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Abstract. This paper concerns the analysis of a multiscale method for wave propagation prob-
lems in microscopically nonhomogeneous media. A direct numerical approximation of such problems
is prohibitively expensive as it requires resolving the microscopic variations over a much larger phys-
ical domain of interest. The heterogeneous multiscale method (HMM) is an efficient framework to
approximate the solutions of multiscale problems. In HMM, one assumes an incomplete macroscopic
model which is coupled to a known but expensive microscopic model. The micromodel is solved
only locally to upscale the parameter values which are missing in the macromodel. The resulting
macroscopic model can then be solved at a cost independent of the small scales in the problem.

In general, the accuracy of the HMM is related to how good the upscaling step approximates
the right macroscopic quantities. The analysis of the method, that we consider here, was previously
addressed only in purely periodic media although the method itself is numerically shown to be
applicable to more general settings. In the present study, we consider a more realistic setting by
assuming a locally-periodic medium where slow and fast variations are allowed at the same time.
We then prove that HMM captures the right macroscopic effects. The generality of the tools and
ideas in the analysis allows us to establish convergence rates in a multi-dimensional setting. The
theoretical findings here imply an improved convergence rate in one-dimension, which also justifies
the numerical observations from our earlier study.
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1. Introduction. We consider the scalar wave equation in locally-periodic me-
dia

∂ttu
ε(t,x) = ∇ ·

(
A(x,x/ε)∇uε(t,x)

)
+ f(t,x), in Ω× (0, T ](1)

uε(0,x) = g(x), ∂tu
ε(0,x) = h(x), on Ω× {t = 0},

uε(t,x) = 0 on ∂Ω× [0, T ],

where Ω is a bounded open subset of Rd with |Ω| = O(1), and A is a bounded
symmetric positive-definite matrix function in Rd×d such that for every ζ ∈ Rd

c1|ζ|2 ≤ sup
x∈Ω,y∈Y

ζTA(x,y)ζ ≤ c2 |ζ|2 , Y = (0, 1]d, and Aij = Aji.

The coefficient A is assumed to be locally-periodic, i.e. y −→ A(x,y) is Y -periodic for
all x in Ω, the parameter ε� 1 represents the wavelength of the small scale variations
in the media, and T = O(1) is a constant independent of ε. For simplicity, we will
assume that A is smooth, i.e., Aij ∈ C∞(Ω× Y ), but most of the theoretical results
in this paper will be valid for less regular coefficients such as ∂kxAij ∈ C(Ω, L∞(Y ))
for k ≤ 2.

When ε � 1, the solution to equation (1) exhibits variations at a coarse and a
fine scale, in time and space, due to the heterogeneities in the coefficient function A.
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In this case, a direct numerical simulation (DNS) of (1) becomes highly demanding
since ε-scale variations must be resolved over the entire domain, leading to O(ε−d−1)
degrees of freedom. Although DNS provides us with detailed information about the
behavior of the solution at different scales, in engineering practices, we are often
interested only in a coarse scale description of the solution. This raises the following
question: can we approximate the coarse scale, i.e. a local average, part of the solution
at a cost much lower than the cost of DNS? From a mathematical point of view this
is related to the theory of homogenization which can be traced back to 1970s. On
the other hand, from a numerical point of view, this issue has triggered the birth and
development of a number of successful numerical multiscale approaches over the last
two decades.

First we give a brief summary of the idea behind analytical homogenization. The
term homogenization was introduced to the mathematical literature by I. Babuska,
[11] and since then the theory has been systematically developed by contributions
of various researchers, see e.g. [13, 15, 34, 39] for an exposition of the method,
where references to earlier literature can also be found. Mathematically speaking,
the aim of the homogenization theory is to find a limiting solution uε −→ u0, in
some appropriate sense, and possibly a homogenized problem, satisfied by u0, which
is no more dependent on the small scale parameter ε. In a few cases, it is possible to
write down explicit equations for the homogenized problem. For example, when the
medium is periodic or locally periodic, the homogenized solution u0 solves

∂ttu
0(t,x) = ∇ ·

(
A0(x)∇u0(t,x)

)
+ f(t,x), in Ω× (0, T ](2)

u0(0,x) = g(x), ∂tu
0(0,x) = h(x), on Ω× {t = 0},

where the homogenized matrix A0 is given by

(3) A0
ij(x) =

∫
Y

(
Aij(x,y) +

d∑
k=1

Aik∂ykχj(x,y)

)
dy,

and {χ`}d`=1 are Y -periodic solutions of the following set of cell problems

∇y · (A(x,y)∇yχ`(x,y) +A(x,y)e`) = 0,

∫
Y

χ`(x,y) dy = 0,(4)

where {e`}d`=1 are canonical basis vectors in Rd. Although the homogenization the-
ory provides us with powerful analytical tools to study existence and uniqueness of
homogenized solutions, it is of limited practical use since an explicit representation
for the homogenized coefficient A0 is often missing. In such a case, the tendency is
to design multiscale numerical methods which target the coarse scale behavior of the
solution, i.e., the homogenized solution, without assuming a priori knowledge about
the homogenized coefficient or the precise nature of the coefficient A. Within the
last two decades, several multiscale strategies have been proposed to approximate
the coarse-scale dynamics of problems which possess variations at multiple scales.
To name a few, the variational multiscale method (VMM) pioneered by Hughes et
al. [33], the multiscale finite element method (MsFEM) by T. Hou et al. [31], the
equation-free approach by Kevrikidis et al. [35], and the heterogeneous multiscale
method (HMM) due to E and Engquist [17] are successful examples of such general
frameworks. Due to the large literature available on these methodologies, at this
stage, we refer the curious reader only to few representative works in the context
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of applications to multiscale PDEs, see e.g. [5, 28, 36] for methods inspired by the
VMM principle, [19, 20, 32, 29] for MsFEM type methods, and [10, 21, 4] for HMM
based strategies. See also [12, 23, 25, 26, 37, 38, 42] for other relevant literatures on
multiscale approaches for PDEs.

The focus of the present work is on the HMM strategy. The idea behind HMM is to
assume a macroscale model which lacks certain input data. To close the macromodel,
one then solves a micromodel locally and computes effective parameter values needed
for the macromodel. Since the micromodel is solved only locally, the approach leads to
a significant improvement in terms of computational cost in comparison to traditional
numerical schemes. HMM has been applied to a wide range of multiscale problems,
see e.g. [1, 6, 9, 10, 18] for elliptic, parabolic and second-order hyperbolic PDEs,
[40] for applications in micro-fluidics, [24, 16] for applications in ODEs with multiple
scales, and [3] for a recent overview of the method.

In [17, 3], a general framework for the analysis of HMM for multiscale PDEs is
given. The idea is to split the error between the HMM and the homogenized solution
(2) into three parts ∣∣UHMM − u0

∣∣ = emacro + eupscaling + emicro,

where emacro and emicro are discretization errors, and eupscaling or so-called the HMM
error is related to the accuracy of upscaling procedure where effective parameters in
the macromodel are computed using local microscopic simulations, see Remark 4.
The aim of this study is to estimate the difference between the upscaled effective
parameters and the exact homogenized quantities. A fully discrete analysis of a
finite element HMM for elliptic PDEs can be found e.g. in [1]. The analysis of
the discretization errors is omitted in the present work and can be carried out using
standard theory of finite differences or finite elements, see e.g. [14, 27, 41].

In this paper, we analyze a finite difference HMM (FD-HMM) from [21] which
approximates the solution of the second order wave equation (1), see Section 2 for a
summary of the FD-HMM. The analysis of this FD-HMM in purely periodic media
was previously addressed in [21] for short time problems where T = O(1), and in [8, 22]
for long time scales where T = O(ε−2). To be able to go beyond the rather academic
case of periodic media and to address a more realistic scenario, an extension of the
theory to non-periodic media is needed. The difficulty lies in the fact that existing
theoretical results in the periodic case do not directly apply to non-periodic media.
The analysis in this paper does not fully cover the general non-periodic theory, but
is based on two main assumptions: i) as a special case of non-periodic coefficients,
locally-periodic coefficients, see the coefficient A in (1), are assumed. ii) A scale
separation, ε� 1, in the coefficient A (and hence in the solution) is assumed.

This article is structured as follows. In Section 2, we introduce the multiscale
method. A detailed analysis of the method is then given in Section 4. We finish the
article by a conclusion in Section 5.

2. HMM. The FD-HMM uses the following macromodel for approximating the
solution of problem (1)

(5) Macro problem:
∂ttU(t,x)−∇ · F(x,∇U) = f(x), in Ω× (0, T ]
U(0,x) = g(x), ∂tU(0,x) = h(x), on Ω× {t = 0},
U(t,x) = 0, on ∂Ω× [0, T ].

Here U is the macroscopic solution and F = (F 1, F 2, · · · , F d) is the missing data
in the model. A finite difference discretization (in two dimensions) of the macro



4 D. ARJMAND, AND O. RUNBORG

problem (5) gives
(6)

Un+1
i,j = 2Uni,j − U

n−1
i,j +4t2

F 1,n

i+ 1
2 ,j
− F 1,n

i− 1
2 ,j

H
+
F 2,n

i,j+ 1
2

− F 2,n

i,j− 1
2

H

+4t2fni,j .

Moreover, U0
i,j = gi,j , and U1

i,j is given by

U1
i,j ≈ U(4t,xi,j) ≈ U(0,xi,j) +4t∂tU(0,xi,j) +

4t2

2
∂ttU(0,xi,j),

where the initial data in (5) can be used to compute the first two terms in the right
hand side, and the last term is computed by using the equation (5) which also requires
computing F at time t = 0. To compute the unknown Fn

i+ 1
2 ,j

in the macro solver (6),

we solve the multiscale problem (1) over a microscopic box Iτ ×Ωxi+1/2,j
, where Iτ =

(0, τ/2] and τ/2 is the final time for the microscopic simulations, and Ωxi+1/2,j ,η :=

xi+1/2,j + [−Lη, Lη]d where Lη ≥ η
2 + τ

2

√
|A|∞ and in practice τ = η = O(ε). In

other words, we solve
(7)

Micro problem:

∂ttu
ε,η(t,x)−∇ · (A(x,x/ε)∇uε,η) = 0, in Ωxi+1/2,j ,η × Iτ

uε,η(0,x) = û(x), ∂tu
ε,η(0,x) = 0, on Ωxi+1/2,j ,η × {t = 0},

uε,η(0,x)− û(x) is periodic in Ωxi+1/2,j ,η.

where û(x) is a linear approximation of the neighbouring coarse scale data. In one-
dimension, it is given by û(x) = s(x−xi+1/2)+(Ui+1+Ui)/2, where s = (Ui+1−Ui)/H
is the slope at the point xi+1/2, and in two dimensions (as well as higher dimensions)

it is found by a linear least square approximation of {Ui,j+k, Ui+1,j+k}k=1
k=−1. Hence,

in general we have

û(x) = s · (x− xi+1/2,j) + c0,

where s ∈ Rd is the slope vector at the point xi+1/2,j , and c0 is a suitable constant.
Moreover, for the micro problem, other boundary conditions such as the Dirichlet
condition uε,η(x) = û(x) can also be used.

Remark 1. Note that if τ = η = O(ε), the computational cost of solving the
micro problem (7) becomes independent of ε since the solution will contain only few
oscillations, in time and space, within the microscopic domain.

For the local averaging we introduce the space Kp,q which consists of functions K ∈
Cq(R) compactly supported in [−1, 1], and K(q+1) ∈ BV (R), where the derivative is
understood in the weak sense andBV is the space of functions with bounded variations
on R. Moreover, the parameter p represents the number of vanishing moments∫

R
K(t)trdt =

{
1 r = 0,

0 1 ≤r ≤ p.

As local averaging takes place in a domain of size η, we consider the scaled kernel

Kη(x) =
1

η
K(x/η).
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Finally, the flux Fi+1/2,j is computed by

(8) Fi+1/2,j = (Kτ,η ∗A(·, ·/ε)∇uε,η(·, ·)) (0,xi+1/2,j),

where

(Kτ,η ∗ f) (t,x) =

∫ t+τ/2

t−τ/2

∫
Ωx,η

Kη(x̃− x)Kτ (t̃− t)f(t̃, x̃) dx̃ dt̃,

and where in d-dimension, Kη(x) is understood as

Kη(x) = Kη(x1)Kη(x2) · · ·Kη(xd).

Note that to compute the HMM solutions Uni,j , an approximation of the microscopic
solution uε,η solving (7) as well as a numerical approximation for the integration (8)
are needed. In [9] and [21] a simple leap-frog scheme and a standard trapezoidal rule
are used to approximate these quantities.

Remark 2. Note that in the upscaling step (8), we need the values of the solution
for the micro problem (7) in the time interval [−τ/2, 0). This requires no additional
cost since the symmetry property uε,η(t,x) = uε,η(−t,x) easily follows due to the
condition ∂tu

ε,η(0,x) = 0.

Remark 3. In general, larger values for the parameters p, and q result in better
approximation properties, see Lemma 6. Moreover, taking large p, q does not increase
the computational cost, see [30] for construction of such averaging functions for all
p, q.

Remark 4. Let u0 be the solution of the homogenized equation (2). Let ūni,j ≈
u0(xi,j , tn) be the approximate solution which solves the numerical scheme (6) but with

Fni,j := F((∇U)ni,j) replaced by F̂((∇ū)ni,j), where (∇ū)ni,j represents the slope of the

approximate solution ūni,j at the point (tn,xi,j), and F̂((∇ū)ni,j) := A0(xi,j)(∇ū)ni,j.

Moreover, let Ũni,j be the HMM solution when the micro-problem (7) and the integral
(8) is solved exactly. Then the difference between the HMM solution Uni,j and the

homogenized solution u0(tn,xi,j) can be split as follows:∣∣Uni,j − u0(tn,xi,j)
∣∣ ≤ ∣∣∣Uni,j − Ũni,j∣∣∣︸ ︷︷ ︸

emicro

+
∣∣∣Ũni,j − ūni,j∣∣∣︸ ︷︷ ︸
eupscaling

+
∣∣ūni,j − u0(tn,xi,j)

∣∣︸ ︷︷ ︸
emacro

Let D ·Fni,j be the discrete approximation of the divergence operator ∇ ·F(t,x) given

in the macro-solver (6), and D2
tU

n
i,j := (Un+1

i,j − 2Uni,j + Un−1
i,j )/4t2. Then the error

eni,j := Ũni,j − ūni,j satisfies

D2
t e
n
i,j = D · F̂((∇e)ni,j) +D ·

(
F̂((∇ū)ni,j)− F((∇ū)ni,j)

)
e0
i,j = 0, e1

i,j =
4t2

2
D ·
(
F((∇ū)0

i,j)− F̂((∇ū)0
i,j)
)
.

This shows that the upscaling error will be small if the difference between the fluxes
F and F̂ is small in comparison to the macroscopic mesh size H, see [2] for a similar
result in the parabolic setting. The aim of this paper is to show that the difference in
flux is small.
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3. The main result. The macromodel (5) in HMM approximates the effective
equation (2). The HMM flux Fi+1/2,j ∈ Rd given by (8) should then approximate the
homogenized flux:

(9) F̂(xi+1/2,j) = A0(x)∇û(x)|x=xi+1/2,j
,

where û(x) is given in (7). Our main goal here is to prove that if û is linear, then
HMM captures the homogenized flux in (9) up to high orders of accuracy. Note
that since û is given by a linear approximation of the coarse scale data, the flux
(9) should be interpreted as a local approximation to the exact homogenized flux
F0(x) = A0(x)∇u0(x) in (2).

When the media is periodic, i.e., A = A(x/ε), the homogenized coefficient A0 is
a constant matrix and the HMM flux (15) approximates the homogenized flux (9) as
follows, [21]:

F = F̂ +O

((
ε

η

)q+2
)
,(10)

where higher values for q implies better regularity properties for the averaging kernel
K. In [8], however, various numerical evidence demonstrated that the above rate
is no longer valid for locally-periodic coefficients. Moreover, the convergence rate
in one-dimension was numerically observed to be different than the rate in higher
dimensions. We give the following example to better illustrate the idea.

Example 1. Consider the micro problem (14) in one dimension, with periodic
and locally-periodic coefficients

A(y) = 1.1 +
1

2
(sin(r0) + sin(2πy + 2)) ,

A(x, y) = 1.1 +
1

2
(sin(2πx+ r0) + sin(2πy + 2)) , r0 =

1

10
.(11)

The left plot in Figure 1 shows the O((ε/η)q+2) convergence rate in (10), for the
periodic coefficient given in (11), and O(ε2) asymptotic rate for the locally-periodic
coefficient. Consider also the two-dimensional coefficients

A(y) = (1.5 + sin(2πy1))(1.5 + sin(2πy2)),

A(x,y) = (1.5 + sin(2πy1) + sin(2πx2) cos(2πy1)).(12)

The right plot in Figure 1, depicts the O((ε/η)q+2) convergence rate that the periodic
theory predicts, while an O(ε) asymptotic convergence rate is observed for the locally-
periodic coefficient in (12).

In the present paper, we are able to give a rigorous analysis revealing the con-
vergence rates in a multi-dimensional locally-periodic setting. Moreover, our theory
fully explains the mentioned dimension-dependent phenomenon. The main result of
this paper is the following theorem.

Theorem 1. Let F be given as in (15), and F̂ be the homogenized flux (9). Fur-
thermore, let û = s · x, K ∈ Kp,q with an even q and p > 1, and 0 < ε ≤ η = τ < 1,
and assume that r0 belongs to the compact set Ω. Then

sup
r0∈Ω

∣∣∣F(r0)− F̂(r0)
∣∣∣
∞
≤ C |s|∞


(
ε

η

)q−1

+ ε−5η7, d = 1,(
ε

η

)q−1

+ ε+ ε−5η7, d > 1.
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ε10
-3

10
-2

|F
−
F̂
| ∞

10
-8

10
-6

10
-4

10
-2

10
0
Upscaling error in 1D, with p = 3, q =7, η = 0.01

Locally periodic
O((ε/η)q+2)
O(ε2)
Periodic

ε10
-2

10
-1

|F
−
F̂
| ∞

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Upscaling error in 2D, with p = 3, q =7, η = 0.1

Locally periodic
O((ε/η)q+2)
O(ε)
Periodic

Fig. 1. The upscaling errors |F − F̂|∞ for periodic and locally-periodic materials in one and
two dimensions are depicted. (Left) Upscaling error for the periodic and locally-periodic coefficients
(11) in one dimension: the micro problem (14) is solved with the parameters τ = η = 0.01. The
result indicates different convergence rates in periodic and locally-periodic media. (Right) Upscaling
error for the periodic and locally-periodic coefficients (11) in two dimensions: the micro problem
(14) is solved with the parameters τ = η = 0.1. The result indicates again different convergence
rates in periodic and locally-periodic media. Note also the dependency of the convergence rates, in
locally-periodic media, on the dimension. In one dimension, we observe O(ε2) asymptotic rate while
in two dimensions the convergence rate becomes O(ε).

where C does not depend on x, ε, η but may depend on K, p, q, d or A. Moreover, if
η = ε1−β for 0 < β < 2/7, then

sup
r0∈Ω

∣∣∣F(r0)− F̂(r0)
∣∣∣
∞
≤ C|s|∞

{
εβ(q−1) + ε2−7β d = 1,

εβ(q−1) + ε+ ε2−7β d > 1.
(13)

Remark 5. The HMM error in (13) can be made almost equal to O(εk + ε2) for
d = 1 and to O(εk + ε) for d > 1, where k ≥ 2, upon choosing small enough β and
a large enough q, i.e., q = k/β + 1. Small values for the parameter β imply a low
computational cost as the size of the micro domains are η = O(ε1−β) ≈ O(ε).

Remark 6. Note that the simulations in Figure 1 are done for fixed η and varying
ε, and that O(ε2) and O(ε) asymptotic rates are observed in one and two dimensions
respectively. Theorem 1, however, suggests an O(ε−5) asymptotic error which is not
seen in the Figure. This is due to the fact that the error bound in Theorem 1 is not
sharp. But note that the right asymptotic rates are recovered upon choosing η = ε1−β.

4. Analysis.

4.1. Simplifications. We start by some simplifications for the analysis. Let r0

represent a fixed but arbitrary point in the domain Ω. We consider the micro-problem
(7), centred at r0 (Ωr0,η = r0 + [−Lη, Lη]d), with initial data

û(x) = s · (x− r0),

where s = ∇û(r0) ∈ Rd is the slope vector. Note that the constant term c0 introduced
in Section 2 is removed from the notation as constant initial data would have zero
contribution to the flux. The starting point of the analysis is to set the local problem
(7) on Rd and (without loss of generality) shift the micro problem to the origin.

∂ttu
ε,η(t,x) = ∇ · (A(x + r0, (x + r0)/ε)∇uε,η(t,x)) , in Rd × (0, τ/2],(14)

uε,η(0,x) = s · x, ∂tu
ε,η(0,x) = 0.
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Posing the micro-problem (14) over Rd is only to simplify the analysis, and does not
affect the computational results. This is due to the finite speed of propagation of
waves; namely the solution (of the local mixed initial-boundary value problem (7))
in the interior region [0, τ/2] × [−η/2, η/2]d, which is needed in the upscaling step
(8), will be the same as the solution of the corresponding Cauchy problem (14) since
the interior solution will not be influenced by the periodic conditions of the local
problem (7) if Lη ≥ η/2 + τ/2

√
|A|∞, see [9] for more discussions and numerical

results. Moreover, we rewrite the flux (8) as

(15) F(r0) =

∫ τ

−τ

∫
Ω0,η

Kη(x)Kτ (t)A(x + r0,x/ε+ r0/ε)∇uε,η(t,x) dx dt.

We introduce also
Ar0,γ(x,x/ε) := A(x + r0,x/ε+ γ).

As A is periodic in the second argument, we can replace the coefficient A in (14) by
Ar0,γ evaluated at γ = {r0/ε}, where {a} denotes the fractional part of a ∈ Rd.

4.2. Outline of the analysis.
Step 1. Expansion: In this part, the solution is scaled as uε,η(t,x) = εv(t/ε,x/ε),

and an asymptotic expansion is used to express v as

v(t,x) ≈ v0(t,x) + εv1(t,x) +
ε2

2
v2(t,x) + . . . .

The main result of the section is to estimate the difference between ũε,η1 :=
εv0(t/ε,x/ε)+ε2v1(t/ε,x/ε), and uε,η the solution of the micro problem (14).

Step 2. Quasi-polynomials: The main aim in this part is to write v0(t,x) and v1(t,x)
in terms of simpler (periodic) functions. Namely, we show that

v0(t,y) = s · y + v00(t,y), and v1(t,y) = v10(t,y) +

d∑
j=1

yjv11j(t,y),

where v00(t, ·), v10(t, ·), {v11j(t, ·)}dj=1 are periodic functions on Y := (0, 1]d.
Step 3. Energy estimates: This part includes energy estimates for elliptic and second

order hyperbolic PDEs. The results of this section is used later in Step 4.
Step 4. Time averages: In the upscaling step (8), the averaging operator in time can

be treated separately from the spatial averaging operator due to linearity,
see Subsection 4.6. The main aim is to write down explicit equations for the
temporally averaged quantities defined by d00(y) := Kτ ∗ v00(·/ε,y), and for
d11j , and d10 (which are defined similarly).

Step 5. Decomposition of the flux: In this part, the HMM flux (8) is decomposed as

F(r0) = (Kτ,η ∗A(·, ·/ε)∇ũε,η(·, ·)) (0, 0) + (Kτ,η ∗A(·, ·/ε) (∇uε,η −∇ũε,η1 )) (0, 0)︸ ︷︷ ︸
Etail

,

and the HMM flux is expressed as F = F0 + εF1 + δ + Etail, where

F0(r0) = (Kη ∗A(·, ·/ε) (s +∇yd00(·/ε))) (0)

F1(r0) = (Kη ∗A(·, ·/ε) (∇yd10(·/ε) + d11(·/ε))) (0)

δ(r0) =

Kη ∗
d∑
j=1

xjA(·, ·/ε)∇yd11j(·/ε)

 (0).

Moreover, the result from Step 2 is used to estimate the tail Etail.
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Step 6. The main proof : Here it is proved that |F − F0| ≤ C(ε/η)q, and that the
terms εF1 and δ are bounded and small, and the final estimate is obtained.
It is also proved that in one-dimension the result |F1| ≤ C(ε/η)q−1 holds;
explaining the one-dimensional effect seen in the numerics.

4.3. Expansion. We consider now the micro problem (14) which is posed over
Rd. By the scaling uε,η(εt, εx) := εv(t,x; ε, r0, γ) we have

∂ttv(t,x; ε, r0, γ) = ∇ · (Ar0,γ(εx,x)∇v(t,x; ε, r0, γ)) ,(16)

v(0,x; ε, r0, γ) = s · x, ∂tv(0,x; ε, r0, γ) = 0.

Now we define vk(t,x; r0, γ) := ∂kε v(t,x; 0, r0, γ), and consider the expansion
(17)

v(t,x; ε, r0, γ) = v0(t,x; r0, γ) + εv1(t,x; r0, γ) +
ε2

2
v2(t,x; r0, γ)+R(t,x; ε, r0, γ).

For k = 0, we have

∂ttv0(t,x; r0, γ) = ∇ · (Ar0,γ(0,x)∇v0(t,x; r0, γ)) ,

v0(0,x; r0, γ) = s · x, ∂tv0(0,x; r0, γ) = 0.(18)

Let v0 = s · x + v00(t,x; r0, γ), then

∂ttv00(t,x; r0, γ) = ∇ · (Ar0,γ(0,x)∇v00(t,x; r0, γ)) +∇ ·Ar0,γ(0,x)s(19)

v00(0,x; r0, γ) = ∂tv00(0,x; r0, γ) = 0.

For the higher order terms we have the following relation

∂ttvm(t,x; r0, γ) = ∇ · (Ar0,γ(0,x)∇vm(t,x; r0, γ)) +Gm(t,x; r0, γ)

vm(0,x; r0, γ) = ∂tvm(0,x; r0, γ) = 0, m > 0,(20)

where Gm is, with cjm =

(
m

j

)
,

Gm(t,x; r0, γ) = ∇ ·

m−1∑
j=0

cjm
(
∂m−jε Ar0,γ(εx,x)

)
|ε=0∇vj(t,x; r0, γ)

 .

Remark 7. We drop r0 and γ in the notation for Ar0,γ(0,y), vj(t,y; r0, γ) and
vjk(t,y; r0, γ) and simply write A(0,y), vj(t,y) and vjk(t,y). Moreover, in addition
to the assumptions on A given in the introduction, we assume that r0 belongs to the
compact set Ω so that all the constants are uniform in r0.

Now we present a theorem to estimate the tail of the expansion in (17).

Theorem 2. Assume that ΩL = [−L,L]d, and that A ∈ C∞(ΩL × Y ). Let
v(t,x; ε) be the solution of (16) and ṽm(t,x; ε) be defined by

(21) ṽm(t,x; ε) =

m∑
k=0

εk

k!
vk(t,x),

where vk is given by (18) and (20) for k = 0 and k > 1 respectively. Then for any
M > L+ t

√
|A|∞

‖∇ (v − ṽm) (t, ·; ε)‖L2(ΩL) ≤ Cεm+1
m∑
j=0

Mm−j (1 +M) tmax
|z|≤t

‖vj(z, ·)‖H2(ΩM ) ,
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ε10
-3

10
-2

10
-1

E
m
=

‖
v
−

ṽ
m
‖
∞

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Em = ‖v − ṽm‖∞, m = 0, 1, 2, 3

E0

E1

E2

E3

O(ε)
O(ε2)
O(ε3)
O(ε4)

Fig. 2. Convergence as ε −→ 0 of the truncated expansion ṽm =
∑m

k=1
εk

k!
vk. The problem

(20) is solved for m = 0, 1, 2, 3 in one-dimension with A(x, y) = 1.1 + 0.5(sin(2πx) + sin(2πy))
in the domain (t, x) ∈ [0, 1] × [−3, 3] with periodic boundary conditions. The error is defined as
Em = max(t,x)∈[0,1]×[−1.5,1.5] |v − ṽm|.

where C does not depend on t, ε and M but may depend on A,m, d. Moreover, for
m = 1, the above estimate gives

(22) ‖∇ (v − ṽ1) (t, ·; ε)‖L2(ΩL) ≤ Cε2
(
1 +Md/2+1

) (
1 +M2

) (
1 + t4

)
|s|∞ .

Proof. See the appendix.

To illustrate the result of Theorem 2, we present a numerical test in Figure 2, which
shows the claimed rate of convergence. Note that M and the final time t are fixed in
the simulation.

Corollary 1. Let uε,η(t,x) be the microscopic solution solving (14) and let
ũε,η1 (t,x) := εṽ1(t/ε,x/ε; ε), where ṽ1 is given by (21) with m = 1. Moreover, assume
that ε ≤ τ and ε ≤ η. Then, with eε,η(t,x) := uε,η(t,x)− ũε,η1 (t,x), the estimate (22)
implies

sup
t∈(0,τ ]

‖∇xe
ε,η(t, ·)‖L2(Ωη) ≤ Cε2+d/2

((η
ε

)d/2+3 (τ
ε

)4

+
(η
ε

)d/2+7
)
|s|∞ ,

where C does not depend on ε, η, τ but may depend on A and d.

Proof. Let e := v − ṽ1 and eε,η = uε,η − ũε1, then eε,η(t,x) = εe(t/ε,x/ε; ε) and
with y = x/ε the chain rule gives

∇eε,η(t,x) = ∇ye(t/ε,x/ε).

Then with α = ε/η we get

sup
t∈(0,τ ]

‖∇eε,η‖2L2(Ωη) = sup
t∈(0,τ ]

∫
Ωη

|∇eε,η(t,x)|2 dx = sup
t∈(0,τ ]

∫
Ωη

|∇ye(t/ε,x/ε)|2 dx

= εd sup
t∈(0,τ ]

∫
Ωα−1

|∇ye(t/ε,y)|2 dy = εd sup
t∈(0,τ/ε]

‖∇ye(t, ·)‖2L2(Ωα−1 ) .

The final result follows by exploiting the last inequality and by putting t = τ/ε and
M = α−1 in estimate (22).



UPSCALING ERROR IN LOCALLY-PERIODIC MEDIA 11

4.4. Quasi-polynomials. From an analysis point of view it is desirable to deal
with purely periodic functions. Unfortunately, the terms vm in (20) are not periodic.
However, they possess a nice structure known as the quasi-polynomials where the
coefficients of usual polynomials are replaced by Y -periodic smooth functions.

Definition 1. A function P (x,y) : R × R −→ R belongs to the set Pn of quasi-
polynomials of degree n if

P (x,y) =
∑
|β|≤n

pβ(y)xβ ,

where β represents a multi-index so that xβ = xβ1

1 xβ2

2 · · ·x
βd
d , |β| =

∑d
j=1 βj, and

Pβ ∈ C∞(Y ) are infinitely differentiable 1-periodic functions, named the coefficient
functions of P .

Now we will state a lemma which shows that, in general, periodic wave equations
with quasi-polynomial data have quasi-polynomial solutions. For this let us define
Q,Z, F (t, ·, ·) ∈ Pn so that

Q(x,y) =
∑
|β|≤n

qβ(y)xβ , Z(x,y) =
∑
|β|≤n

zβ(y)xβ , F (t,x,y) =
∑
|β|≤n

fβ(t,y)xβ ,

and consider the wave equation with a uniformly elliptic and bounded periodic coef-
ficient B ∈ C∞(Y ):

∂ttu = ∇ · (B(x)∇u(t,x)) + F (t,x,x)

u(0,x) = Q(x,x), ∂tu(0,x) = Z(x,x).(23)

Note that the solution u is not bounded in usual H1 spaces (not a weak solution).
However, it is a classical solution since it satisfies the wave equation pointwise every-
where. The following lemma states that the solution u is a quasi-polynomial of degree
n as well.

Lemma 1. There is a family of quasi-polynomials U(t, ·, ·) ∈ Pn such that the
solution to (23) is given as u(t,x) = U(t,x,x) =

∑
|β|≤n uβ(t,x)xβ. The coefficient

functions of U solve the forced periodic wave equations

∂ttuβ(t,x) = ∇ · (B(x)∇uβ(t,x)) + pβ + fβ

uβ(0,x) = qβ , ∂tuβ(0,x) = zβ ,

where fβ , qβ , zβ are the coefficient functions of F,Q,Z, and

pβ(t,x) =


0, |β| = n,

M [uβ+1], |β| = n− 1,

M [uβ+1] +N [uβ+2], |β| ≤ n− 2,
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where (with {ej}dj=1 being the standard canonical basis vectors in Rd)

M [uβ+1] :=

d∑
j=1

(βj + 1)
(
∇ ·
(
Bejuβ+ej

)
+ eTj B∇uβ+ej

)
N [uβ+2] :=

d∑
i,j=1

(βi + 1) (βj + 1) eTi Bejuβ+ei+ej (1− δij)

+

d∑
i=1

(βi + 1) (βi + 2) eTi Beiuβ+2ei .

Proof. The proof of this Lemma in one-dimension was given in [9]. Here, we give
the general proof. Let L =: ∇ ·B∇. We first note that

L[wβ(x)xβ ] =

d∑
i,j=1

∂xi
(
Bij(x)xβ∂xjwβ(x)

)
+

d∑
i,j=1

βj∂xi
(
xβ−ejBij(x)wβ(x)

)
= xβ

d∑
i,j=1

∂xi
(
Bij(x)∂xjwβ(x)

)
+

d∑
i,j=1

βjx
β−ej (Bji∂xiwβ(x) + ∂xi (Bijwβ(x)))

+

d∑
i,j=1

((1− δij)βiβj + δijβi (βj − 1)) xβ−ei−ejBijwβ(x).

From this it follows that

L[U(t,x,x)] =
∑
|β|≤n

xβL[uβ ] +
∑
|β|≤n

d∑
i,j=1

βjx
β−ej (Bji∂xiuβ + ∂xi (Bijuβ))

+
∑
|β|≤n

d∑
i,j=1

((1− δij)βiβj + δijβi (βj − 1)) xβ−ei−ejBijuβ

=
∑
|β|≤n

xβL[uβ ] +
∑

|β|≤n−1

xβ
d∑
j=1

(βj + 1)

d∑
i=1

(
Bji∂xiuβ+ej + ∂xi

(
Bijuβ+ej

))
+

∑
|β|≤n−2

xβ
d∑

i,j=1

((1− δij) (βi + 1)(βj + 1) + δij(βi + 2) (βi + 1))Bijuβ+ei+ej

=
∑
|β|≤n

xβL[uβ ] +
∑

|β|≤n−1

xβM [uβ+1] +
∑

|β|≤n−2

xβN [uβ+2]

=
∑
|β|≤n

xβ (L[uβ ] + pβ) .

On the other hand

∂ttU(t,x,x) =
∑
|β|≤n

∂ttuβxβ =
∑
|β|≤n

xβ(L[uβ ] + pβ + fβ) = L[U ] + F.

Similarly, the initial data agrees and U(t,x,x) is therefore a solution.

We will now use Lemma 1 to express the solutions of (20) as quasi-polynomials.
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When m = 1, equation (20) reads

(24) ∂ttv1(t,y) = L[v1] +

d∑
j=1

∇y ·
((
yj∂xjA(0,y)

)
∇yv0

)
.

Recall from (18) that v0 solves

∂ttv0(t,y) = ∇ · (A(0,y)∇v0(t,y)) ,

v0(0,y) = s · y, ∂tv0(0,y) = 0.

Since ∇yv0 ∈ P0, the forcing term of equation (24) will be a quasi-polynomial of
degree one. Therefore by Lemma 1 we can write

(25) v1(t,y) = v10(t,y) +

d∑
j=1

yjv11j(t,y),

where v10 and v11j are periodic in y, and

∂ttv11k = L[v11k] + f11k, k = 1, . . . , d

∂ttv10 = L[v10] +M [v11] + f10,(26)

with

f11k = ∇y · (∂xkAs) +∇y · ((∂xkA)∇yv00), f10 = ∇x ·As + (∇x ·A) · ∇yv00

M [v11] =

d∑
j=1

∇y · (Aejv11j) +

d∑
j=1

eTj A∇yv11j .(27)

x
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v0(t, x), t = 0.5, x ∈ [−L/2, L/2], L = 30
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v00(t, x), t = 0.5, x ∈ [−L/2, L/2], L = 30

Fig. 3. The equation (18) is solved using a one dimensional coefficient A(x, y) = 1.1 +
1

2
(sin(2πx+ 0.1) + sin(2πy + 2)) and the initial data v0(0, x) = x over the domain (t, x) ∈

(0, 1] × [−L,L] for L = 30. (left) the term v0(t, ·) is depicted for t = 0.5. (right) the term v00(t, ·)
is computed by v00 = v0 − x.

Remark 8. Using the notation introduced in the beginning of Section 4, the
derivative ∂xjA(0,y) should be understood as ∂xjAr0,γ(x,y)|x=0.

To illustrate the idea, we present also numerical simulations, in Figures 3 and 4, where
we solve (18), and (20) for m = 1 and m = 2. The numerical results are consistent
with the fact that v0 ∈ P1, v1 ∈ P1. Moreover, we observe, in Figure 4, that v2 ∈ P2

has a quadratic growth in spatial dimensions.
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Fig. 4. The equations (20) for m = 1 and m = 2 are solved with the same coefficient and
domain as in Figure 3. (left) this plot shows that v1 ∈ P1 has linear growth in space as the theory
of quasi-polynomials predicts. (right) this plot shows that v2 ∈ P2 has a quadratic growth in space.

4.5. Energy estimates. In this section we present energy estimates for elliptic
and second order hyperbolic equations. Throughout the section, we will assume Y -
periodic uniformly elliptic and bounded coefficients of the form B = B(y), where
Bij ∈ C∞(Y ). The first lemma concerns the regularity in high order Sobolev norms
of solutions to periodic elliptic problems. In this section, we write

L = ∇y ·B∇y,

and we denote the averages over the unit cube Y by

f :=

∫
Y

f(y) dy.

Lemma 2. (Lemma 3.1 in [9]) Suppose that f ∈ Hk(Y ) is a Y -periodic function
and that f = 0. Then, for any positive integer n, there exists a unique periodic
function u ∈ Hk+2n(Y ) satisfying

(−1)nLn[u] = f, u = 0.

In addition, the following stability estimate holds

‖u‖Hk+2n(Y ) ≤ C‖f‖Hk(Y ),(28)

where C does not depend on f but may depend on k, Y and B.

Now we present a lemma which gives energy estimates for the periodic wave
equation in high order Sobolev norms.

Lemma 3. Let f ∈ C∞([0, T ] × Y ), f(t, ·) be Y -periodic, and f(t, ·) = 0. More-
over, let g, h ∈ C∞(Y ) be Y -periodic functions with ḡ = h̄ = 0. Then there is a
unique solution u ∈ C∞([0, T ]× Y ), with u(t, ·) = 0, solving

∂ttu = L[u] + f(t,y),

u(0,y) = g, ∂tu(0,y) = h.



UPSCALING ERROR IN LOCALLY-PERIODIC MEDIA 15

Moreover, there exists a constant C independent of t such that for any n ≥ 0
(29)

‖u(t, ·)‖H2n+1(Y ) ≤ CE
1/2
Ln[u](0) + C

{∫ t
0
‖f(z, ·)‖H2n(Y )dz, f is time dependent

‖f‖H2n(Y ), f is time independent,

where the energy is defined as

Eu(t) :=
1

2

∫
Y

|∂tu(t,y)|2 +B∇u · ∇u(t,y) dy.

Proof. The result is classical for n = 0. To get the estimate for n > 0, we consider
w := Ln[u]. Then by elliptic regularity, Lemma 2, we have

(30) ‖u‖Hk+2n(Y ) ≤ ‖w‖Hk(Y ).

Next we apply the operator Ln to the main equation and obtain

∂ttw(t, y) = L[w] + Ln[f ],

w(0, y) = Ln[g], ∂tw(0,y) = Ln[h].

Then we have

‖w(t, ·)‖H1(Y ) ≤ CE1/2
w (0) + C

{∫ t
0
‖Ln[f ](z, ·)‖L2(Y )dz, f is time dependent

‖Ln[f ]‖L2(Y ), f is time independent,

The final result follows by observing that ‖Ln[f ]‖L2(Y ) ≤ C‖f‖H2n(Y ), and using the
estimate (30) with k = 1.

4.6. Time averages. The upscaling step in HMM includes averaging of the
microscopic flux over micro boxes in time and space, see (15). Since

(Kτ ∗ ∇uε,η) (t,x) = ∇ (Kτ ∗ uε,η) (t,x),

and since A is time independent we can write the HMM flux in (15) as

F(r0) = (Kη ∗Aε∇ (Kτ ∗ uε,η)) (0, 0).

The idea is now to write down equations for the time average (Kτ ∗ uε(·,x)) (0). To
do this we start by presenting some intermediate results. First we use a theorem
from [9] which is used to derive equations for the local time averages of solutions to
periodic wave equations. For the next theorem, we will assume coefficient functions
of the form B = B(x,y), where Bij ∈ C∞(Ω × Y ), and B(x, ·) is Y -periodic. We
write also L := ∇y ·B∇y.

Theorem 3. (Theorem 4.1 in [9]) Suppose α = ε
τ where 0 < ε ≤ τ . Let f ∈

C∞([0, α−1], Y ) be a Y -periodic function with f(t, ·) = 0, and K ∈ Kp,q with an even
q. Furthermore, assume that w(t,y; x) is the solution of the periodic wave equation
parametrized by x, i.e., B = B(x,y),

(31)
∂ttw(t,y; x) = L[w] + f(t,y; x),
w(0,y; x) = ∂tw(0,y; x) = 0.

Then the local time average d{2k}(x,y) := Kτ ∗ ∂2k
t w(·/ε,y; x)(0) satisfies

L[d{2k}] = −
q/2−1∑
`=k

L−`+kKτ ∗ ∂2`
t f(·/ε,y; x)(0) +αqRk(x,y), k = 0, 1, · · · , q/2− 1,
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where Rk(x,y) is Y -periodic with zero average (Rk(x, ·) = 0), and

‖Rk(x, ·)‖H1(Y ) ≤ C max
|t|≤1
‖w(t/α, ·; x)‖L2(Y ),(32)

where C does not depend on α, ε, η but may depend on Y,K, p or q .

Remark 9. Our main aim in this section is to apply Theorem 3 to equations
(19), and (26) in order to be able to find equations for the local time averages. How-
ever, the theorem assumes periodic wave equations with forcing terms that have zero
average over the unit cube Y . Clearly, the equations for v00 and {v11j}dj=1 satisfy
this condition. On the other hand, the equation for v10 needs special treatment since
its right hand side does not have zero average. To handle this problem we introduce
g(t) := v10(t, ·), and split v10(t,y) into two parts as follows.

v10(t,y) = ṽ10(t,y) + v10(t, ·) = ṽ10(t,y) + g(t).

Then ṽ10 satisfies a wave equation with zero average forcing,

(33) ∂ttṽ10(t,y) = L[ṽ10] + M̃ [v11] + f̃10(t,y),

where
M̃ [v11] := M [v11]−M [v11], f̃10(t,y) = f10(t,y)− f10(t, ·).

and M [v11] is given as in (27). Moreover, the function g(t) solves the second order
ODE:

g′′(t) = M [v11] + f10(t, ·)
g(0) = g′(0) = 0.(34)

We introduce the local time averages d00, {d11j}dj=1, and d10

(35)
d00(y) := Kτ ∗ v00(·/ε,y)(0), d11j(y) := Kτ ∗ v11j(·/ε,y)(0),

d10(y) := Kτ ∗ ṽ10(·/ε,y)(0).

In the following theorem we use Theorem 3 to derive equations for these local averages.

Theorem 4. Suppose v00 and v11j solve (19), and (26) respectively. Moreover,
suppose ṽ10 solves (33) and let K ∈ Kp,q, α = ε

η with 0 < ε ≤ η and τ = η. Then the

local time averages defined in (35) satisfy

L[d00] = −∇y ·As + αqZ00(y)

L[d11j ] = −∇y · ∂xjAs−∇y ·
((
∂xjA

)
∇yd00

)
+ αqZ11j(y),

L[d10] = −
d∑
j=1

∇y · (Aejd11j)−
d∑
j=1

eTj A∇yd11j −∇x ·As− (∇x ·A) · ∇yd00

+ K̃ + αqZ10(y),(36)

where K̃ is a constant such that the right hand side has zero average, Z00, Z11j , and
Z10 are Y -periodic functions with zero average. Moreover,

(37) ‖Z‖H1(Y ) ≤ C1|s|∞


1, Z = Z00

α−1, Z = Z11j

α−2, Z = Z10.

where C1 is a constant independent of ε, η, α.
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Proof. We prove this theorem in two steps
1. Energy estimates: First we will prove the following energy estimates

max
|r|≤1

‖w(r/α, ·)‖H2n+1(Y ) ≤ C1|s|∞


1, w = v00

α−1, w = v11j

α−2, w = ṽ10.

(38)

An application of Lemma 3 to equation (19) gives

max
|r|≤1

‖v00(r/α, ·)‖H2n+1(Y ) ≤ C‖∇y ·As‖H2n(Y ) ≤ C|s|∞, ∀ n ≥ 0.

For the term v11j , we first note that with I := max
|z|≤α−1

‖f11j(z, ·)‖H2n(Y )

I ≤ C max
|z|≤α−1

(
‖∇y · ∂xjAs‖H2n(Y ) + ‖∇y ·

((
∂xjA

)
∇yv00(z, ·)

)
‖H2n(Y )

)
≤ C1|s|∞ + C2 max

|z|≤α−1
‖v00(z, ·)‖H2n+2(Y ) ≤ C|s|∞, ∀ n ≥ 0.

We then apply Lemma 3 to the first equation in (26). This gives

max
|r|≤1

‖v11j(r/α, ·)‖H1(Y ) ≤ C max
|r|≤1

∫ r/α

0

‖f11j(z, ·)‖L2(Y )dz ≤ Cα−1|s|∞.

Now we give an estimate for ṽ10. For this, we first recall from (33) and (27)
that

M̃ [v11] := M [v11]−M [v11], f̃10(t,y) = f10(t,y)− f10(t, ·),

where

f10 = ∇x ·As + (∇x ·A) · ∇yv00

M [v11] =

d∑
j=1

∇y · (Aejv11j) +

d∑
j=1

eTj A∇yv11j .

It follows that

max
|r|≤1

‖f10(r/α, ·)‖H2n(Y ) ≤ C
(
‖∇x ·As‖H2n(Y ) + max

|r|≤1
‖v00(r/α, ·)‖H2n+1(Y )

)(39)

≤ C|s|∞,

and

max
|r|≤1

‖f̃10(r/α, ·)‖H2n(Y ) ≤ max
|r|≤1

‖f10(r/α, ·)‖H2n(Y ) + max
|r|≤1

‖f10(r/α, ·)‖H2n(Y )

≤ 2 max
|r|≤1

‖f10(r/α, ·)‖H2n(Y ) ≤ C|s|∞.

The last inequality is due to the estimate for v00 in (38) and the inequality
(39). Moreover, we use the estimate for v11j in (38) to see that

max
|r|≤1

‖M̃ [v11](r/α, ·)‖H2n(Y ) ≤ C max
|r|≤1

d∑
j=1

‖M̃ [v11j ](r/α, ·)‖H2n+1(Y ) ≤ Cα−1|s|∞.
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We then apply Lemma 3 to (33) for II := max|r|≤1 ‖ṽ10(r/α, ·)‖H2n+1(Y ),

II ≤ C max
|r|≤1

∫ r/α

0

‖M̃ [v11](z, ·)‖H2n(Y ) + ‖f̃10(z, ·)‖H2n(Y ) dz

≤ Cα−1

(
max
|r|≤1

‖M̃ [v11](r/α, ·)‖H2n(Y ) + max
|r|≤1

‖f̃10(r/α, ·)‖H2n(Y )

)
≤ Cα−2|s|∞.

2. Equations for time averages: To derive the first equation in (36) we apply
Theorem 3 to (19). We immediately see that, since the forcing ∇y · As is
time-independent,

L[d00] = −
q/2−1∑
`=0

L−`Kτ ∗ ∂2`
t (∇y ·As) + αqR00,0(y)

= −∇y ·As + αqR00,0(y).

We define now Z00 := R00,0. Then by Theorem 3 and step 1 we obtain

‖Z00‖H1(Y ) ≤ C max
|r|≤1

‖v00(r/α, ·)‖L2(Y ) ≤ C1|s|∞.

Now we focus on d11j . In this case, we apply Theorem 3 to (26). This gives

L[d11j ] = −
q/2−1∑
`=0

L−`Kτ ∗ ∂2`
t f11j(·/ε,y)(0) + αqR11j,0(y)

= −
q/2−1∑
`=0

L−`Kτ ∗ ∂2`
t

(
∇y · ∂xjAs +∇y ·

((
∂xjA

)
∇yv00

))
+ αqR11j,0(y)

= −∇y · ∂xjAs−∇y ·
((
∂xjA

)
∇yd00

)
+ αqZ11j(y)

where we use the notation d
{2`}
00 (y) := Kτ ∗ ∂2`

t v(·/ε,y) from Theorem 3 and
define

Z11j := −α−q
q/2−1∑
`=1

L−`∇y ·
((
∂xjA

)
∇yd

{2`}
00

)
+R11j,0(y).

Now we estimate Z11j . From step 1 and by Theorem 3 we have

(40) ‖R11j,0‖H1(Y ) ≤ C max
|r|≤1

‖v11j(r/α, ·)‖L2(Y ) ≤ C|s|∞α−1.

Furthermore, let

(41) ψ0
` := L−`∇y ·

((
∂xjA

)
∇yd

{2`}
00

)
,

then by Lemma 2 we have

(42) ‖ψ0
`‖H2`(Y ) ≤ C‖∇y ·

((
∂xjA

)
∇yd

{2`}
00

)
‖L2(Y ) ≤ C‖d

{2`}
00 ‖H2(Y ).

On the other hand, by Theorem 3 and elliptic regularity we obtain

(43) L[d
{2`}
00 ] = αqR00,`,
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and

‖d{2`}00 ‖H2(Y ) ≤ Cαq‖R00,`‖L2(Y ) ≤ Cαq max
|r|≤1

‖v00(r/α, ·)‖H1(Y ) ≤ Cαq|s|∞.
(44)

Therefore ‖ψ0
`‖H2(Y ) ≤ Cαq|s|∞, and it follows that

‖Z11j‖H1(Y ) ≤ ‖R11j,0‖H1(Y ) + α−q
q/2−1∑
`=1

‖ψ`‖H1(Y ) ≤ C1α
−1|s|∞.

Now we concentrate on the term d10. First we introduce short hand notations:

ψ1
` = L−`

(
(∇x ·A) · ∇yd

{2`}
00 − (∇x ·A) · ∇yd2`

00

)
ψ2
` = L−`

(
M [d

{2`}
11 ]−M [d

{2`}
11 ]

)
,

where the M [d11] is understood as replacing v with d in (27). Then by
Theorem 3 we have

L[d10] = −
q/2−1∑
`=0

L−`Kτ ∗ ∂2`
t

(
f̃10(·/ε,y)(0) + M̃ [v11(·/ε,y)]

)
+ αqR10(y)

= −∇x ·As− (∇x ·A) · ∇yd00 −M [d11] +K + αqZ10(y),

where K and Z10 are defined as

K := ∇x ·As + (∇x ·A) · ∇yd00 +M [d11],

Z10(y) := R10(y) + α−q
q/2−1∑
`=1

(
ψ1
` + ψ2

`

)
.(45)

In order to bound Z10, we first see from Theorem 3 and the first part in this
proof that

‖R10‖H1(Y ) ≤ C max
|r|≤1

‖ṽ10(r/α, ·)‖L2(Y ) ≤ Cα−2|s|∞.

Next by Lemma 2, we have

‖ψ1
`‖H2`(Y ) ≤ C

∥∥∥(∇x ·A) · ∇yd
{2`}
00 − (∇x ·A) · ∇yd

{2`}
00

∥∥∥
L2(Y )

≤ C
∥∥∥d{2`}00

∥∥∥
H2(Y )

≤ Cαq|s|∞.

and

‖ψ2
`‖H2`(Y ) ≤ C

∥∥∥M [d
{2`}
11 ]−M [d

{2`}
11 ]

∥∥∥
L2(Y )

≤ C
d∑
j=1

∥∥∥d{2`}11j

∥∥∥
H1(Y )

.

But by Theorem 3 and equation (41) we have

L[d
{2`}
11j ] = L`

q/2−1∑
k=`

ψ0
k + αqR11j,`,



20 D. ARJMAND, AND O. RUNBORG

where similar to (40), it holds that

‖R11j,`‖H1(Y ) ≤ C|s|∞α−1.

We apply now Lemma 2, use the fact that ` ≤ k and obtain∥∥∥d{2`}11j

∥∥∥
H1(Y )

≤ C1

∑q/2−1
k=`

∥∥L`ψ0
k

∥∥
L2(Y )

+ C2α
q−1|s|∞

≤ C1

∑q/2−1
k=`

∥∥ψ0
k

∥∥
H2`(Y )

+ C2α
q−1|s|∞

≤ C1

∑q/2−1
k=`

∥∥ψ0
k

∥∥
H2k(Y )

+ C2α
q−1|s|∞ ≤ Cαq−1|s|∞.

Note that we used estimates (42) and (44) in the last step. Therefore,

‖Z10‖H1(Y ) ≤ Cα−2|s|∞.

4.7. Decomposition of the flux. We consider first a truncated version of the
expansion (17) by taking only v0 and v1 into consideration. We denote the truncated
microscopic solution by ũε,η(t,x). Then by the scaling introduced in Subsection 4.3
we have

ũε,η(t,x) = εv0(t/ε,x/ε) + ε2v1(t/ε,x/ε)

= (s · x + εv00(t/ε,x/ε)) + ε2v10(t/ε,x/ε) + ε

d∑
j=1

xjv11j(t/ε,x/ε).(46)

Using the notation A(x,y) = Ar0,γ(x,y), the HMM flux in (15) can be written as

F(r0) = (Kτ,η ∗A(·, ·/ε)∇ũε,η(·, ·)) (0, 0) + (Kτ,η ∗A(·, ·/ε) (∇uε,η −∇ũε,η)) (0, 0)︸ ︷︷ ︸
Etail

=

Kη ∗A(·, ·/ε)∇Kτ ∗ ũε,η(·, ·)︸ ︷︷ ︸
:=dε(x)

 (0, 0) + Etail.(47)

On the other hand, we apply Kτ to (46) and obtain

dε(x) = s · x + εd00(x/ε) + ε2d10(x/ε) + ε2 (Kτ ∗ g(·/ε)) (0) + ε

d∑
j=1

xjd11j(x/ε).

Then we can rewrite the HMM flux as

F = F0 + εF1 + δ + Etail,(48)

where

F0(r0) = (Kη ∗A(·, ·/ε) (s +∇yd00(·/ε))) (0)

F1(r0) = (Kη ∗A(·, ·/ε) (∇yd10(·/ε) + d11(·/ε))) (0)

δ(r0) =

Kη ∗
d∑
j=1

xjA(·, ·/ε)∇yd11j(·/ε)

 (0).

We will first bound the tail Etail in the following lemma.
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Lemma 4. Suppose that Etail is defined as in (47), with 0 < ε ≤ η and τ = η.
Then

|Etail| ≤ Cε−5η7 |s|∞ ,

where C does not depend on ε, η but may depend on A.

Proof. By definition we have

Etail =
1

τ

1

ηd

∫ τ

−τ

∫
Ωη

K(t/τ)K(x/η)A(x,x/ε) (∇uε,η −∇ũε,η) dx dt

≤ 1

τ

1

ηd

∫ τ

−τ
|K(t/τ)|

∣∣∣∣∣
∫

Ωη

K(x/η)A(x,x/ε) (∇uε,η −∇ũε,η) dx

∣∣∣∣∣ dt
≤ C 1

τ

1

ηd

∫ τ

−τ
|K(t/τ)| sup

t∈[0,τ ]

‖∇uε,η −∇ũε,η‖L2(Ωη)η
d/2 dt

≤ Cη−d/2 sup
t∈[0,τ ]

‖∇uε,η −∇ũε,η‖L2(Ωη) ≤ Cε2
(η
ε

)3 (τ
ε

)4

|s|∞ ≤ ε
−5η7 |s|∞ .

In the last two inequalities we used Corollary 1 and the fact that τ = η, respectively.

Before proving Theorem 1, we introduce some intermediate results.

Lemma 5. Suppose that d00 is given by (36) with r0 = x. Moreoever let the
assumptions of Theorem 4 be satisfied and

z00(x,y) =

d∑
`=1

s`χ`(x,y),

where χ` is the solution of the cell problems (4). Then

‖d00(x, ·)− z00(x, ·)‖H1(Y ) ≤ Cα
q |s|∞ ,

where α = ε/η and C does not depend on α, ε, η but may depend on A, p, q or K.

Proof. From (4), we see that

L[z00] = −∇y ·As(49)

Note the similarity between (49) with the first equation in (36). Using these two
equations we readily see that

L[d00 −
d∑
`=1

s`χ`] = αqZ00(x,y).

Therefore by elliptic regularity, Lemma 2, and the estimate (37) we have

‖d00(x, ·)− z00(x, ·)‖H2(Y ) ≤ α
q ‖Z00(x, ·)‖L2(Y ) ≤ C|s|∞α

q.

Now we present a lemma from [9] which concerns the local averages of locally-periodic
functions.

Lemma 6. Let f be a 1-periodic continuous function and K ∈ Kp,q. Then, with

α = ε/η ≤ 1, and f̄ =
∫ 1

0
f(s)ds∣∣∣∣∫
R
Kη(t)f(t/ε)dt− f̄

∣∣∣∣ ≤ C|f |∞αq+2,
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and when r ∈ Z+ and η < 1,∣∣∣∣∫ Kη(t)trf(t/ε)dt

∣∣∣∣ ≤ C
{
|f |∞αq+2ηr 1 ≤ r ≤ p
|f |∞αq+2ηr + |f̄ |ηr r > p,

where the constant C does not depend on ε, η, f or s but may depend on K, p, q, r.

We are now ready to present the proof of Theorem 1.

4.8. Proof of Theorem 1. Without loss of generality, we consider r0 = 0, and
to simplify the notation we write α = ε/η. Moreover, all the upper bounds will be
uniform in r0 as we have assumed that r0 belongs to a compact set. We use the
decomposition of F in the form (48), and split the error as follows:

|F−A0s|∞ ≤ |F0 −A0s|∞︸ ︷︷ ︸
I

+ε |F1|∞︸ ︷︷ ︸
II

+|δ|∞ + |Etail|∞.

The estimate |Etail|∞ ≤ C|s|∞ε−5η7 holds by Lemma 4. Moreover, by Lemma 6, and
the assumption that p > 1, it follows that |δ|∞ ≤ C|s|∞ηαq+2. It remains to bound
the first two terms. To bound the first term we first introduce

F̃0,j := eTj

∫
Y

A(0,y) (s +∇yd00(0,y)) dy.

Then I := max
j=1,...,d

Ij , where

Ij :=
∣∣∣eTj (F0 − Â(0)s

)∣∣∣ ≤ ∣∣∣eTj F0 − F̃0,j

∣∣∣+
∣∣∣(F̃0,j − eTj A0s

)∣∣∣ .
By Lemma 6 we have

∣∣∣eTj F0 − F̃0,j

∣∣∣ ≤ C|s|∞αq+2. Moreover, by (3)

eTj A
0(0)s = eTj

∫
Y

A(0,y)

(
s +∇y

d∑
`=1

s`χ`

)
dy.

Therefore,

∣∣∣F̃0,j − eTj A0s
∣∣∣ =

∣∣∣∣∣eTj
∫
Y

A(0,y)∇y

(
d00 −

d∑
`=1

s`χ`(0, y)

)
dy

∣∣∣∣∣
≤ C‖d00(0, ·)−

d∑
`=1

s`χ`(0, ·)‖H1(Y ) ≤ Cαq,

where we used Lemma (5) in the last inequality. This proves that I ≤ Cαq|s|∞. To
bound the term II, we first introduce

F̃1,j = eTj

∫
Y

A(0,y) (∇yd10(0,y) + d11(0,y)) dy.

Then we can write II := max
j=1,...,d

IIj , where

IIj = |eTj F1 − F̃1,j |∞ + |F̃1,j |∞
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For the first term, we use Lemma 6 to obtain |eTj F1 − F̃1,j |∞ ≤ C|s|∞αq+2. For the
second term, however, we apply elliptic regularity, Lemma 2, to equations in (36) and
see that

|F̃1,j |∞ ≤ C|s|∞.

To complete the proof we now show that |F̃1,j | ≤ Cαq when d = 1. For this we take
the y derivative of the last equation in (36) and use the equation for d11 := d11j (in
one dimension we have j = 1) and obtain:

∂2
y (A (∂yd10 + d11)) = −∂y (A∂yd11)− ∂y∂xAs− ∂y ((∂xA) ∂yd00) + αq∂yZ00(y)

= αq (∂yZ00 − Z111) .

Let χ be the solution of the cell-problem (4) in one dimension then ∂yχ = −1 +
A0A−1(0, y). From here, for a smooth and 1-periodic function u we easily obtain

〈χ, ∂y (Au)〉 =

∫
Y

A(0, y)u(y) dy −A0ū.

Next we define h(z) :=
∫ z

0
χ(y) dy, then h is 1-periodic since χ̄ = 0. We use the above

relation for u = ∂yd00 + d11 and exploit the fact ∂yd00 + d11 = 0 to see that

|F1,j | :=
∣∣∣∣∫
Y

A(0, y) (∂yd00 + d11) dy

∣∣∣∣ = |〈χ, ∂y (A (∂yd00 + d11))〉|

=
∣∣〈h, ∂2

y (A (∂yd00 + d11))〉
∣∣ = |〈h, αq (∂yZ00 − Z111)〉|

≤ αq‖h‖L2(Y )

(
‖Z00‖H1(Y ) + ‖Z111‖H1(Y )

)
≤ Cαq−1|s|.

Note that in the last inequality we used the estimates (37). The proof of the Theorem
1 is completed.

5. Conclusion. In this paper, we have proved convergence rates for the upscal-
ing error in a FD-HMM, for wave propagation problems in locally periodic media.
The analysis extends the results from the periodic theory, and reveals the precise
convergence rates for the difference between the exact/homogenized and numerically
upscaled fluxes. The outcomes of the present work are: a) in locally periodic media,
in addition to the errors predicted by the periodic theory, another error appears due
to the interaction of the slow and fast scales in the media. These errors are precisely
quantified in the present analysis. b) In general, the upscaling error in HMM type
algorithms may result in different asymptotic convergence rates depending on the di-
mension, where an improved convergence rate is typically observed in one dimension,
see Figure 1 for numerical results in one and two dimensions. The results in the
current study give a complete theoretical explanation of this dimension-dependent
phenomenon.

6. Appendix. Our aim in this section is to prove Theorem 2. We first introduce
few intermediate results. The first lemma is from [7].

Lemma 7. Suppose that A ∈ (C∞(R))d×d, f ∈ L1
(
0, T ;H1

loc

(
Rd
))

, and

∂ttu(t,x)−∇ · (A(x)∇u(t,x)) = f(t,x) in Rd × (0, T ],
u(0,x) = 0, ∂tu(0,x) = 0 on Rd × {t = 0}.

Let

Eu,Ω(t) =

∫
Ω

|∂tu|2 +A∇u · ∇u dx,



24 D. ARJMAND, AND O. RUNBORG

and M > L+ t
√
‖ A ‖∞. Moreove, let ΩL = [−L,L]d with an obvious change for M ,

then the solution u satisfies

(50) E
1/2
u,ΩL

(t) ≤ C
∫ t

0

‖ f(s, ·) ‖L2(ΩM ) ds,

where C does not depend on T , but may depend on A and d.

We consider next the following utility lemma:

Lemma 8. Let ΩM = [−M,M ]d and Y = [0, 1]d. Moreover, suppose that g = xjf ,
where f ∈ Hk(Y ) is a Y -periodic function. Then

‖f‖Hk(ΩM ) ≤ C
(

1 +Md/2
)
‖f‖Hk(Y ),

and

‖g‖Hk(ΩM ) ≤ C
(

1 +Md/2+1
)
‖f‖Hk(Y ),

where C does not depend on f, g, or M but may depend on d.

Proof. First we observe that

‖f‖2Hk(ΩM ) =

∫
ΩM

|f |2 + |∇f |2 + . . .+ |∇kf |2 dx

≤
(
1 +Md

) ∫
Y

|f |2 + |∇f |2 + . . .+ |∇kf |2dx =
(
1 +Md

)
‖f‖2Hk(Y ).

This proves the first part of the lemma. For g we have

‖g‖2Hk(ΩM ) =

∫
ΩM

|g|2 + |∇g|2 + . . .+ |∇kg|2 dx

≤
∫

ΩM

|xjf |2 + |f |2 + |xjf |2 + . . .+ |f |2 + |xj∇kf |2 dx

≤
(
1 +M2

)
‖f‖2Hk(ΩM ) ≤

(
1 +Md+2

)
‖f‖2Hk(Y ).

Now we use Lemma 8 to estimate the time growth of v0 and v1 solving (18) and
(20) respectively.

Lemma 9. Let v0 and v1 be the solutions of the wave equations (18) and (20)
respectively. Moreover let ΩM := [−M,M ]d, then

max
|z|≤t

‖v0(z, ·)‖H2(ΩM ) ≤ C
(

1 +Md/2+1
)
|s|∞ ,

max
|z|≤t

‖v1(z, ·)‖H2(ΩM ) ≤ C
(

1 +Md/2+1
) (

1 + t3
)
|s|∞ .

where C does not depend on M, t but may depend on A and d.

Proof. Using the relation v0 = v00 + s · x, toghether with Lemma 8 and the
estimate (38) we get

‖v0(t, ·)‖H2(ΩM ) ≤ ‖v00(t, ·)‖H2(ΩM ) +

d∑
j=1

‖sjxj‖H2(ΩM )

≤ C1

(
1 +Md/2

)
‖v00(t, ·)‖H2(Y ) + C2

(
1 +Md/2+1

)
≤ C

(
1 +Md/2+1

)
|s|∞ .
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To prove the estimate for v1, we first recall from (34) that

g′′(t) = M [v11] + f10,

g(0) = g′(0) = 0.

We then use the estimate for v11j in (38) and the inequality (39) and get

|g′′(t)| ≤ C1

∣∣∣M [v11](t)
∣∣∣+ C2

∣∣∣f10(t, ·)
∣∣∣

≤ C1‖M [v11](t, ·)‖L2(Y ) + C2‖f10(t, ·)‖L2(Y )

≤ C1

d∑
j=1

‖v11j(t, ·)‖H1(Y ) + C2|s|∞ ≤ C (1 + t) |s|∞.

Using the conditions g(0) = g′(0) = 0, we obtain

|g(t)| ≤
∫ t

0

∫ s

0

|g′′(z)| dzds ≤ C
(
1 + t3

)
.(51)

Then by Lemma 8 and the estimates (38) and (51) it follows that

‖v1(t, ·)‖H2(ΩM ) ≤ ‖v10(t, ·)‖H2(ΩM ) +

d∑
j=1

‖xjv11j‖H2(ΩM )

≤
(

1 +Md/2
)
‖v10(t, ·)‖H2(Y ) +

(
1 +Md/2+1

) d∑
j=1

‖v11j(t, ·)‖H2(Y )

≤
(

1 +Md/2
) (
‖ṽ10(t, ·)‖H2(Y ) + |g(t)|

)
+
(

1 +Md/2+1
) d∑
j=1

‖v11j(t, ·)‖H2(Y )

≤
(

1 +Md/2
) (

1 + t3
)
|s|∞ +

(
1 +Md/2+1

)
(1 + t) |s|∞

≤
(

1 +Md/2+1
) (

1 + t3
)
|s|∞.

Now we give the proof of Theorem 2.

Proof. (of Theorem 2) The proof of this theorem is based on deriving an explicit
equation for the error e(t, x) = v(t, x)−ṽm(t, x) and estimating the error using Lemma
7. We start with introducing the truncated Taylor expansion of A(x, y) (denoted by
Ãn) in terms of x in multi-dimensions. We use a multi-index notation (with index β)
as follows:

(52) Ãn(x,y) =
∑
|β|≤n

xβ

β!
∂βxA(0, y).

In addition, we denote the tail of the expansion by δAn(x,y) = A(x,y)−Ãn(x,y).
Taylor’s formula in multi-dimensions gives then

(53)

|δAn(εx,x)| =
∣∣∣A(εx,x)− Ãn(εx,x)

∣∣∣
=

∣∣∣∣∣∣
∑

|β|=n+1

n+ 1

β!
ε|β|x|β|

∫ 1

0

(1− t)n
(
∂βxA(x,y)|x=εxt

)
|y=xdt

∣∣∣∣∣∣
≤ Cnεn+1 |x|n+1

max
|β|=n+1

|∂βxA|,
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and
(54)

|∂xkδAn(εx,x)| =
∣∣∣∂xk (A(εx,x)− Ãn(εx,x)

)∣∣∣
=

∣∣∣∣∣∣∂xk
∑

|β|=n+1

n+ 1

β!
ε|β|x|β|

∫ 1

0

(1− t)n∂βxA(x,y)|x=εxt dt|y=x

∣∣∣∣∣∣
≤ Cnεn+1 |x|n (1 + |x|) max

|β|=n+2
|∂βx∂yA|.

Next by equation (20) and the definition of ṽm we have

∂ttṽm(t,x) =
∑m
k=0

εk

k! ∂ttvk(t,x)

=
∑m
k=0

εk

k!

∑k
j=0∇ ·

(
ckj
(
∂k−jε A(εx,x)

∣∣
ε=0

)
∇vj

)
= ∇ ·

(∑m
j=0

∑m
k=j

εk

j!(k−j)!
(
∂k−jε A(εx,x)

∣∣
ε=0

)
∇vj

)
= ∇ ·

(∑m
j=0

εj

j!

∑m−j
k=0

εk

k!

(
∂kεA(εx,x)

∣∣
ε=0

)
∇vj

)
= ∇ ·

(∑m
j=0

εj

j!

∑m−j
k=0

εk

k!

∑
|β|=k

|β|!
β! x

β∂βxA(0,y)
∣∣
y=x
∇vj

)
= ∇ ·

(∑m
j=0

εj

j!

∑
|β|≤m−j

ε|β|

β! xβ∂βxA(0,y)
∣∣
y=x
∇vj

)
= ∇ ·

(∑m
j=0

εj

j! Ãm−j(εx,x)∇vj
)
.

Furthermore, by definition of e(t,x) and equation (16) we obtain

∂tte = ∂ttv − ∂ttṽm
= ∇ · (A(εx,x)∇v)−∇ ·

(∑m
j=0

εj

j! Ãm−j(εx,x)∇vj
)

= ∇ · (A(εx,x)∇e) +∇ ·
(∑m

j=0
εj

j!

(
A(εx,x)− Ãm−j(εx,x)

)
∇vj

)
= ∇ · (A(εx,x)∇e) + f(t,x).

Together with zero initial data, e satisfies then

∂tte(t,x)−∇ · (A(εx,x)e(t,x)) = f(t,x),
e(0,x) = ∂te(0,x) = 0,

where,

f(t,x) = ∇ ·

 m∑
j=0

εj

j!

(
A(εx,x)− Ãm−j(εx,x)

)
∇vj

 .

By Lemma 7 we have E
1/2
e,ΩL

(t) ≤ C
∫ t

0
‖ f(s, ·) ‖L2(ΩM ) ds. But

∫ t

0

‖ f(s, ·) ‖L2(ΩM ) ds =

∫ t

0

‖ ∇ ·

 m∑
j=0

εj

j!
(δAm−j(ε·, ·))∇vj(s, ·)

 ‖L2(ΩM ) ds

=

∫ t

0

‖
m∑
j=0

εj

j!

(
∇ · δAm−j(ε·, ·) · ∇vj(s, ·) + δAm−j(ε·, ·) : ∇2vj(s, ·)

)
‖L2(ΩM ) ds

≤
∑m
j=0

εj

j!Cd max
x∈ΩM ,0≤|β|≤1

|∂βx δAm−j(εx,x)|
∫ t

0

‖vj(s, ·)‖H2(ΩM ) ds.
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Next by (53) and (54) we have

max
x∈ΩM ,0≤|β|≤1

|∂βxδAm−j(εx,x)| ≤ CA,mεm−j+1Mm−j (1 +M) .

Consequently,

E
1/2
e,ΩL

(t) ≤ CA,m,dεm+1
∑m
j=0M

m−j (1 +M) tmax|z|≤t ‖vj(z, ·)‖H2(ΩM ) .

The first part of the theorem follows then by ellipticity of A. To prove the second
part of the theorem we put m = 1 in the last inequality and use Lemma 9 and obtain

‖∇e‖L2(ΩM ) ≤

≤ Cε2

(
M (1 +M) tmax

|z|≤t
‖v0(z, ·)‖H2(ΩM ) + (1 +M) tmax

|z|≤t
‖v1(z, ·)‖H2(ΩM )

)
≤ Cε2

(
1 +Md/2+1

)
(1 +M) t|s|∞

(
M +

(
1 + t3

))
≤ Cε2

(
1 +Md/2+1

) (
1 +M2

) (
1 + t4

)
|s|∞.
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