleneck in the linux kérmefore the full potential for multi-queue
and multi-core forwarding can be utilized. When this baotiek is removed, it would in principle be
possible to forward realistic traffic in 10Gb/s wirespeed hayond.

2 Introduction

The first IP routers were software-based and used off-thié @maputer architectures. As the require-
ment for throughput increased, applications specific @sowere developed (ASICs) along with high
performance switching backplanes(e.g. cross-bars) arahadd memory systems (including TCAMs).
This enables current routers to perform wire-speed routngp Terabit speeds. The commercial high-
end routers of today have little in common with a standardktdes

On commercial high-end routers, the architecture has dpeelfrom an integrated routing and for-
warding module (e.g. the BSD IP stack [8]) into a separatadrobplane and data-plane where the
former directs the real-time forwarding in the data-plass&ng management and signaling software. At
the same time the complexity of the forwarding and routingtgrols have increased resulting in more
hardware, and more complex software modules, up to a poiatemmardware cost, power consumption
and protocol complexity are important limiting factors @twork deployment.

Simultaneously, development of routers on general-parmosnputer platforms (such as PC's) has
developed. In particular, general purpose hardware casabinith open-source [11, 10, 9] have the
advantages of offering a low-cost and flexible solution thatactable for several niches of networking
deployment. Such a platform is inexpensive since it usetheffshelf commodity hardware, and flexible
in the sense of its openness of the source software and aiptifelarge development community.
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One can also see the modularization development taking jastandardization forums including
IETF ForCES [4] as a further trend that supports the devetyrof open software routers, or possibly
as a combination of open modules with efficient forwardinmponents [7].

However, many previous efforts have been hindered by peeoce requirements. While it has been
possible to deploy open source routers as packet filtereraamtium-bandwidth networks it has been
difficult to connect them to high-bandwidth uplinks.

Somewhat simplified, performance limitations are dependeper-packet (transaction) and per-byte
(bandwidth) costs. On a PC architecture, per-packet casts tmainly to do with processing in software
by CPUs and is therefore dependent on instruction countam®memory latency, cache behaviour and
clock frequency.

Per-byte costs are typically coupled to bandwidth limitas of buses and memory. In particular,
a PC router has to pay the double bandwidth price of forwgrdipacket from one network interface
to main memory (via DMA) and then back to an outgoing netwatkiiface after being inspected by a
CPU.

In particular, the 1Gbps PCI bus used to be a limiting factoind) several years but with the advent
of PCI Express, the performance has been increased by thef paeallell lanes and a new generation
in bus technology with respect to DMA and bus arbitration.e@nportant advantage with PCle is that
interrupts are transferred in-line instead of out-of-basohg MSI, which enables a better handling since
it allows for multiple queueable interrupts.

Memory cache behaviour is also important and is a cruciakisgith the introduction of multi-core
architectures. With the advances of efficient forwardirgpeathms [2] and small memory footprints [5],
IPv4 forwarding itself is seldom a limiting factor.

Other limitations have been advances in protocol developmbere open source routing have trailed
behind commercial software vendors. One particular exarapthis is the lack of open source MPLS
implementations, with associated VPN services using BGPMRLS. On the other hand, the open
source routing community tends to build its solution witmpler and cleaner network architectures
often relying on IP-pure networks.

Our claim in this paper is that several current trends coptbactually speaks for a renewed attempt
of using general-purpose hardware, and we present an abpifea we think has a potential for success
in using on a larger scale in new application areas. In pdaticwith 10GE speed and low cost we
believe that open source routers can be used by entersised,ISPs, and other scenarios where cost-
efficiency and clean network design are important. But mapkemost important issue is the ability
to participate in the development of new services, which ioanease the knowledge and may give
competitive advantages.

In this paper we discuss how to exploit the parallellism oftiraore CPU architectures with NUMA
architecture and parallell PCle buses combined with 10@B#t interface cards with multiple interrupt
and DMA channels. We have chosen an advanced PC platformangth potential for parallellism that
we believe will be commonplace very soon in desktop PCs.

3 Experimental platform and setup

For the experiments we use an advanced PC platform and rurpaniraental variant of the Bifrost
Linux distribution.

The interface cards we selected were 10 Gigabit XF SR Dudl$mwver Adapter PCl Express x8
lanes based on 82598 chipset from Intel with multiple intetrand DMA channels. The cards have
multiple RX and TX queues. In our experiments we use both tua dnd single NICs. The kernel
driver was ixgbe. A special ixgbe-1.3.16.1 driver was usedte multi-queue experiments.

The computer platform was an AMD Opteron 2222 with two dotddee 3GHz CPUs combined
with a Tyan Thunder n6650W(S2915) mother board with doulil¢ePbuses, see Figure 1. The four
CPUs are arranged in two double-cores, each having accdgsalomemory, thus forming a simple
NUMA architecture. Internal buses are HyperTransport (HT)
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Figure 1: Simplified block structure of the Tyan 2915 boarthwivo AMD 2222 CPUs and double PCle
buses.
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Figure 2: Experimental setups for transmission(TX). Fheere loopbacked between local interfaces.

In the base configuration, we placed two dual 10GE cards om efathe PCle buses. This means
that we can use four CPUs, two main memories, two PCle busefoan10GE interfaces.

The software was Bifrost [9] version 5.9.1 which is a Linuteese aimed at providing an open
source routing and packet filtering platform. Bifrost irsdis routing daemons, packet filtering, packet
generators, etc.

The Linux kernel was 2.6.24rc7 with the LC-trie forwardinggae, and traffic was generated using
a modified version of pktgen [1], a Linux packet generator.

The experiments were conducted using two setups as shovigLireR2 for transmission and Figure 3
for forwarding. The tested device is the experimental ptatfas described earlier and the test generator
and sink device are similar systems. In all cases, pkigenusad to generate traffic, and interface
counters were used to verify their reception. Received gtackere only registered by the receiving port
and not actually transferred over the bus to main memory. H@ngarticular NIC, interface counters
could still be read after configuring the interface as down.

3.1 Hardware selection process

Before selecting this particular hardware setup, we exachseveral other interface cards. Preliminary
experiments performed on those cards were somewhat diséipgan terms of packet-per-second and
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Figure 3: Experimental setups for forwarding. Traffic waseated, forwarded and terminated using
three boxes.
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Figure 4: Transmit rate in million packets per second as atfon of packet length in bytes. The figure
shows the results of eight measurements and the theor#tidialThe x-axis is logarithmic.

bandwidth performance. The selected card matched ourregnents and we believe that there are
currently new competing cards that also match this perfao@aln any case, it is essential to pick the
correct hardware components in order to get full 10GE peréorce.

4 Description of experiments

The experiments were divided into two main areas: Transamig3 X) and forwarding.

The purpose of the TX experiments was to explore hardwarabiiépes, including DMA, bus band-
width and driver performance. This served as a hardwarelibase preparation for the forwarding
experiments. By knowing TX performance, upper limits fofdRvarding are known in principle.

The forwarding tests are more complex and involves manyfac¢hat are difficult to study in iso-
lation. First, a single flow was forwarded and the outgoingriace was varied using a single CPU.
Thereafter, a realistic multiple-flow stream was forwarddsb using a single CPU. In the last experi-
ment, multi-queues on the interface cards were used totdtspiferent flows to four different CPUs.

5 TX Result

5.1 Single-sender TX

In the first experiment, IP packets were sent from eth0 to &b& Figure 2). Only a single CPU was
used. Packets were not actively received, eth2 was usetbjpsbvide link.

In accompanying experiments, not shown here, we noted ¢inairsg from different CPUs to differ-
ent cards on different PCle buses had little impact on thdteesherefore we conclude that the HT buses
are not a limiting factor in these experiments, and we abis&raay which CPU actually transmitted on
each interface.

It is also important in this and all following experimentsdssign TX interrupts so that the same
CPU that sent the packet makes the buffer cleanup after Tixotifthe CPU gets cache misses when
freeing buffers.

Eight sets of one million packets were sent for each packet si
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Figure 5: Bandwidth in Gb/s for a single sender. The figurenshihe results from the same experiment
as Figure 4 but bandwidth instead of pps. The x-axis is Itiyaic.

CPU1 CPU 2 CPU 3 CPU 4 Total
Rate [pkt/s] | 530K 530K 536K 536K 2.135M
Bandwidth |6.45G 6.45G 6.53G 6.53G 25.96G
[bit/s]

Table 1: Four CPUs were in parallell transmitting 1500 bydekets using separate 10Gb/s ports. The
table shows that the cumulative bandwidth was above 25 Gb/s.

Figure 4 shows packets per second as a function of packetdrslzytes. The figure shows that
highest pps for a single CPU is above 3.9 million.

Figure 5 shows result from the same experiments where bdltithin bits per second is plotted
against packet size. The figure shows clearly that wirespeddrmance is maintained of up to 256 byte
packets, and then drops.

Hardly surprising, one can see the limiting factor is perkea cost for small packets which we
believe is probably due to I/O latency.

5.2 Multiple-sender TX

In this experiment, the single sender case was extendedgimgi@l four CPUs. Each CPU transmitted
a single flow to a separate 10GE card over two separate PCds.bEgbers were loopbacked as shown
in the upper part of Figure 2 and the receive side simply amipackets without further processing.
Table 1 shows the result of transmitting 1500-byte packsitsguall four CPUs in parallell.
From the table it can be seen that the total bandwidth pradisc25.9 Gbps, and there is also an
even distribution between the CPUs and interfaces. Thédiion is probably in the PCle buses, since
two CPUs try to send 20Gbps in total over a single PCle bust-iggge 1.
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Figure 6: Packets per second as a function of packet lengtiof@arding of a single flow and single
CPU. The left bars show the result when ingress and egresplaead on the same card, the middle
when a dummy interface was used, and the right bars show #iudt sghen ingress and egress were
placed on different cards.

6 Forwarding Result

6.1 Single CPU, single flow

In the following experiments, the setup in Figure 3 was ugesingle packet flow was was sent from B
to C, with router A receiving packets on one interface and/éoding them on another.
Packets were forwarded by a single CPU, with a single DMA fi¥and a single DMA to TX was
performed. Since all packets belonged to a single flow, akups were made in the destination cache.
The experiment first used three different output interfaces

1. Same card. The input and output interfaces were on the sardebut different port on the dual
adaptor. This means that both RX and TX was made over the s@iechis.

2. Dummy interface. RX and all software processing was jperéal, but not the final TX.
3. Different cards. RX and TX on different PCle buses.

Figure 6 shows the packet-per-second graph comparing thesedifferent strategies.

As can be seen from the figure, there is little variation betwthe experiments, and the primary
limiting factor is packets per second at around 900kppss fdsults in near wire-speed for larger packets
but degrading bandwidth performance at lower packet sizes.

Profiling was done for each experiment in order to get a dmtaihderstanding of the CPU and code
execution. Figure 7 shows the profiling in the different sazdse. The figure shows that the CPU spends
a large part of its time in buffer handling. Input handlingse also, as expected, to yield more work
than forwarding and output.

6.2 Single CPU, multiple flows

In the next set of experiments, pktgen was configured to m®dumix of flows with varying destination
address and packet sizes. 8K simultaneous flows were gedgvatere each flow consisted of 30 pack-
ets. Table 2 shows the packet-size distribution which hatatively high percentage of 64 byte packets.
The scheduling of the flows were made using four concurretds3#ach using round-robin internally.

This resulted in a packet stream of around 31000 new flows gonsl aimed at representing a
realistic packet flow in a relatively loaded network envirgmt.



samples % synbol nane

396100 14.8714 kfree

390230 14.6510 dev_kfree_skb_irq
300715 11. 2902 skb _rel ease_data
156310 5.8686 eth type trans
142188 5.3384 ip_rcv

106848 4.0116 __all oc_skb

75677 2.8413 raise_softirqg_irqoff
69924 2. 6253 nf_hook_sl ow
69547 2.6111 kmem cache_free
68244 2.5622 netif_receive_skb
59197 2.2225 _ netdev_all oc_skb
59179 2.2218 cache_flusharray
53777 2.0190 ip_route_input
49528 1.8595 ip_rcv_finish
48392 1.8169 _ qdisc_run

39125 1.4689 ip_forward

36634 1. 3754 dev_queue_xnit
33888 1.2723 cache_alloc_refil
33465 1.2564 ip_finish_output

Figure 7: Forwarding profiling: Single-CPU.

Packet length[bytesDistribution
64 45%
576 25%
1500 30%

Table 2: Packet-size distribution in the forwarding exyennts.



N

Experiment Mean Bandwidth
Baseline 4.6 Gb/s
Extended 4.1 Gb/s

Table 3: Forwarding bandwidth for multiple flows. The exteddexperiment includes a large FIB and
IP tables.

1CPU
Rate [pkt/s] | 582K

4 CPUs
521K

Table 4: Forwarding of a multi-flow stream using a single Cid four CPUs in parallell.

The linux forwarding cache performs well as long as a lim#etl of new flows arrive per second.
In this experiment the 31K new flows per second corresponddi@stination cache miss rate of around
5%.

The FIB was extended to 214K routes and the netfilter moduége Waded - again without actually
filtering any packets.

The result of these experiments are shown in Table 3. The wedar of several experiments are
shown where the variation is relatively large, on the ordd0@Mb/s. In the first configuration (baseline)
only forwarding was made, while in the second (extendedijjt#?s were enabled and the FIB extended.
It can be seen that enabling IP filtering and extending therEtRices the performance somewhat (4.6
Gb/s and 4.1 Gb/s respectively). The reasons of this is nmobaply the increased number of instructions
per packet that needs to be made by the CPU.

6.3 Multiple queues, multiple CPUs

In the previous experiment, only one CPU was used to forwaakets from exactly one interface to
another. One way to extend this is to add more CPU cores toldahne forwarding path and thus
increase the performance.

In this experiment the novel multi-queue functionality létintel NICs was tested. This means that
for a single input interface, four interrupt channels wdtecated, one for each CPU, corresponding to
four different queues (ring-buffers) on the interface caispatching between packets use a hashing
algorithms so that flows are evenly distributed between CRal¢east for multi-flow traffic.

We generated an input stream consisting of 8096 simulaten@s-byte flows, where each flow was
30 packets long. The approximate sending rate was 820K fsapke second. First, we let a single CPU
forward this stream, and then let all four CPUs forward tlieam in parallell. The number of packets
that were forwarded were then recorded.

It can be seen from the Table 4 that the total forwarding dapatone CPU (581.5Kpps) surpasses
the forwarding of the four CPUs in parallell (520.6Kpps). atlis, using four parallell CPUs actually
leads to lower performance than using a single CPU. The geaioservation visile in Table 5 is that the
load is evenly distributed between the CPU cores.

The profiling of the forwarding code in Figure 8 shows thatrgdapart of the CPU time is spent in
the "dev_queue_xmit" and"__qgdisc_run" code, much mone ithh@revious experiments (see Figure 7).
It turns out that this piece of code is a serialization poiheve common data-structures are manipulated

CPU 2
131K

CPU3
131K

CPU4
130K

CPU1
129K

Rate [pkt/s]

Table 5: Individual forwarding performance of the four CHosvarding in parallell.



samples % synbol nane
1087576 22.0815 dev_queue_xmit
651777 13.2333 __qgdisc_run
234205 4.7552 eth_type trans

204177 4.1455 dev_kfree_skb_irq
174442 3.5418 kfree

158693 3.2220 netif _receive_skb
149875 3.0430 pfifo_fast_enqueue
116842 2.3723 ip_finish_output
114529 2.3253 _ netdev_all oc_skb
110495 2.2434 cache_alloc_refil

Figure 8: Forwarding profiling: Multi-queue, multi-CPU

that lead to cache misses that effects the performance.

We have taken a multiple flow stream and distributed the traffenly between the multiple CPUs.
With the hardware classifiers on the network interface candsthe MSI interrupts and the driver code
network traffic is evenly distributed among the CPU corese miatwork stack runs in parallell between
the CPUs and we can note that the TX interrupts are assigned.

However, we have identified a bottleneck in the linux forvilagdcode that need to be addressed
before we can continue and further increase the forwardapacity by adding more CPUs. The TX and
the qdisc code needs to be adapted so that its performansealarup in the case of multiple CPUs.

7 Discussion

We have shown how we to make efficient forwarding up to 10Gi#eds using the Linux kernel and PC
hardware. When obtaining such results, it is important he teoftware, configuring interrupt affinity and
allocating DMA channels adequately. It is also importantdcefully select CPU cores, interface NICs,
memory and buses to obtain a system with suitable perforenafzdarge issue has to do with avoiding
cache misses by constructing highly local code that is iaddpnt of shared data structures.

A key issue is how to distribute input load over several méesoand CPU cores. An important
building stone is the multi-queue and hardware classiioaguipport provided by many modern interface
cards, for example as specified by the Receiver Side Scdind\ith multi-queue, input is distributed
via separate DMA channels to different memories and CPUsaasang hashing of the packets headers.
This provides basic support for virtualization but is alssential for forwarding performance since it
provides a mechanism to parallelize the packet processing.

With hardware classification, it is possible to go a stephierriin functionality and performance by
off-loading parts of the forwarding decisions to hardwafiée Intel cards used in these experiments
supports hashing while other cards, including NICs from Stibrosystems, implement TCAMs which
enables a finer granularity classifications to be made.

Other fields where hardware classification is useful inclgdality-of-service, fast filtering, packet
capture and even stateful networking and flow lookup.

We even call for more advanced requirements than what thede8&es to more challenging and
valuable classifier functions. This to improve the forwagdin open source routing further and to chal-
lenge hardware vendors. Minimal function should be reguaad standardized to start and support
software development. In this way we believe that open sorouaters can truly challenge the high-end
router vendors with open and low-cost solutions.



8 Conclusions

There is no doubt that open source routing has entered thib/4@Bena. Network interface cards, CPUs
and buses can do 10Gb/s with relatively small packet sizesvarding is possible at 10G/s speed with
large packets, and around 5Gb/s in a mixed flow environmest.using a single CPU core.

To utilize multi-queues and load-balancing of forwardimgang several CPU cores, we identified an
issue with the last part of the TX gdisc code that is not fulgdy for being used in such a parallellized
environment. When this remaining bottleneck is removed,cae fully utilize the full potential of
multi-core, multi-queue forwarding. In fact, while finisiy this paper, kernel patches for an improved
multiqueue TX implementation with less lock contention basn implemented.
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