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ON HOMOGENIZATION OF THE LANDAU-LIFSHITZ EQUATION
WITH RAPIDLY OSCILLATING MATERIAL COEFFICIENT*

LENA LEITENMAIER' AND OLOF RUNBORGH

Abstract. In this paper, we consider homogenization of the Landau-Lifshitz equation with a highly
oscillatory material coefficient with period € modeling a ferromagnetic composite. We derive equations
for the homogenized solution to the problem and the corresponding correctors and obtain estimates for
the difference between the exact and homogenized solution as well as corrected approximations to the
solution. Convergence rates in € over times O(e?) with 0 <o <2 are given in the Sobolev norm HY,
where ¢ is limited by the regularity of the solution to the detailed Landau-Lifshitz equation and the
homogenized equation. The rates depend on ¢, o and the number of correctors.
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1. Introduction
The governing equation in micromagnetics is the Landau-Lifshitz equation [2,9,19,
23],

pom* = —m* x HF (m*) — am* x m*  H (), (1)

where m® is the magnetization vector, H*(m®) the so-called effective field and « a
positive damping constant. The first term on the right-hand side here is a precession
term, while the second one is damping, with the damping parameter o determining
the strength of the effect. The Landau-Lifshitz equation is important for describing
magnetic materials and processes in applications like recording devices, discrete storage
media, and magnetic sensors.

In this paper we consider a simplified version of the Landau-Lifshitz equation, where
we assume that H°(m®) only consists of the exchange interaction contribution, which
in many cases is the term dominating the effective field,

H*(m®)=V-(a®(z)Vm?®).

We assume that a(z) =a(z/¢) is a smooth, periodic, highly oscillatory material coeffi-
cient. This could, for instance, be seen as a simple model for a magnetic multilayer [21],
a ferromagnetic composite, consisting of thin layers of two different materials with dif-
ferent interaction behavior, with a° indicating the current material. The size of two of
the layers then corresponds to €. The most straightforward coefficient describing such
a setup would have rather low regularity. However, to make the problem more suitable
for mathematical treatment we suppose that a € C*°.

Numerical simulations of the Landau-Lifschitz equation are of considerable interest
in applications, [18,26]. For the case when the material changes rapidly, as above with
€ < 1, the computational cost of simulations becomes very high, since the e-scales must
be well resolved by the numerical approximation. For such problems, multiscale methods
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like the heterogeneous multiscale methods (HMM) [16] and equation-free methods [22]
become more efficient. These are inspired by homogenization theory [8,14]. In the
framework of HMM, one combines the approximation of a coarse macroscale model,
similar to a homogenized equation, with simulations of the original detailed equation
(1.1). The simulations of (1.1) are, however, restricted to small boxes in space and
short time intervals, which reduces the computational cost. The motivation behind our
choice of focus here is to do error analysis of HMM methods for magnetization dynamics.
Such analysis relies on homogenization theory, and the behavior of solutions to (1.1)
over short times, as ¢ —0. See [6,7] for examples of HMM methods in the context of
magnetization dynamics.

There are several articles dealing with the homogenization of (1.1) and related prob-
lems. In particular, a similar problem was considered in [20] and recently in [3], where
the authors use two-scale convergence techniques to analyze (1.1) with a stochastic
material coefficient a®, which can be seen as a model for so-called spring magnets, a
special type of ferromagnetic composites. The corresponding stationary problem was
studied in [4]. Furthermore, in [13], a high contrast composite medium is considered
using two-scale convergence. In [27], homogenization for ferromagnetic multilayers in
the presence of surface energies is studied, using a material coefficient to describe the
magnetic field associated with the exchange energy. In all of these papers, the authors
show convergence for weak solutions and do not focus on convergence rates in &, which
is of prime importance for HMM error analysis. In contrast, our goal is to study how
classical solutions to (1.1) can be approximated by the homogenized solution and associ-
ated correction terms. We note that while existence of weak solutions to (1.1) is shown
in [5], existence of classical solutions is only known for short times and/or for small
initial data gradients, see for example [10,11,15,17,25]. In particular, in [10,11], the
authors prove local existence and global existence given that the gradient of the initial
data is sufficiently small. In [17], existence of arbitrarily regular solutions with respect
to space and time up to an arbitrary final time is shown on bounded 3D domains, as-
suming that the initial data is small enough and has high enough regularity. Although
these works do not consider exactly the same Landau-Lifshitz problem as us — they
do not include a varying material coefficient a®(x) and use slightly different norms —
we will in this paper assume existence of regular solutions to (1.1) and the correspond-
ing homogenized equation and focus on convergence rates. Since we are dealing with
classical solutions, rather high regularity of the material coefficient a is required. We
therefore assume smoothness of the material coefficient, which also makes it possible to
use mathematical tools such as elliptic regularity.

In the main result of this paper we analyze the difference between the solution m® of
(1.1) and the homogenized solution with arbitrary many correction terms. We provide
rates for the convergence in terms of € in Sobolev norms for dimensions n=1,2,3. The
rates that we obtain depend on the length of the time interval considered, and are
centered on short times of length O(e”) with 0 <o <2. These short times are of main
relevance for HMM analysis. Note that the temporal oscillation period in m® is of order
€2 meaning that the times considered are still relatively long, and include an infinite
number of oscillations in time as € —0. The approach we use to achieve this is based
on asymptotic multiscale expansions, together with careful estimates of the corrector
terms, inspired by [1], which used a similar strategy to derive estimates for the wave
equation over long time. Unlike that paper and the ones mentioned earlier, we include a
fast time variable 7=1¢/¢? in the multiscale expansions to capture the precise behavior
of the initial transient of the solution. Our main assumption, besides existence and
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regularity of all solutions, is an L bound on Vm?®, uniformly in e. We note that
such a uniform bound is easy to check in L?, and that it is also true in L*° for the
homogenized solution with correction terms.

This paper is organized as follows: In the next section we introduce the notation
used in this paper as well as some useful identities. Section 3 contains the main result of
the paper and outlines the steps that are required to obtain it. In Section 4, we motivate
our choice of homogenized equation corresponding to (1.1) as well as the form of the re-
lated correctors. We obtain linear partial differential equations describing the evolution
of these correctors. In Section 5, we then show several properties of Bochner—Sobolev
norms that simplify dealing with the multiscale character of the problem. Section 6 is
devoted to a stability estimate for the error introduced when approximating the solution
m° to (1.1) by the solution to a perturbed version of the original problem. We then
derive specific bounds for the correctors and the corresponding approximation to m® in
Section 7.

2. Preliminaries

Throughout this paper, the problems are set on a domain Q2=1[0,K]|" CR", with
n=1,2,3, K € N and periodic boundary conditions. Moreover, for the fast variations we
define also Y as the n-dimensional unit cell, Y =10,1]".

In this section, we introduce notation for working with vector functions v(x,t):
QO xR—R? and their gradients. We moreover introduce suitable norms for working
with multiscale problems and matrix-valued functions.

2.1. Basic notation and differential operators. Let m:QxR—S?CR3
denote the magnetization vector, which is a function of time ¢ and space x € R™. The
components of m will be called m), hence m= [m(l),m(Q),m(?’)]T. In accordance with
standard notation in the area we denote its Jacobian matrix by Vm. We consider this
as an element in R3*™, such that

T T T
Vm:= [(Vmu)) (Vm®)T (Vm®) } .
Suppose that A :R™+— R"*™ gives a symmetric positive definite matrix, uniformly in

z. Then we define L for a function u:R x R” — R and the corresponding vector-operator
L according to

Lu:=V-(A(@)Vu),  Lm:=[Lm® Lm® Lm®]",

In general, all linear operators returning scalars are to be applied element-wise to vector-
valued functions if not explicitly stated otherwise. As a convention, the cross product
and scalar product between a vector-valued function v € R and B are done column-wise,
and the divergence-operator is applied row-wise.

Moreover, consider B,C € R3*™ with elements b;; and c;; where ¢ and j denote row
and column, then we define

3 n
B:C 2222@‘]‘01]‘.
i=1j=1

Finally, note that the operator £m could also be defined as Lm =V -(VmA) using the
notation introduced above. This is equivalent to the component-wise definition.
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2.2. Function spaces and norms. In the following, we denote by C(I) the
space of continuous functions on an interval I and by C*°(Q) the space of smooth
functions on Q. By H%(Q2) we denote the standard periodic Sobolev spaces on 2, with
norm ||+ || gra,

ol = 32 [ [020(o)de.

181<q

Moreover, by HZ?();Y") we denote the periodic Bochner—-Sobolev spaces on 2 x Y with
norm || - ||ga.r, defined as

||v||qu—Z/||aﬁ Nemydz= 3 //wﬁm (2.9) [2dydz.

1B]<q 181<q,|v|<p

The notation H?P(;Y) used here is a short-hand notation for the more common
H(Q; HP(Y)). For Bochner—Sobolev spaces in general, see for example [12].
Additionally, we define the multiscale-norm

q
vl e ==& l[v]l s,
=0

where we assume 0 <& <1. All previous norm definitions are analogous for vector-valued
functions. Furthermore, let |-| denote the norm on R3%™, for a matrix-valued function
B cR3**", and the corresponding L%-norm on Qs R3X™ is given by

HB||2L2:/ |B|2d$=/B:Bd$.
Q Q
3. Main results

Assume that m® is a classical solution to the Landau-Lifshitz equation on a domain
QCR”, n=1,2,3 with periodic boundary conditions,

Om® (z,t) = —m®(x,t) x Lm® (z,t) — am® (z,t) x m®(z,t) X L m® (z,t), (3.1a)
m° (z,0) = mini(2), (3.1b)
where £5m®:=V-(a*Vm) and a°(z):=a(z/c) is a highly oscillatory, scalar material

coefficient. Moreover, let mg satisfy the homogenized equation corresponding to (3.1)
on ), which is derived in Section 4,

Oymg(z,t) = —mg(z,t) x Lmg(z,t) — amg(z,t) X mg(z,t) x Lmg(z,t), (3.2a)
my(z,0) = mipi (7), (3.2b)

where Lmg:=V-(VmgAf) and A# ¢ R"*" is the constant homogenized coefficient
matrix. Let furthermore m? be a corrected approximation to m®, defined as

J
rhf](a:,t):mo(x,t)+Zsjmj(x,z/s,t,t/52), (3.3)

j=1
where m; are higher order correctors obtained by solving linear equations as given in
(4.7). Our main goal in this paper then is to investigate the difference in terms of
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between m*® and mg as well as between m® and m?. We assume that the homogenized
solution mg exists up to time 7. For m® and the error estimates we mainly consider
shorter time intervals ¢ € [0,7¢], where

T =T, 0<o<2. (3.4)

We make the following precise assumptions.

(A1) The material coefficient function a(x) is in C*°(€2) and such that amiy, <a(z) <
Gmax for constants amin,@max > 0.

(A2) The initial data my,(x) satisfies |mipnit(2)| =1, constant in space. Note that
the Landau-Lifshiz equation is norm preserving,

19;m*=m-9m=m - (mx Lm—amxmx Lm) =0. (3.5)

Hence, this assumption implies that |m®(z,t)|=1 and |mg(z,t)| =1 for all time.
(A3) The damping coefficient o and the oscillation period e are small, 0 <@ <1 and

0<e<1. Moreover, e = K/k, where K €N determines the size of the domain
and keN.

(A4) The solution m® is such that
m® € C1([0,T¢]; H*(Q)), for some s>1,
and there is a constant M independent of £ such that
|[Vme(-,t)|| e <M, 0<t<Te.
(A5) The homogenized solution my is such that, for some r > 5,
OFmyeC([0,T; H"2¢(Q)),  0<2k<r, (3.6)
which implies that
IVmo(t)ll~ <C,  0<t<T.

We then obtain the following result.

THEOREM 3.1.  Assume that m® is a classical solution to (3.1), myg is a classical
solution to (3.2) and that the assumptions (A1)-(A5) are satisfied. Let m%5 be the
corrected approximation to me as given by (3.3) and consider the final time T¢ in (3.4)
with o satsifying

<g<2 <2
{0—”— ) T<2, (3.7)

1

Moreover, let ¢y =min(s,r —3—max(2,J)). Then we have results for three different
cases:

o Fized time, 0 =0:
(- 8) —m5(,t)[[L2 <Ce,  [Jm®(,t) —mG(t) || <O, (3.8)

for 0<t<T and 0< J <2, provided r>6 for the H' case.
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e Short time, 0 <o <1:

. . glto/2—aq, J=1,
||m ("t)_mJ('at)HHqSO 82_(1_0-)(J_1)_0-/2_q7 J>2 (39)
for 0<t<T®, provided ¢<q;.
o Very short time, 1 <o <2:
[me(-,t) —1n (-, t)|| g < Ce2H o= DUI=D=ploarJ)=a (3.10)

for 0<t<T*, provided ¢<q; and J>1. Here p(o,q,r,J):=max(0, 20— (c—
D(r—=3-J-q)).

In all cases, the constant C' is independent of € and t but depends on M and T .

For fixed final times of order O(1) this theorem shows the expected strong L?
convergence rate of € for mg and also for the higher order approximations m§ =mg+
em; and m$=mgy-+cm, +e2m,. Moreover, the errors with my, mj and m$ have
bounded H'-norms, suggesting weak H' convergence for these three approximations.

For the short and very short time cases where o >0 we note that since the temporal
oscillation period in the problem is of order €2, as is shown in Section 4, final times with
0 <o <2 are still relatively long, and include an infinite number of oscillations in time
as € = 0. When o =2 this does not hold anymore. However, this case still is important
for numerical approaches such as HMM and hence is included here.

The second bullet in the theorem shows that for times from O(e) and up to O(1),
0< o<1, one gets strong convergence of the L? and H'-norms when considering the
corrected approximation mf,

140/2 o/2
s .

Jmn® — 1|2 < Ce e — 05 | 1 < Ce

However, one does not get better approximations by including more correctors.

For final times shorter than O(e), on the other hand, one gets better approximations
by including more correctors, as (3.10) shows. This is especially relevant since these are
the times that are most interesting in the context of HMM. For these short times, the
regularity of my determines which convergence rate one obtains. In particular, if

g
> -
r>J+34+q+ {2(0_1% :

the penalty term p in (3.10) becomes zero and one obtains the optimal estimate for
short times. The longer the time considered, which means the closer ¢ is to one, the
higher is the required regularity. In particular, if 9¥mg e C([0,T]; H*()), k>0, we
get

Im®(-,t) =15 ge < Ce*TDID=0 551 T>0.
This entails, for example, the following bounds for 0 =3/2 and o =2,
0=3/2: |m® -1 g, <Ce®OIHO7Y o=2: |m®—m5|| g, <Ce’/T'74

Choosing J high enough, we can obtain any convergence rate we want for these errors.
Note that the first corrected approximation is of the form

my (z,t) =mg(z,t) +eVmg(z,t)x(v/e) +ev(z,z/e,t,t/e?).
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The part Vmgy is familiar from homogenization of elliptic operators with x being the
solution of the cell problem (4.13). The second part v is special for (3.1). It satisfies
the linear PDE (4.15) and oscillates both in time and space, with the time variations
decaying exponentially. See Section 4.

3.1. Proof of Theorem 3.1. We begin with a preliminary estimate, based on
Theorem 6.1, which we subsequently improve to obtain the results in Theorem 3.1. In
Theorem 7.4 we show that the approximation m9, (3.3), satisfies a perturbed version
of (3.1),

Oym5 (z,t) = —m5(z,t) x LM (x,t) — am(z,t) x m5(z,t) x LSm5 (z,t) +n5, (3.11a)
Iﬁ?(;{,‘,O) :minit<x)a (Sllb)

and that the norm of the residual % can be bounded as
In5 (- t) | e < CetHo-DU=2 o<t <T7, (3.12)

if we include at least two correctors in the expansion, J>2, and if 0<¢g<r—2—J.
Furthermore, using (7.28) after Lemma 7.3, we show that

V|0 (-, 8)[* || gz < C>TO-DU=2 o<t <Te, (3.13)

under the same conditions. This last estimate can be seen as a measure for how rapidly
the length of m? changes. Theorem 6.1 now says that the error e; :=m® —m? satisfies

t -
les ()17 < CgTquugt(||v|m§("8)|2”12’f? +n5(.8)l3e), 0<t<T,  (3.14)

when ¢<s and
05 () e <Ce™™OR) - 0<k<g+1,

uniformly for ¢€[0,7¢]. The latter estimates are true by Theorem 7.3 when 0<¢<
r—3—J. Therefore, combining (3.12), (3.13), (3.14), and (3.7) we get

He.l('7t)||Hq < C{_:2-&-(a—1)(J—1)—<7/2—q7 0<t< Ta7 (3.15)

as long as 0 < ¢ <min(s,r—3—J) and J >2. This completes the preliminary estimate.
To improve the estimate, we consider the difference between m? and higher order
corrections m%, with J'>J and J'>2. We write, using Lemma 5.1,

J/
les |z < |[m® = ||+ [0 —mG|gs < llesllma+ Y & |Jmy(-/et,t/)]
j=J+1
J'
<llesllza+C D @ my(cyst,t/e?)l|praese. (3.16)

j=J+1

We then need to use Theorem 7.2, where it is shown that the norms of the first two
correctors, m; and my, are uniformly bounded in 7, while higher order correctors grow
algebraically. In particular, it holds for all p>0 and j <r that

||mj('7 ',t,T)HHr—j,p < C(l +Tmax(0,j—2)) < Cv€(<7—2)ma,x(0,j—2)7 (317)
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for 0<t<T¢ and 0<7<e 2T*. Entering (3.15) and (3.17) in (3.16) then shows that

J/
||eJ||HqS052+(G—1)(J’—1)—0/2—q+0 Z Ej+(o‘—2)max(0,j—2)—q’ (318)
j=J+1

when ¢ <min(s,r—3-J").
We are now ready to show the final estimates as given in Theorem 3.1. For the first
case, where 0 =0, we take 0< J<J' =2 and 0<¢<1. Then (3.18) gives us

2
leGllza <Ce'~9+C Y 7I<Ce,
j=J+1

when ¢ <min(s,r—5), which is automatically satisfied for ¢=0 by (A4) and (A5) but
requires r > 6 for g=1. The result for J =2 follows directly from (3.15).

For the second case, where 0 <o <1, we cannot improve the preliminary estimate
(3.15) using (3.18) when J >2. However, for J=1 and J' =2, (3.18) gives

le1]lra < Celto/2—a 4 Og2-a < Ho/2-q,

This is valid as long as ¢ <min(s,r —3 —max(2,J))=gq;.
Finally, for the third case in Theorem 3.1, where 1 <o <2, we only consider (3.18)
with J>1. Then j+ (0 —2)(j —2)=2+(c—1)(j —2) and we get

J/
< C2t(e-1)(J' =1)~0/2—q J+H(e=2)(1-2)—q
lles|lze <Ce +C €
j=J+1
§C€2+(a—1)(J’—1)—a/2—q+C€2+(a—1)(J—1)—q

S(jgzﬂmn&a—1xjh-n_a/z(a—1xJ—n]—q

::(752+(0—1ﬂJ—&)—nmx[a/Z—(a—lﬂJ’—J),0]—q’

where the possible choices of J' are limited by the restrictions ¢ <min(s,r—3—J'),
J'>2 and J' >J. When ¢=r—3—max(2,J) we can therefore not choose J' such that
we get an improvement. Hence (3.10) is the same as the preliminary estimate (3.15)
in that case. It thus only remains to prove the case ¢ <r—3—max(2,J). We are then
allowed to take J'=r—3—¢>max(2,J) and get

||eJ||HfZ < C€2+(U—1)(.]—1)—maX(U/2—(U—l)(T—S—Z]—J),O)—q.

The theorem is proved.

4. Homogenization

In this section we derive differential equations for the homogenized solution mg
to (3.1) and the corresponding correction terms. We aim to motivate our choice of
equations but do not include any proofs in this section. Precise energy estimates will
be done in Section 7.

4.1. Multiscale expansion. = We consider the Landau-Lifshitz Equation (3.1)
and assume that we are looking for an asymptotic solution to (3.1) of the form

m° (z,t) :m(x,x/a,t,t/EQ;E)
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for a suitable function m(z,y,t,7). Numerical experiments suggest that this is the
form that is required for our problem. One example for this is shown in Figure 4.1
and Figure 4.2, where one can clearly observe oscillations in space on an e-scale and
oscillations in time on an £2-scale when taking the difference between m® satisfying
(3.1) and the suggested my.

X-comp. 1My

x-comp. m° x-comp. m° — m

i

2¢? 2¢?

- g2 -
ELRL R AL AL L)
TR T LR LR LR LY
ELELELE LR LR LEL
0 0'..............
0 3.5e Ts 3.5e 0 3.5¢ Te
T xr xT
[ | [ aa— |
576 581 5.02 5.76 581 5.92 -5 0 5
x107 x107! %107
Fia. 4.1. Numerical example: x-component of the solution m® to (3.1) in 1D and

the corresponding mg according to (3.2) when choosing a®(x)=1+0.5sin(2rz/e), e=1/70,
a=0.02 and instial data Minic(x) =My, (T)/|Mpn(z)] where mypp(z)=0.54[exp(—0.1cos(2m(z —
0.2))),exp(—0.2cos(27x)),exp(—0.1cos(27(x —0.8)))]T on a subset [0,7¢] of the domain Q=1[0,1] and
a short time interval 0 <t<2e2.

e=1/140

T/4

0+ .. .. .. .. .. ... | 0 ::ll.I.I.I.III.I..'.'.I...:: 0
0 L 0 L
xr €T xr
[ ee—— [ e— ]
5 0 5 25 00 25 25 00 25

FI1G. 4.2. z-component of mg—m® for two different values of €, €1 =1/70 and e2 =1/140. Size of
the shown subdomain in the left and middle figure chosen such that L="T7¢1=0.1 and T:a% ~2-107%.
Right: shown subdomain size scaled by factor two in space and four in time. Same setup as in
Figure 4.1.

Taking derivatives of m®(z,t), one obtains
1
Vm®(z,t) =V, m(z,y,t,7;:¢) + -V, m(x,y,t,7;¢),
€

1
8tm€(wat) = 8tm(xayvta7-;5) + 5—23¢m(x,y,t,7;5),



10 ON HOMOGENIZATION OF THE LANDAU-LIFSHITZ EQUATION

where y:=Z is the fast variable in space and 7'::%2 the fast variable in time. The

differential operator £ can accordingly be rewritten in the form
. 1 1
L =£0+*£1+*2£2,
€ €
where Ly,£1 and Lo are the vector-operators corresponding to the scalar operators

Lo:=Vz-(a(y)Vaz), Ly =V (a(y)Vy)+Vy-(a(y)Va), Ly:=Vy - (a(y)Vy).

We are looking for an asymptotic expansion for m,

m® (z,y,t,7;8) =mo(z,t) + Y _e/my(z,y.t,7), (4.1)
j=1

where we assume that mg=mg(z,t) only depends on the slow variables, « and ¢, and
that the correctors m;, j=1,2,... are 1-periodic in y.

Before we consider an expanded version of the differential equation (3.1), we start
by introducing suitable notation that will help us to keep track of terms of the same
structure throughout the rest of this paper. First, we let m_;(z,t):=0 and define

. Limg, =0,
VJZEQHIJ—i-ZJ,h jZl, and ZJ:{E(l)mO 1+£1m j>1 (42)
j— i J=L
Furthermore, let for j >1,
T, : zj:m XxVi=moxV,;+R R, = I=0 43
j = j—k L =1g j i—1) j = j : .
’ k=1 ’ S ’ dhoiMyp1 g X Vi, j>1,
and finally

0 =0
S;i=<{ " - (4.4)
’ {Zi;—lmj+1—k><Tka Jj=L

Note that in all of these quantities, j indicates the highest index of all m; that are part
of the quantity.
Consider now the expanded version of £fm®, which becomes

1 1 >
Lfm® = gﬁzmo + g (ﬁlmo + ,szl) + ZSJ (Comj + Clijrl + £2mj+2)
=0

=y 7V, (4.5)
j=1

entailing that the precession term in (3.1) expands to

o0

LS LS oo J
m®(z,t) X LSm®(x,t) = Zsjmj X Zek_QVk zzgj_Qij,k x V= Zsj_QTj,
§=0 k=1

Jj=1 k=1 j=1

and the damping term takes the form

0o 0o 00 0
m®xm® x Lfm® = E efmy x E EJ_QTj: E gf—2 E my_; xT};.
£=0 j=1 =0 j=1
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For the time derivative of m®, it moreover holds that

o0
e j j—2
Jym :E e/ 0ym; +¢e’"“0; m;.
Jj=0

We can then formally rewrite the differential Equation (3.1) as

oo ) 0 J
Z€j_2(8tmj_2 +0,m;) = —Zsj_QTj — aZej_2ij_k x T},
j=1 j=1 j=0 k=1
which implies that at scale /=2 and for j > 1, it holds that
J
(’9tmj_2 +8ij:—Tj—Ozij_k X T. (46)

k=1

Note that as mg(z,t) is independent of y and 7, both 0, mg(z,t) =0 and Lomg(z,t) =0.
Based on (4.6), it is now possible to show that all the correctors m;, j > 1, satisfy linear
differential equations of a similar structure as the one for mg. Since it holds that

Tj =1my XVj —I—Rj,l =Img X Egm]‘-ﬁ-mo X Z]‘,1 —I—Rj,h
J
ij_k X Tk =1mgp X1y X ,cgl’l’lj +mgy X mg X Zj—l +mg X Rj—l +Sj—17
k=1

where R;_1, S;_; and Z;_; only contain lower order m;, with £ <j—1, it follows that
m;, with j > 1, satisfies the linear differential equation

Ormj=—mg x Lom; —amy xmy X Lom; +F;=2m; +F;, (4.7)
where the linear operator .Z is defined such that
Zm;:=—mgx Lom; —amg X mg X Lom, (4.8)
and all terms involving only mj, with k <j are contained in F;, defined according to
F;=—R;_1—-myxZ; 1 —a(myxR,;_1+moxmyxZ;_1+8;_1)—0m;_5, (4.9)

for j>1.

4.2. Derivation of homogenized equation. In order to derive a homogenized
equation corresponding to (3.1), we now take a closer look at the differential equations
for m; and my. As by definition Ry=Sp=m_; :=0,

Fl:—ln()><Z()—C¥In()><III()><Z()7 (410)
where Zo=L1my, it holds according to (4.7) at scale =1 that
aTmlz—mole—amoxmole, (411)

since V1 =Lom; + Limg. To find a solution for this equation, we assume that m; takes
the form

m1($7yataT):vrmOX(y)+v(x7y7taT)v (412)
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where x(y) is the solution to the cell problem

Vy - (a(y)Vyx(y)) = —Vya(y). (4.13)

Note that (4.13) only determines x up to a constant. In accordance with standard
practice in the literature [8,14], we assume in the following that this constant is chosen
such that x(y) has zero average. As, by the definition of x(y) and the assumption
(4.12),

Vi=Lom;+Lim, :£2v+£2(vzmox)+£1mo =Lov, (414)
it follows from (4.11) that
0;v=—mg X Lov—amqg Xxmg X Lov =2LV. (4.15)

This is a linear differential equation with the same structure as (4.7), but with forcing
F=0. At the initial time, 7=0, we set m;(x,y,t,0)=0 and hence have v(r=0,y)=
—V.mgx(y). Note that m; is the biggest term in m® —mg and therefore determines
the right figure in Figure 4.1 as well as Figure 4.2: there we can observe oscillations
around zero on a scale of approximately € smaller than the variations in the homogenized
solution. For short times, we clearly observe oscillations in both time and space while
the oscillations in time reduce as t increases. This indicates that the v-part of m; gets
damped away with time, while V,mqXx(y), which does not depend on ¢/c? but oscillates
in space, is preserved. This matches with the results for v and m; in Section 7.2.
On the €%-scale, we have

O,rms =.2my+Fs, (4.16)
where, the expression for Fy given by (4.9), becomes
Fo=—R;—mgxZ; —amy xRy +my xmg x Z; +S;]—0ymy, (4.17)
and the relation (4.14) gives the simplification
Ri=m; x LoV, Si=m; xmgxLyVv. (4.18)

To obtain a homogenized equation, (4.16) is averaged over one period Y in y. Then all
terms which are derivatives with respect to y of y-periodic terms cancel, and since my
does not depend on y we get

87/mgdy:/ngy:f&gmofmox/Zldyfamoxmox/ Z,dy—E;, (4.19)
Y Y Y Y
where
E1 I:/ R1 +a[moxR1+Sl]dy. (420)
Y
Furthermore,
/Zldy:/£0m0+£1m1dy:/Vz~a(y)me0+Vzo(a(y)Vy(meox—i—V))dy
Y

/V y)V.my(I+V,x) dy+/ Lyvdy.
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We therefore define the constant homogenized material coefficient matrix A# € R"*"
as

AH::/Ya(y) (I+Vyx)dy

and let Lu:=V,-(AH#V u) for any scalar function u:R™ x R+ R, with the correspond-
ing vector-operator being denoted £. Plugging this into (4.19), we get

87— /mgdy: —8tm0 —Imng X Emo —amg X mg X Bmo —E1 — E27 (421)
where
Es:=mg x / Livdy+ amgy X mg X / Lyvdy. (4.22)
Y Y

As we will see in Section 7.2, v oscillates and decays exponentially in 7, which means
that so do R; and S; by (4.18). Therefore, if we average over a fixed interval in the
fast time variable, the contributions of E; and Es will become negligible as the interval
size increases, while mg is unaffected. We therefore define mg such that it satisfies

dymo=—mg x Lmy —amg X my X £my. (4.23)

In contrast to the differential equations for my, j>1, this is a nonlinear differential
equation with a matrix-valued coefficient in the operator L.

5. Sobolev norm estimates

The proofs in the following sections rely frequently on properties of the considered
Bochner-Sobolev and multiscale norms as well as several bilinear Sobolev estimates. In
this section, we therefore prove lemmas providing the required properties, making it
possible to keep the subsequent sections mostly focused on specific estimates for the
solution to the Landau-Lifshitz Equation (3.1), corresponding homogenized solution
and correctors. Most of these lemmas are variations of classical results that have been
adapted so that they can be directly applied in the subsequent proofs.

If not stated otherwise, the estimates in this section apply to functions in arbitrary
dimensions, not necessarily on ) as considered previously. All the lemmas that are
stated for scalar functions analogously apply to vector-valued functions, with either
scalar or cross products instead of products of scalar functions. Throughout this section,
we suppose 0 <e <1 in accordance with (A3).

In several of the subsequent estimates we use the Sobolev inequality which states
that when f€ H?(D) and D CR", for dimension n <3, then

sup [ f(2)| <O fll z2(py- (5.1)
xeD

5.1. Multiscale norms. In the present paper, a function u(z,y) in the Bochner-
Sobolev space H?P(£;Y) is often used to describe multiscale phenomena, where the -
and y-variables represent the slow and fast scales respectively. For such functions we
have the following lemma.

LEMMA 5.1.  Suppose f¢(z):=u(x,x/c) and n<3. Then

C C
£ e < llullmraare, I Iwase < Zllullmareass, (5:2)
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whenever the norms are bounded.

Proof.  Using (5.1) and the definition of the norms, we find that

£ N3 < > <‘;‘> /e*ZM|agagﬂu(x,x/s)|2d;c

lal<q
v<a
<Ce?1 N 10708 02 < Ce 2 [ull3asr2
la|<q
v<a

and accordingly,

1 fre <Ce™20 ) sup|d) 05 u(a,y)|®

laj<q TY
Y<o
<O 3 18708 ul 30 < Ce 2 [ull g n0s,
la|<q
Y<o
which shows the lemma. 0

The weighted multiscale norm |- || s has the following properties that we will use:

LEMMA 5.2.  Consider f € H1(QY) such that for 0<j<gq and some constant c€R,
1f1l7s < Cje,
then it follows that
1 fll 2 < Ce, (5-3)

where the constants C,C; are independent of €. Moreover, given a multi-index (3, it
holds for 0<q<r—|B| that

10° 1z <& 1| yaior- (5.4)

Proof.  The first claim, (5.3) holds, since by the definition of ||-||z¢ and the given
assumption,

q q
lgllme =" llgllms <@ Cy<Cee.
j=0 j=0

Similarly, we find that

q+|8|

q q
P0° fllga =D Fllws <D P fllggonior = Y 1 Fllrs <Nl garion

=0 =0 =181

which implies (5.4). O
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5.2. Bilinear estimates. To obtain estimates for the product of two functions,
the following bilinear Sobolev estimates are useful.

LEMMA 5.3.  Let f,ge C(Q)NHY(Q). It then holds that
10 1)@ 92 <CUf o= llglma +llgllrefllzza)  for [Bl+r=a,  (5.5)
and

1fgllma <C [ fllzoe gl +[1.f | zallgll <) (5.6)

Letue H>®(Q;Y) and ve H?>*>°(Q;Y) where q1,q2 €Z. Let go <min(q1,q2) and n<3.
Then, for all p>0,

[wv|l ao-r < Cllull gar vz 0] oz v, (5.7)
if either
¢1+ g2 >min(3+qo,5) or q12qo+2. (5.8)

The constants C' are independent of f, g, u and v.

Proof.  The first two statements (5.5) and (5.6) are proved for instance in [28,
Proposition 3.6] and [28, Proposition 3.7].

To prove the remaining statement, let |a|+|v|=qo and |8|+ || =p. We then start
by estimating the same quantity in two different ways. First,

1(950,u) (@705 0)|[Fr0.0 < sup Iaﬁaﬁuwy)lz/Iala{,‘v(w7y)l2dxdy

(z,y)€QxY
<0020y ullzr2.2 1030y 0] Foo0 < CllulFiarszpse [0l Fa00- (5.9)

Second,

I(020]u) @205 < [ supozofuCe. ) sup 205 () Py
€Y

< [10207uta.) s 1) 10395 0.) sy
= Cl005ulFpo 1103050l < Cllula v ol (5:10)

We then consider the case when g1 +¢2 > min(go+3,5). Suppose ¢1 <g2 and assume
that |a| <g; —2. Then it follows from (5.9) that

10505/ u) (9705 v) || 0.0 < Cllul| ray.v+2 0] zra-r- (5.11)
If, on the other hand, |a| >g¢q —1, then when ¢o <2,
©2=q0+3—q1>q0+2—max(0,q1 —1) > g0 +2—|a| =|y|+2,
while if go >3,
©2=q0=32q o] +22q —|a|+2=[y[+2.

By (5.10), this shows that (5.11) holds also for |a| > ¢; —1. When g2 < ¢; we get the same
result upon switching the cases and using (5.9) for |y| > g2 —1 and (5.10) for |y| < g2 —2.
Finally, (5.11) follows directly from (5.9) for the case when ¢ > qo +2.
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From the estimates (5.11) we finally have

Iy (‘“”)(ﬁ*“)n(aaaﬁ ) @200) 200

lat+v]|<q
|B+k|<p

9 P
<O Y Nullfrarwsz [0lFar0 < Cllulfga wve 0] Fos.0-

7=0k=0

This proves the lemma. 0

The next two results, regarding the cross product of vector-valued functions, are
consequences of Lemma 5.3.

LEMMA 5.4.  Suppose Of,,,0/v,, € H"~"26°(Q:Y) for 0<20<2k<r—j and 0<
m<j. Then OF (W X V) € H'I726:°0(Q:Y) when m~+m' <j+2, and for all p>0,

k
”atk (um X Vm’)”Hrfjf%,p < CZ ||atk_£umHHr7m72k+2tz,p+2 ||8fvm/ ||Hr_m/_24,p,
=0

where C is independent of w,, and v, .

Proof. By (5.7) in Lemma 5.3, where we choose qo =1 —j —2k, g1 =7 —m —2k+2¢
and go=r—m'—2( for 0< £ <k, we get

k
108 (o 5 V)52 < C S 1O W) % (Ol
=0
k
k—4 4
<O N0 Wanll vzt [0V [ g0
=0

It is indeed valid to use Lemma 5.3 since gqg=q1 — (j —m) —20=qs — (j —m/) —2(k— ) <
min(g1,q2) and

nt+@=q+r+j—(m+m')>q+r—2>q+3,

satisfying the left condition in (5.8). The proof is complete. 0

As a consequence of this lemma, we get estimates for the time derivatives of pre-
cession and damping term in the Landau-Lifshitz equation by taking mg, the solution
to the homogenized Equation (3.2), as one of the functions in Lemma 5.4.

COROLLARY 5.1. Suppose that mg satisfies (A5). For 0<20<2k<q<r and
8ff(-,-,t)€Hq’%p when 0<t<T, we have for allp>0 and 0<t<T

k
10F (00 % ) 174200 < C S 10 120,
£=0

k
10F (0 %m0 % ) 70260 < O[O E] 0200,
=0

where C is independent of £ and t.
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Proof. The first inequality is obtained by taking u,, =my, v,,» =f, g=r—7, m=0
and m’=r —q in Lemma 5.4, which is a valid choice due to (A5). The triple product
case then follows since

k
105 (g x g X )| a0 <C Y 0F 00| 22,0 | f (0010 X )| pra-20.0
=0

k
<O (10t (mo X )| a2
£=0
a0
Finally, we consider the product of two functions with a maximum norm bound
given for one of them. Then the following bilinear estimate holds.

LEMMA 5.5.  Suppose f€ HY(Q) and g€ W2 (Q). Then
q a
gl <CY lgllwosellf lmrass I fllaz <CY & llgllwscellfll s (5.12)
Jj=0 j=0

In particular, consider h€ C*(Y) and let h® =h(x/e), then it holds for 0<j<q that

1
1= fllers < C S lbllwse gz, WA fllg < CllPllwaoe 11l s (5.13)

In all cases, the constant C' is independent of €.

Proof.  Consider first the || - || ge-norm of the product. It holds that

IFoll <C 3 suploal 1077 1w <C3 ol e

lal<q 7=0
<o

which shows the first statement. Consequently, we find

q q J q J
£ gllzr =Dl ol <CY D"l llghwone 1l <C DS e llghwonee? | £l s

Jj=0 j=0i=0 §=0i=0
q q—i
=CY > lgllwiee || Il = Czs’HgmellfHHw
1=0 57=0

When given he C*(Y), the ||-| gi-estimate in (5.13) follows from the || -|| go-estimate
n (5.12),

c . 12|l a=s,00 C
5l <O A gasoe | Fl s <CZM||JCHHJ':;thHWGvOOHfHHg-

7=0
The ||-|| ga-estimate then is a direct consequence of (5.3). |
5.3. Norms involving the linear operator L.  Cousider now a°(z)=a(z/e)

such that (A1) holds and let L=V-(a®V), which is the setup we consider in the rest
of this paper. We then show two results, allowing us to switch between HZ-norms and
L?-norms involving L. First we can estimate LPu in terms of Vu.
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LEMMA 5.6.  Suppose u€ H"(Q) and a€ C*(2). Then it holds for 2<2k<r—1-—/¢
and 0<q<r—2k

1
||Lku||Hq SCm”VU”HngZk—l, (514)

where the constant C' is independent of €.

Proof. Let 8 be a multi-index with |8| <2k. Since a € C*°(Y), there exist functions
cg(y) € C*(Y"), which are either zero or consist of a product of d%a(y),|y| <|8|, such
that

1
k, __ e aB
Liu= Z 52,6,‘5‘0@5 Uy
1<|B|<2k

where ¢ =cg(z/e). It thus follows by (5.13) and (5.4) in Lemma 5.2 that

1 1
k B
L5l <€ > g 10%ull e <C s D2 10" Vulan,
1<|8|<2k 0<|v|<2k—1
which shows the estimate in the lemma. 0

Second, we have the following multiscale version of elliptic regularity.

LEMMA 5.7.  Suppose u€ HI(Y) with ¢>2 and 0<e<1. Then

1 [LPullz2  g=2p,
ullge <C | |ull g2 + —||Vul| -2 + . 5.15
|| HH = (” HL2 ca—1 || ||HE 2 {”LP’LLHHI q:2p+17 ( )
Moreover, let £€{0,1}, then it holds for 0<2k<q—1—¢ that
82k+1||\/ aEVLkuHLz +||’I,L||H2k, {=0,
||UHH§1¢+1+Z <C 2kt 2| 7 k1 e B (5.16)
2| Dy o+l s, £=1,

where the constant C' is independent of €.

Proof.  To show (5.15) we first prove that given a multi-index o with 2 <|o| <g,

1 P =2,
P e e S B
glol= c ILPu||g:  |o|=2p+1,

We start by proving this for p=1 and |o| =2. Then we have, with u:=0,, u,

ID*uf = ||8Uu||2L2:Z/ \Vuk|2dx§CZ/a8|Vuk|2dx:—Z/ukLukdx
k=179 k=179 k=179

|o|=2

:/Luzaikudw—z:/uk[Luk—amk(Lu)]dx
- k=179

:/LuAud:z:JrZ/(Vuk).[a€Vuk781ka€Vu]dx
Q /e

(5.17)

:/LuAudx—Z/@xkaEVuk-Vudx.
Q Pl
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Application of Cauchy-Schwarz and Young’s inequality with a constant hence yields

11
HAUHL2+ HLU||L2+Z ||VukHL2+Z Sllalliy<lIVaullz.
k= 1

1D%ul2: <1

<[ D%ulZ: ta IILUIIL2 + 55 llalliyr [ Vull:,

27
for any constant > 0. Thus, by taking v small enough we get
1
D%l <C (1zuls + 19l ).
from which (5.17) for |o| =2 follows, since ¢ <1. Next, we assume that (5.17) holds

for 2<|o| <2p. Given another multi-index «, we then obtain upon applying (5.17) for
|o|=2p and Lemma 5.2, that

o+ ulis <C (170"l + 0° V-2 )
1
= (IIa‘*Ll’ule +|0°LPu— LP0ul| 2 +52p+|a1||W||H3P+“) '

Expressing LPu involving some smooth functions c¢j(z)=cg(z/¢€), as in the proof of
Lemma 5.6, we can write

o « 1 R o
OLru= ) <)€zp—|m+v(mcﬁ>3ﬁ* Tu.

1<ipl<2p N
0<y<a

Therefore, it holds that

1
agp pHo Bt+a—y
|0° LPu— LPO U||L2<C1<|§ﬁ<:2p prred 7 ullzz < a1 Vell ooz,
1<[[<] ol

and thus we have in total
1
||60+au|\,;2 <C (HaaLpulLZ + 52P+|0‘1”vu”H§p+a2) .

When |a] =1 we then get (5.17) with |o| =2p+1 by noting that ||0*LPu||p2 < C||LPu|| g1 .
On the other hand, when |a|=2, we get with one more application of (5.17) and
Lemma 5.6,

1 1
o 2ruli < (I ulo+ 21922l ) < (127 ulls + sVl ).

This completes the induction step and proves (5.17). To finally prove (5.15) we use
(5.17) together with Lemma 5.6, and note that for 2<|o|<qg—1,

a1Vl o1, |o|=2p,

1 C
0°u <C Vul| ya-3 + —|Vul| yra-2,
e ( oVl {Ezpwlw, ol =2p+1, >5q—2” g2
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which clearly also holds for || =1. Hence,

q
led 1 a
lullmre <C Y~ 107ul 2 < C lull 22 + =5 IV ull a2+ > 1107l (5.18)

|o|=0 lo|=q

which together with (5.17) gives (5.15).
To finally prove (5.16), we consider odd and even indices in the sum in || || y2r+1+e
separately and use elliptic regularity as given by (5.15), which results in

2k+14-4 k+£ k
lull garsrve =D & llullas =Y e lullmas + ) ¥ ul g2
Jj=0 7=0 7=0
k+2L k
<C Zgz]HL]uHLQ+252]+1HLJ’U,||H1+€||vu||H2(k+£)—2+EHVUHHEZI¢—1
€
=0 j=0
k44
<C Ze2f||LJu||L2+Zs%+1uvyu||p+e||vu||H2k 14t
j=0 j=0

Application of Lemma 5.6 to all but the highest order terms in each sum together with
Lemma 5.2 then yields

Jull yzvsree < C (2EFON LR 4 2|V LFul 2+ €] T yzess )

SC{€2k+1||VLkU||L2+|U||H§k7 (=0,

e LA 2 4 [|ul| gawss, £=1.
Using the fact that amin < a < amax we then obtain the result in the lemma. O
5.4. Application of £ to a cross product. The next lemma is based on

ideas from [25] but has to be significantly adapted for the problem considered here. We
consider e-dependent functions u and f, where we assume that £ € Wa+2k—1.¢(Q)) such
that its || - |15 norm is bounded in terms of €. We show that when applying the operator
(L%)* to the cross product of either u or f and £5u, one can factor out the highest order
term and obtains a remainder term that is bounded in terms of the || - || pga+2e-norm of the
gradient of u. Again we assume that (A1) is true. For reasons of better readability, we
drop the superscript € on the operator and write £ throughout the rest of this section.

LEMMA 5.8.  Given k>0,q>0, suppose u€ HI2k+1(Q) and f € WIt2k=1°(Q) such
that

IVullpe <M, |fllwie <M (1+e'77), 0<j<q+2k—1, (5.19)

for constants M and M independent of €. Then it holds for w € {u,f} that

L(wxLu)=wx LU+ Ry w, where [Ry,wllme < C——p [Vul ya+er,

q+2k |

for a constant C independent of e.
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Proof. When k=0, the claim in the lemma is trivially true with Rgw =0. Let w
be either u or f, then it holds for k>0 that

LF(wx Lu)=LF N (wx L2u+ Lw % £u+2a28xjw X O, L)

J=1

k n
:wx£k+1u+2£k*5 L‘wx/jeu+2a28ijx8xjﬁzu ,
=1

= j=1

which implies that Ry, v in the lemma is given by

k n
Ri=: Zﬂk_lrg(w) and ry(w):=Lw x £5u+2azamjw X Oy, L
=1 j=1
In the following, we obtain bounds for |Ry wl|/me, first for w=u and then later for
w =1f. For the first estimate, we use the fact that according to assumption (A1), there
exist functions cg (y) € C*°(2), similar to the ones in the proof of Lemma 5.6, which
might also be zero, such that

Lu x Lzu—&-QaZiju X O, L'u= 1 Z Ch (g) glBltv=2 (07ux0u).

20
j=1 1<8],1< ]
|B+~]<2+2¢

Furthermore, it is a consequence of the interpolation inequality (5.5) that given multi-
indices 8 and v with |8|>1, |y|>1,
[0 ax 8%ul g <C||Vul g |Vl grssisrmi-2,  0<j<g,

wherefore we find, proceeding as in the proof of Lemma 5.2, that

q
elPH=2 970 x 9P ya < O V| > N2 0| 411112
=0
§C||Vu||L°°||V11||Hg+\ﬁ\+m—z- (5.20)

Therefore, it follows by (5.13) in Lemma 5.5 and (5.20) that

C _ C
Iee@) o< o Do N0 ux 0 ulle < g Vull e [Vl e,
1<(8],1< Y]
[B+~[<2+2¢

and we obtain using Lemma 5.6 and (5.3) in Lemma 5.2 that

C C
—L
HLk I‘e(u)HHq S m ||rg(u)||Hg+2k,—21{ S WHVUHLW ||Vu||Hg+2k

This shows that the norm of Ry, can be bounded as stated in the lemma.

In case of w={f, the estimate is based on (5.12) in Lemma 5.5 and the fact that
(5.19) holds for f. When applying Lemma 5.6 and using these bounds, we find that
given ¢’ =g+ 2k —2¢ and a multi-index v with |y|=1,

’

q
) C _
18 % 40l e O 28 e 150 -, < Z L8] e < OV i,

Jj=0
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107E x 07 L]y <CY &[0 |lwsoo |07 L] prar—5 < Ce™ || V]| yyrar.
j=0

Hence, it holds that

|EA (L x L0w) 0 < C £ % L1l ggrae-2 < Oz |Vl gganms,

€q+2k725 | q+2k |

as well as

Lkt (az&;if X azi£€u>

i=1

1
= Cm Z ”8’Yf X a’yﬁeuHHg+2k—2z

Ha [v[=1

1
Scmﬂ

VUHH;H-%.

Thus, Ry ¢ can be bounded in the same way as Ry . This completes the proof. ]

6. Stability estimate

In this section, we derive a stability estimate for the error introduced when ap-
proximating m°® satisfying the Landau-Lifshitz equation, (3.1), by m® that satisfies a
perturbed version of the equation,

9, = —1° x L5M° —amm® x m° x £5m° —n°, 0<t<T°, (6.1)

where we recall that T°=¢°T some some o €[0,2]. In particular, we suppose that
the assumptions (A1)-(A4) hold and that initially, m®(z,0)=m®(x,0). Moreover, we
assume that m® € C([0,7°];W9T1>°(Q) and that there is a constant M such that

- ~ 1
IImE(-,t)Ilwm<M<1+5k_l>7 0<k<g+1, (6.2)

for 0<t<T*, uniformly in €. Note that this assumption is chosen such that it fits with
the estimates that will be shown in Section 7. We can then prove the following stability
estimate for the difference between m® and m¢.

THEOREM 6.1.  Assume (A1) - (A4) hold and let ¢<s as given in (A4). Suppose
me € CL([0,T¢];WatL:o0(Q)) is the solution to (6.1) such that (6.2) holds and n¢(-,t) €
H1(Q) for 0<t<Te. Then there is a constant C independent of £ but dependent on T
and a, such that the error e :=m® —m°® satisfies,

e, )||H<1<Ct SUP g (Iln( Ol +IVIDCOP ), 0<t<Te. (6.3)

To prove this theorem7 we first derive a differential equation for e. Then an estimate
for ||e||r2 is shown, since the proof in that case is somewhat different than for higher
order norms. Finally, we complete the section by using induction to show that (6.3)
holds for general q. Note that these proofs are based on ideas from [25]. For better
readability, we drop the superscript € for m, £ and 7 in the rest of this section, keeping
in mind that they are e-dependent. However, we keep the notation a® to stress that the
constants in the estimates depend on norms of a, but not a®.

To obtain a differential equation for e:=m —mm, let m and m satisfy (3.1) and (6.1),
respectively. Then e is the solution to

de=D;+a(Le+Dy+D3)+n, (6.4)
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where D; is the difference between the precession terms in (3.1) and (6.1),
Di:=—mxLm+mxLim=-mx Le—ex Lm, (6.5)
and Dy and Dg3 arise when taking the difference of the damping terms,
—mxmx Lm+m xmx Lm=Lm|m|> - Lm|m|* + e m|Vm|?
—a*m|Vm|? + V- (a°m- Vi)m=Le+Dy+ D3,
where
D,:=(e-(m+m))Lm+a‘e|Vm|> +a°m(Ve: V(m+m)), (6.6a)
D;:=V - (a*m-Vm)m= %L|ﬁ1\2rh. (6.6b)

Note that by assumption, |m|? =1, constant in time and space, but |m|? is not constant,
therefore the remainder term involving only m, D3, does not vanish.

6.1. L%-estimate. To obtain an estimate for the change in the norm of the error
e, we multiply (6.4) by e and integrate in space, which yields

1
fﬁtHeHQLz:/e~3te:/e~D1dz+a/e'(£e+D2+D3)d1’+/e'ndx
2 0 Q Q Q

:/e~D1dxfa/a5Ve:Vedm+a/e~(D2+D3)dx+/e~nda:.
Q Q Q Q
It thus holds that
1
iatHeH%z—&-aH\/a»EVeHQLz:Il—i—a(Ig—i—Ig)-i-/e~ndm, (6.7)
Q

where we define for the sake of notation,
IkZZ/e-DkdI, ]4}21,2,3.
Q

Our goal in the following then is to derive bounds for the integrals I that only depend
on the L?-norms of e and /af Ve, multiplied by a suitable constant that we can choose
such that the terms involving v/a*Ve on the left- and right-hand sides cancel. This
makes it possible to use Gronwall’s inequality to obtain (6.3) for ¢=0. Using the fact
that the cross product of a vector by itself is zero, Dy can be rewritten as

Di=—mxLe—-exLm=-V-(exa*Vm+mxa“Ve). (6.8)
Applying integration by parts and the standard scalar triple product identity, we then
find that due to orthogonality,

11:—/e-[V-(exaEVm—i—rhxaEVe)]da::/aEVe:(eme)dx.
Q Q

Therefore one can bound the first integral as

amaxM2
L | <[[Va=Ve| a]le] 2 [[Va" Vi o < %II\/LFVGH% + =0 —llellZ-- (6.9)

= 2y
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For the second integral, we have according to the definition of Do, (6.6a),
I, :/Qa5|e\2|Vm|2dw+/QaE(e~rh)(Ve:V(m+rh))dx
—/QaEV(e(e-(m—i—rh))):Vﬁldx,

where we used integration by parts on the last term. Applying Cauchy-Schwarz in-
equality, Young’s inequality with a constant together with the bounds (6.2) and using
assumption (A4), we thus obtain for ¢ €[0,7¢],

1 - -
II,| < %”\/CTEVGH%Q + Gmax (27 +1> (M2M?*+ M*)|le||2.,  forally>0. (6.10)

In order to derive a bound for I3, note first that since m-Vm =0, it holds that
1
V(e-m)=(m-Ve-m-Ve-m-Vm)' =—(e-Ve)” - §V|ﬁ1|2,

which implies that

1 1
L= [ (e-m)Llinfds =3 [ a“V(e-th)- Viinds
2 Q 2 Q

1 1
:5/ a*(e- Vo) Vit ¢ |[Va Vil 3.
Q
It then follows that for any v >0,
1 - -
1< IV Vel + Cam (5 007l +IVIRPI ). (61

The last integral in (6.7) can be directly bounded using Cauchy-Schwarz and Young
inequalities,

[ endz< (el +Inle) (612
Q
Putting (6.9), (6.10) and (6.11) into (6.7) then yields, upon choosing «y sufficiently small,
2 M2 o ~ 1212 2 e
Olels <€ Z-lels + IVImP LG+l ). 0<e<Te

for some C independent of ¢ and t. As e(0) =0, it follows by Gronwall’s inequality that

t
le(-,)[22 < ceCO /T /0Hn(-,s>||%2+||V|m<~,s>\2||i2ds, 0<t<T", (6.13)

where the prefactor can be taken independent of € as T¢ <T'. This proves the estimate
in Theorem 6.1 for ¢ =0.
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6.2. Higher-order estimates. In this section, we show estimates for ||e||gq,
q >0 to complete the proof of Theorem 6.1. The general structure of these estimates is
similar to the L%-estimate. However, we include an induction argument to obtain the
final result. Furthermore, bounds for the H%-norms of Dy are required to complete the
proof. These are given in the following lemma.

LEMMA 6.1. Let Dy be given by (6.6a) and suppose that e € H1t1(Q) and that there
is a constant C independent of £ such that ||e]lco <C and ||Vel|loo <C. Then it holds
that

1
D20 < 7 llefl o
Proof. First, note that we can use (5.6) to bound for £ <gq,
lel*llme <Cllelr=llellue,  [[IVe*|lne <C[[Velr=||Vel ge. (6.14)
Using the fact that m=e+m, we can moreover show that
D, = Li(le|* +2(e-m)) +ae(|Vm|> +|Ve|?)
+a°m(|Vel|? +2(Ve: Vm))+2a°e(Ve: Vi),
where the last term satisfies
lae(Ve:Vm)| <Cla°e|Ve|* +a°e|Vi|?|.

Thus, it holds according to (5.13) in Lemma 5.5 that

1
D2l e < ([[Da1f|ra + [la” Doz ) <C <I|D21||Hq +€,1||D22||H§) ; (6.15)

where we let
Dy, :=Lrn|e|* + Lrn(e-m),
Doy :=e|Vin|* +e|Ve|’ +m|Ve|> + m(Ve: Vin).
For the norms of the terms involved in Do, it holds by Lemma 5.5 and (6.14) that

q q
1emle| e <CY 1Lt wa-see el <O [ Ltmlwa-soolelloc e o,

j=0 7=0
q J
|£(e- 1) e <CY D (L1l [0l yws—< [le] s,
§=0i=0

which together with the assumption on the boundedness of m, (6.2), implies that

q j—1
1 1 1
D21 | e SCZO <€qj+1||e||HJ' +.Zo€q*i ||9|Hi> <Crllelue. (6.16)
j= i=

Again using Lemma 5.5 and (6.14), we can furthermore show that the norms involved
in Dos satisfy

q J
e/ V|| ga <CY > IVih|po—s—ioc [ ViR e |le] 1,

§=0i=0
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q q
0| Vel [|ze <CY  mllwas ool Vel <CY Iy Vel Lo || Vel s,
j=0 =0

q J
[5(Ve: Vi) o <Y > [ty oo | ViR [ Vel e,
§j=0i=0

and finally, as shown in [25], we have as a consequence of (5.6) and the boundedness of
the gradients of m and m that

lelVel*|lra <C (llell= Vel Vel + [ VelL= Vel ra-1) <C|[Vel .

Applying the assumption (6.2), we thus get

J J J
1 1 1
ID2s]ls, <C (Z Slelln + > s el + Y el + ||e||Hj+1)

1=0 1=0 =0

J
1 1
<c (Z el +||e||Hj+1> <Crllell s (617)

=0

In total, the combination of (6.16) and (6.17) with (6.15) and application of (5.3) in
Lemma 5.2 results in

1 1 1
D2l <€ ( rlelln + rllelluges ) <O el

This completes the proof. 0

To continue with the proof of Theorem 6.1, consider now VL*e with k> 0. Based
on (6.4), we find using integration by parts that

1
iatH\/aEVEkeH%g:/aEVEke:VEkatedm:—/(£k+1e)-£k8ted$
Q Q

:—/(£k+1e)-Eledx—oz/(Ek“e)-ﬂk(ﬁe—i—(Dg—i—Dg))d:v
Q Q
—&-/(aEVL'ke)-Vﬂkndx. (6.18)
Q

Similarly, we obtain for k>0 that
1
§5t||£ke||%2:—/aEV£ke:V£k_1D1dx—a/(aEV£ke):Vﬁk_l(ﬁe-i-(Dg—FDg)dx

Q Q

—|—/(£ke)-£kndx.

Q

It thus holds that for £>0,

1
§8t||\/a€V£keH%2 —|—O¢H£k+1e||2L2:—lek—a(ngk—i-ngk)—i—/aEVe'Vndw, (6.19)
Q

1
§8t||£k+le|\2L2 +C¥H\/GEV£1€+1€”%2:—KLk—Oé(KQ’k‘i‘Kg’k)"‘/,Ce',cndl', (6.20)
Q
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where
Jin:= [ LFe £FD,dx, Kj,kzz/ "V L e: VLMD da.
Q Q

We now derive bounds for these integrals. In general, the estimates for the J; and
K ;. integrals are very similar to each other and only differ regarding the details. We
therefore focus mostly on the J; ;. estimates.

To bound the first terms, J; » and K, x, one can use the fact that by Lemma 5.8,

LD, zﬁk(ex/je+rh>< Le+ex Lm)=m X £k+1e+Rk7e+Rk,ﬁq+£k(eX,Cﬁl).

The highest order term here, m x £++1e, cancels in the integral in J 1,k due to orthogo-
nality. Consequently, application of Cauchy-Schwarz and Young’s inequalities yields

|J 1.k

= ‘/ L e (Rye+ R+ L5 (e x Lm))dx
Q
ol 1 -
< lIe ez o (IRnellZz + IRemll7s + 1£5(ex L1)[72).

Making use of Lemma 5.6, Lemma 5.5 and the assumption (6.2), the latter norm can
be bounded as

2k
. 1
k ~ ~
1L (e x Lm)12 <C 5 Y _e' | Limllwe el yzv-s <C gy llellman
=0

Together with the bounds for |R, ul/z2 according to Lemma 5.8, we thus get

c 1
Tual < JIL el + :

We obtain an according estimate for K; j by taking the gradient of £¥D; and proceeding
in the same way as for J; ;. However, we have to consider that

V(mx LM e)=mx VL e+ Vm x LM e,

where only the first term on the right-hand side cancels due to orthogonality in Kj 4.
To bound the L?-norm of the second term, we use the fact that by assumption (A4) we
have an infinity bound on Vm, making it possible to remove it from the norm. The
remaining term can be bounded using Lemma 5.6. In total, this results in

Kyil < S IVa VL e

1 .
+3 (IVmx £ e[ 2. + [Ruelin + | Remlip + VL (e x Lim)|[72)

C 1

v
<3 IVaE v LE+te|2, + 5 kT ||e||§{3k+2.

(6.22)

For the second kind of integrals, J2 ;, and Ky , application of Cauchy-Schwarz and
Young’s inequalities, yields directly that for all constants v >0,

Y,k 1 k
2.k < SII£ +1ell%frgllﬁ Dy|7:.



28 ON HOMOGENIZATION OF THE LANDAU-LIFSHITZ EQUATION
Using Lemma 5.6 together with Lemma 6.1 to go from the norm of £L¥D5 to an estimate
in terms of e then gives

2k 2k
1 1 1
H‘CkDQHL2 < CZ o2k—j ||D2||Hj §C€2k+1 Z HeHHngl §C€2k+1 ||e||H52k+17

j=1 j=1
and it follows that
C 1

[Jo k| <= ||£k+1e||L2-|- m” ||H2k+1 (6.23)
and for Ky j we obtain similarly,
Yy = c o1
|K27k|§§HVG V£k+1e||%2+562(27k+2”e”}12k+2 (6.24)

Application of (5.16) in Lemma 5.7 to the right-hand side in the estimates (6.21) and
(6.23) then results in

C 1

k
|J1k|+04|32k|<0 1£ +leHL2+ WHGHH%H

Y pk+12 k|2 1 2
<cqle el + 5 (VG0 Lel + el )
Correspondingly, we find, based on (5.16), (6.22) and (6.24) that
1
K| 0K i o [Var VL et 5 <|£k+1e||L2+2(2k+2)||e||i;3k+1) .
To do the estimates for J3 5, and K3 1, note that it follows by Lemma 5.6, Lemma 5.5

and (6.2), that

1 q+2k ‘

k ~ ~ ~ ~ ~ ~

Hﬁ (L|m‘2m)||Hq < Cigq-i-% ||L|m|2mHHg+2k < C75q+2k E > el ||m||Wj,<x; HL|m|2||Hg+2k—j
j=

1 N 1 -
<CW||L|m|2”Hg+2k < OWHWI“FHH;’“’““'

Hence, we find for J3 , and K3 that

1 N c 1
|J37k|:‘2\/g;ﬁk+1e-£k(m[/m|2)d$ Hﬁk+1e||L2+2 m”v‘l’lﬂ HH2k+1,
(6.25a)
¥ 1 -
|K3,k|§ZH\/CTEVEGHQH+gm“v|m\2”i]§k+z- (6.25b)

The remaining integrals in (6.19) and (6.20), involving n, are bounded using Cauchy-
Schwarz and Young inequalities in the same way as in (6.12), which, together with
Lemma 5.2 and Lemma 5.6, results in

/aEVEke:VEkndsc g%\|\/¢?V.cke|\iz+%||vﬁn||%z
Q
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C 1
H\/aﬁv,ﬁkeHL2+ m”n”Hz’”l’

and correspondingly for (6.20). Thus, it holds in total that when choosing 7 small
enough in the estimates for Jq , Ja,5 and J3 , we get from (6.19)

1
§3t||\/a5V£ke||%z <C (H\/aEVCkeHsz +JRyk(t)> , 0<t<T",
for some C' independent of ¢ and ¢, and where Jg ;, only depends on lower order norms
of e as well as terms involving 1 and m,
1 -
Ir(®):= —rry (el + VIR 20 + Il )

Assume now that (6.3) holds up to ¢ =2k. This is true for k=0 according to the estimate
in the previous section, (6.13). Then

2k
lellize =03 lellys <Ct sup (Im() o + Vi) Pl )
7=0
and thus
C(t+1) .
Tra(t) < Sy o0 (||n< )2 0+ V() 22001 )

Since moreover V£*e(0,2) =0, we have by Gronwall’s inequality, that for 0 <t <T¢,

tCt+1

VeV el 0l <C |y sup (1) + VIR 50 ) ds

where, as in (6.13), the prefactor is independent of €. It then holds for k=0 that
e )13 <C (llellfz + 1 Vas Ve ) < %o‘?i‘it (Il )3 + VIR C) 213 )
while it follows by elliptic regularity, (5.15), that for k£ >1,
o0l <€ (Iell + gy el +IVE el
<Ct gz 50, (I ) s + I ) s ).

which shows the estimate in Theorem 6.1 for odd ¢ given that it holds up to g—1.
Finally, we obtain in the same way when combining the estimates (6.22), (6.24), (6.25b),
for Ky 5, Ko, and K3, with (6.20), and again using ellitpic regularity (5.15) and
applying Gronwall’s inequality, that for 0 <t <T*,

1 k
lel3aes- gc(neﬁﬁm||e||i,3k+l+||£ +)
1 -
< Ct gy S0 (I965) yzura + VDR, e ).

which shows the estimate in Theorem 6.1 for even ¢ >0 given that it holds for g—1.
This completes the proof.
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7. Estimates of homogenized solution and correction terms

In this section, we provide estimates for the norms of the correction terms m;,
j=>1. To obtain these, we use a theorem for general linear equations of the form as
(4.7), which is presented in the next subsection. We moreover derive bounds for the
remaining quantities involved in the stability estimate Theorem 6.1.

7.1. Linear equation. First, we consider solutions m to the inhomogeneous
linear equation

a’Tm(x7y7t7T):gm(x7y)t)T)+F(x7y7t7T)7 (7-1&)
m(z,y,t,0) =g(,y,1), (7.1b)

with periodic boundary conditions in y and up to some fixed final time 7' > 0. The linear
operator .Z is defined as in (4.8). It depends on the material coefficient a and on the
solution of the homogenized equation mg.

We note that since .Z has a non-trivial null space and « >0 this is a degenerate
parabolic equation in (y,7). In the following, it will be beneficial to split the solution
m, initial data g and forcing F in (7.1) into a part that lies in the null-space, and a
part that is orthogonal to it. To this means, we introduce the matrix M corresponding
to the orthogonal projection onto mg and the averaging operator A,

M(x,t)::mom(j;ﬂ Am:/ m(x,y,t,T)dy, (72)
Y

and then define projections
Pm:=(I-M)(I-A)m and Om:=Mm+ (I-M)Am, (7.3)

which means that @=I—"P. According to this definition, Pm is orthogonal to mg and
has zero average in y, while Qm consists of the average of m and the contribution to
m — Am that is parallel to mg. In particular, @ is a projection onto the null-space of
Z. Note that P and Q depend on (z,t), but not on (y,7). Then we have the following
theorem about the size of the two parts of the solution.

THEOREM 7.1.  Assume (A1), (A3) and (A5) hold. If O'F(-,-,t,-) € C(R+; HI=26:)
and Ofg(-,-,t) € HI726° for 0<20<2k<q<r and 0<t<T, then OFm(,-t,-)€
C(R*; H1=2k:2°) when t€[0,T] and for each integer p>0, there are constants C and
~v>0, independent of >0, t€[0,T], F and g, such that

k
10F Pt a0 <C Y (€777 0P )| pra-2es
=0

+ / e_"’(T_S)\|5fPF(~7-,t,s)||Hq72z,pds), (7.4)
0
Hai{ch(',',t,T)Hqu%,p < ”ang("'at)”H‘I*Z’“P +/ ”anF('v'7ta8)”H‘1*2’°de‘s' (7'5)
0

This is proved in [24].

The proof uses standard energy estimates in which the precise growth rates of the
different solution parts are carefully analyzed. Note that, since 7 represents the fast
scale, sharp bounds on the growth in 7 are necessary.
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In [24] we also prove a few properties of P(-,t) and Q(-,t), in particular that they are
bounded operators on H4? for 0 <q<r and p >0, uniformly in ¢t € [0,T]. The following
lemma gives the more general result.

LEMMA 7.1.  Assume (A5) holds. Suppose Ofv(-,-,t)€ HI724P for 0<20<2k<q<r
and p>0. Then

k
HOFPV (s ) bra-2v0 SC DOV (st | rasem, (7.6a)
£=0
k
10 Qv ()| ra-2v0 SC Y IOV (s )| a2t (7.6b)
£=0

for 0<t<T, where C is independent of v and t.

Note that this lemma shows that the projected initial data functions Pg,Qg €
H?*°(Q) if the unprojected function g € H%>°(€2) and similar for the forcing function F
and the time derivatives of the functions. This justifies why we only ask for smoothness
of the unprojected functions in Theorem 7.1.

7.2. Correction terms. We now apply Theorem 7.1 to the correctors m; in
the asymptotic expansion (4.1) in order to obtain estimates for their norms. Here and
throughout the rest of this section we suppose that the assumptions (A1)-(A5) are true.
We recall from (4.7) that the correction terms satisfy linear PDEs,

a‘rrnj (‘TayataT) :gmj (‘T,y,tﬂ') +:F] (xvyvth)v (77)
m,(x,y,t,0)=0,
where F; is defined in (4.9). Additionally, we consider the term v in the definition of

m; (4.12) to get a better understanding of the behavior of m;. As given in (4.15), v
satisfies

o-v(z,y,t,7)=2Lv(x,y,t,7), (7.8)
v(z,y,t,0) ==Vamo(z,t)x(y),
where x is the solution to the cell problem, (4.13). We then obtain the following result.
THEOREM 7.2. For 0<t<T and 0<2k<r—j we have
OFmy(- -t ) e C(RT; HM=I72ko0) - gk (..t ) e C(RT, H"~172ko0), (7.9)

and there are constants v>0 and C independent of e,7 >0 and 0 <t <T such that when
p>0,

108V (-, t, )| 1200 < Ce™ 77, (7.10a)
1OF P (-, 7) || 200 < C, (7.10b)
18F Qi (-, t,7) | rr—s-20.0 <C (Hrma"(o’j*z)) : (7.10c)
08803 (s 7 s S C (14 72072)) (7.10d)
Moreover, it holds for T>0 and 0<t<T that
m; 1 m, v 1 mg, Pm; =my, Pv=v. (7.11)

This theorem entails in particular the following.
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e The first corrector m; has zero average, is orthogonal to mg and stays bounded
for all 7>0.

e As the first one, the second corrector ms is uniformly bounded in 7, but it is
neither orthogonal nor parallel to my.

e Higher order correctors are not bounded in 7 but grow algebraically.

To prove the theorem, we use induction. We consider first the base cases, norms of v
and m; and their time derivatives, which in turn makes it possible to bound the norms
of OF QF;. Then we provide a utility lemma giving estimates for the quantities involved
in higher order F;, j > 3. Finally, we conclude the proof with an induction step showing
(7.10) for general j.

7.2.1. m; and v estimates. To begin with, we show (7.11). For mj,, the
forcing term F; only depends on myg. In fact, as Zo=Lim=V,mV,a the expression
for F in (4.10) can be written as

Fl(mayat”r) = 71110(1',15) X [vsz(xvt) +am0(xat) X vmmO(xvt)]vya(y)a

which shows that F; is orthogonal to mg. Moreover, since the averaging operator A
commutes with differentiation in y,

AFl = —Imy (Ji,t) X [vzmo (Jﬁ,t) +Oém0 (1‘,t) X Vzmo (xvt)]Avya(y) = Oa
and consequently QF; =0 and PF; =F;. For v it holds at the initial time 7=0,

g(z,y,t) =v(z,y,t,0) = —V,mo(z,t)x(y)-

Since we choose x such that Ax =0 and due to the fact that mg is orthogonal to its
gradient, mg-V,mg=V|mg|?/2=0, we have Qg =0 and Pg=g. It thus follows from
Theorem 7.1 that Qm; = Qv =0 and consequently for all 7>0,

Pm;=my, Pv=v.

Hence, (7.11) holds. Next, we consider the norms of 9fv and dFm;. Corollary 5.1
shows that for 0</¢<k,

l 4
|OfF || r-1-200 SCY | Va0;moVyal| grr-i-200 <CY |05 mo]| grr-2c.0]|a]| o < C,
s=0 s=0

and similarly,
10 &l 1200 < (Vo0 mo|| grr—1—2 | x| o < C| 0000 | 20 < C.
Since F; and g coincide with their P-projections, we have
10fPE o200 = 0 s 1OLPGl s 1200 = [l s-20,

and thus obtain from Theorem 7.1 that

k
HafVHHr—l—’zk,p = ||8tk,PVHH7‘—1—2k,p < C’Ze‘””@ngHHPku,p < C’e_'”, (7.12)
£=0

koo
[0l 1- =0 Pt £CY [ e Py
¢=0"0
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gc/ e T8 ds < C. (7.13)
0

This shows (7.10) for v and the first corrector m;.

Consider now Fs as defined in (4.17), which consists only of quantities involving v
and m;. Combining (4.21) with the definition of the homogenized solution (4.23) shows
that the average of Fy is AFy=—(E; +E3), with E; and E5 given in (4.20) and (4.22),

El :A(Rl +C¥Sl), E2:m0 ><A(£1v)+m0 X 1mg XA(,C1V),

where Ry =m; X Lov and S; =m; X mg X Lov, defined according to (4.3) and (4.4), are
parallel to mg due to the orthogonality given in (7.11). This implies that E; is parallel
to mg as well, while E, is orthogonal to mg as it is of the form mg x -. Hence, it holds
that

(I-M)(E; +E3)=E,.

Again using the fact that terms of the form myg x -, as well as 9;mg, are orthogonal to
my, we thus can show that application of the operator Q to F5 yields

QF ;= MF;+ (I-M)AFy; = —M(R; +0aS;) — (I-M)(E; +E;),= —R; —aS; — Es.

Using Lemma 5.4, with j =2 and m=m’=1 as 0fmy,0Fve H"~172P _therefore yields
together with (7.12) and (7.13),

k
O R || 2200 SCD NOF s || o 1-22e.042]| 0 LoV e -1-20.0
=0
k
S CZ ||afv||H7-71722,p+2 S 06_7T7
=0
k k
||8tkSl ||Hr—272k,p S CZ ||8f(m0 X CQV) HHr717213,p S CZ ||até£2VHH'r'7172€,p
=0 =0
k
S CZ ||afV||HT71722,p+2 S 06_77.
£=0

Finally, using Corollary 5.1 with f=AL v gives

k k
||8tkE2||H7‘—2—2k,p S CZ ||afAL1V||H7*—2—21{,p S CZ ||8fv||Hr_1_2z,p+1 S 06777.

£=0 £=0
We thus conclude that
108 QF | gyr—s-20.0 < Ce™ 7. (7.14)
7.2.2. Higher order mj-estimate. We now consider m; with j>2. First,

note that due to assumption (A1), it holds in general for m;, j >0, that
[Lrem;||gar < Cllmy || grove-roer,  k=0,1,2,

for p,¢q>0, whenever the norms are bounded. This can be used to prove a lemma
providing upper bounds for norms of all the intermediate quantities involved in the
forcing term F; in (7.7).
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LEMMA 7.2 Suppose that (7.9) and (7.10) hold for 1<j<J, 0<2k<r—j and
0<t<T. Then, for p>0,

||afzj||HT__,~_1_2k‘pgc(1+7ma><<0’f*2>), 0<j<J, 0<2k<r—j—1, (7.15)

||aij||Hr7j72k,pgc(1+7ma"<0’f—2>), 1<j<J, 0<2k<r—j, (7.16)

where X; is any of R;, S;, T, and V; as defined in (4.2), (4.3) and (4.4) and the
constant C' is independent of t and T.

Proof. Let 1<j<J,p>0and 0<2k<r—j—1. For Z; we have

10FZj || pre—s-1-2b0 < [10F Lomjs || prr—s—1-2k.0 + |0 Lrmy | o120
SO0 [ -1 200 + |OF 0 || s -20.41)

< C(l +Tmax(0,j—3) +Tmax(0,j—2)) < C (1 +Tmax(0,j—2)) ]

Since by definition, m_; =0, the result still holds true for j=0. For V; we then have
accordingly, when 0 <2k <r—j,

10V gz < 08 Lm0y s s-sv0 4+ 108 Z 1 1o
< Okl g1 s-krv + 08 Zy | o2

<C(1+ roax(0,7-2) 4 Tmax(o’j_?’)) <C (1 —|—TmaX(O’j_2)) .

This shows Lemma 5.4 for X;=V;. Suppose now that that Y,, satisfies (7.16) for
1<m<j and that m’ € {m—1,m}. Since j—m'+m <j+1, we then find by Lemma 5.4
that

k
[AC IR €3] PRETTE) ) (L7 £ P
=0
(1+Tmax(0,j—m’—2))(1 + max(O,m—Q))

C
O(1+Tmax0] m’'—2,m—2,j+m—m’ 4))
C(1+

IN

IN

max(O,_] 2,j—3,j— 4))<C(1+Tmax(0,j—2)).

IN

When using this result for Y,,, =V,, and m' =m, we get

J
||8tij||H7‘—j—2k,p < Z Ho”'f(mj_m X Vm) | zrr—s—2r0 <C <1+7-max(07j—2)> .

m=1

Similarly, when m’=m—1, we find by choosing Y, to be V,,, and T,, respectively,

J
HaijHHT—j—Qk,p < Z Haf(mjﬂ_m X Vm)HHr—jka,p <C <1+Tmax(0d—2)) ,

m=1

J
1088 1520 < D 1|0 (41 X Ton)| 150 SO (1H7m5C5=2))

m=1

This proves the lemma. ]
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We now have the tools necessary to conclude the induction step for Theorem 7.2.
For j=1, we have already shown (7.9) and (7.10d). Assume now that they hold up
to some j with 1<j<r—2k—1. We then show in the following that they also hold
for 7+1<r—2k. To this means, suppose 0<2k<r—j—1=:¢' and p>0. From the
definition of F; according to (4.9) it follows using Corollary 5.1 and Lemma 7.2 that

1O F jallpror 2w < 105 05 1l grar—2rc + |10 R | prar 2+ |0 (0020 5 25 )| pror v

+a ([10F (mo X B rar—sw. + 10 (M0 x 000 % Zj) | 07210 + (|0 S]] o 0.)

k
SCZ (”atéZj”HQ’*%P + HatéRj”Hq/*%P) +Oz||8ijHHq/,2k’p + Haf+1mjfl||Hq/*2km
£=0

IN

C (1 _|_7_max(0,j72) +Tmax(0,j73)) <C (1 +Tmax(0,j72)> )

By (7.6) the same estimate holds for 9fPF;; and 9f QF, 1. However, for the latter,
we have due to (7.14),

e =1,

k . .
||6t QFJ"FlHHT_J_l_%'p SC’{l_’_,]_j—27 ]22

The estimate (7.10b) with j+1 then follows from Theorem 7.1 as

ko or
||afpmj+1 ||H7'*J'*1*2’w’ S CZ/ 6_7(7—_8) ||8£PFJ+1 HHrfjf1fztz,pdS
=00

0

and accordingly,

—~T i1
€ ’ J ’ ds

k " k T -
110; QijrlHHT*j*l*?kvPSC/o 10; QFjHHHT,j,l,%,pdsgC/o {1+Tj2’ i>9

<C 1, ' ]:1,§C(1+T1nax(0,j—1)),
147371, 5>2

3

which yields (7.10c) with j+ 1. Finally, (7.10d) is obtained using the triangle inequality.
This concludes the induction step and the proof of Theorem 7.2.

7.3. Approximations m; and m5. In this section we consider the approxi-
mation Mm% to m as defined in (3.3) and correspondingly,

J
my (z,y,t,mie) =mo(z,t) + Y _e'my(e,y,t,7),  mG(e,t) =y (z,z/e,tt/e).
j=1

We are interested in different aspects of m% and m; up to time T° as given in (3.4)
and (3.7), here repeated for convenience of the reader,

0<o<2, J <2,

. (7.17)

T¢:=e°T with {
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Up to this final time, we have
14+7<C(1+e"F9) <0,

As a consequence, we can simplify the estimate (7.10d) for final time T°. Under the
assumptions in Theorem 7.2, it holds for 0<t<T¢, 0<7<T*¢/e2, that

0K 0 (-, 8, T) || s 2w < Ce™ BmoImax(0=2) = g <o) < j, (7.18)
7.3.1. Norms of approximations. = We start by estimating the approximations
m; and m95 in different Sobolev norms. We obtain the following theorem.

THEOREM 7.3. For0<t<T,
(- t5e) ECRYH™P(QR?),  m5(,t)e H /(). (7.19)

Moreover, consider T¢ as given in (7.17), then for any p>0
€

T
I Constmse)arse <€, 0<ESTS, 0TS (7.20)

Additionally, for 0<q<r—J and 0<¢'<r—J -2
1605 (- )| pra < Ce™POID[0G (1) [[yare < C™MOITO <z <TE (T.21)

All constants denoted C' are independent of T, t and &, but depend on T.

Proof.  The simplification (7.18) of the estimate in Theorem 7.2 gives for fixed ¢,
7 as in (7.20) and 0< 5 < J,

) . . J <5< i —
e < Cor om0 o} OSIS2 ol I=0
g=(2=0=2) 3<5<, e, j=1,

where we used for the second case that

j—2 J—2

| —(2— | —2)=2+(j—2)(c—-1)>2—-"—2>2——— =1
J=(2-0)(-D) =2+ (- 2o -1)22- T2 >2 T2
This shows (7.20), as
J J
P el Y [T} e ¥ Pt
Jj=0 j=0

For the second statement, we use Lemma 5.1 and the fact that mgy does not depend on
y, which yields

J
835 8) s < ) 0+ e (/2,22
j=1
J .
< flmo ) o +C D e m (-1, /¢) s
j=1

Proceeding similarly to before, we then get for j>1,

[0 | .oz < [0 | prr-.ave < [ || grresase < CeCmoImax(0I=2) < Cel=d,
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Therefore,
05 (-, 1) e <C(1+e"79).

Finally, by Lemma 5.1,

J
15005 () oo < 0@ ) [lrroe +C &7 000 (yos 88 /6% | prarvz.ar 2,
j=1
where
m ]| frar+2.0+e < Mg grresarse,
from which (7.21) follows in the same way as above. This completes the proof. ]
7.3.2. Residual. The truncated approximation m? satisfies the differential

Equation (3.1) for the original m® only up to a certain residual n5. In the following,
we derive an expression for this residual n%5 that is then used to obtain a bound for its
I || zre-norm.

THEOREM 7.4. Let the residual n%5 be defined as
n5:=0m5+m35 x LSm5 +am5 x m5 x £m5 (7.22)
and suppose 2< J<r—2 and 0 <t <T° with T® as in (7.17). Then for 0<q<r—J—2,
05 (8) 10 < CMHEDI=D70 s ()| gy < CeMHEDO2),

The constant C' is independent of t and €, but depends on T

Proof. Using the notation given in (4.2) and (4.3), we find along the same steps
as in Section 4 that the expression corresponding to (4.5) for the truncated expansion
m? becomes

J J 7 J
I SECTIES SRR NS ST S eRE I

Jj=0 j=0 j=0 Jj=1
where
po=Lrmy+Lomy_1+eLomy.

To obtain an expanded expression for the precession term, we then take the cross product
of m% with the expanded expression for Lm¢ which results in

J J J
m3 x £€rhf,:ZEjmj X (Zek_QVk—f—s‘]_lul) :ZEj_QTj +e/ Iy, (7.23)
3=0 k=1 j=1

where

J—

1 J
M) 1= Mo +107 X pt, and o= ) & g myii4j—k X Vi.
7=0

k=j+1
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Taking one more cross product by m* yields an expanded form of the damping term,

J J
my xm x L5 = 2> m;_, x T+’ 'n,, (7.24)
j=1 k=1
where
J-1 J
o= M3 +Mmy X1, and pgi=>» ¢’ g myyiyj—k X Th.
§=0  k=j+1

Moreover, it holds for the time derivative of m% that
J .
oG =Y &/ (0m;_»+0,m;)+e’ " om, e’ Om,. (7.25)
§=0

Putting the expanded expressions as given in (7.23), (7.24) and (7.25) into the definition
of n° that is given by the differential equation, (7.22), yields together with (4.7) that

n5(x,t) =n,(v,x/e,t,t/e?), where n;=c’"1(Omy_1+0my+n,+an,). (7.26)

This implies that in order to get a bound for the H?-norm in space of n° we have to
consider both x and y in the expanded form. By Lemma 5.1 it holds that

c
5 COlea < Zlimy Constst/€%) [ oo (7.27)

Using the explicit form of n; given in (7.26), one can obtain an upper bound on
the norm of n;. To begin with, let ¢’ :=r—J—2, then we have

HnJ(UWtﬂ—)”Hq”P < ce’ ™t (Hath*l”Hq/»P +5H8th||Hq/vP + ||771||H<1”P + anHHQ’,P)-
For the first two terms we get from (7.18), as J >2,
EJ_l ||ath_1 ||HQ’~P _,'_eJ”athHqum < CgJ—1+(a—2)max(0,J—3) —|—C€J+(U_2)(J_2)
_ C€1+(U_1)(J_2) (5(2—0)(J—2—max(O,J—3)) +E)
< Celte-1(I-2)
Note that by the assumptions on J and o the exponent for € here is positive. To get an

estimate for the norms of n; and n,, consider first the norms of the perturbation terms
w;, 1=1,2,3, individually. By (7.18) and since J >2, it holds that

a2 < C (gl pre—sss1 + 101 L= el )
<C(lmyllgr—srer + sl gr-rere +elmg | gr-ss)
< C(g—(2—a)max(O,J—3) + (1 _|_€)€—(2—0')(J—2)) < Cg_(2_‘7)(‘]_2),
and therefore we can bound /71|, || - s-2.» in the same way as the terms above,

7|y g2 < Ce7 1= 2=0)T=2) _ Ol (o =1)(I=2),

Consider now the cross-products my 14X Vi when j+1<k<J and 0<5<
J —1, which appear in the definition of py. By Lemma 7.2 we have that

||Vk||Hr7kyp < C(1+Tmax(0,k—2)) < Cg—(Q—a)max(O,k—2).
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We then use (5.7) in Lemma 5.3 with gg=r—J—-1, u=r—J—1—j+k and go=r—Fk
for the cross-product. This choice is valid since ggp <min(g1,q2) and

nte=r—J-1—j+r=q+r—j=>q+J+2-j>q+3,
which satisfies the left condition in (5.8). Together with (7.18), we thus get

Iy 14—k X Vil g1 SClmygay ikl me-s-1-ivrmsa | Vil [gr-rs
< C€7(270')maX(O,JJrjfk:fl){_:f@fU)max(07k72)

< C«E—(Q—U)max(O,J—Q,J—‘rj—S).
Exploiting the fact that
—(2—0)max(0,J —2,J+j—3)=—(2—0)(J —2+max(0,5 — 1)),

we hence find for the norm of p, that

J-1 J
ol mr-s-10 SCZ Z g X Vil grs1s
§=0 k=j-+1
J—1
— (e~ (2-0)(J-2) Zgj*(%d)maX(O,(j*l)),
§=0
and therefore obtain
J—1
{:,Jfl||‘u/2||1_17.7‘]71,1£7 §O€1+(071)(‘]72) 1+Z€1+(071)(j71) chgle(afl)(me7
j=1
where the last step is valid since, for J >3,
. 7—1 J—2
1 -Hyg-1H>1—+—>1——-=0.
Ho-Di-121-F—=>1-—-—7=0

We get the same estimate for p; upon considering instead m y414;_ X Tj. Finally, note
that multiplication by m; does not affect the results. We can therefore use Lemma 5.3
with the right condition in (5.8) together with (7.20) in Theorem 7.3, which yields

805 5 | e 2.0 < Clas sl e s-20 SCllaa 150
and thus
&7 mllgr-r—2m <&M (| pall -2 + 007 X || gre—r—2.0)
<& (|| pall g1+ 100y X oy || prr-s-2) < CeMHETNE2),

For the remaining terms we proceed similarly.

The || || ga-norm estimate follows immediately from the || - || o-estimate using (5.3)
in Lemma 5.2. 0
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7.3.3. Length variation. While by assumption (A2), |[m®|=1 in space and
constant in time due to the norm preservation property of the Landau-Lifshitz equation,
(3.5), the norm of the approximation m5 is not constant in time since it does not satisfy
(3.1) exactly. We now consider the length of m% and obtain an upper bound for its
deviation from one, the length of m*.

LEMMA 7.3. Suppose 2<J<r—2 and let T° be defined as in (7.17). Then for
0<t<T® and 0<qg<r—J—-1,

05 (- ) =10 < CEPHEDE070 G ()P 1 e <O,
where the constant C' is independent of t and &, but depends on T'.
This lemma implies by (5.4) in Lemma 5.2 that for 0<¢<r—J—-2and 0<t<T*",
IV [5 [| ge = [V (jm3* = 1) ge e |[m3[* = 1| yarr < C2FDI2 00 (7.28)
Proof. We note first that since m5 satsifies (7.22),
n5-mj=0;m7-mj,
which, together with (7.26), implies that

at|ﬁ’13‘2:2ﬁ1J'nEJ: 251711}13.(8th,1+58th+n1+Jn2)|y=x/a77=t/ag
J/
=: Z eldj(z,x/e,t,t)e?), (7.29)

j=J—1

for some functions d; and integer J’. On the other hand, we can expand |m%|? as

J 2J
| (z,t)|* = mo(x,t)+Z€jmj(ﬂc,x/e,t,t/52) ::Zejcj(x,x/e,t,t/€2), (7.30)
j=1 j=0

where

min(j,J)

C; = E my -m;_g.

k=max(0,5—J)

In particular, co=|mg|?=1 and ¢; =2mg-m; =0 due to the orthogonality of mg and
m; shown in (7.11) in Theorem 7.2. By (7.29), the full time derivative of the first J —2
terms vanishes, since

9 9 2J J’
9 P .
<at+€ 67') E €jCj— A E 5jdj.
j=0 j=J-1

As this identity is valid for all €, it holds that
Orcj+0rcjpa =0, j=0,....,J—2.

We claim that this implies that ¢; =0 for j=1,...J. For j=1 this is true due to (7.11)
in Theorem 7.2 as shown above. Assume now that the claim holds up to j <.J—1. Then
7 —1<J -2, and we thus have

(9ch+1 = —ath,1 = 0,
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which is true also for j =1 since 9;co =0 as ¢y = |myg|? =1 for all time by (3.5). Moreover,
at time 7=0, ¢;(z,y,t,0)=0 for j>1 and all ¢ >0, since this is true for the correctors
m;. Hence, ¢;4+1 =0. By induction we thus obtain

J—1 J
|ﬁ1€J(x,t)|2:]-+5J+lZsjéj(x,l'/ff,t,t/éz), Ej:Cj+J+1: mg -1y jyi—k-
Jj=0 k=j+1

Using Lemma 5.1 it then follows that

J—-1

1605 (1) > = | o <7170 185 (ot /22| o
j=0

We have still to estimate ¢; and note that it is of the same type as the terms in the sum
definining g5 in the proof of Theorem 7.4. Therefore, with the same steps as in that
proof, we obtain

J-1
g1 Zej 1G5 (s t,t /)| gr—v—1.p < CtH D=2,
=0

This finally gives
16005 (-, )* = 1| rra < CPHEDI=27a,

for 0<g<r—J—1 and the corresponding ||| ga-norm estimate follows by (5.3) in
Lemma 5.2. O
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