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Stochastic regularity of general quadratic observables of high frequency waves

G. Malenova* and O. Runborg*

Abstract. We consider the wave equation with uncertain initial data and medium, when the wavelength ¢ of the
solution is short compared to the distance traveled by the wave. We are interested in the statistics
for quantities of interest (Qol), defined as functionals of the wave solution, given the probability
distributions of the uncertain parameters in the wave equation. Fast methods to compute this
statistics require considerable smoothness in the mapping from parameters to the Qol, which is
typically not present in the high frequency case, as the oscillations on the € scale in the wave field
is inherited by the Qols. The main contribution of this work is to identify certain non-oscillatory
quadratic Qols and show e-independent estimates for the derivatives of the Qol with respect to the
parameters, when the wave solution is replaced by a Gaussian beam approximation.

Key words. Uncertainty quantification, high frequency wave propagation, stochastic regularity, Gaussian beam
superposition

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. Many physical phenomena can be described by propagation of high-
frequency waves with stochastic parameters. For instance, an earthquake where seismic waves
with uncertain epicenter travel through the layers of the Earth with uncertain soil character-
istics represents one such problem stemming from geophysics. Similar problems arise e.g. in
optics, acoustics or oceanography. By high frequency we understand that the wavelength is
very short compared to the distance traveled by the wave.

As a simplified model of the wave propagation, we use the scalar wave equation

(Lla)  w(txy) = e y)? Au(t,x, y), in [0,7) x R” x T,
(1.1b) uf(0,x,y) = Bo(x,y) e’ Pox¥)/e, in R" x T,
(1.1c) uf(0,x,y) = e ' By(x,y) et Fox¥)/e, in R" x T,

with highly oscillatory initial data, represented by the small wavelength € < 1, and a stochastic
parameter y € I' € RY which models the uncertainty. For realistic problems, the dimension
N of the stochastic space can be fairly large. Two sources of uncertainty are considered: the
local speed, ¢ = ¢(x,y), and the initial data, By = By(x,y), B1 = Bi(x,y), ©0 = ¢o(X,¥).
The solution is therefore also a function of the random parameter, u® = u®(¢,x,y).

The focus of this work is on the regularity of certain nonlinear functionals of the solution
u® with respect to the random parameters y. Our motivation for the study comes from the
field of uncertainty quantification (UQ), where the functionals represent quantities of interest
(QolI). We will denote them generically by Q(y). The aim in (forward) UQ is to compute the
statistics of Q, typically the mean and the variance, given the probability distribution of y.
This is often done by random sample based methods like Monte—Carlo [9], which, however,
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2 G. MALENOVA AND O. RUNBORG

has a rather slow convergence rate; the error decays as O(N -1/ 2) for N samples. Grid based
methods like Stochastic Galerkin (SG) [10, 34, 2, 32] and Stochastic Collocation (SC) [33, 3, 27]
can achieve much faster convergence rates, even spectral rates where the error decays faster
than NP for all p > 0. They rely on smoothness of Q(y) with respect to y. This smoothness
is referred to as the stochastic regularity of the problem. When y is a high-dimensional vector,
SG and SC must be performed on sparse grids [5, 11] to break the curse of dimension. This
typically requires even stronger stochastic regularity.

To show the fast convergence of SG and SC, analysis of the stochastic regularity has been
carried out for many different PDE problems. Examples include elliptic problems [1, 7, 26], the
wave equation [25], Maxwell equations [17] and various kinetic equations [14, 18, 21, 16, 30].

In the high frequency case, which is the subject of this article, the main question is how
the y-derivatives of Q depend on the wave length €. The solution u® oscillates with period e
and these oscillations are often inherited by Q. If this is the case, SG and SC will not work
well, as the derivatives of Q grow rapidly with . Special choices of @ can, however, have
better properties, as we discuss below. A further complication is that the direct numerical
solution of (1.1) becomes infeasible as ¢ — 0, as the computational cost to approximate u® is
of order O(e~"~!). Asymptotic methods based on e.g. geometrical optics [3, 29] or Gaussian
beams (GB) [6, 28] must therefore be used.

In [24] we identified a non-oscillatory quadratic Qol,

(1.2) Ot.y) = [ It xy)Potx s, b e CXRXRY)

and introduced a GB solver for u® coupled with SC on sparse grids to approximate it. A
big advantage of the GB method is that it approximates the solution to the PDE (1.1) via
solutions to a set of e-independent ODEs instead. In [23] we also showed rigorously that all
derivatives of Q are bounded independently of € when the wave solution u® is approximated
by Gaussian beams,

. o(t,y)

By° < Cy, Vo € NY,

yel

where Cy are independent of €. A related study is found in [15].
In this article we generalize the result in [23] and consider Qols which include higher order
derivatives of the solution and also averaging in time. More precisely, we study

(1.3) @Wﬁ—ﬂﬁwéfg@&wW%f@&M%&ﬂﬁﬁ

with g € C°(R x R™ x I'), p a non-negative integer and « a multi-index. Many physically
relevant Qols can be written on this form. The simplest case in (1.3),

(1.4 0y) = &0y) = [ [t xy)Puttx) dxat

represents the weighted average intensity of the wave. If the solution u® to (1.1) describes the
pressure, then Q represents the acoustic potential energy. Another significant example is the
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STOCHASTIC REGULARITY FOR HIGH FREQUENCY WAVES 3

weighted total energy of the wave,

B = [ [ (it y) + ey Vit y) o) dx.

which can be decomposed into terms of type (1.3). An additional example is the weighted
and averaged version of the Arias intensity,

I(y) = & /R /R s, y) (e, ) et

which represents the total energy per unit mass and is used to measure the strength of ground
motion during an earthquake, see [12].

In this work we show that also the Qol (1.3) is non-oscillatory when u° is replaced by the
GB approximation %. Indeed, under the assumptions given in Section 2 we then prove that
for all compact I'. C I" and all o € Név ,

979" *(y)

(1.5) sup 0y

yele

.

for some constants Cy, uniformly in €.

The full GB approximation @ features two modes, @ = @' + @, satisfying two different
sets of ODEs. In certain cases, it is possible to approximate u® by one of the modes only,
i.e. either & = @t or & = @~. We can then examine a Qol that, in contrast to (1.3), is only
integrated in space,

(1.6) QP (t,y) = e2Ptled / g(t, x,y)|0P0Sus (t, %, ¥)| 2 (t, x) dx,
and show a stronger regularity result,
o AP, t
(1.7) sup (()an(’}’) < Cy, Vo € NYY,
S Yy
tZ[QT]

uniformly in e, when u¢ is replaced by @*. In fact, this one-mode case, with p = a = 0, was
the one considered in [23].

The layout of this article is as follows: we briefly introduce our assumptions in Section 2
and then present the Gaussian beam method in Section 3. The one-mode Qol (1.6) with u®
approximated by % = @ is regarded in Section 4. The stochastic regularity (1.7) is shown
in Theorem 4.3. This serves as a stepping stone for the proof of regularity of the general
two-mode Qol (1.3) with u® approximated by @ = @ + @, which is the subject of Section 5
where the final stochastic regularity (1.5) is shown in Theorem 5.5.

2. Assumptions and preliminaries. Let us consider the Cauchy problem (1.1). By ¢ €
[0,7] C R we denote the time, x = (x1,...,z,) € R™is the spatial variable and the uncertainty
in the model is described by the random variable y = (y1,...yn) € I' where I' € RY is an
open set. By B, we will denote the n-dimensional closed ball around 0 of radius y, i.e. the
set B, := {x € R" : x| < p}, with the convention that B, = R".

We make the following precise assumptions.

This manuscript is for review purposes only.
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4 G. MALENOVA AND O. RUNBORG

(A1) Strictly positive, smooth and bounded speed of propagation,
ce C®([R" xT), 0 < min < ¢(x,Y) < Cmax < 00, VxeR", Vyel.

and for each multi-index pair o, @ there is a constant Cq g such that

Gfﬁgc(x,y)‘ < Ca,B; VxeR" Vyel.
(A2) Smooth and (uniformly) compactly supported initial amplitudes,
By e C*(R" x I, supp By(-,y) C Ko, £=0,1, VyeTl,

where Ky C R™ is a compact set.
(A3) Smooth initial phase with non-zero gradient,

wo € C°(R" xT), [Vo(x,y)| >0, VYxeR" Vyel.

(A4) High frequency,
0<e<1.

(A5) Smooth and compactly supported Qol test function,
Y e CX(RxRY),  suppy C[0,7] x K,

where K1 C R” is a compact set.
Throughout the paper we will frequently use the shorthand f € C'**° with the understanding
that f is continuously differentiable infinitely many times in each of its variables, over its
entire domain of definition, typically R x R™ x I' x R" or R x R” x ' x R x R™.

3. Gaussian beam approximation. Solving (1.1) directly requires a substantial number
of numerical operations when the wavelength ¢ is small. In particular, to maintain a given
accuracy for a fixed y, we need at least O(¢™") discretization points in x and O(¢~!) time
steps resulting into the computational cost O(e~"1). To avoid the high cost we employ
asymptotic methods arising from geometrical optics. In particular, the Gaussian beam (GB)
method provides a powerful tool, see [6, 19, 28, 29, 31].

Individual Gaussian beams are asymptotic solutions to the wave equation (1.1) that con-
centrate around a central ray in space-time. Rays are bicharacteristics of the wave equation
(1.1). They are denoted by (q*, p*) where g (¢,y,z) represents the position and p*(¢,y, z)
the direction, respectively, and z € Kj is the starting point so that q*(0,y,z) = z for all
y € I'. From each z, the ray propagates in two opposite directions, here distinguished by the
superscript . These corresponds to the two modes of the wave equation and leads to two
different GB solutions, one for each mode. We denote the two k-th order Gaussian beams
starting at z € Ky by v,f(t,x,y, z) and define it as

(31) vki (tv XY, Z) = A% (tv X = q:t (ta Y Z)7 Yy, Z)eid)ki(t,x—qi (t,y,z),y,z)/s’

where

This manuscript is for review purposes only.
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STOCHASTIC REGULARITY FOR HIGH FREQUENCY WAVES 5

k+1
1
(3.2) ®f(t,x,y,2) = ¢F(t,y,2) +x pE(t,y,2) + 2xTMj[(t y,z2)x + Z ﬁ'(% (t,y,2z)xP,
181=3

is the k-th order phase function and

[A1-1 k251

(33) A:t t X y7 Z 87 Z ,6‘ Jﬁ 7y7Z)Xﬂ7

Jj=0 |8]=0

is the k-th order amplitude function. The higher the order k, the more accurately vk approx-
imates the solution to (1.1) in terms of e. The variables ¢0 ,qt, pt, M+, qﬁﬂ, ;3 are given by
a set of ODEs, the simplest ones being

(3.4a) ¢ =0,
+
(34b)  ¢* ==c(q >|p =
(3.4c) p* = FVe(q®)p*l,
4d) M* = F(D* + (BH)TM* + M*B* + M*C* M%),
, 1 () (p*)" M+ p*
+ _ + + T+ +
(3.4e) ago = iﬁ (—c(q )Tr (M=) + Ve(q™) p™ + I ag0;
where
+ +\T + +
Bt — p T;ic‘l ) ’ c*F — C‘i:li‘) . Tl()(:lt|3)pi( :I:)T, DT — |p:|:|v2c(q:t)'

For the ODEs determining (;Sg and ajiﬂ other than the leading term we refer the reader to
[28, 31].

As mentioned above, the sign corresponds to GBs moving in opposite directions which
means that they constitute two different modes that are governed by two different sets of
ODEs. Single beams from the same mode with their starting points in Ky are summed
together to form the k-th order one-mode solution uf (t,x,y),

1 n/2
(35) itxy = (o) [ ottxyan - attya)is

e Ko
where the integration in z is over the support of the initial data Ky C R", which is indepen-
dent of y by (A2). Since the wave equation is linear, the superposition of beams is still an
asymptotic solution. The function g, € C*°(R") is a real-valued cutoff function with radius
0<n<oo,

1, if |x| <mn, for0<n< oo,
(3.6) on(x) =< 0, if [x| >2n, for 0<n< oo,
1, for n = oo

This manuscript is for review purposes only.
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6 G. MALENOVA AND O. RUNBORG

For first order GBS k =1, one can choose 1 = o0, i.e. no g, see below.

Each GB vk requires initial values for all its coefficients. An appropriate choice makes
U £(0,x,y) converge asymptotically as ¢ — 0 to the initial conditions in (1.1). As shown in
[19], the initial data are to be chosen as follows:

(3.7a) q(0,y,2) =z,

(3.7b) P (0,y,2) = Vio(z,y),

(3.7¢) ¢35 (0,y,2) = ¢o(2,y),

(3.7d) M*(0,y,2) = V2@o(2z,y) + i Inxn,

(3.7¢) ¢50,y,2) = Bpo(z,y), 1Bl=3,....k+1,
1 Bi(z,y

1 al0v:0 = (e 2 1 S )

where I+, denotes the identity matrix of size n. The initial data for the higher order ampli-
tude coefficients are given in [19]. The following proposition shows that all these variables are
smooth and a,;cﬁ remain supported in K for all times ¢ and random variables y € T'.

Proposition 3.1. Under assumptions (A1)-(AS3), the coefficients ¢0 ,qi,pi,Mi,qﬁB, B
all belong to C*°(R x I' x R™) and

supp(a;fﬁ(t,y, 1)) C Ko, VteR,yel.

Consequently, @f e C*.

Proof. Existence and regularity of the solutions follow from standard ODE theory and a re-
sult in [28, Section 2.1] which ensures that the non-linear Riccati equations for M*(t, y7 z) have
solutions for all times and parameter values, with the given initial data. That supp(a B(t y,))
stays in K for all times is a consequence of the form of the ODEs for the amplitude coefﬁments
given in [28]. [ ]

Finally, the k-th order GB superposition solution is defined as a sum of the two modes in
(3.5),
(3.8) ur(t, x,y) = wf (t,%,5) +up (1, x,y).

Approximating u® with u; we can define the GB quantity of interest corresponding to (1.3)
as

(3.9) %@wzﬂww//gmxwwwwmxm%@mmw
R n

where 1 is as in (A5) and g € C*°(R x R” x I).

We note that for numerical computations with SG or SC combined with GB it is indeed
the stochastic regularity of Q%’g rather than of the exact QP that is relevant. Moreover, since
uy approximates the exact solution u® well, Qgg will also be a good approximation of QP<.
For instance, when p = 0 and « # 0 one can use the Sobolev estimate ||uy — u¢||gs < Ce¥/275,
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STOCHASTIC REGULARITY FOR HIGH FREQUENCY WAVES 7

for s > 1, shown in [20], to derive the error bound |Q%’g — QVe| < Ce*/2 in the same way
as in [23], where the case @ = 0 was discussed. Also, in some cases, like in one dimension
with constant speed c(z,y) = ¢(y), the GB solution is exact if the initial data is exact. Then

D, p,«
as = Q"%

4. One-mode quantity of interest. Before considering the Qol (3.9) it is advantageous to
first focus on its one-mode counterpart with uy consisting of either ug = u; or ug = u, only,
as given in (1.6). In the present article, this is partly due to the fact that the one-mode Qol
will be a stepping stone for our analysis of the full two-mode Qol. However, its examination is
also important in its own right. As the two wave modes propagate in opposite directions they
separate and parts of the domain will mainly be covered by waves belonging to only one of the
modes. As a simple example, in one dimension with constant speed, the d’Alembert solution
to the wave equation is a superposition of a left and a right going wave. In the general
case, the effect is more pronounced in the high-frequency regime, when the wave length is
significantly smaller than the curvature of the wave front [8, 29]. Discarding one of the modes
then amounts to discarding reflected waves and waves that initially propagate away from the
domain of interest. The solution will nevertheless contain waves going in different directions.
For example, if By in (1.1) is chosen such that u® essentially propagates in one direction,
then merely one mode, either u;: or u, , is sufficient to approximate u®. The approximation
is similar to, but not the same as, using the paraxial wave equation instead of the full wave
equation, which is a common strategy in areas like seismology, plasma physics, underwater
acoustics and optics [4].

Let us thus define the GB-approximated version of the Qol in (1.6),

(4.1) Q5 (t,y) :52(P+°‘|)/ 9(t, %, ¥)|0F 0 un(t, x,y) [P0 (¢, x) dx,

with ¢ € C2°(R x R") and g € C®(R x R" x I). Here uy, = u; or uj = u;, in (3.8). It is not
important which one we choose and henceforth omit superscripts of all variables.
To introduce the terminology used in this section, we will need the following proposition.

Proposition 4.1. Assume (A1)-(A3) hold. Then for all T > 0, beam order k and compact
I'. C T, there is a GB cutoff width n > 0 and constant 6 > 0 such that for all x € Ba,,

(4.2) Im @, (t,x,y,2) > 0|x]?, Vt€[0,T],y €T, z¢c K.

For the first order GB, k =1, we can take n = oo and (4.2) is valid for all x € R™.
Proof. Property (P4) in Proposition 1 in [23]. The proof is in [22]. [ |
Note that 7 is the width of the cutoff function g, in (3.6) used in the GB superposition (3.5).

Definition 4.2. The cutoff width n used for the GB approximation is called admissible for

a given T, k and T if it is small enough in the sense of Proposition /.1.

We will prove the following main theorem.

This manuscript is for review purposes only.
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8 G. MALENOVA AND O. RUNBORG

Theorem 4.3. Assume (A1)-(A5) hold and consider a one-mode GB solution. Moreover,
let n be admissible for T > 0, k and a compact I'c CT'. Then for allp € N and o € Név, there
exist Cy such that N
07 Qg (t.y)

By° <Cy, Vo eN{,

sup
yele

t€[0,T]

where Cy is independent of € but depends on T,k and T'..

The proof of Theorem 4.3 is presented in Section 4.2.
Let us also recall the known results regarding the simplest version of the Qol (4.1),

(13) Qo i= 008 = [ fun(t.x.3) ot i,

which were obtained in [23].

Theorem 4.4 ([23, Theorem 1]). Assume (A1)-(A5) hold and consider a one-mode GB
solution. Moreover, let n be admissible for T > 0, k and a compact I'. C I'. Then there exist
Cys such that

“Qepl(t
Sup aQaGBCE’Y) <Cy, VYoeNy,
yele Yy
t€[0,T]

where Cy is independent of € but depends on T, k and T..

Remark 4.5. This is a minor generalization of Theorem 1 in [23]. In particular we here
allow 1 to also depend on ¢ and have an estimate that is uniform in ¢. Moreover, instead of
assuming I' to be the closure of a bounded open set, as in [23], we consider compact subsets
T'; of an open set I'. These modifications do not affect the proof in a significant way.

Remark 4.6. One can note that the stochastic regularity in y shown in Theorem 4.3 also
implies stochastic regularity in ¢ for the same Qol. Indeed, upon defining

Ua(t’ XY, yO) = ue(ty(% X, Y)7

v® will satisfy the same wave equation as u®, with ¢(x,y) replaced by yoc(x,y) and Bi(x,y)
replaced by ypBi(x,y). One can verify that with these alterations, the Gaussian beam approx-
imations of u® and v® also satisfy the same equations. Moreover, for a fixed ¢, time derivatives
of the Qol based on u® corresponds to partial derivatives in g for the Qol based on v*, which
is covered by the theory above. However, making this observation precise, we leave for future
work.

4.1. Preliminaries. In this section we introduce functions spaces and derive some prelim-
inary results for the main proof of Theorem 4.3. However, we start with a note on the case
n = oo, which is sometimes an admissible cutoff width in the sense of Proposition 4.1. In
particular, it is always admissible when £ = 1. It amounts to removing the cutoff functions
on in (3.5) altogether. This is convenient in computations, but there are some technical issues
with having n = oo in the proofs below. We note, however, that, in any finite time interval
[0,T] and compact I'. C T, the Gaussian beam superposition (3.8) with no cutoff is identical

This manuscript is for review purposes only.
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STOCHASTIC REGULARITY FOR HIGH FREQUENCY WAVES 9

to the one with a large enough cutoff, because of the compact support of the test function
¥ (t,x). Indeed, suppose supp ¥(t,-) C Bg, for t € [0,T]. Then for |x| < R we have

Ix —q(t,y,z)| < x|+ |a(t,y,z)| < R+ |a(t,y,z)], vVt €[0,T], Vy € T, Vz, € K.
Hence, for 7 = R + sup,c(o 1] yer. zck, [4(t, ¥, 2)| we will have

w(t7x) = Qﬁ(x - q(t7Ya Z))Qﬁ(x - q(tvya Z,))w(tax)7 vt € [O’T]a Vy € F67 VZ,Z/ € KO-

We can therefore, without loss of generality, assume that n < oco.
Let us now define a shorthand for the following sets:

o P, = {p e C>®:p(t,x,y,z) = Z%‘:O ae(t,x,y,2z) X*, where a, € C°,
and supp aa(t, -,y,2) C By, Vo, teR, yeT, z € R"},

¢ S, = {f eC™: f(t,x,y,z) = Zf:o 5jpj(t,x,y,z)eiék(t’x’y’z)/g, where p; € P, Vj}
Note that these sets are also defined for g = oo, in which case there is no restriction on the
support of the coefficient functions aq since By, = R™. The phase ®;, in the definition of S,
is as in (3.2). By Proposition 3.1, it can be written as ®4(¢,x,y,z) = Z‘k;‘l 0da(t,y,z)x*,
with do € C°(R x I" x R™) and hence @} € Po. The following properties hold for the sets
defined above.

Lemma 4.7. Let r € Peo, p1,p2 € Py and w1, w2 € S,,. Then, for 0 < p < oo,
L. p1+Dp2 € Pu~

w1 + we € Sﬂ.

rp1 € Py.

rwy € Sy.

Osp1 € Py, forse{t,xg, L=1,...n}.

edswy € S, for s € {t,xp, £ =1,...n}.

Proof. We will denote

AN ol A

My,
Pt %,Y,2) = D amalt,X,y,2) X%, wa(t,x,y,z Zequg (t,x,y,2)e! Xy 2/,
\a|:0
r(t,x,y,z) Z (t,x,y,2z)x7, m € {1,2}.

Let us assume without loss of generality that Ms > M; and Lo > L.
1. The sum p; + ps can be rewritten as p; + py = Z%f:o ba(t,x,y,z) xP, where bg is
such that
pa— | aptazp, for B <M,
s as 8, for M, < |,3‘ < Ms.

Hence bg € C*° and supp bg(t,-,y,z) C By, forallt € R, y € I', z € R". Therefore
p1+Dp2 € Py

This manuscript is for review purposes only.
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2. The sum w; + wo can be rewritten as wi + wy = Zfio z-:jqj(t,x,y,z)e@k(t’x’y’z)/g,

where g; is such that

g =1 it e for j < L,
I 42,5 for Ly < j < Ls.

By point 1 we have that ¢; € P, for all j and therefore wi + w2 € S,,.

. We have
M M,
r(t,x,y,z)pi(t,x,y,z Z (t,x,y,2 Z al,a(t’X7YvZ)Xa
Iy=0 =0
Mi+M
Z ds(t,x,y,2)x°,
16|=0

where ds = Za+,y:5 a1,aCy € C*. Since suppaio(t,-,y,z) C By, we also have
suppds(t,-,y,z) C B, forallt € R, y € I', z € R" and therefore rp; € P,,.

. We have

Ly

T(t, X,y, Z)wl (tv X,y, Z) - Z 5j7'(t7 X,Y, Z)Ql,j (ta Xy, Z)eiék (t’X7y’Z)/E7
7=0

where rq1 ; € P, by point 3 for all j. Therefore rw; € S,,.

. The time derivative of p; reads Oip1 (t,x,y,z) = E\J\;ﬁ:o Ora1,a(t,x,y,2) x*, and since

supp dra1,a(t,-,y,z) C By forallt e R, y € I', z € R", we have dyp1 € P,,. Secondly,
the derivative of p; with respect to z, reads

My
8$[p1(t7x7ya Z 8:65011 Cx(t X,y,z X + Z ala t X,y,z )O[[X e .
|ae|=0 |ae|=0

@ @

Since supp 0y,01,(t, -, y,2) C By forallt e R,y € I', z € R", we have D € P,. For ),
there exist ¢, € C°° such that Q) = ZMl ! c(t,x,y,2)xY with supp ey (t,-,y,2) C B,
forallte R, y eI, ze R"” and hence @ € P,. By point 1, 0,,p1 = O + @ € P,.

6. The derivative dsw; with respect to either of s € {t,xzy, £ = 1,...n} reads

Oswi (t,x,y,z)

Ly
=Y 0uq(t,x,y,z)e XY/
=0
)
Ly
+ Z is]_laS(I)k (tv XY, Z)Qlyj (t’ X,y Z)elq)k (txy.z)/e .
7=0

/

@
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304 We have e = Z;ﬁgl elqi(t,x,y, z2)e'PrbXy2)/e with

305 _J 0 for j =0,

o 4= dsq1,j—1, otherwise.

306 By point 5, ¢; € P,, and we therefore obtain e € S§,,. Since ®;, € Py, we have by
307 point 5 that 9;®; € Po and therefore @) € S, by point 4. By point 2, we finally
308 arrive at edswy = D +e@ € S,. [ |
309  As a consequence, we obtain the following corollary.

310 Corollary 4.8. If w € S,,, all scaled mized derivatives ePT1¥IP0%w € S,,.

311 Proof. Apply point 6 of Lemma 4.7 repeatedly. |

312 4.2. Proof of theorem 4.3. The QoI (4.1) can be written

313 OV (t,y) = g2wtlal) | 9t x )OO urlt, %, 9)" O O un(t, %, y)y(t, x)dx
314 (4.4) ( ! )n/ I(t ") dz dz

314 . =(— ,Y,2,2 ) dzdz’,

315 2me KoxKo

316 where

n

51 I(t,y,z,2) = 2wtled / O} 0% (wi(t,x —q(t,y,2),y,2)) 0 0 (wi(t,x — a(t,y,2'),y,2))

i1y (4.9) x g(t, %, y)i(t, x) dx,
320 and
321 (4.6) wi(t,X,y,z) = Ak(t7x’y’Z)Qn(x)ei{%(tx,y,z)/a‘

322 The following lemma allows us to rewrite I in (4.5) in terms of functions belonging to S,,.

323 Lemma 4.9. Let wy be as in (4.6). Then for each k > 1, p > 0, a € N, there emists
324 s € Sy such that

325 PO (wr(t, x — alt,y, 2),y,2)) = sk(t,x — q(t,y,2),y,2).
326 Proof. We note that from (3.3),
[E1-1 k—2j—1 1
327 wi(t,x,y,2z) = Z g’ Z @aj,g(t,y, z)0n(x) xBe!Prtxy.2)/e
=0 |gl=0

and since g, is supported in Ba, then wy € S,. We first differentiate

8)? (’U)k(t, X = q(tv Yy, Z)v Yy, Z)) = 8)?wk‘(t7 XY, Z) ‘x:x—q(t,y,z)’

This manuscript is for review purposes only.
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12 G. MALENOVA AND O. RUNBORG

and note that by Corollary 4.8, ry = 5|°‘|8§"wk € §,. Furthermore, the time derivative of
T‘k(t, X = Q(t, Y, Z)7 Y, Z) reads

O (re(t:x — alty,2),5,2)) = Ori(t x,y,2) — da(t,y,2) V(X y2)|

From points 2, 4 and 6 in Lemma 4.7 and Proposition 3.1, we have that F'r; € §,, where I is
the operator F' = £(0; — 0yq - Vx). Repeated differentiation of r(¢t,x — q(t,y,z),y, z) subject
to an appropriate scaling with € thus yields repeated application of the F' operator:

Epaf (T’k(t,X— q(tay’z)7yuz)) = Fprk(t7X7YaZ) ( )
x=x—q(t,y,z

Since sy, := FPry € S, the proof is complete. |

The function s, € &, can be rewritten recalling the definition of S, as si(t,x,y,z) =
ZJI»‘:O elp;(t,x,y, z)ei‘bk(t’x’y’Z)/a, with p; € Py, for all j. Then using Lemma 4.9, the quantity
(4.5) becomes

I(t7 Y.z, Z/) = / SZ(tv X = q(tv Y, Z)v Yy, Z)Sk(tv X = Q(t, Y, Z/)v Y, Z/)g(tv X, Y)w(t» X) dx

. !
_ Z j+e h]g t X,y,7, Z) 1Ok (t,x,y,z,2") /e dX,
7,£=0

where O is the k-th order GB phase
(4.7) Ok(t,x,y,z,7z') = ®(t,x — q(t,y,7z),y,2) — ®;(t,x — q(t,y,2),y,2z),
and
hje(t, x,y,2,2') = pj(t,x —a(t,y,2),y,2) pe(t,x —a(t,y,2'),y, 2)g(t,x,y)¢(t, x).

Let us use the definition of P, and write p;(t,x,y,z) = Zf\i\:o aja(t,x,y,2)x%, with
supp aja(t,-,y,z) C Ba, for all j,a, t e R, y €T', z € R". We get

M
hjf(tax7y7z7zl) = Z cj,@,a,ﬁ(tax7y7z7zl)(x - q(t7Y7z))a(X_ q(tayaz/))ﬁv
lee],|1B]=0

where ¢ ¢ 8(t,X,y,2,2') = a; ot x—a(t,y, z),y,z)arg(t,x—q(t,y,z),y, 2z )g(t,x,y)¢(t,x)
implying that supp ¢j¢a g(t, -, y,2,2") C Ay(t,y,2,2'), given by

Ay(ty,z,2') == {x €R": [x —q(t,y,2)| < 27 and [x —a(t,y,z')| < 2n}.

To summarize, the quantity (4.5) can be written as

I(t,y,z,7) Zsﬁ'f Z Livap(ty,z2),

JA£=0 ], |B]=0

This manuscript is for review purposes only.
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with
Litap(t.y,2,2) = /Rn Citap(t, %y, 2,7)(x — alt,y,2))*(x — q(t,y, 7)) Oy 25)/E 4,
such that c¢;/a g € Ty, where

Ty = {f € C™ :supp f(t,-,y,z,2') C Ay(t,y,z,2'),Vt eR, y €T, 2,7 € R"}.

We will now utilize the following theorem.

Theorem 4.10. Assume (A1)-(A5) hold. Let n < oo be admissible for T > 0, k and a
compact I'c CT'. Define

(4.8) Io(t,y,z,2') = fit,x,y,z,7)(x —q(t,y,z)%(x — q(t,y, z'))ﬂei@k(t’x’y’z’zl)/gdx,
Rn
where Oy, is as in (4.7) and f € T,. Then there ezist Coy o such that

1 n/ / !/
sup | — 0y Io(t,y,z,2')|dzdz’ < Cy o,
yEFc <27T€> KoXK() | Y ( )‘ a-aﬁ

t€[0,T]

for all o € Név and a, 3 € Nij, where Co o g 15 independent of € but depends on T', k and T'..

Proof. The proof is essentially the same as the proof of Theorem 1 in [23]. We include
shortened version in the Appendix. |

Since I g is of the form (4.8), we can use Theorem 4.10 (replacing the constant Cy o g
with Cy ¢ a g to illustrate its dependence on j and £ as well). Then recalling (4.4) and (A4)
we get,

97 Al (L, y) 0°1(t,y,2,7)

1 n
sup < sup () / ’dzdz’
yeT. oy° yel. \27e Kox Ko oy?
t€[0,7T] t€[0,T7]
L M
1\" , 0°1I; t,y,z, z'
<sw (o) Xy UYL 4y 0y
Lo =0 |af|gl=0" FoxFo
<C sup Ca',j,f,aﬁ Sca'a
Jibex,

where Cy depends on n, T, k,T'., L, M, but is independent of ¢, for all o € Név . This concludes
the proof of Theorem 4.3.

5. Two-mode quantity of interest. Let us consider a wave composed of both forward
and backward propagating modes as defined in (3.8). In this case, Theorem 4.3 for the Qol
(4.1) is no longer necessarily true. In fact, @é’g can be highly oscillatory. We will therefore
have to look at a slightly different Qol where the averaging is also done in time, not just in
space.
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14 G. MALENOVA AND O. RUNBORG

——abs(u)
——real(u)

——abs(u)
08 ——real(u)1{ o
— Y

Figure 1. d’Alembert solution with initial data (5.1) and (5.4).

5.1. What could go wrong?. Since Ocp in (4.1) is a good approximation of 0 in (1.6),
it is oscillatory if and only if the other one is, and we will first show a simple example where
Q in (1.2) is oscillatory.

Let us consider a 1D case with spatially constant speed c(z,y) = ¢(y). The initial data to
(1.1),

(5.1) u(0,2,y) = Bo(w, )™/, wi(0,2,y) =0,
generate the d’Alembert solution
1 .
(5.2) u*(t,z,y) =t (ta,y) +u (tey),  w(ha,y) = 5 Dol F c(y)t, y)elPolFetl/e,

The Qol (1.2) therefore reads
Oty) = [ ' (tp) +u (b ) Pult,n) da
R

= /R (lut (t, 2, y)? + |u™ (2, y)° + 2Re(u’ (82, 9) u™ (t,2,y))) Y (t, @) do
(53) = QV-I-(ta y) + é—(ta y) + QVO(ta y)

The first two terms of Q yield

Qutn) = [ Wt Puita)de = § [ B cotit.a) .

where the integrand is smooth, compactly supported and independent of ¢, including all its
derivatives in y. Therefore, the terms Q4+ satisfy Theorem 4.3. The last term Q) reads

Qo(t,y) = %/

oS (M) Bo(x + c(y)t,y) Bo(z — c(y)t,y)¥(t, x) dx,
R

9

where ¢(t,z,y) := po(x + c(y)t,y) — po(x — c(y)t,y). This term could conceivably be prob-
lematic, depending on the choice of By and ¢g. Notably, the selection

(5.4) By(z,y) = e 20+ 4o B@=7 gy =z, g(tx) = e 57,
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produces two symmetric pulses centered at =+s, each splitting into two waves traveling in
opposite directions, see Figure 1 where we set s = 1.5 and ¢ = 2. The test function ¥ is
compactly supported in z for numerical purposes. Let us also choose the speed c(y) = y
to be the stochastic variable. Then (¢, x,y) = 2yt and Qo includes an oscillatory prefactor
cos (2yt/e) that does not depend on x and hence cannot be damped by the test function
1. Consequently, an =7 term is produced when differentiating 07 Q(t,y). Thus Q does not
satisfy Theorem 4.3. The Qol (1.2) along with its first and second derivative in y is depicted
in Figure 2, left column, for varying ¢ = (1/40,1/80,1/160). The plots display oscillations of
growing amplitude with increasing o and decreasing ¢ as predicted. Here, we chose y € [1.5, 2],
s=3andt=2.

_ In general, for odd-order polynomial ¢, there is a cosine prefactor independent of x in
Qo which induces oscillations in € of the Qol (1.2).

—¢=1/40
oss | —e=1/80
1H -~ -e=1/160

—¢ = 1/40
—e=1/80
- - -e=1/160

—e=1/40

015,

o
o

s 1s 1 8 18 19 195

Tes 17 178
¥

40y
a0
aay

16 165 17 175 18 185 19 185 s 1ss 16 1es 17 11 18 1es 18 1ss 2
¥

o
®ag

E -0
's  1ss 16 16 17 175 18  1ss 19 195 2 "5 1ss 16 165 17 175 18 18 13 195 is 15 16

¥ v

Tes 17 175 18 18 13 18 2
v

Figure 2. Left column: Qol (1.2) with vo(x,y) = =, and its first and second derivative in y. Central
column: QoI (1.2) with po(z,y) = . Right column: QoI (1.4) with po(z,y) = .

Note that when ¢ is an even-order polynomial in x, the Qol is not oscillatory for the
example above. For instance, go(z,y) = 2 gives ¢(t,x,y) = 4ryt. By the non-stationary
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16 G. MALENOVA AND O. RUNBORG

phase lemma, for all compact I, C I' there exist ¢ independent of £ such that

sup
yel.
t€[0,T]

4xyt
/ cos (?) By(z + yt,y)Bo(z — yt,y)(x) dz| < cge’,
R

for all s as € — 0, and the same holds for its derivatives with respect to y. The Qol (1.2) with
wo(z,y) = 2% and its first and second derivatives in y are plotted in Figure 2, central column,
utilizing the same parameters as the previous example. No oscillations can be observed in the
plot.

The different behavior of ¢o(z,y) = = and o(z,y) = 22 in (5.4) does not come as a
surprise if one looks at the GB approximation (4.3) of (1.2). Note that the left-going wave
u” in (5.2) is approximated solely by u, in (3.5). This is because all GBs v, in (3.1) move
along the rays (¢—,p~) whose initial data are ¢~ (0,y,2z) = z and p—(0,y,2) = 1 by (3.7).
From (3.4) this implies that p~(¢,y,2) = 1 and ¢~ (t,y,2) = —yt + z. Hence, as y > 0 all v,
move to the left. Similarly, ™ is approximated merely by u;: Therefore, the waves moving
towards the origin (where the test function is supported) are from two different GB families.
As stated above, a two-mode solution can thus give highly oscillatory Qols.

In contrast, for po(z,y) = 22 we obtain p™(0,y, z) = p*(t,y, 2) = 2z and hence ¢* (¢, y, z) =}
:l:yét + z. Therefore, both ¢* and ¢~ can move in either direction depending on the starting
point z. For our example, this implies that the two waves moving towards the origin belong
to the same GB mode, u, , and the two waves moving away belong to u; Since the test
function v is compactly supported around the origin, only u, will substantially contribute to
the Qol (4.3). Finally, by Theorem 4.4, the Qol (4.3) consisting of one GB mode solution is

non-oscillatory.

Remark 5.1. Generally, a phase po = ¢o(x) whose derivative changes sign on R allows for
two waves approximated by the same mode moving in two different directions. In particular,
this is true for even-order polynomials. Technically, ¢( is not allowed to attain local extrema
due to (A3). In practice however, it is enough to make sure that the support of By and B
does not include the stationary point.

5.2. New quantity of interest. To avoid the oscillatory behavior of Q in (5.3) we intro-
duce the new Qol (1.4), in which |u®|?1 is integrated not only in x but also in time ¢, with
P € CX(R x R™). Let us first apply this Qol to the 1D oscillatory example from Section 5.1
with po(z,y) = z,

Qy) = /R /R ot (¢, 2, y) + u” (£ ) Pl 7) de dt,

N /R/R (lu* (ta,y)? + [u™ (2, y) P+ 2Re(u” (t,2,y) u™ (¢, 2,y))) ¢(t, ) de dt
= Q+(y) + Q-(y) + Qo(y)-

Again, the first two terms yield

Q) = [ [t Pota)deat= [ [ B Fy o dod

This manuscript is for review purposes only.
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where the integrand is smooth, compactly supported in both ¢ and =z and independent of ¢,
including all its derivatives in y. The last term reads

Q) = [ [ cos (21) Bl + st Bale — sttt o,

2yt
€
phase lemma in ¢t. As v is compactly supported in both ¢ and x, we obtain the desired
regularity: for all compact I'. C T, sup,cp, |Qo(y)| < cse® for all s as e — 0, where ¢ is
independent of ¢ and similarly for differentiation in y. The same then holds for Q(y).

To confirm this numerically, we use the initial data from the previous section and set

and since the phase of cos ( ) has no stationary point in ¢, we can utilize the non-stationary

W(t,x) = e—5x2—300(t—t5)2 ,

where ts = 1.75. The rightmost column of Figure 2 shows the QoI (1.4) and its first and
second derivatives with respect to y for ¢ = (1/40,1/80,1/160). Compared to the first column
the oscillations are eliminated.

5.3. Stochastic regularity of O”“. We now consider the general Qol QP* in (1.3) with
1 as in (A5) and define its GB approximated version as

(5.5) Qgg(y>:e2<p+la>// g(t, %, )|0) O uk (¢, %, y) [ (t, x)dx dt.
R n

We start off by defining the admissible cutoff parameter for the case of two-mode solutions.

Proposition 5.2. Assume (A1)-(A3) hold. Then for all T > 0, beam order k and compact
I'. C T, there is a GB cutoff width n > 0 and constant § > 0 such that for all x € By,

(5.6) Im ®F(t,x,y,2) > 0|x|?, Vt€[0,T],y €Ty, zc K.
For the first order GB, k =1, we can take n = oo and (5.6) is valid for all x € R™.

Proof. By Proposition 4.1, for every I', there exist 67 > 0 and ™ > 0 such that for all
X € By, + we have Im @:(t, x,y,z) > 6"|x|?, and analogously for Im @, with §~ and n~. Then
choosing 6 = min{é*,d~} and n = min{n™, n~} yields the relation (5.6) for all x € By,,. W

Definition 5.3. The cutoff width n used for the GB approximation is called admissible for
a given T, k and U if it is small enough in the sense of Proposition 5.2.

Remark 5.4. Asin Section 4.1, we assume that n < oo without loss of generality. We note
that also for the two-mode solutions, the Gaussian beam superposition (3.8) with no cutoff
is identical to the one with a large enough cutoff, because of the compact support of the test
function v (t,x).

We will now prove the main theorem, which shows that the Qol (5.5) is indeed non-

oscillatory.
Theorem 5.5. Assume (A1)-(A5) hold. Moreover, let n < oo be admissible for T > 0, k

and a compact I'e CT'. Then for all p € N and o € Név, there exist Cy such that

97 Qus(y)

sup dy”

yele

‘gc,,, Vo € NYY,
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18 G. MALENOVA AND O. RUNBORG

where Cy is independent of € but depends on T, k and I'..

In the proof we will use the following notation. Let W, and X, for u < oo, denote the
spaces

— {f € C®:supp f(t,,y,z,2') CE,(t,y,z,2), VieR, y e, z,2 € R"},
where 5, (t,y.2,2) = {x € Bt [x - q*(Ly.2)| <21 and  [x—q~(f.y,2)| < 20},

Note that the space ¥, is similar to A, introduced in Section 4.2. Instead of containing x
that are close enough to two beams from the same mode, it contains x that lie at a distance
at most 2y from two beams from different modes. We also note that there exist two spaces
Sj as defined in Section 4.1 since we have two modes of (Iﬁf and that Lemma 4.7 holds for
both.

For the remainder of the proof we fix the final time 7" > 0, the beam order k£ and the
compact set I'. C I'. Moreover, we select n < oo admissible in the sense of Definition 5.3. An
important part of the proof relies on the non-stationary phase lemma:

Lemma 5.6 (Non-stationary phase lemma). Suppose © € C*°(R) and f € CX(R) with
suppf C [0,T]. If 0,0(t) # 0 for all t € [0,T] then the following estimate holds true for all
K € Ny,

8’!’)’7,
z@(tvedt’wK( T 18]l goy) KX Z / @’ f,K _ e~ mew/e gt

where Ci depends on K but is independent of €, f,0, T, and

K+1

1llox+iqory =D sup |00 (1))
R kZ:OtE[O,T]‘ ‘

The proof of this lemma is classical. See e.g. [13]. Upon keeping careful track of the constants
in this proof we get the precise dependence on ||©|| in the right hand side of the estimate.
Lemma 5.7. Define
Iy, u) = f(y, weO¥/e

for f,© € C®(I' x RY), where supp f(y,-) € D C R%, Vy € T'. Then there exist functions
fjo € C®(T" x RY) with supp fie(y,) C D, Vy €T such that,

|o|

971(y,u) j iOy.)/e
(5.7) 5o° ]Zos fio(y, u)e

Proof. We will carry out the proof by induction. For o = 0, we choose fyo = f and the
lemma holds. Let us assume (5.7) is true for a fixed . Then for & = o + e where ey, is the
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k-th unit vector we have

lo|

0 I(Ya U—) o Z 5_jfjo- (y’ u)ez@(y,u)/a
=0

9

dy° Oy
) 38@(},7 u) 1©(y,u)/e
+f]o'(Y7u)€ ayk ) € .

Hence we can take

8f()cr j — 0’

op’
fie =\ B +;£Ha§—§;, L<j<lol-1,
1fj—1aafyka J = |0"

Clearly, we have fjz € C®(I' x RY) with supp fjs(y,:) C D for all y € I. The proof is
complete. m

Recalling the definition of uy in (3.8), Qg in (5.5) becomes
« o o — 2
Q) =201 [ [ gttxoy) [ofog (tx.y) + 0 (x ) vt x)dxde

= g2(rte) / / g(t, %, y) (1000wl (t, %, y)[* + |07 02y (¢, %, y)|?
R n
+ 2Re(BP0u; (1, %, y) O O%uy, (t.x.y))] (t, x)dx dt
(5.8) =:Q1(y) + Q2(y) + 2Re(Q3(y)),

where ¢ € C°(RxR™) is as in (A5) and g € C°(RxR™ xT"). The first two terms of (5.8), Q1
and (9, possess the required stochastic regularity as a consequence of Theorem 4.3. Indeed,
as 1 is only supported for ¢ € [0,T] we can write

T ~
Qily) = /0 Oi(t,y)dt,

where the reduced Qol Q; satisfies the assumptions of Theorem 4.3. (Note that when 7 is
admissible it admissible for both ®; and ®, individually.) Then

T ~
(5.9) sup ‘8;Ql(y)‘ < / sup ‘8;@71”“(15,)’) dt <TCy,
yel'e 0 yel.
t€[0,T)]

and analogously for Qs.
We will now prove that ()3 satisfies the same regularity condition owing to the absence of
stationary points of the phase. Let us examine the quantity

0 Quly) =200z [ [ gtxy)ofogut (txy) otz (. x.y) wit, x)dx

1 n
5.10 =(=— / 0%1(x,y,z,2') dxdzdz,
( ) (27[-6) KoxKp J K1 Y ( )
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where
I(Xa Yy, z, Z/) = 82(p+|a|) /afagw]j(ta X = q+ (t’ Yy, Z)a Y, Z)*atpagw]; (ta X = q_ (ta Yy, Z/)v Yy, Z/)
R
x g(t,x,y)y(t, x)dt,
with .
w]f(t, X,y,z) = Aki(t7 X,y, z)gn(x)e@k (txy.2)/e
Recalling Lemma 4.9, we can find sf € S,f such that

I(Xv Yy, z, Z/) = / Sg(tu X = q+ (t7 Yy, Z)a Y, Z)*SI; (t) X — q_ (tu Yy, Z/)a Y, Z/)g(tu X, Y)1/J(ta X) dt
R
L1 Lo
= Z Z 5E+m / aém(ta X,y 2, Z/)¢(t7 X)elﬁk (bxy.z2)/e dt?
£=0 m=0 R
where
afm(t7 X,y z, Z,) = g(t7 X, Y)pg+ (t7 X = q+ (tv Yy, Z)7 Yy, Z)*p;z(ta X = q_ (tv Yy, Z,)v Yy, Z/)a
with pz', Pm € Py, and

(5.11) It x,y,2,2) = ¢, (t,x—q (t,y, z),y,z) — (D,j(t, x—-qt(t,y,z),y,z)"
By Proposition 3.1, we have ¥, € C*°, and a4, € W, because both pz,p,_n are supported in
the ball Ba,. Therefore, by Lemma 5.7, there exist functions f,je € W, such that

lo| Ly L

(512) 8;,’[(x, Y.z, Z/) _ Z Z Z €Z+mfj / f@mjo' (t, X,Y,2, Z/)”Lﬂ(t, X)eiﬁk(t,x,y,z,z’)/sdt.
R

§=0 =0 m=0

The following proposition shows that ) has no stationary points in ¢ € [0,7] for all
x € ¥, with a small enough p. Note that this is true even for z = z'.

Proposition 5.8. There exist 0 < p < 1 and v > 0 such that for all'y € T'c, z € Ky,
z' € Ko, t € [0,T] and for all x € 3,

(513) ‘8tq9k(t,x,y,z,zl)] 2 V.
Proof. Differentiating (5.11) with respect to ¢ and using (3.2) and (3.4), we obtain
(5.14) Ok =-0q P +0d" P+ Ry=—cla,y)lp | —cla"y)p"|+ R,

where Ry = Ry(t,X,y,z,2’) reads
Ri=(x-q)-0p —(x—q")-0p"—0q -M (x—q)+9q"- (M) (x—q")

b= a) AM(x—a) + 5 (x—a") - (@M) (x ~ )
k+1 1

Py (905 x —a)? + 6500x —a7)?)
k+1 1 N

— |,3§|_:3 ai ((M}Q(X —q")P + ¢50n(x — q*)ﬁ)
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Since qt, p*, M*, gbg are smooth in all variables by Proposition 3.1, their time derivative is
uniformly bounded in the compact set [0,7] x I'c x Kp. If x € ¥, for some 0 < p < 1, then
both |x — q7| < 2u and |x — q*| < 2 and we arrive at

with C} independent of p.
Next, we note that H(p*,q",y) = c(q",y)|p"| is conserved along the ray,

c(qt(t,y,2),y)p" (t,y,2)] = c(q(0,y,2),y)[p"(0,y,2)| = c(z,y)|Veo(z,y)|,

and therefore by (A1) and (A3) we obtain a uniform lower bound on ¢(q*,y)|p*|, for all
teR,yel,.and z € Ky,

cla™(ty,z),y)pt(t,y.z)| > cmin n [Veo(z,y)| > v >0,
0
yelec

and similarly, from the conservation of H(p~,q~,y) we obtain ¢(q—(¢,y,2'),y)[p~| > v > 0.
Thus from (5.14) we get

00| > c(a™,y)Ip~ |+ clat,y)pt| = |Ri| > 27 — Cop > v >0,

for all x € ¥, upon taking p small enough. |

We are now ready to finalize the proof of Theorem 5.5. We first choose 0 < u <1 <
such that Proposition 5.8 holds. Furthermore, note that the admissibility condition implies
that for all x satisfying |x — q*| < 21 we have Im q)ki(t,x —qt,y,z) > 0]x — qF]2. We can
therefore estimate Im ¥ with J; as in (5.11) as

Im Vi (t,x,y,2,2) =Im®, (t,x —q (t,y,2'),y,2z') + Im @,‘:(t, x—-q'(t,y,z),y,z)
(515) 2 5|X_q_(t7yazl)‘2 +(5|X—q+(t,y,Z)’2,

for all x € %;;. To estimate |07 Q3] we recall (5.10),

1 n
5.16 2Qs(y)| < () / / 0%1(x,y,z,2')| dxdzdz,
( ) ‘ y 3( )‘ I Kox Ko K1‘ y ( )‘

and by (5.12) and (A4) one has

lo| L1 Lo

(5.17) |05I(x,y,z,2)| <D D > el

§=0 ¢=0 m=0

/ ffmjo’ (ty X,y,z, Z/)¢(t7 X)eiﬁk(t,x,y,z,z’)/e dt| .
R

Let us introduce the function

91(t,x,y,2,2') = ou(x —q* (t,y,2))ou(x —q " (t,y,2)),
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593 so that g1 € W,. Then for go := 1 — g1 € C* and supp g2(t,-,y,2,2") C R*"\ X, for
504 all t,y,z,2'. We will now regard (5.17) one term at a time, and use the partition of unity
595 1 =g1+ g2,

596 / femjope'™ /= dt = / fomjot(g1 + g2)e™/< dt = @ + @.
R R

507 Let us first estimate the term @. We have %, 5 C 3, and therefore for gemjo = fomjotPg1 we
598 have supp gimjo (-, X, y,%,2') C [0,T], Vx,y, 2,2, and supp gemjo (t,-,y,2,2') C Xy, 2(t,y, 2,2 )0}
599 K, Vt,y,z,7z’. We now restrict (¢,y,z,2’) to the compact set [0,7] x ', x Ky x Ky. Since
600 the gradient 9y does not vanish for x € ¥, on this set by Proposition 5.8 we can employ
601 the non-stationary phase Lemma 5.6,

602 ‘@l < ‘/ gémjo-(t,X,y,Z,Z/)eiﬂk(t’x’y’z’zl)/a dt’
003 < CKDKEKZ/ % stmje (2,3, 2,2) e~ mik(txy,z2)/e g
|0:9k(t, X, y, 2,2 )|2K—1 ,

604

for every K € Ny. Here, C'x only depends on K and

, K ~
Dg = (1 + Hﬁk( 5 X,Y,%4,2 )HCK'H([O,T])) < Dk,

605 since ¥ € C* and (X,y,2,2') belongs to the compact set Ky x I'. X Ky x Ky. Similarly, since
606 gemjo € C°, its time derivatives are uniformly bounded: for all t € [0,T], y € T'¢, 2,2’ € Ky
607 and x € K1,

608 laggfmja(taxayazazl)’ < Cémja'q'

609 Therefore, using the fact that Im ¥ > 0 from (5.15) and recalling (5.13) we obtain

« K Ta, - %

L mjoq

610 |D| < Cke E / K —q dt < Cremjec",
q=0"0 Y

611 where 6Kgmja- also depends on T, u,n, ¢, k, v, p, o, but is independent of ¢.

612 Secondly, let us estimate the term @). Since supp g2(t,-,y,2,2") C R" \ X, 5(t,y,2,2),
613 (@ is only nonzero for either |x — q*(¢,y,z)| > 2u or |x — q~(t,y,Z')| > 2u (or both) and
614 therefore by (5.15),

615 Im 9y (t,x,y,2,2') > 6,

616 whenever t € [0,T], y € I'¢, 2,2’ € Ky and x is in the support of go. AS hymjo = fimjothg2 €
617 C*, (@ can be estimated as

T
618 ’@’ < / ‘hzmja(t,x,y,z,zl)‘ e—lmﬂk(t,x,y,z,z/)/a dt
0

ba < Téfmja'eiéuz/i
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forally € Iy, 2,72 € Ky and x € K;. Collecting @) and ) together, we obtain from (5.17)

lo| L1 Lo

071(x,y,2,2)| <YY" Y el (@ + @)

j=0 =0 m=0

_ ~ ~ _ 2
< max e o (C’Kgmjaek + TCpmjoe Op /6) )
‘77 7m

Finally, by (5.16) we have
— — — et =~ — 512
09 Qs3(y)| < (2m) el " Kol K | max (cmmjaeK+Tcgmjae on /5).

That is, choosing K > n + ||, the first term is bounded in e. Since § > 0, the second term
decays fast as a function of € for any o. Therefore, there exists an upper bound C, such that

sup |07Qs3(y)| < Co,
yele

where Cy depends on T', pi, n, T, k, 8, L1, Lo, p, a, but is uniform in e. Recalling (5.8) and (5.9)
we then arrive at

sup |07 Q% (y)| < sup [0ZQ1(y)| + sup |05 Q2(y)| + 2 sup |0ZQs(y)| < Co,
yele yele yelc yele

with Co dependent on T, u,n, T, k, K, 8, v, L1, La, p, &, but independent of &, which concludes
the proof of Theorem 5.5.

5.4. Numerical example. A numerical example was presented in Section 5.1 comparing
the Qols Q in (1.2) and Q in (1.4). We were able to obtain the exact solution since the speed
was constant and the spatial variable was one-dimensional. In higher dimensions, however,
caustics can appear and the exact solution is typically no longer available. Instead, we make
use of the GB approximations Qgp in (4.3) and Qgp 1= Q%’OB in (3.9).

Let us consider a 2D wave equation (1.1) with x = [z1,x2]. The initial data include two
random parameters y = [y1, y2),

BO(ny) _ 6—10((x1+1)2+(x2—y1)2) + 6—10((x1—1)2+(w2—y1)2), Bl(x,y) —0,
wo(x,y) = |z1] + (2 — 11)?, c(x,y) = v
The test function is chosen as
_Ix?
b= ] € TR, for x| <1,
0, otherwise.

This setup corresponds to two pulses centered in (£1,y;) at t = 0, moving along the z; axis,
while spreading or contracting in the xy direction, see Figure 3, where we plot the modulus
of the first-order GB solution |u;(¢,x,y)| at t = 1 for various combinations of y. The central
circle denotes the support of the test function 1.
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y={0.25, 1]

I

1
0.8
0.6
0.4

2
1
X0
2

| [[[[{—— |

3 2 - 0 1 2 3
XI

Figure 3. The modulus of the GB solution |u1(t,x,y)| for ¢ = 1/60 and wo(x,y) = |x1]| + (2 —11)?, at
time t = 1, for various y. The circle denotes the support of the test function 1.

By analogous arguments as in Section 5.1, the part of the solution overlapping in the origin
is from the same GB mode. Hence, the Qol QGB with the test function supported around
the origin should not oscillate. This is indeed the case, as seen in the left column of Figure 4,
where the random variables are chosen as y; € [0,0.5], y2 € [0.8,1.2] and we define r € [0, 1],
such that [y1,ys] = [0,0.8] + 7[0.5,0.4] (i.c. the diagonal parameter). We plot Qgp and its
first and second derivatives with respect to r at time ¢t = 1 as a function of r.

Let us now consider the same setup only changing the initial phase function to

wo(x,y) =21 + (22 — y1)2.

Three realizations of |uj(t,x,y)| at ¢ = 1 are shown in Figure 5. It is no longer the case
that the two branches moving towards the center can be described by the same GB mode. A
numerical test plotted in Figure 4, central column, confirms the presence of two GB modes
since the Qol cannot be bounded by a constant independent of €. Here, we again plot Qgg and
its first and second derivatives with respect to r at time ¢ = 1 as a function of r. Oscillations
with increasing amplitudes can be observed.

To get rid of the oscillations, we need to consider the time-integrated Qol Qgp. We
introduce the test function

_ =2 __@=1?
b(x) =4 € -2 022--1? - for x| < 1,and |t — 1] < 0.2,
0, otherwise,

and integrate over both x and ¢. The Qol and its first and second derivatives are shown
in Figure 4, right column. The oscillations do not disappear entirely, but their amplitude
decrease rapidly as € — 0. This illustrates the difference between Qg and Qag.

Appendix A. Proof of Theorem 4.10. To simplify the expressions, we first introduce the
symmetrizing variables
(A.1)
q(t7 Y, Z) — q(t7 Y, Z/)
2 Y

qt,y,z) +q(t,y,z)
2 )

a=aq(ty,zz)= Aq = Aq(t,y,z,2z') =
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r

_ Figure 4. Left column: écg and its first and second derivatives for one-mode solution. Central column:
Qs and its first and second derivatives for two-mode solution. Right column: Qgp and its first and second

derivatives for two-mode solution.

y=10,0.8]
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Figure 5. The modulus of the GB solution |ui(t,x,y)| for e = 1/60 and @o(x,y) = x1 + (x2 —y1)? at time

t =1, for various y. The circle denotes the support of the test function 1.

675 and the symmetrized version of the space 7T, used in Section 4.2

676 T, = {f € C™:supp f(t,,y,2,2) C A;‘;(t,y,z,z’), VteR, yeTl, z7 € ]R"},
672 where Ag(t,y,z,z’) ={xeR":|x—Aq|<2n and [x+ Aq|<2n}.
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Then Iy in (4.8) can be written as

(A2)  Lity.zz) = | htxy.22)(x—Aa)* (x+ Aq)? eVeltxy ez gy
R"

where Ui (t,x,y,2,2') = O(t,x+q,y,2,2) and h(t,x,y,z,2") = f(t,x+ q,y,2,2’) so that
h € T7 since f € T;. The following auxiliary lemma is a compilation of Lemma 3 and the
differentiated version of Lemma 4 in [23].

Lemma A.1. There exists fu, € C° such that

(X — AQ)a (X + ACI)'B = Z fu,u(t7 y,z, Z/)(Z - Z/)HXV'
lptv|=|o+B|

For the k-th order symmetrized Gaussian beam phase Vi, there exist aq gm € C* such that

8ymwk(t7XaY7Z’Z,) = Z aa,ﬁ,m(t7YaZ7Z,) (Z - Z/)a Xl@‘
2<|a+B|<k+1
The following proposition is an update of [23, Proposition 3] adapted to our case.

Proposition A.2. There exist functions gy o0 € Ty and Lg, Mg > 0 such that the deriva-

tives of Iy in (A.2) with respect to 'y read
(A.3)

Aty e = Y Y Mo [ giltyn )
l=—]|o| |p+v|+20=0 "

Proof. Recalling Lemma A.1, (A.2) can be reformulated as

IO(ta Yz, Z,) = Z (Z - Z,)” / XU gI%V (tv X,y,z, Z/) ei\pk (t,x,y,z,z’)/e dX7
|u+v|=|atB] !

with g, (L, X,y,2,2') = h(t,X,y,2,2) fuu(t,y, z,2'). Therefore, since h € 7 and fy,,, € C*
we have gy, € 7. We will now prove (A.3) by induction. First, the statement is valid for
o = 0 since we can choose Lg = 0, My = |a + B| and

_J 9prv for [u+v|=la+8|,
9u,v,0,0 0, otherwise.

For the induction step let Ly, My > 0 and g0,0,¢ € 7,7 be such that (A.3) holds. Then for

o = o + e,, where e,, is the m-th unit vector, we have 85[0 = 0y, 0y Ip. Using (A.3), we

can write

83[0 - Z Z EK(Z o Z,)M/ x” (8ymgu,y,a,g + 9pv.ol ég_laym‘l’k) e/ dx
t=—|o| |p+v|+2¢=0 "

=D+
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Since 9y, gpv.oe € T, @ is of the form (A.3) with Ls = Ly, M5 = My and

o Oydppee, forlz=—lof,
Ju,v,e.0 0, for ¢ = —’O'| —1.

Regarding the remaining terms (@), let us express the derivative 0,, V) by Lemma A.1. Then
@ reads

k+1

Lo M,
(A.4) Z Z Z ez — Z/)ww/ x”+5h“7,,7%5,g U2 gx,

(=—|o| |p+v|+20=0 |y+68|=2

with hy oy ~.6.0 = 10y 6.m Juv,or € 7:75 since gy p.o0 € 7:75 and a~,5., € C*. Each of the terms
in (A.4) is therefore of the form

_ _ , ,
el(z —2')* / thﬁ797l7(t, X,y,2,2 ) e VE(txy 22 /e gy

where .
—lo|<l=0—-1<Ls,—1=:Lg,
and .
0<|p+D|+2=|p+v|+20+|v+6|-2< Msg+k—1=:Ms,
which finalizes the induction argument and concludes Proposition A.2. |

The rest of the proof of [23, Theorem 1] can be used as it is. In particular, if n < oo, then
[23, Lemma 5] and [23, Lemma 6] are valid without any alteration. Ultimately, we are using
the fact that 0 < |p + v| 4 2¢ in (A.3) which is still the case due to Proposition A.2. Finally,
since all estimates in [23] are uniform in ¢, the constant Cy is uniform in [0,7] as well. This
completes the proof of Theorem 4.10.
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