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Abstract

This paper concerns the cell-boundary error present in multiscale algorithms for elliptic
homogenization problems. Typical multiscale methods have two essential components: a
macro and a micro model. The micro model is used to upscale parameter values which are
missing in the macro model. To solve the micro model, boundary conditions are required
on the boundary of the microscopic domain. Imposing a naive boundary condition leads
to O(ε/η) error in the computation, where ε is the size of the microscopic variations in
the media and η is the size of the micro-domain. The removal of this error in modern
multiscale algorithms still remains an important open problem. In this paper, we present
a time-dependent approach which is general in terms of dimension. We provide a theorem
which shows that we have arbitrarily high order convergence rates in terms of ε/η in the
periodic setting. Additionally, we present numerical evidence showing that the method
improves the O(ε/η) error to O(ε) in general non-periodic media.
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1. Introduction

In the present paper, we are interested in developing a multiscale method for the
numerical homogenization of multiscale elliptic PDEs in divergence form:

−∇ · (Aε(x)∇uε(x)) = f(x) in Ω,
uε(x) = 0 on ∂Ω,

(1)

where Ω is an open bounded set in Rd with |Ω| = O(1), ε � 1 and Aε is a symmetric,
uniformly elliptic and bounded, matrix function in Rd×d such that for every ζ ∈ Rd

c1|ζ|2 ≤ sup
x∈Ω

ζTAε(x)ζ ≤ c2|ζ|2. (2)
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The multiscale method does not assume any knowledge about the exact form of
Aε(x). However, for the sake of comparison with known analytical results, the numerical
examples and theoretical claims in this paper are given mainly in two settings: (a) for
periodic media where Aε(x) = A(x/ε) and A is a periodic matrix function in the d-
dimensional unit cube Y := (0, 1]d, and (b) for locally-periodic media where Aε(x) =
A(x,x/ε) and A(x, ·) is Y -periodic and Aij ∈ C∞(Ω×Y ). The smoothness assumptions
are only to simplify the analysis and the method performs equally well under weaker
assumptions, e.g. ∂kxAij ∈ C(Ω;L∞(Y )) at least for all k ≤ 2.

The term numerical homogenization is used to mean approximating the homogenized
solutions of multiscale PDEs without resolving the small scales over the entire domain.
Equation (1) models, for instance, steady heat conduction in heterogeneous media, where
ε stands for the length-scale of the microscopic variations in the media. A direct numerical
simulation of (1) leads to O(ε−d) degrees of freedom which can not be handled even
by the best available computers if ε is very small. The aim of homogenization is to
describe the macroscopic behaviour of the heterogeneous system (1). The idea behind
homogenization theory is to mix the heterogeneities of the media infinitely to obtain a
homogeneous system which is no more dependent on ε. Traditional numerical techniques
will then be amenable for solving the resulting homogenized system.

From a mathematical point of view, the homogenization of equation (1), for purely
periodic or a more realistic locally periodic coefficients is well-known, see e.g. [1, 2, 3].
In the periodic setting, as ε → 0, the solution to (1) tends to the homogenized solution
u0(x) which satisfies

−∇ ·
(
A0∇u0(x)

)
= f(x) in Ω,

u0(x) = 0 on ∂Ω.
(3)

Here the effective conductivity A0 is a constant matrix given by

A0
ij =

∫
Y

(
Aij(y) +

d∑
k=1

Aik∇ykχj(y)

)
dy, (4)

where the cell solutions χ = {χi}di=1 are Y -periodic functions that solve the following
periodic problems:

−∇ · (A(y)∇χi(y)) = ∇ ·A(y)ei in Y,
χi(y) is Y -periodic,

∫
Y
χi(s) ds = 0,

(5)

where {ei}di=1 are the canonical basis vectors in Rd. The above formula is valid for
periodic and, with a slight modification, for locally-periodic media. In more general
settings, on the other hand, finding the limiting behaviour of (1) is difficult and often
impossible through existing theory of homogenization.

Numerical homogenization is indispensible in cases when homogenization theory is
not adequate for finding the effective parameters of the media. From a numerical homog-
enization point of view, the focus is to develop computationally cheap methods which
are potentially applicable to general settings, where the coefficient Aε(x) is allowed to
have more general oscillations/variations in fast and slow scales. Keeping the generality
of the main physical model (1) in mind, it is important then to develop a method which
does not assume any knowledge about the form of the coefficient Aε(x), and at the same
time performs optimally when applied to periodic and locally-periodic media.
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1.1. The heterogeneous multiscale methods

E and Engquist [4], proposed the Heterogeneous Multiscale Methods (HMM) frame-
work as a general methodology for capturing the global/average behaviour of multiscale
and possibly multi-physics problems. HMM is often very useful when we have a full
description of the microscopic model. The idea is to avoid resolving the small scale
details all over the domain, at the expense of targeting only an average behaviour of
the system. Multiscale PDEs such as (1) is whithin the application areas of HMM. In
a typical HMM-based multiscale method, one starts by assuming a macroscopic model
with some unknown data. The macroscopic model is discretized through standard finite
difference (FD) or finite element methods (FEM) on a coarse mesh. Therefore, one needs
the missing data on discrete points of the macro grid. These unknown data have local
origin, which in turn is extracted from microscopic simulations performed over boxes of
size η = O(ε), where ε represents the size of the small scale in the problem. Already
here, we see that HMM exploits the scale separation featured in the main problem (1).
In other words, since ε� 1, we can set η = O(ε) and therefore the computational cost of
the micro simulations will not increase by decreasing ε. It is important to note that the
microscopic simulations should be consistent with the current macroscopic data. This is
achieved by restricting the microscopic simulations by the coarse-scale information. The
overall computational cost of this HMM-based algorithm will then be NCmicro, where N
is the number of macro grid points and Cmicro is the cost of performing a single micro
simulation, which can be made essentially independent of ε by using high order meth-
ods, cf [5]. For other approaches to decrease the computational burden in linear and
quasi-linear elliptic multiscale PDEs see e.g. [6, 7, 8].

Now assume that Ω = (0, 1)d. The macro model for a standard HMM-type algorithm
for problem (1) is

Macro Problem:
−∇ · F (x,∇U) = f(x) in Ω

U = 0 on ∂Ω.
(6)

Here U represents the solution of the macro problem and the flux F = (F 1, F 2, . . . , F d)
is an unknown parameter which will be extracted from micro simulations. A simple finite
difference discretization (in two dimensions) of the macro problem (6) on the grid

{xi,j = (iH, jH), i, j = 0, . . . , N, NH = 1}

yields

Macro Solver: −

(
F 1
i+ 1

2 ,j
− F 1

i− 1
2 ,j

H
+
F 2
i,j+ 1

2

− F 2
i,j− 1

2

H

)
= fij , (7)

where H stands for the macro stepsize. Next, to compute the unknown Fi+1/2,j , one
solves (1) over micro boxes Ωi+1/2,j of size η = O(ε), centered at xi+1/2,j . Furthermore,
the coarse scale solutions Ui,j are used as boundary data for the micro problem, which
reads

Micro Problem:
−∇ · (Aε(x)∇wε,η(x)) = 0 in Ωi+1/2,j ,

wε,η(x) = û(x), on ∂Ωi+1/2,j .
(8)

Here û(x) := Π1(Um,l)(x) where Π1 is a linear interpolation operator which, in two
dimensions, interpolates few nearest coarse scale solutions {Um,l}, with m = i, i+ 1 and
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` = j − 1, j, j + 1. The last step of the HMM algorithm is to average the microscopic
flux F ε := Aε∇wε,η over the micro domain. This can be done much more accurately
if one uses a weighted average of F ε. Hence we introduce the kernel space Kp,q which
consists of kernels K, compactly supported in [−1/2, 1/2], with K(q+1) ∈ BV (R), and p
vanishing moments: ∫

R
K(x)xrdx =

{
1, r = 0.

0, 1 ≤ r ≤ p.

Here K(q+1) stands for the (q+1)th weak derivative and BV (R) is the space of functions
of bounded variations. Note that, a constant kernel K = 1 in [−1/2, 1/2] has q = −1.

We use the scaling Kη(x) =
1

η
K(

x

η
) to shrink the compact support of the kernel to the

interval [−η/2, η/2], and we compute the HMM flux F as follows

Upscaling: F =

∫
Ωi+1/2,j

Kη(x− xi+ 1
2 ,j

)Aε(x)∇wε,η(x) dx. (9)

In d dimensions, the kernel Kη is defined as

Kη(x) := Kη(x1) · · ·Kη(xd).

The HMM flux Fi+1/2,j approximates the homogenized flux F̂ defined as

F̂ = A0∇û, (10)

where û is given in (8). For an analysis of the FEM version of the HMM for elliptic
problems we refer the reader to [9], see also [10] for a fully discrete analysis.

To explain the role of linear initial data for the micro model (8), suppose û = xi and
let wε,η = û + vε,η, then −∇ · Aε∇vε,η = ∇ · Aεei. Note the similarity between this
equation and (5). From (9) we get F j =

∫
Ωi+1/2,j

Kη(x− xi+1/2)(Aεij + eTj A
ε∇vε,η) dx

which approximates the homogenized flux F̂ where A0 is given in (4).

1.2. Errors in the HMM micro problem

In this part, we discuss the sources of the HMM error in the periodic case, defined as

EHMM =
∣∣∣F − F̂ ∣∣∣ ,

where F and F̂ are given in (9) and (10) respectively. We divide the HMM error into
three parts:

• Discretization error when solving the micro problem (8) and approximating the
integral (9) numerically.

• Averaging/filtering error introduced by the averaging kernel in (9). This error
originates from the difference between the exact integral (9) and the average of the
integrand in the limit when ε/η −→ 0.

• A first order (in ε/η) error due to boundary conditions, in the micro problem, which
are O(ε) away from the exact value. We will focus on the cell-boundary error in
section 2.
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The first two sources of errors can be made as small as we like by using high-order
solvers for the micro model, a high order quadrature rule, and by using averaging oper-
ators with high q, p. However the error due to the boundary will eventually dominate
all other errors. In the last decade, the removal or reduction of the cell boundary error
has been the subject of active research. The performance of simple Dirichlet, Neuman
and periodic boundary conditions were tested numerically in [11]. The numerical results
presented in [11] showed that the convergence rate for these type of classical bound-
ary conditions is O(ε/η) and that in most cases a simple periodic boundary condition
performs better than others with a smaller prefactor. Another approach, based on over-
sampling, for removing only the first-order cell boundary error was proposed in [12].
These approaches used the same elliptic problem as the micro scale model but they im-
proved only the prefactor in the first order error. In [13], an L2 projection of the solution
uε of (1) into a finite dimensional space incorporating the coarse features of uε was con-
sidered. The authors showed linear convergence rate, in terms of the coarse mesh size
H, for the difference between the exact uε and the projected solution. The projected
solution, however, is O(ε) away from the homogenized solution, see [14].

Another class of techniques for boundary error reduction is based on modifying the
micro problem such that the new micro solutions are less influenced by the boundary
error. The filtering technique from [15] is within this class. The filter is used already
in the definition of the micro problem as well as in a complementary integral boundary
condition involving the gradient of the micro problem. To be more precise the authors
considered the equation

Micro Problem:
−∇ · (Kη ∗ (Aε∇wε,η + λ) (x)) = 0 in Ωη,∫

Ωη
Kη(x)∇wε,η(x) dx = ∇û, (11)

where λ ∈ Rn is the vector of Lagrange multipliers for the integral constraint in
(11), and Ωη represents the micro domain. Although this method performed optimally
in one-dimension, in higher dimensions (even in the periodic setting) the approach led
to only second order convergence rate in ε/η. A different approach was proposed in
[16]. This technique used a zero order regularization term in the definition of the micro
problem. The motivation behind this strategy is that for the modified micro problem
the decay of the corresponding Green’s function for the elliptic problem is exponentially
fast. Hence the effect of boundary data on the interior solution reduces substantially.
Mathematically speaking, the micro problem is given by

Micro Problem: δη,εw
ε,η(x)−∇ · (Aε(x)∇wε,η(x)) = 0 in Ωη, (12)

together with a suitable boundary condition (in practice any well-posed boundary
condition). With an appropriate choice of the parameter δη,ε depending on η and ε,
one can obtain fourth order convergence O((ε/η)4) in the periodic setting even in higher
dimensions. Recently, it was shown that the O((ε/η)4) error can be further improved
(in periodic media) using extrapolation, see [17]. However, to achieve this, the micro
problem (12) must be solved over larger and larger domains. Another strategy which
eliminates the boundary error in the framework of multiscale finite element methods
(MsFEM) is proposed in [18].

In the present work, we introduce a strategy based on the HMM which, in periodic
media, improves the convergence rate up to O((ε/η)q+2) for arbitrary q > 0, upon using



6

a kernel K ∈ Kp,q. Unlike [17] the computational cost remains the same for all q. We
present also numerical evidence which show that in general non-periodic media the error
becomes O(εk + (ε/η)q+2) if p > 1. Here k can be equal to k = 1 or k = 2 depending on
the dimension. The O(ε) term is not harmful as this is a typical error tolerance we are
interested in. The reason is that the homogenized solution solving (3) is already O(ε)
away from the exact solution uε solving (1). The strategy described here can be easily
used in the framework of MsFEM, see e.g. [19, 20, 21].

1.3. Contents

This paper is organized as follows. In section 2, we motivate the cell-boundary error
by considering a micro problem with Dirichlet boundary conditions. Section 3 is devoted
to the study of micro problems involving integral conditions in one and two dimensions.
The main part of the paper is section 4, where we introduce our strategy to reduce the
boundary error. Finally, we conclude our paper with numerical examples supporting our
theoretical results.

2. Boundary and averaging errors

In this section, we consider a micro problem with Dirichlet boundary conditions as a
representative of classical boundary conditions such as Neuman and periodic BCs. We
ignore the discretization error and divide the HMM error into two parts: boundary and
averaging errors. In particular, we will show that although the averaging error can be
made arbitrarily small, the overall error is dominated by the boundary error. To fix
ideas, consider the micro problem (8) in d dimensions, where Aε(x) = A(x/ε) and A
is Y -periodic. The boundary data is again given by the linear macroscopic function
û(x) = s · x, where s := ∇û ∈ Rd is the slope vector. Moreover, we assume that the
micro problem (8) is posed on the micro domain Ωη := [−η/2, η/2]d so that

−∇ · (A(x/ε)∇wε,η(x)) = 0, in Ωη
wε,η(x) = û(x), on ∂Ωη.

(13)

Next we define the infinite domain solution wε,∞ as

wε,∞(x) := û(x) + εχ(x/ε) · ∇û(x), (14)

where χ = {χm}dm=1 are the solutions of the cell problem (5). The infinite domain
solution wε,∞ can be interpreted as the limit as η −→ ∞ of wε,η for a fixed ε. By (5),
we have

−∇ · (A(x/ε)∇wε,∞) = 0, in Ωη.

Let θε,η := wε,η − wε,∞ . The term θε,η is nonzero because of the mismatch due to the
difference at the boundary of the micro problem. The HMM error can now be split as∣∣∣F − F̂ ∣∣∣ :=

∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇wε,η(x) dx−A0∇û

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇θε,η dx

∣∣∣∣∣︸ ︷︷ ︸
Boundary error

+

∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇wε,∞(x) dx−A0∇û

∣∣∣∣∣︸ ︷︷ ︸
Averaging error

.



7

 

 

Infinite domain sol.

Homogenized sol.

H

Ω

ε

η

η

ε

Figure 1: HMM discretization and solutions. Bottom: The physical domain Ω. Top: zoom of solutions
in micro box. The circles are the macro discretization points and the rectangular boxes are the micro
domains. The homogenized solution is O(ε) away from the infinite domain solution on the boundary of
the microscopic domain.

In the remainder of this section we will show that if K ∈ Kp,q:∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇θε dx

∣∣∣∣∣ ≤ C
(
ε

η

)
,

∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇wε,∞ dx−A0∇û

∣∣∣∣∣ ≤ C
(
ε

η

)q+2

.

This motivates that the boundary error dominates the HMM error and, in contrast to
the averaging error, one can not remove this error by taking a kernel with higher q, i.e.,
better regularity properties. Moreover, in order for the HMM flux to approximate the
homogenized flux accurately, the micro solution wε,η must be very close to the infinite
domain solution wε,∞. We remark also that although the results will be proved for the
Dirichlet case, the final claims hold true also for the Neuman and periodic BCs. In the
rest of this section we treat the boundary and the averaging errors separately.

2.1. Boundary error

In this section, we state a theorem which shows that the boundary error is of first order
in ε/η which can not be improved even for smooth coefficients A ∈ C∞(Y ). To simplify
the analysis, we assume that χi ∈ W 1,∞(Y ) which would then require more regularity
on the coefficient A. For this, it is sufficient to assume A ∈ W 1,k(Y ) with k > d (see
[22], condition 15.1). See also Remark 1 for additional comments on regularity.

Theorem 1. Suppose that A ∈ W 1,k(Y ) for k > d so that χi ∈ W 1,∞(Y ). Let θε,η :=
wε,η − wε,∞, where wε,η is the solution of (13) and let wε,∞ be given as in (14) with
û(x) = s · x. Then

‖∇θε,η‖L2(Ωη) ≤ C
(
ε

η

)1/2

‖∇û‖L2(Ωη), (15)
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and if K ∈ Kp,q, with q ≥ 0,∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇θε,η dx

∣∣∣∣∣ ≤ C εη |s|∞ , (16)

where |s|∞ = maxj |sj | and C is independent of ε, η but may depend on A and K.

Proof. The inequality (15) is stated in [9] (estimate 3.9) but detailed ideas which
cover more general domains (not only rectangular) can be found e.g. in [1, 2] under the

assumption that χi ∈ W 1,∞(Y ). To prove (16) we first write θε,η =
∑d
`=1 θ

ε,η
` s`, where

θε,η` solves
−∇ · (A(x/ε)∇θε,η` (x)) = 0, in Ωη,

θε,η` (x) = φε`(x), on ∂Ωη,
(17)

with φε`(x) = −εχ`(x/ε). Since A∇θε,η(x) ∈ Rd for all x ∈ Ωη, it suffices to show that
(16) holds componentwise. For this let ψ(x) = xm, and denote the canonical basis vector
in the mth direction by em. Then we can write the mth component of the error as

Em := em ·
∫

Ωη

Kη(x)A(x/ε)∇θε,η dx =

d∑
`=1

s`

∫
Ωη

Kη(x)em ·A(x/ε)∇θε,η` dx =

=

d∑
`=1

s`

∫
Ωη

Kη(x)∇ψ(x) ·A(x/ε)∇θε,η` dx

=

d∑
`=1

s`

(∫
Ωη

Kη(x)∇ (ψ − φεm) ·A(x/ε)∇θε,η` dx+

∫
Ωη

Kη(x)∇φεm(x) ·A(x/ε)∇θε,η` dx

)

= −

(
d∑
`=1

s`

∫
Ωη

θε,η` ∇Kη(x) ·A(x/ε)∇ (ψ − φεm) dx

)
−
∫

Ωη

φεm(x)∇Kη(x) ·A(x/ε)∇θε,η dx.

In the last step we used (17) and the fact that by (5),

∇ · (A(x/ε)∇ (φεm(x)− ψ(x))) = 0, in Ωη.

Hence,

|Em| ≤ C
(
|s|∞max

`
‖θε,η` ∇Kη‖L2(Ωη)‖∇ (ψ − φεm) ‖L2(Ωη) + ‖φεm∇Kη‖L2(Ωη)‖∇θε,η‖L2(Ωη)

)
≤ C

(
|s|∞max

`
‖θε,η` ∇Kη‖L∞(Ωη)‖∇ (ψ − φεm) ‖L∞(Ωη)η

d + ‖φεm∇Kη‖L∞(Ωη)‖∇θε,η‖L2(Ωη)η
d/2

)
.

For the kernel we have ‖∇Kη‖L∞(Ωη) ≤ Cη−d−1, and by the maximum principle

sup
x∈Ωη

|θε,η` | ≤ sup
x∈∂Ωη

|θε,η` | = sup
x∈∂Ωη

|φε` | ≤ sup
x∈Ωη

|φε` | ≤ Cε‖χ`‖L∞(Ωη).

Also note that by the assumption χm ∈ W 1,∞(Y ), we have ‖∇ (ψ − φεm) ‖L∞(Ωη) ≤ C.
This gives us

|Em| ≤ C
(

ε

ηd+1
ηd|s|∞ +

ε

ηd+1
‖∇θε,η‖L2(Ωη)η

d/2

)
≤ C

(
ε

η
|s|∞ +

ε

η
‖∇θε,η‖L2(Ωη)η

−d/2
)
.
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Finally by (15),

‖∇θε,η‖L2(Ωη) ≤ C
√
εηd−1|s|∞.

This finishes the proof. �

Remark 1. In fact it is sufficient to assume that χi ∈W 1,2(Y )∩L∞(Y ) for an alterna-
tive proof of the Theorem 1. To see this first note that ‖∇ (ψ − φεm) ‖L2(Ωη) ≤ Cdηd/2 and

‖φεm∇Kη‖L2(Ωη) ≤ Cεηd/2/ηd+1 can be achieved directly if χm ∈W 1,2(Y ). Moreover, the
fact that our micro-domains are rectangular together with the condition χm ∈ W 1,2(Y )
are sufficient to carry out a similar proof as in [2] to show that (15) holds. Note that the
condition χi ∈ L∞(Y ) is needed only after the maximum principle is applied.

To show that the inequality (16) is sharp, we consider the problem (17) in one dimension.
The solution θε,η can be explicitely written as

θε,η(x) = C1

∫ x

−η/2
A−1(z/ε)dz + C2,

where

C1 = −
(
ε

η

)
s

χ( η2ε )− χ(− η
2ε )

1
η

∫ η/2
−η/2A

−1(ζ/ε)dζ
, and C2 = −εsχ

(
− η

2ε

)
.

Therefore,∫
Ωη

Kη(x)A(x/ε)∂xθ
ε,η(x)dx = C1 = −

(
ε

η

)
s

χ( η2ε )− χ(− η
2ε )

1
η

∫ η/2
−η/2A

−1(s/ε)ds

= −
(
ε

η

)
s
χ( η2ε )− χ(− η

2ε )

1

A0
+ C ε

η

= O

(
ε

η

)
,

where we used the fact that, in one dimension, the homogenized coefficient A0 is given
by

A0 =

(∫ 1

0

A−1(y)dy

)−1

.

Remark 2. For the periodic BCs where wε,η − sx is η-periodic, we obtain the same C1

as the Dirichlet case. Moreover, for the Neuman boundary condition

A(± η

2ε
)∂xw

ε,η(±η
2

) = s

(∫ η/2

−η/2
A−1(ζ/ε)dζ

)−1

,

we have

C1 = s

(∫ η/2

−η/2
A−1(ζ/ε)dζ

)−1

−A0

 = O

(
ε

η

)
.

To ensure uniqueness of the solutions to the periodic and Neuman problems, one needs
the condition ∫ η/2

−η/2
wε,η dx = sx.
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We note here that the inequality (16) is sharp in higher dimensions as well; see the
numerical results in [11]. As we see in the analysis above, the first order error O (ε/η)
in the flux approximation, originates from the O(ε) difference between wε,η and wε,∞

on the boundary of the micro domain. To approximate the homogenized flux with high
accuracy one needs to impose a boundary condition which ideally matches the value of
the infinite domain solution wε,η on the boundary of the micro box. Standard numerical
homogenization recipes assume that the boundary condition for the local micro problem
is restricted by the global macro data. However, as depicted in Figure 1, on the boundary
of the local problem, the macro solution is O(ε) away from wε,∞. This mismatch on the
boundary propagates into the interior of the domain and degrades the overall convergence
rate.

2.2. Averaging error

For the averaging error we first prove an averaging lemma.

Lemma 1. Let f be a 1-periodic bounded function such that f ∈ L∞([0, 1]) and let

K ∈ Kp,q. Then, with f̄ =
∫ 1

0
f(z)dz and ε ≤ η, we have∣∣∣∣∣

∫ η/2

−η/2
Kη(t)f(t/ε)dt− f̄

∣∣∣∣∣ ≤ C|f |∞
(
ε

η

)q+2

. (18)

Moreover, assume that f(t, s) is 1-periodic in s, and that ∂kt f ∈ C([−η/2, η/2];L∞([0, 1]))

for k = 0, . . . , r. Then, we have, with f̄(t) =
∫ 1

0
f(t, z)dz and ε ≤ η ≤ 1,∣∣∣∣∣

∫ η/2

−η/2
Kη(t)f(t, t/ε)dt− f̄(0)

∣∣∣∣∣ ≤ CCf

(
ε
η

)q+2

+ ηr p ≥ r(
ε
η

)q+2

+ ηp+1 p < r.
(19)

where the constant C does not depend on ε, η, f or s but may depend on K, p, q, r.

Proof. The estimate (18) is proved in [23] with a continuous f since all the derivatives
were treated in classical sense. The same proof applies to f ∈ L∞ if the derivatives are

seen in the weak sense, see Figure 2. To prove (19), set α =
ε

η
, then

∫
R
Kη(t)f(t, t/ε)dt =

∫ η/2

−η/2
Kη(t)f(t, t/ε)dt =

∫ 1/2

−1/2

K(t)f(ηt, t/α)dt

=

∫ 1/2

−1/2

K(t)f(0, t/α)dt+

r−1∑
j=1

ηj

j!

∫ 1/2

−1/2

K(t)tj∂jt f(0, t/α)dt+
ηr

r!

∫ 1/2

−1/2

K(t)tr∂rt f(ζt, t/α)dt

= I + II + III.

For the term I we use (18) and get∣∣I − f̄(0)
∣∣ ≤ C |f |∞ αq+2.

To bound the term II, first we note that by Lemma 2.3 in [23]

ηj
∫ 1/2

−1/2

K(t)tj∂jt f(0, t/α)dt =

∫ η/2

−η/2
Kη(t)tj∂jt f(0, t/ε)dt ≤ CCf

{
αq+2ηj 1 ≤ j ≤ p
αq+2ηj + ηj j > p.
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Since η < 1, this will give then that

|II| ≤ CCf

{
αq+2 p ≥ r,
αq+2 + ηp+1 p < r.

Finally, for the last term we have

|III| = ηr

r!

∣∣∣∣∣
∫ 1/2

−1/2

K(t)tr∂rt f(ζt, t/α)dt

∣∣∣∣∣ ≤ CrCfηr.
�

By (14) we have∫
Ωη

Kη(x)A(x/ε)∇wε,η(x) dx =

∫
Ωη

Kη(x) (A(x/ε) +A(x/ε)Dyχ(x/ε)) dx∇û,

where (Dyχ)i,j = ∂yiχj , and since A(y) + A(y)Dχ(y) for all y ∈ Y is 1-periodic in all

directions we can apply Lemma 1 and use the relation (4) to conclude that∣∣∣∣∣
∫

Ωη

Kη(x)A(x/ε)∇wε,∞(x) dx−A0∇û

∣∣∣∣∣
=

∣∣∣∣∣
(∫

Ωη

Kη(x)A(x/ε) (I +Dyχ(x/ε)) dx−
∫
Y

A(y) (I +Dyχ(y)) dy

)
∇û

∣∣∣∣∣
≤ C

(
ε

η

)q+2

|∇û|∞ .

This analysis shows that the averaging error can be made arbitrarily small by using
averaging operators with higher q.

Remark 3. In Figure 2, we illustrate the sharp rate of convergence from Lemma 1 for
a discontinuous periodic function depicted in the left.

x
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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8

p = 5, q = 4, ε = 0.02, η = 0.4

Aε(x)
Kη(x)

η10
-2

10
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10
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10
-1

10
0

ε = 0.01

p = 5, q = 2
O(ε4)
p = 5, q = 4
O(ε6)

Figure 2: (Left) A K ∈ K5,4 is applied to an ε-periodic function Aε. (Right) The sharp convergence
rate, O((ε/η)q+2), from Lemma 1 is observed by fixing ε = 0.01 and increasing η.
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3. Micro problems with integral constraints

In the previous section, we saw that classical boundary conditions such as Dirichlet
lead to a first order error O (ε/η) in the flux approximation. In this section we study
the possibility of enforcing nonclassical conditions to the PDE. In particular, we present
a micro problem with an integral condition, which, in one dimension, captures the ho-
mogenized flux to arbitrarily high orders in ε/η. However, it leads to certain difficulties
in higher dimensions, which we explain for the two dimensional case.

3.1. One dimension

The main idea of this one dimensional approach is to force the average of the derivative
∂xw

ε,η to equal to the derivative of the macroscopic state. For the micro domain Ωη =
[−η/2, η/2], the micro problem reads

New Micro Problem:
−∂x (Aε(x)∂xw

ε,η) = 0, in Ωη∫
Ωη
Kη(x)∂xw

ε,η(x) dx = ∂xû(0), (20)

where û = sx is the given macroscopic state. To simplify the analysis, we assume that
the media is locally periodic, i.e., Aε(x) = A(x, x/ε) and we will show that

F :=

∫
Ωη

Kη(x)Aε(x)∂xu
ε(x)dx = F̂ +O

((
ε

η

)q+2

+ ηp+1

)
,

where F is the HMM flux and F̂ is the one-dimensional version of the homogenised flux
defined in (10).

Remark 4. We note here that the integral condition in (20) is not sufficient to guar-
antee uniqueness. Therefore, the micro problem (20) needs to be provided with another
complementary condition. For example, one can set∫

Ωη

Kη(x)wε,η(x)dx = 0. (21)

With this additional requirement, one can easily show that the equation (20) becomes a
well-posed problem.

Now to prove our claim we note from (20) that

Aε(x)∂xw
ε,η(x) = C.

Then using the first integral condition in problem (20) and the Lemma 1 we obtain

∂xû =

∫
Ωη

Kη(x)∂xw
ε,η(x) dx = C

∫
Ωη

Kη(x)
1

Aε
dx = C

(
1

A0
+O

((
ε

η

)q+2

+ ηp+1

))
.

Therefore C = A0∂xû+O
(

(ε/η)
q+2

+ ηp+1
)

= F̂ +O
(

(ε/η)
q+2

+ ηp+1
)

, and

F =

∫
Ωη

Kη(x)Aε(x)∂xw
ε,η dx = C = F̂ +O

((
ε

η

)q+2

+ ηp+1

)
.
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Figure 3: Error between HMM flux and the homogenized flux for periodic (left) and non-periodic (right)
media. The one dimensional problem (20) is solved over a box of size η = 0.25. The periodic and
locally-periodic coefficients are chosen to be Aε(x) = ecos(2πx/ε+0.2), and Aε(x) = 1.1 + sin(2πx) +
ecos(2πx/ε+0.2) respectively.

By Lemma 1, in purely-periodic media the term ηp+1 in the error vanishes. Hence

∣∣∣F − F̂ ∣∣∣ ≤

O

((
ε

η

)q+2
)

if A is periodic,

O

((
ε

η

)q+2

+ ηp+1

)
if A is locally-periodic.

(22)

This shows that one can obtain arbitrarily high order of convergence upon using the
integral condition in (20) , and that, at least in one dimension, one does not need to
use a filter in the definition of the micro problem as was the case in [15], cf. (11). The
numerical results in Figure 3 agrees well with the expected convergence rates in (22).

3.2. Generalization to higher dimensions

A natural way to extend the previous idea to higher dimensions is to impose the
condition ∫

Ωη

Kη(x1)Kη(x2)∇wε,η(x1, x2)dx = ∇û(0, 0) (23)

to the PDE
−∇ · (Aε(x)∇wε,η(x)) = 0, in Ωη. (24)

However, the condition (23) is not sufficient for the well-posedness of the micro problem
even if we add the condition (21). The system becomes underdetermined unless we
impose additional conditions to the PDE (24). In [15], the authors picked the solution
leading to minimum energy, cf. (11). Through this strategy, they were able to obtain
O((ε/η)2) convergence rates for periodic problems. Here we want to think of other ways
of generalizing the one dimensional approach above. We discuss two potential ways of
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Ω
η

Ω
θ

Figure 4: Two microscopic domains, where Ωη represents the micro domains, and Ωθ indicates the region
where the integral condition is imposed. Left: Radial averaging. The micro solution is averaged over
each radius in the circle. Right: Circular averaging. The solution is averaged over small circles near the
boundary.

imposing integral conditions. The first idea is the circular averaging shown in the right
plot of Figure 4, where we restrict the averages of the solution over some circles in each
radial direction to equal to the homogenized solution. The second approach is the radial
averaging, depicted in the left plot of Figure 4, where the average of the solution in each
radial direction is forced to equal to the homogenized solution. For both of the approaches
we face the following important questions: (1) Will the PDE together with the integral
conditions lead to a well-posed system or not? (2) Will the flux of the micro problem
average to the homogenized flux as ε → 0? Through some simplifying assumptions we
will motivate that the first averaging approach (averaging over balls in a circular domain)
suffers from a well-posedness problem and the second approach (averaging over curves),
though well-posed, suffer from a convergence problem.

3.2.1. Circular averaging

Without loss of generality we assume that the micro box Ωη ⊂ R2 is a ball of radius
r0 +η centered at the origin, i.e., Ωη = B(0, r0 +η), where r0 > η. We consider again the
linear macroscopic state û(x) = s · x. Let ŝ(θ) = (cos(θ), sin(θ)). We force the averages
of the microscopic solution wε,η to equal to û over smalls balls Ωθ centered at r0ŝ(θ),
and defined as Ωθ := B(r0ŝ(θ), η) = {x ∈ R2| |x− r0ŝ(θ)| ≤ η}, as depicted in Figure
4. Then the microscopic problem reads

Micro Problem (circular):
−∇ · (Aε∇wε,ηcirc(x) )= 0, in Ωη := B(0, r0 + η),∫

Ωθ
K̃|Ωθ|(x− r0ŝ(θ))w

ε,η
circ(x) dx = û(r0ŝ(θ)), 0 ≤ θ ≤ 2π,

(25)

where K̃ is a mollifier, compactly supported in the unit ball, ex. K̃(x) = e−1/(1−|x|2). To
study the well-posedness of the above problem we look at the simpler constant coefficient
problem and consider only constant averaging kernels. The simplifid equation is:

∆w = 0, in |x| ≤ r0 + η,
1

|Ωθ|
∫

Ωθ
w dx = û(r0ŝ(θ)).

(26)
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Since u is harmonic, the mean value formula for harmonic functions tells us that

u(r0ŝ(θ)) =
1

|Ωθ|

∫
Ωθ

w dx = û(r0ŝ(θ)).

In the interior B(0, r0), the solution w will, thus, solve a simple Laplace equation with
smooth Dirichlet boundary conditions û(x) = s · x. The existence and uniqueness of w
follows from the integral representation of the solution and the maximum principle for
elliptic PDEs respectively. Furthermore, the stability of the solution follows by standard
estimates for elliptic PDEs

‖ w ‖H1(B(0,r0))≤ CB(0,r0) ‖ û ‖H1(B(0,r0)) . (27)

Therefore the solution w is well-posed in the interior of the domain B(0, r0). However,
note that in (26) the averaging takes place in the ball Ωθ which uses the solution also
outside B(0, r0); more precisely, inside the boundary layer B(0, r0 + η) \B(0, r0). In this
respect, it is important to know the behavior of the solution in this boundary layer. To
answer this question we consider the Laplace operator in polar coordinates and write

r2∂rrw + r∂rw + ∂θθw = 0.

Now if

û (r0ŝ (θ)) =

∞∑
k=0

ĝke
ikθ,

then by separation of variables we have

w(r, θ) =

∞∑
k=0

ĝk

(
r

r0

)k
eikθ.

This shows that the response to a small perturbation in the data û = εeikθ will be

w(r, θ) =

(
r

r0

)k
εeikθ.

Hence for r > r0, i.e., outside the domain B(0, r0), the solution blows up as k −→∞.
Since the flux is only computed using the solution in the interior, the procedure

still works for the constant coefficient case. However, the situation with the oscillatory
problem (25) is trickier. In this case, the solution wε,ηcirc is not harmonic and therefore the
mean value formula does not hold. Hence, the growth of the solution in the boundary
layer might propagate into the interior domain. What is relevant for us is to check if this
propagation influences the convergence as ε −→ 0 of wε,ηcirc to û in the interior of B(0, r0).
Figure 5 illustrates the difference between the oscillatory solution and the homogenized
solution over discs with different radii. In this simulation we pose the micro problem (25)
over the unit circle. We fix the support η = 0.2 of the averaging kernel so that r0 = 0.8,
and look at the max norm error between wε,ηcirc and û for different ε. The results clearly
show that all the points in B(0, 1) are influenced by the blow up close to the boundary.
Therefore, there is no r < r0 such that

wε,ηcirc(x) −→ û(x) as ε −→ 0, x ∈ B(0, r).
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Figure 5: The maximum norm difference beween wε,ηcirc(x) and the homogenized solution û = x+y inside
discs of different radii r = 1/2, 1/4, 1/8, 1/16 is shown. This plot shows that there is no convergence (as
ε −→ 0) of wε,ηcirc(x) to û even in the interior of the domain. The error becomes more pronounced as we
take smaller ε. In this simulation we have used 30 points per ε.

3.2.2. Radial averaging

The main idea behind radial averaging is to equate the average of the microscopic
solution in the radial directions with the macroscopic data. We define the domain Ωη =
B(0, η) ⊂ R2 and we again assume linear macroscopic data û(x) = s · x, and introduce
the micro problem:

Micro Problem (Radial):
−∇ · (Aε∇wε,ηradial(x) )= 0, in Ωη∫ η

0
Kη(ζ − η

2 )wε,ηradial(ζŝ(θ)) dζ = û(η2 ŝ(θ)),
(28)

To study the well-posedness of this problem, we consider the constant coefficient problem
as above,

−∆w = 0.

Furthermore, to simplify the analysis we assume that η = 1 and K = 1 in [−1/2, 1/2].
The integral condition in (28) is then∫ 1

0

w(ζŝ(θ))dζ = g(θ), where g(θ) = û

(
1

2
ŝ (θ)

)
.

Since the solution w is a harmonic function, it can be expressed as the real part of a
complex analytic function J such that J(x1 + ix2) = w(x1, x2) + iv(x1, x2). We express
J in terms of a power series

J(z) =

∞∑
k=0

Ĵkz
k.
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Then, with z1(θ) = cos(θ) + i sin(θ), we have

g(θ) = <
∫ 1

0

J(sz1(θ))ds = <
∞∑
k=0

Ĵk

∫ 1

0

(sz1(θ))kds = <
∞∑
k=0

Ĵk
k + 1

z1(θ)k.

Now let G(z) be the analytic function defined by the Taylor’s coefficients Ĝk = Ĵk/(k+1).
This implies that J = ∂z(zG) and therefore, J can be identified uniquely through G.
Then we can rewrite the last equation as

g(θ) = <G(z1(θ)) = <G(eiθ). (29)

Now using G(x1 + ix2) = h(x1, x2) + iu(x1, x2) we get

û

(
ŝ(θ)

2

)
:= g(θ) = h(ŝ(θ)).

On the other hand, since h(x1, x2) is harmonic it satisfies the Laplace equation with
boundary data given by û

−∆h = 0, in Ω
h(ŝ(θ)) = û(θ) on |x| = 1.

The well-posedness of the above problem is a classical matter, and the solution h enjoys
the same stability estimate as before in (27). The above problem is well-posed and
therefore has a unique solution h. Finally, using Cauchy Rieman equations ∂x1h =
∂x2u, ∂x2h = −∂x1u, we can express w in terms of h as follows

w = <J = <∂z (zG(z)) = <G+ < (z∂zG(z))

= h+ <
(

(x1 + ix2)

(
1

2
(∂x1

h+ ∂x2
u) +

i

2
(∂x2

h− ∂x1
u)

))
= h+ x1∂x1

h+ x2∂x2
h.

The well-posedness of w follows readily from that of h. However, we note that an H1

regularity for h implies an L2 regularity for w. This is mainly due to the integral condition
in (28) which requires less regularity for the solution.

Now let us consider the oscillatory micro-problem (28). By the previous analysis,
we have good enough evidence for the well-posedness of the above problem for a fixed ε.
However, remember that our eventual concern is if the HMM flux F = (KAε∇wε,ηradial) (0)

converges to the homogenized flux F̂ = A0∇û, as ε → 0 ? To have an idea about this,
we perform a numerical simulation with η = 1, and K ∈ K1,2, and we plot the difference
between the homogenized flux and the HMM fluxes as we refine the small parameter ε.
Figure 6 depicts the error between the HMM flux and the homogenized flux for varying
ε. This result does not show convergence, as ε→ 0, for the HMM flux.

To explain this failure we resort to [24] in which the authors proved that, in general,
integrals of locally-periodic functions over surfaces Γ in Rd may not have a unique limit.
Indeed, they found that the unique limit depends on the orientation of the normal vectors
on the surface. To be more precise, let Γ be a C1 surface in Rd which is not necessarily
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Figure 6: Difference between the HMM and homogenized fluxes in both spatial directions is shown. A
kernel from K1,2 is used in this simulation. Rest of the data are the same as in Figure 7.

bounded, and fε(x) = f(x,x/ε) where f(x,y) is Y -periodic in y, and let f(x,y) be
integrable in the x-variable over Γ. Then, in general, the integral

IΓ[fε] =

∫
Γ

fε(x) dσx

does not have a unique limit as ε → 0. Here σx stands for the surface measure. The
unique limit exists if the surface Γ has an irrational normal almost everywhere on Γ,
where irrationality of a vector is defined as:

Definition 1. Let n be a vector in Rd, then

• n is rational direction if there exists a real number α such that αn ∈ Zd.

• n is irrational direction if it is not rational.

This explains the link between our flux convergence failure and the theory of integrals
of oscillatory functions. In our setting, we are forcing the averages of the solution along
every radius. Remember that we want the micro solution to be as close to the infinite
solution wε,∞ as possible. For this reason, suppose that wε,ηradial is very close to wε,∞

such that we average wε,∞ (instead of wε,ηradial) in radial directions. Since the averaging
takes place for every 0 ≤ θ ≤ 2π, there will always be a rational direction θ∗ such that

lim
ε−→0

∫ η

0

wε,∞(ζŝ(θ∗))dζ 6= û
(η

2
ŝ(θ∗)

)
.

This implies that wε,ηradial should deviate from wε,∞ due to the integral condition∫ η

0

wε,ηradial(ζŝ(θ
∗))dζ = û

(η
2
ŝ(θ∗)

)
.

Another problem is related to the convergence rate. In principle, for almost all the
directions we do have convergence. However, the convergence rate will be very slow in
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Figure 7: The oscillatory problem (20) , with Aε(x) = (1.5 + sin(2πx1/ε))(1.5 + sin(2πx2/ε)), ε = 0.08,
η = 1, K ∈ K1,−1 and data û(x) = x1 + x2, is solved over the unit circle. The plot on the left shows
the solutions over the unit circle B(0, 1), and the plot on the right shows the solution in B(0, 1

2
).

certain directions. This is due to the fact that certain directions will be close to rational
directions and then see far less oscillations than the rest of the directions.

To test our theoretical arguments we perform a numerical simulation showing the
solution of the micro problem. In Figure 7 we use η = 1, and a constant kernel with
(p, q) = (1,−1), and we give a plot of the solution over the entire domain Ω = B(0, 1) and
the interior domain B(0, 1

2 ). As we see in the left plot, the solution at certain directions
tends to have an O(1) deviation from the average. On the other hand, we do not see this
O(1) deviation in the interior B(0, 1

2 ). This good behavior in the interior does not seem
to save the convergence of the flux as already depicted in Figure 6. Hence, restricting
the oscillatory solution over surfaces in Rd does not seem to be a good idea to capture
homogenized parameters.

4. A time dependent approach

The main idea in this paper is to use a time-dependent hyperbolic PDE as our micro-
model. Because of the finite speed of propagation, the boundary conditions will then not
affect the solution in the interior sufficiently far from the boundary. We pose a second-
order multi-scale wave equation on Iτ × Ωη,x0

, where Iτ := [0, τ/2] and τ/2 is the final
time for the micro simulations, and Ωη,x0

= [−Lη + x0, Lη + x0]d is the spatial domain.

We assume that Lη = η
2 + τ

2

√
|Aε|∞ such that the boundary data does not affect the

solution in the region Iτ × [−η/2, η/2]d. Moreover, as in the previous sections we assume
a linear macroscopic data denoted by û = s · x. The micro problem (8) is then modified
to

New Micro Problem:
∂ttw

ε,η(t,x)−∇ · (Aε(x)∇wε,η(t,x)) = 0 in Iτ × Ωη,x0
,

wε,η(0,x) = û(x) ∂tw
ε,η(0,x) = 0,

(30)
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The equation is equipped with periodic boundary conditions, i.e., wε,η − û is periodic on
the cell Ωη,x0 . We define the averaging operator in time and space as follows:

(Kτ,η ∗ f) (t,x) :=

∫ τ
2 +t

− τ2 +t

∫
Ωη,x

Kτ (t̃− t)Kη(x̃− x)f(t̃, x̃)dx̃ dt̃. (31)

Then HMM computes the flux by

Upscaling: F (x0) = (Kτ,η ∗Aε∇wε,η) (0,x0). (32)

The goal is that the HMM flux F (x0) should approximate the homogenized flux

F̂ (x0) = A0(x0)∇û = A0(x0)∇û. (33)

Note that the upscaling step (32) requires information about the gradient ∇wε,η for
t < 0. However, since ∂tw

ε,η(0,x) = 0 we have the symmetry wε,η(t,x) = wε,η(−t,x).

Remark 5. In the method, we always assume that τ = η. In practice, the choice τ =
η = O(ε) gives qualitatively satisfactory macroscopic solutions and the theory is not
restricted by this assumption.

The intuition behind this strategy is based on the following facts:

• In [25], the micro model (30) is naturally used to approximate the coefficient of the
homogenized wave equation

∂ttu
0(t,x)−∇ ·

(
Â∇u0(t,x)

)
= f(x), t ∈ [0, T ], (34)

However, for short time scales T = O(1), the effective wave equation (34) possesses
the same homogenized coefficient Â as that of homogenized elliptic problem (3),
see e.g. [1, 3].

• The solutions of hyperbolic PDEs propagate with finite speed. Thus, the error due
to the boundary will not affect the interior solution if the microscopic domain is
large enough.

• In the periodic setting, the time average of the wave equation (30) matches the
infinite domain solution wε,∞ defined in Section 2.

It should be noted that higher accuracy is achieved by choosing smoother kernels with
more vanishing moments. In purely periodic media, the following theorem was proved,
in [25], for multiscale wave propagation.

Theorem 2. (Theorem 3.1 in [25]) Let F̂ (x0) be given by (33), and F (x0) be defined by
(32) with K ∈ Kp,q where wε,η(t,x) solves the micro problem (30) with the initial data

û = s · x exactly, and suppose Aε(x) = A(x/ε), where A ∈ (C∞(Y ))
d×d

is a Y -periodic
matrix function satisfying (2), and τ = η with ε ≤ η ≤ 1. Then∣∣∣F (x0)− F̂ (x0)

∣∣∣ ≤ C ( ε
η

)q+2

|s|∞,

where |s|∞ := max1≤j≤d |sj |, and C is a constant independent of ε and η.
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Remark 6. The proof of the Theorem 2 is based on an L2 eigenfunction expansion of
the local solution, see [25] Theorem 3.1. The smoothness requirement in Theorem 2 is
only to simplify the analysis and the same result will be true also for less regular A. See
Figure 8 where an example of a discontinuous layered media is given. The coefficient Aε

does not satisfy the smoothness assumption of Theorem 2 but the method still enjoys the
precise O((ε/η)q+2) convergence rate for a kernel K ∈ Kp,q with p = 5 and q = 4.
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Figure 8: (Left) An ε-periodic discontinuous layered media, with ε = 0.01, on a two-dimensional domain
Ωη with η = 0.1 is depicted. (Right) The sharp convergence rate, O((ε/η)q+2), from Theorem 2 is
observed by fixing τ = η = 0.1 and decreasing ε. In this simulation, the micro problem (30) is solved
with the initial data û = s ·x where s = (1, 1). The HMM flux F is compared to the exact homogenised

flux F̂ = A0∇û, where A0 = diag(1/3, 3/8), and hence F̂ = (1/3, 3/8).

Although the above theorem was proved in the context of multi-scale wave propa-
gation where the original multi-scale PDE was a second-order wave equation, we can
use the same theorem in the setting of multi-scale elliptic problems due to the fact that
effective equations for both problems have excatly the same homogenized coefficient A0,
[1, 3]. This, in turn, implies that our time-dependent approach performs optimally in the
periodic setting. By optimality we mean that the decay rate of the error O((ε/η)q+2) in
the HMM approximation can be made as small as we like by choosing high enough q.

In locally-periodic media, the situation is slightly different. For locally-periodic co-
efficients, preliminary theoretical results and numerical evidence in [26, 27] suggest an
error of the type

EHMM = O(ε+ (ε/η)q+2)

for a kernel K ∈ Kp,q with p > 1 and τ = η ≈ ε1−β , for 0 ≤ β ≤ 1/7. It is worth
mentioning that a certain degree of regularity such as ∂kxA ∈ C(Ω;L∞(Y )), at least for
k ≤ 2, is needed for this result to be true. Moreover, the error will be optimised for the
following choice for the parameters η, τ, p, q:

1. τ = η = O(ε1−β), with 0 ≤ β ≤ 1/7

2. p > 1

3. q = 1
β − 2,

which will then yield EHMM ≤ Cp,qε.
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Note that the computational cost of solving the micro problem decreases with decreas-
ing β. Moreover, arbitrarily small values for β are obtained by using kernels K ∈ Kp,q
with better regularity properties, i.e., large q. Note that q can be chosen arbitrarily high
with no influence on the computational cost of solving the micro problem (30).

Remark 7. If p = 1, then we get an additional O(ηp+1) error in the locally-periodic
media. This error is due to the local averaging of the slow variations in the media and
can be removed if p > 1, see Figure 10.

4.1. Computational cost in the periodic setting

As in the case of elliptic micro problems, the computational cost of solving the micro
problem (30) is still independent of the small scale parameter ε since the computational
box (in time and space) is in practice of size O(ε). In Table 1, we compare the com-
putational cost for reaching a fixed tolerance TOL of the wave equation to the cost of
solving an elliptic problem as the micro problem. Note that in this comparison table, we
assume that the cost of solving a linear system is proportional to the number of degrees
of freedom which is valid, for example, if one uses multigrid solvers. In the periodic
setting, if we use the wave equation as the micro problem we have O((ε/η)q+2) error for
an arbitrarily large q . On the other hand, if we use an elliptic equation as in (12) we
can obtain O((ε/η)k) with k = 4 at best. Table 1 shows that for a fixed tolerance TOL,
the computational cost of using the wave equation (30) is less than the computational
cost of solving the elliptic PDE (12) if

1 + 1/d ≤ (q + 2)/k.

Micro problem Comp. cost Error Cost for a fixed tolerance TOL

Elliptic (η/ε)
d

(ε/η)
k

TOL−d/k

Wave Equation (η/ε)
d+1

(ε/η)
q+2

TOL−(d+1)/(q+2)

Table 1: Elliptic micro problem vs the wave equation approach

To make the comparison more fair, we must also emphasize that the zero-order re-
guralisation approach (12) has been analysed rigorously for periodic coefficients, for a
subclass of almost periodic functions and also for the subclass of random coefficients
which satisfy a spectral gap estimate, under a mild assumption of L∞ for Aε, see [17].
Moreover, from practical point of view it is much easier to solve (12) as it is a simple el-
liptic PDE. The mathematical analysis of the HMM described here, however, is available
for C∞ coefficients in periodic media but holds true also for less regular coefficients, see
the proof of Theorem 3.1 in [25] and Remark 6. Moreover, the locally-periodic theory of
the HMM is based on the findings in [26, 27] and will be reported later as an extension of
the present work. What appears to be crucial from the locally-periodic analysis is that
the HMM requires at least a certain degree of smoothness in the slow variable to give
the desired rates.
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5. Numerical results

In this section, we provide evidence that

• The time dependent approach gives O((ε/η)q+2) convergence rate in the periodic
setting, where q can be chosen arbitrarily large.

• If p > 1, we get O(εk + ( εη )q+2) convergence rates in locally-periodic media, where

k = 2 for d = 1 and k = 1 for d ≥ 2. If p = 1, an additional O(ηp+1) error appears.

• For quasi-periodic problems, where the coefficient function oscillates with a rational
and an irrational wavelength at the same time, the approach gives high order
convergence rates similar to the periodic case.

First we will present results showing the convergence of the HMM flux to the homog-
enized flux. We then provide examples showing that the full HMM solution captures the
homogenized solution. In all the examples, we will solve the micro problem (30) on the
micro domain Iτ × Ωη,x0 , where Iτ := (0, τ/2] and Ωη,x0 = [−Lη + x0, Lη + x0]. We

always choose τ = η and Lη = η
2 + τ

2

√
|Aε|∞. The values of ε and η will be specified in

each example separately.

5.1. Convergence of flux in one dimension

The periodic case: We start with three periodic examples in one dimension. The
periodic coefficients are given by

Aε1(x) = 1.1 + sin(2πx/ε), Aε2(x) = ecos(2πx/ε+1),

Aε3(x) = 1.1 + sin(2πx/ε+ 1)2 +
1

2
cos(2πx/ε+ 1.1)

(35)

The error in the flux for the simulations of the above periodic coefficients are given in
Figure 9. In order to test the convergence rate we use a fixed micro cell-size η = 0.01,
and we let ε −→ 0. For different p, q pairs, the simulations illustrate the O((ε/η)q+2)
convergence rate. All of the results agree with the statement of the Theorem 2. Note that,
in these simulations, the homogenized coefficients are computed by a simple trapezoidal
rule with an accuracy of 10−14, and we have used the initial data û = x.
The locally-periodic case: Here we consider the problem (30) with the following
locally-periodic coefficient:

Aε(x) = 1.1 +
1

2
(sin(2πx+ 0.1) + sin(2πx/ε+ 2))

and show the convergence of flux. Figure 10 shows the O(ε2 + (ε/η)q+2) error in the
flux approximation. Note that the constant error which appears when p = 1 is due to
O(ηp+1) averaging error. As depicted in the figure, this error vanishes as we take p > 1.

5.2. Convergence of flux in two dimensions

The periodic case: We consider the problem (30) in two dimensions with the linear
initial data û = x1 + x2. The coefficient matrix is chosen to be

Aε(x) = (1.1 +
1

2
sin(2πx1/ε))(1.1 +

1

2
sin(2πx2/ε))I,
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where I is (2× 2) identity matrix. The homogenized coefficient and homogenized fluxes
are explicitly given by

A0 =
(

1.1
√

1.12 − 0.25
)
I, F̂ = (F̂ 1, F̂ 2), F̂ 1 = F̂ 2 =

(
1.1
√

1.12 − 0.25
)
.

Figure 11 shows the convergence of HMM fluxes, in x1 and x2 directions, toward the
homogenized flux for two different (p, q) pairings. The results are in a perfect agreement
with Theorem 2.
The locally-periodic case: We consider the problem (30) in two dimensions with the
coefficient matrix

Aε(x) = (1.5 + sin(2πx1/ε) + sin(2πx2) cos(2πx1/ε))I.

In this case the homogenized matrix becomes diagonal. We compute the diagonal ele-
ments at x2 = 0 using the cell problem (5) with an accuracy of 10−7

A0
11(0) = 1.1180025, A0

22(0) = 1.5000000.

The difference between the homogenized flux and the HMM flux in x1 and x2 directions
are shown in Figure 12. We clearly observe that the O((ε/η)q+2) averaging error is
asymptotically dominated by the O(ε) error. We emphasize again that in one dimensional
locally-periodic setting we obtained O(ε2) instead, see Figure 10.

5.3. Full HMM Solution

Suppose that Ω = (0, 1)d and that we approximate the solution of the elliptic PDE
(1) with HMM where the hyperbolic equation (30) is used as the micro-model. Let us
denote the HMM solution by {U i}Ni=1 where N is the number of macro grid points. We
are interested in measuring the error between the HMM solution {U i}Ni=1 and the discrete
homogenized solution ûh(xi) which approximates the solution of

−∇ ·
(
A0(x)∇u0(x)

)
= f(x) in Ω,

u0(x) = 0 on ∂Ω.

In Figure 13 we show the solution of the HMM for the elliptic problem (1) in one dimen-
sion for a locally-periodic coefficient. In Figure 14 we see the solution of HMM in two
dimensions with the following coefficient

Aε(x) = (1.1 +
1

2
(sin(2πx1/ε) + sin(x1)))(1.1 +

1

2
(sin(2πx2/ε) + sin(x2)))I.

In these figures, we provide the direct (only in the one dimensional case) and the ho-
mogenized solutions. Observe that the HMM approximates the average quantities very
well and that both the HMM and homogenized solutions stay close to the exact solution
according to the classical theory of homogenisation.

Finally, to test the convergence for a quasi-periodic media we consider the coefficient

Aε(x) = 1/4esin(2πrx/ε)+sin(2πx/ε),

where r =
√

2. With this choice, the problem becomes non-periodic. However to be able
to compute the exact homogenized coefficient, we use an approximation r = 1.41. This
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choice makes the problem non-periodic on the micro level and periodic on the macro
level for ε = 0.01. The reference homogenized coefficient is computed by

A0 =

(
1

100

∫ 100

0

(
1

4
esin(2πrx)+sin(2πx)

)−1

dx

)−1

.

We are then able to compare the full HMM solution with the discrete homogenized
solution. The right plot in Figure 15 shows again the desired rate of convergence for this
”non-periodic” problem. In the left plot of this figure, we depict the convergence rate

for a periodic case as well. All these examples illustrate the O
(

(ε/η)
q+2
)

convergence

rate for the full solution as well.

6. Concluding remarks

The accuracy of typical multiscale methods is limited by the O(ε) error made on the
boundary of the micro domain. Without any special treatment, this error leads to an
O(ε/η) error for the difference between the HMM and the homogenized solutions. In
this paper, we have proposed a strategy to reduce this resonance error for elliptic ho-
mogenization problems. Our approach uses the wave equation as the micro model. Since
waves propagate with finite speed, the O(ε) error on the boundary of the microscopic do-
main does not influence the interior solution if the micro domain is sufficiently large. In
periodic media, the approach reduces the resonance error to O((ε/η)q+2) for arbitrarily
large values of q upon using a kernel K ∈ Kp,q and without increasing the computational
cost. In more general media, however, although the method does not suffer from the
boundary error, it introduces an error of the order O(ε) which is a bias that appears due
to using wave equations as our micro-problem. Since η = O(ε), our method results in
a substantial decrease in the upscaling error by replacing the O(ε/η) resonance error by
an error of the order O(ε). Hence, when compared to the exact solution, the method
becomes as accurate as homogenization which is also O(ε) away from the exact solution.
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0.5 (sin(2πx+ 0.1) + sin(2πx/ε+ 2)) is solved. We observe O(ε2 + (ε/η)q+2) error, when p > 1, for
the difference between the homogenized and the HMM flux. The constant error when p = 1 is due to
the averaging error O(ηp+1) which disappears as we take larger p.

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

1/η

|F
H

M
M

x
 −

 F
H

o
m

x
| 

2D periodic problem with ε =0.01

 

 

p=1,q=7

p=3,q=4

O( (ε / η)
9
  )

O( (ε / η)
6
  )

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

1/η

|F
H

M
M

y
 −

 F
H

o
m

y
|

2D periodic problem with ε =0.01

 

 

p=1,q=7

p=3,q=4

O( (ε / η)
9
  )

O( (ε / η)
6
  )

Figure 11: 2D periodic wave problem with initial data û(x) = x1 + x2, and the coefficient Aε(x) =
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