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A B S T R A C T

We present new higher-order quadratures for a family of boundary integral
operators re-derived using the approach introduced in [Kublik, Tanushev, and
Tsai. J. Comp. Phys. 247: 279-311, 2013]. In this formulation, a boundary
integral over a smooth, closed hypersurface is transformed into an equiva-
lent volume integral defined in a sufficiently thin tubular neighborhood of the
surface. The volumetric formulation makes it possible to use the simple trape-
zoidal rule on uniform Cartesian grids and relieves the need to use parame-
terization for developing quadrature. Consequently, typical point singularities
in a layer potential extend along the surface’s normal lines. We propose new
higher-order corrections to the trapezoidal rule on the grid nodes around the
singularities. This correction is based on local decompositions of the singu-
larity and is dependent on the angle of approach to the singularity relative
to the surface’s principal curvature directions. The proposed decomposition,
combined with the volumetric formulation, leads to a special quadrature error
cancellation.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Boundary integral methods (BIMs) are employed in a wide range of applications for solving partial differential
equations with conditions defined on boundaries of subregions and at infinity. In a BIM, one needs to solve a system
of boundary integral equations (BIEs) involving singular integral operators acting on an unknown function defined on
the boundaries and at infinity.

Typical computational challenges for a boundary integral method involve developing high-order quadrature rules
for the singular integrals and efficient dense matrix-vector computations for solving the resulting linear systems.
Overcoming these challenges leads to highly efficient and accurate solutions for the associated partial differential
equations.

∗Corresponding author
e-mail: izzo@kth.se (Federico Izzo), olofr@kth.se (Olof Runborg), ytsai@math.utexas.edu (Richard Tsai)

http://www.sciencedirect.com
http://www.elsevier.com/locate/jcp


2 Federico Izzo et al / Journal of Computational Physics (2022)

We consider applications that require solving BIEs on a sequence of surfaces that are challenging to parametrize.
These may include level set methods [1, 2, 3] and the closest point method [4, 5, 6] used to track evolving surfaces
on a grid, particularly when the PDE solution is needed only at a small set far away from the surfaces. In such
situations, it is not immediately convenient to use any classical BIM. The implicit boundary integral formulations are
derived in [7], aiming at these situations. We refer to this as the IBIM approach. In [8, 9], further analysis related
to the closest point projection is reported. In [10], a similar formulation is derived to approximate the hypersingular
integral equations arising from the Neumann problems of the Helmholtz equation. The method evaluates the limit of
a family of surface integrals utilizing extrapolative averaging kernels. An IBIM is applied to compute electrostatic
potential from large molecules submerged in a solvent in [11]. That paper also demonstrates that IBIM, coupled with
an “off-the-shelf” Fast Multipole Method, can easily be applied to solve the equations for very large molecules. Partial
differential equations arising from calculus of variation problems defined on closed surfaces can be solved with high
order convergence rates using similar strategies; see [12, 13, 14, 15].

In the center of these formulations lie volume integrals with identical evaluations to the corresponding surface
integrals. The volume integrals involve integration in thin tubular neighborhoods of the surfaces in the ambient space,
and do not require surface parameterizations. In principle, the integrals can be approximated on a wide range of
meshing. Among the existing work, these volume integrals are discretized on Cartesian grids using the trapezoidal
rule and a lower order regularization of the layer singularities.

This paper presents higher-order accurate quadrature rules for the singular integrals arising from the non-parametric
boundary integral formulation discussed above. In these formulations, the singularities in the integral operators con-
centrate along the surface normal lines; these lines generally do not lie on the grid. This feature is atypical in the more
classical boundary integral formulations. Our approach is a generalization of the methods in [16]: Regular trape-
zoidal rule-based summation is performed over the grid nodes lying in the regions, excluding small, grid-dependent
neighborhoods around the singularities. This approach is called the punctured trapezoidal rule. We derive additional
corrections corresponding to the skipped grid nodes and add them to the punctured trapezoidal rule. The resulting
corrected trapezoidal rule is second-order accurate with respect to the uniform grid spacing of the underlying Carte-
sian grid. We discover an additional benefit of the non-parametric approach — there are cancellation of errors which
leads to a improved order of accuracy in practice.

The structure of the paper is as follows: in Section 2 we present an overview of how to express solutions to Laplace
and Helmholtz problems using boundary integral equations, and introduce the volumetric extension setting to express
surface integrals via volume integrals. In Section 3 we present singularity regularization methods for volume integrals
of Section 2. In Section 4 we present a general singularity correction framework for the volume integrals of Section 2,
and in Section 5 we go into details about how to apply this methods to the Laplace singular kernels. Finally, Section
6 presents numerical results for the methods of Sections 3 and 5 applied to the evaluation of Laplace potentials.

2. A short review of boundary integral equations

Boundary integral methods can be used to solve the Laplace and homogeneous Helmholtz equations in both
bounded and unbounded domains. Given a bounded domain D ⊂ R3, the problems are−∆u = 0 in Ω

u = f or ∂u
∂n = g on ∂Ω

,

∆u + λ2u = 0 in Ω

u = f or ∂u
∂n = g on ∂Ω

,

where Ω = D for the interior problem, and Ω = R3 \ D complement of the closure of D for the exterior problem,
and n is the outward pointing normal to the surface ∂Ω =: Γ. For the exterior Helmholtz problem, in order to ensure
uniqueness (see §3, Thm 3.13 in [17]), the solution must also satisfy the radiation (or Sommerfeld) condition

lim
‖x‖→∞

‖x‖
(
∂u
∂r

(x) − iλu(x)
)

= 0 , r = ‖x‖ . (1)

The Helmholtz equation with λ = 0 becomes Laplace equation, and the two problems are heavily related. In three
dimensions, the fundamental solutions for Laplace and Helmholtz are respectively:

G0(x, y) =
1

4π
1

‖x − y‖
, Gλ(x, y) =

1
4π

exp(iλ‖x − y‖)
‖x − y‖

.
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2.1. Solutions as layer potentials
A solution u to ∆u + λ2u = 0 in Ω = R3 \ D, can be expressed, for x ∈ Ω, as

(Single-Layer potential) u(x) =S[α](x) :=
∫
∂Ω

Gλ(x, y)α(y)dσy, (2)

(Double-Layer potential) u(x) =K[β](x) :=
∫
∂Ω

∂Gλ

∂ny
(x, y)β(y)dσy, (3)

(Combined-Layer potential) u(x) =C[ζ](x) := S[ζ](x) + iξK[ζ](x). (4)

The functions Gλ and ∂Gλ

∂ny
are called single-layer (SL) and double-layer (DL) kernels respectively. The functions α, β,

ζ, are called single-layer density, double-layer density, and combined-layer density. Their expressions are derived by
the application of the Green’s identities and the properties of the solutions to interior and exterior Helmholtz problems
(see §2.4, 2.5, 3.2 and 3.4 in [17]): for y ∈ ∂Ω

α(y) :=
∂vS L

∂n
(y) −

∂u
∂n

(y) , β(y) := u(y) − vDL(y) ,

ζ(y) :=
∂vCL

∂n
(y) −

∂u
∂n

(y) =
1
iξ

(u(y) − vCL(y)) ,

where vS L, vDL, vCL are solutions to ∆v + λ2v = 0 in Ωc = D with boundary conditions:

vS L = u , vDL =
∂u
∂n

, vCL + iξ
∂vCL

∂n
= u + iξ

∂u
∂n

.

The uniqueness of vCL requires ξ , 0. In practice, the value for ξ is usually tuned to improve the properties of the
numerical methods.

When expressing the solution to the problem as a layer potential, the density is unknown. Using the boundary
conditions, we can find BIEs to which the solution is the density. In the Dirichlet problem with boundary conditions
u = f on ∂Ω the solution can be expressed as either a single-layer potential∫

∂Ω

Gλ(x, y)α(y)dσy = f (x) , x ∈ ∂Ω (5)

or a double-layer potential: ∫
∂Ω

∂Gλ

∂ny
(x, y)β(y)dσy ∓

1
2
β(x) = f (x) , x ∈ ∂Ω (6)

with minus for the interior and plus for the exterior problem. Note that in general the double-layer formulation is
preferable as it involves the solution of an integral equation of the second kind: this leads to non-singular matrices
when discretizing the integral operators with Nyström methods.

For the Neumann problem with boundary conditions ∂u
∂n = g on ∂Ω, the single-layer formulation is preferable as

it avoids the appearance of a hypersingular kernel, and the boundary integral equations to solve is

−

∫
∂Ω

∂Gλ

∂nx
(x, y)α(y)dσy ±

1
2
α(x) = g(x) , x ∈ ∂Ω (7)

with plus for the interior and minus for the exterior problem.
In addition to the single- and double-layer potentials, we also consider the potential appearing in (7), called the

double-layer conjugate potential:

(Double-Layer Conjugate potential) K∗[α](x) :=
∫
∂Ω

∂Gλ

∂nx
(x, y)α(y)dσy . (8)

Its treatment is going to be analogous to the treatment of the double-layer potential. The function ∂Gλ

∂nx
is called

double-layer conjugate (DLC) kernel.
It is important to note that these boundary integral equations (5 -7) are valid for both Laplace and Helmholtz

equation, and the only thing that changes in the formulae is the parameter λ (the wavenumber), and consequently the
kernel Gλ.
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2.2. Quadratures for singular integrals

If the parametrization of a surface is known, the surface integration can be done straightforwardly by applying
any preferred quadrature rule: given the parametrization z of U ⊂ ∂Ω, z(τ, ς) := (x(τ, ς), y(τ, ς), z(τ, ς)), (τ, ς) ∈ W,∫

U
F(z)dσz =

∫
W

F(z(τ, ς))J(τ, ς)dτdς ≈
∑
i, j

ωi jF(z(τi, ς j))J(τi, ς j) ,

where J(τ, ς) = |zτ × zς | is the surface area element, {(τi, ς j)}i, j ⊂ R2 are the nodes, and {ωi j}i, j ⊂ R are the weights.
If the function F is smooth, the freedom of choice of the position of the nodes and of the quadrature rule makes

it easy to attain high accuracy. However, if the function F is singular, for example in the origin, then using standard
quadrature rules results in a great loss of accuracy. To remedy this loss, several classes of methods have been devel-
oped, for different kinds of singular integrands.

An important class of methods to handle these singular integrands, the methods of singularity subtraction, ap-
proaches the problem by locally approximating the surface and evaluating the integral analytically, and then adding a
correction term dependent on the surface approximation. If the kernels are similar to the ones for which the analytical
results exist, singularity subtraction is applied and those same results are used [18, 19].

Another class of methods, the methods of singularity cancellation, use a change of variables to put themselves in
a setting where it is possible to split the integral in a smooth one and a singular one which is only defined close to the
singularity points, and can be computed to high accuracy using exact local parametrization and a suitable quadrature
rule, e.g. trapezoidal rule in polar coordinates [20, 21].

A third class of methods, the methods of singularity regularization, relies on regularizing the kernel so that
rules for smooth integrands can be applied, and then adding corrections to account for the different kernel based on
analytical results, or on Richardson extrapolation [22, 23, 7].

A newer class of methods, called quadrature by expansion (QBX), handles the problem by expanding and treating
the kernel (and the corresponding layer potential) away from the surface target point, e.g. with Taylor or spherical
harmonics, consequently working with smooth integrands, and then evaluate the results back on the surface. It relies
on the smoothness of the expansion terms because the new target point is not on the surface, and on the convergence
of the expansion in the surface target point [24].

Finally, the methods of singularity correction aim to develop specialized quadrature rules to deal with families
of singular integrands by modifying the weights of an existing quadrature rule, often trapezoidal rule, close to the
singularity point [25, 16, 26]. Marin, Tornberg and Runborg [16] developed corrections to the trapezoidal rule for
singularities of the kind |x|γ, γ ∈ (−1, 0), in one dimension and ‖x‖−1 in two dimensions, proved convergence order,
and found an analytic expression for the weights in one dimension. Wu and Martinsson expanded these results to
log |x| in one dimension [26] and found analytic expression for weights in one and two dimensions [27].

The majority of above-mentioned methods require explicit knowledge of the parametrization, and the possibility
to choose the position of the nodes around the singularity; moreover, often the singularity point lies in one of the
nodes.

In our setting however, the position of the nodes on the surface is going to be determined by the projections of
the nodes in the volume onto the surface, which cannot be assumed to have any particular structure (see Figure 8).
Moreover, because of how the integrand is extended from the surface to the volume, instead of a single singularity
point on the surface, we will have the singularity lying along a straight line in three dimensions.

We will approach this problem then by splitting the three-dimensional trapezoidal rule into the weighted sum of
all the two-dimensional trapezoidal rules on each two-dimensional grid and correct each one separately.

2.3. Volumetric extensions of the layer integrals

Let Ω ⊂ Rn be a bounded open set with C2 boundaries, and ∂Ω =: Γ. We shall refer to Γ as the surface. Let f be
a function defined on Γ (or Rn). In this Section we present an approach for extending a boundary integral∫

Γ

f (x)dσx, (9)
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to a volumetric integral around the surface. Instead of parameterizations, this approach relies on the Euclidean distance
to the surface, and its derivatives. More precisely, we define the signed distance function

dΓ(x) :=

 miny∈Γ ‖x − y‖ , if x ∈ Ω

−miny∈Γ ‖x − y‖ , if x ∈ Ωc (10)

and the closest point projection
PΓ(x) := argminy∈Γ ‖x − y‖ . (11)

If there is more than one global minimum, we pick one randomly from the set. Let CΓ denote the set of points in Rn

which are equidistant to at least two distinct points on Γ. The reach τ is defined as infx∈Γ,y∈CΓ
‖x − y‖. Clearly, τ is

restricted by the local geometry (the curvatures) and the global structure of Γ (the Euclidean and geodesic distances
between any two points on Γ).

In this paper, we assume that Γ is C2 and has a non-zero reach. Let Tε denote the set of points of distance at most
ε from Γ:

Tε = {x ∈ Rn : |dΓ(x)| ≤ ε}. (12)

Then, for ε < τ, PΓ is a diffeomorphism between the level sets of dΓ and

PΓ(x) = x − dΓ(x)∇dΓ(x), x ∈ Tε.

We define the extension (or restriction) of the integrand f by

f (x) := f (PΓx), x ∈ Rn. (13)

As in [7, 8], we can then rewrite the surface integral (9), for any η ∈ [−ε,+ε], as∫
Γ

f (x)dσx =

∫
Γη

f (x′)Jη(x′)dσx′ , (14)

where Jη(x′) is the Jacobian of the transformation from Γ to the level set Γη := {x ∈ Rn : dΓ(x) = η}. In R3, the
Jacobian Jη(x′) is a quadratic polynomial in η:

Jη(x′) := 1 + ηH(x′) + η2G(x′) = σ1σ2(P′Γx′),

whereH(x′) and G(x′) are respectively the mean and Gaussian curvatures of Γη at x′, and σ1σ2(P′
Γ
x′) is the product

of the first two singular values of the Jacobian matrix of PΓ evaluated at x′. See [8] for more detail.
To extend (9) to a volumetric integral, we now average the integral on the right hand side in (14) over η ranging

from −ε to ε, using

δε(η) :=
1
ε
φ
(
η

ε

)
,

with φ ∈ C∞(R) supported in [−1, 1], and
∫
R φ(x)dx = 1. This means∫

Γ

f (x)dσx =

∫ +ε

−ε

δε(η)
∫

Γη

f (PΓx)Jη(x)dσx

 dη.

Applying the coarea formula, we have∫ +ε

−ε

δε(η)
∫

Γη

f (PΓx)Jη(x)dσx

 dη =

∫
Tε

f (PΓx)JdΓ(x)(x)δε(dΓ(x))dx.

Thus from the surface integral, we derive a volume integral with the same evaluation:∫
Γ

f (x)dσx =

∫
Rn

f (PΓx)δΓ,ε(x)dx , (15)

where
δΓ,ε(x) := JdΓ(x)(x)δε(dΓ(x)) , x ∈ Rn .
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Fig. 1. Kernel restriction
Visualization of the restriction of K(x∗, y) = ‖x∗ − y‖−1 to the unit circle and of the singular properties of K. Since K(x∗, y) is singular at y∗,
K(x∗, y) is singular along the line PΓy = x∗. One observes that the gradient of K(x∗, y)−1 (and thus K(x∗, y)) is orthogonal to the normal of the
interface.

Our primary focus is when f (x) is replaced by a function K(x, y)ζ(y), with K : Rn ×Rn → R and K(x, y) singular for
x = y (corresponding to the layer potentials reviewed in the previous Section):

J[ζ](x) :=
∫

Γ

K(x, y)ζ(y)dσy , x ∈ Rn. (16)

When a function g : Γ → R is given, we may form an integral equation for the unknown density ζ. For example, in
the case of the double-layer potential (6), the equation is

J[ζ](x) ∓
1
2
ζ(x) = g(x), x ∈ Γ. (17)

Suppose that for any x, we are interested in evaluating K(x, y) at the point on Γ that is closest to y. This can be done
by

K(x, y) := K(x, PΓy) , x, y ∈ Rn . (18)

Hence we refer to K(x, y) as the restriction of K. If K(x, y) is singular for x = y, then K(PΓx, y) is singular on the set

{(x, y) ∈ Rn × Rn : PΓx = PΓy},

i.e. for a fixed x∗ ∈ Γ, K(x∗, y) is singular along the normal line passing through x∗, while K(x∗, y) is singular in a
point. In Figure 1 the singular behavior of K(x∗, y) along the normal is illustrated.

In conclusion, instead of approximating (16), we approximate

J[ρ](x) :=
∫
Rn

K(x, y)ρ(y)δΓ,ε(y)dy, (19)

for functions ρ that are integrable in Tε.
Corresponding to (17), we have the equivalent implicit boundary integral equation

J[ρ](PΓx) ∓
1
2
ρ(x) = g(PΓx), x ∈ Tε. (20)

The solution ρ will coincide with the constant extension along the normals of ζ. To see this, we write the two
equations: (

J ∓
1
2

I
)

[ζ ◦ PΓ](x) = g(PΓx) ,
(
J ∓

1
2

I
)

[ρ](x) = g(PΓx) , x ∈ Tε .

The first equation corresponds to (17) where the integral has been rewritten and the target point x ∈ Tε is projected
onto Γ. The second is (20) where the equation is imposed for ρ function defined in Tε. If we take the difference of
these two equations, we find (

J ∓
1
2

I
)

[ρ − ζ ◦ PΓ](x) = 0 , x ∈ Tε .
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The kernel of the operator on the left-hand side coincides with the kernel of the original operator, so whenever the
solution is unique, ρ(x) = ζ(PΓx) for any x ∈ Tε.

In this paper, we will concentrate on developing numerical quadratures for the extended singular integral operator
J[ρ](x) for x ∈ Γ (equivalently, J[ρ](PΓx) for x ∈ Tε). The quadrature rules will be constructed based on the
trapezoidal rule for the grid nodes T h

ε := Tε ∩ hZ3, which corresponds to the portion of the uniform Cartesian grid
hZ3 within Tε. Since the integrand in (19) is singular for x ∈ Γ, the trapezoidal rule should be corrected near x for
faster convergence. Correction will be defined by summing the judiciously derived weights over a set of grid nodes
denoted by Nh(x). The sum will be denoted by Rh(x). Ultimately, the quadrature for J[ρ](PΓx) will involve the regular
Riemann sum of the integrand in T h

ε \ Nh(x), and the correction Rh(x) in Nh(x):

J[ρ](x) ≈
∑

ym∈T h
ε \Nh(x)

K(x, ym)ρ(ym)δΓ,ε(ym)h3 + Rh(x) . (21)

The contribution of this paper is a high order, trapezoidal rule-based, quadrature rule for J via J .
Figure 8 demonstrates a typical configurations the points ym in the summation for a torus.
In the following two Sections, we will see how to build the correction term Rh(x) using two different approaches:

a function regularization independent of trapezoidal rule (Section 3), and the corrected trapezoidal rule (Section 4).
Each approach will determine the set Nh(x) differently.

3. Corrected trapezoidal rules using locally regularized kernels

In this Section we present an approach that locally regularizes a singular kernel before the discretization. In
this approach, a special Lipschitz continuous function, Ψ, is used to replace the kernel in a neighborhood around
the kernel’s singularity. The integral with the regularized kernel is then extended following (19). Again, the resulting
implicit boundary integral can be discretized on different meshings. When the trapezoidal rule is applied to J involving
the locally regularized K, we find an expression of the kind (21) where the term Rh(x) involves a local sum of the
integrand with K replaced by Ψ.

3.1. A localized regularization approach

We consider regularization of K(x, y) constructed in the following fashion:

Kreg
r0 (x, y) =

K(x, y), ‖x − y‖ ≥ r0,

ΨΓ,r0 (x, y), ‖x − y‖ < r0,
(22)

where ΨΓ,r0 thus is a function which substitutes K close to the singularity point. We choose this as a simple function
(constant, or linear in ‖x− y‖) which approximates K(x, · ) weakly for C1 functions on the r0 neighborhood of x, such
that ∫

Γ∩Br0 (x)
ΨΓ,r0 (x, y)ρ(y)dσy ≈

∫
Γ∩Br0 (x)

K(x, y)ρ(y)dσy, ρ ∈ C1(Γ). (23)

Here, Br0 (x) is the ball with radius r0, centered at x.
Applying the trapezoidal rule to the integral (19) with the regularized kernel (22), we get a correction to the

trapezoidal rule of the form (21):

J[ρ](x) ≈ h3
∑

ym∈T h
ε

K
reg
r0(h)(x, ym)ρ(ym)δΓ,ε(ym) = (24)

= h3
∑

ym∈T h
ε \Nh(x)

K(x, ym)ρ(ym)δΓ,ε(ym)+

+ h3
∑

ym∈T h
ε∩Nh(x)

ΨΓ,r0(h)(x, ym)ρ(ym)δΓ,ε(ym)
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where: K, K
reg
r0

, and ΨΓ,r0 are the restrictions (18) of K, Kreg
r0 , and ΨΓ,r0 respectively. The formula (21) holds with:

Nh(x) = {y ∈ T h
ε : ‖PΓy − PΓx‖ < r0(h)} ,

Rh(x) = h3
∑

ym∈T h
ε∩Nh(x)

ΨΓ,r0(h)(x, ym)ρ(ym)δΓ,ε(ym) .

In order to determine ΨΓ,r0 we want it to satisfy (23) for ρ ≡ 1 with an error at most O(r2
0). However, given the

lack of an explicit parametrization of the surface, we approximate Γ in the integrals in (23) by a suitable paraboloid,
Γ̃x, defined from the principal curvatures of Γ at x (as shown in [7]). The domain Γ ∩ Br0 (x) is furthermore replaced
by a neighborhoodM(x, r0) ≈ Γ̃x ∩ Br0 (x). Eventually, we seek ΨΓ,ro satisfying∫

M(x,r0)
K(x, y)dσy =

∫
M(x,r0)

ΨΓ,r0 (x, y)dσy + O
(
rp

0

)
, p ≥ 2. (25)

If v is a Lipschitz continuous function on Γ, we can write∫
M(x,r0)

K(x, y)v(y)dσy = v(x)
∫
M(x,r0)

K(x, y)dσy +

∫
M(x,r0)

(v(y) − v(x))K(x, y)dσy =

= v(x)
∫
M(x,r0)

K(x, y)dσy + O(r2
0) =

= v(x)
∫
M(x,r0)

ΨΓ,r0 (x, y)dσy + O(rp
0 ) + O(r2

0) ,

by using |M(x, r0)| ∼ r2
0 and K(x, y) ∼ ‖x − y‖−1 for the kernels we are interested in. This approach is used in [7] and

[10].

The rest of this Section will be now dedicated to showing results of this approach for the Laplace and Helmholtz
double-layer kernels.

3.2. Application to the Laplace and Helmholtz double-layer kernels

Consider the double-layer kernel K(x, y) =
∂G0

∂ny
(x, y) for Laplace. In [7] the function ΨΓ,r0 (x, y) is built as a

constant function, ΨΓ,r0 (x, y) ≡ CΓ,r0 ,∫
M(x,r0)

∂G0

∂ny
(x, y)dσy ≈

∫
M(x,r0)

CΓ,r0 dσy .

The constant CΓ,r0 represents the average of the integrand on the set, and ΨΓ,r0 (x, y) = CΓ,r0 regularizes the double-
layer kernel:

Kreg
r0,C

(x, y) :=


∂G0

∂ny
(x, y), ‖x − y‖ ≥ r0,

CΓ,r0 , ‖x − y‖ < r0.
(26)

The expression for CΓ,r0 found in this setting, dependent on the principal curvatures and r0, is:

CΓ,r0 :=
κ1 + κ2

8πr0
−
κ1 + κ2

512π

(
13κ2

1 − 2κ1κ2 + 13κ2
2

)
r0+

+ (κ1 + κ2)

 (κ2
1 + κ2

2)
(
5κ2

1 − 2κ1κ2 + 5κ2
2

)
4096π

+
κ4

1 + 2κ2
1κ

2
2 + κ4

2

512π

 r3
0 .

The calculations and details about the setting together with the exact definition of M(x, r0) can be found in the
Appendix A.2.
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When treating the Helmholtz double-layer kernel, we can apply this constant regularization approach to the addi-
tional term which differentiates it from the Laplace double-layer kernel: the gradient of the Helmholtz fundamental
solution in three dimensions is

∇Gλ(z) =
1

4π
exp(iλ‖z‖)
‖z‖3

(iλ‖z‖ − 1) z ;

hence, the double-layer kernel for Helmholtz takes the form:

∂Gλ

∂ny
(x, y) =

1
4π

(x − y)T ny

‖x − y‖3
exp(iλ‖x − y‖)[1 − iλ‖x − y‖] =

= exp(iλ‖x − y‖)
{
∂G0

∂ny
(x, y) −

iλ
4π

(x − y)T ny

‖x − y‖2

}
. (27)

In the expression above the factor exp(iλ‖x − y‖) is a Lipschitz continuous function in y, and we know how to deal
numerically with the Laplace double-layer kernel ∂G0

∂ny
(using regularizations (26) or (30), or the corrected trapezoidal

rule which will be the focus of Section 4), so we focus only on the secondary kernel

(x − y)T ny

‖x − y‖2

which, if κ1 , κ2, is undetermined in x = y, as the value depends on the direction of approach. The maximum and
minimum limit values are the ones found traveling along the principal directions, equal to κ1

2 and κ2
2 respectively.

Then we wish to find a constant function ΨΓ,r0 (x, y) ≡ C̃Γ,r0 such that the integral around the singularity point is
approximated well, ∫

M(x,r0)

(x − y)T ny

‖x − y‖2
dσy =

∫
M(x,r0)

C̃Γ,r0 dσy + O(r4
0).

This requirement gives

C̃Γ,r0 :=
κ1 + κ2

4
−
κ1 + κ2

256

(
−13κ2

1 + 2κ1κ2 − 13κ2
2

)
r2

0 . (28)

It is interesting to notice that the first term in C̃Γ,r0 is the average of the maximum and minimum limits of the integrand.
The function (x−y)·ny

‖x−y‖2 , for x, y ∈ Γ, can then be regularized using (28):

K̃reg
C,r0

(x, y) :=


(x − y)T ny

‖x − y‖2
, ‖x − y‖ ≥ r0,

C̃Γ,r0 , ‖x − y‖ < r0 .

(29)

New regularization with linear function (cappuccio)
Here, we consider regularizing with a class of function that are linear with respect to the distance to the singularity.

We construct the hood-like (cappuccio in Italian) function ΨL
Γ,r0

(x, y) := a0 ‖x − y‖/r0 + a1:∫
M(x,r0)

∂G0

∂ny
(x, y)dσy ≈

∫
M(x,r0)

ΨL
Γ,r0

(x, y) dσy .

This condition imposes one constraint; the second constraint we impose is that

ΨL
Γ,r0

(x, y)
∣∣∣∣
‖x−y‖=r0

=
1

|∂M(x, r0)|

∫
∂M(x,r0)

∂G0

∂ny
(x, y)dσy ,

which means that ΨL
Γ,r0

takes as outermost value the average of the kernel on the boundary ofM(x, r0).
The motivation is that the discontinuity in the regularized kernels can be significantly smaller, for small r0, than

the ones regularized by constants. Consequently, the quadrature errors can be smaller. See Figures 2 and 3 for a
comparison. In particular, the third columns in Figures 2 and 3 show that the existing and proposed regularizations
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Fig. 2. Singular behavior - 1
Curvatures with same sign: same (first and second row) and different values (third and fourth row). Left column: double-layer kernel with target
point in the origin, without any regularization. Center column: constant regularization. Right column: linear regularization. The second and fourth
rows show the constant (center) and cappuccio (right) regularizations with r0 halved compared to the first and third rows respectively.



Federico Izzo et al / Journal of Computational Physics (2022) 11

Fig. 3. Singular behavior - 2
Curvatures with different sign. Left column: double-layer kernel with target point in the origin, without any regularization. Center column:
constant regularization. Right column: linear regularization. The second row shows the constant (center) and cappuccio (right) regularizations
with r0 halved compared to the first row.

will lead to discontinuity between the regularized and original functions if the direction of approach to the target
point is not taken into account. Consequently we believe that a possible future work is to develop a continuous
regularization by including dependence on the principal directions τ1, τ2 in addition to the curvatures of the surface,
e.g. ΨΓ,r0 = ΨΓ,r0 (x − y, κ1, τ1, κ2, τ2).

We get the following expression for the regularized kernel,

Kreg
r0,L

(x, y) :=


∂G0

∂ny
(x, y), ‖x − y‖ ≥ r0 ,

a0
‖x − y‖

r0
+ a1, ‖x − y‖ < r0 ,

(30)

where

a0 = −
3(κ1 + κ2)

16πr0
+

3(κ1 + κ2)
5120π

(21κ2
1 − 2κ1κ2 + 21κ2

2)r0 ,

a1 =
κ1 + κ2

4πr0
−

3(κ1 + κ2)
2560π

(23κ2
1 − 6κ1κ2 + 23κ2

2)r0 .

Note that ΨL
Γ,r0

scales as 1/r0 for small r0.
In Section 6, we shall present some numerical convergence studies of the approaches mentioned in this Section.

4. Corrected trapezoidal rules using modified weights

We have shown in Section 2.3 that the singular integrals of interest can be characterized by their singular behavior
along lines in R3. We view the trapezoidal rule on a three-dimensional uniform Cartesian grid as the sum over the
trapezoidal rules applied to the two-dimensional uniform grids. On each two-dimensional grid, the case is reduced to
correction of trapezoidal rule for functions that are singular only at a single point. However this point is typically not
lying on any grid nodes.

We will first present the trapezoidal rule and the existing methods for correcting it to achieve higher order conver-
gence rates. We will then present our generalization of these works.
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4.1. The punctured trapezoidal rules
Let f : Rn → R be a compactly supported smooth function. We are interested in approximating its integral∫

Rn f (x)dx by utilizing values of f on the uniform grid hZn. By the compact support, the trapezoidal rule applied to f
becomes the following simple Riemann sum:

Th[ f ] := hn
∑

y∈hZn

f (y) . (31)

When f is compactly supported the order of accuracy of such summations depends on the regularity of f : if f ∈ Cp,
the error is O(hp) (see §25.4.3 in [28] and §5.1 in [29]); the trapezoidal rule enjoys spectral accuracy if f ∈ C∞.

When f is continuous in Rn \ {x0} and singular at x0, where
∫
Rn f (x)dx exists as a Cauchy principal value, it is

natural to modify the trapezoidal rule by skipping the summation over the grid nodes within certain distance to x0:

T 0
h [ f ] := hn

∑
y∈hZn\Nh(x0)

f (y) (32)

where Nh(x0) determines which grid nodes we remove. We will call (32) the punctured trapezoidal rule when Nh

includes only a single grid node; in other words,

Nh(x) = {y ∈ Rn : ‖x − y‖∞ ≤ h/2} . (33)

The punctured trapezoidal rule converges, but with lower order rates at best, even though f may be C∞ in the punctured
domains. For example, in one dimension for f (x) = log |x|, the order of convergence is sublinear O(hp), p < 1, and in
two dimensions for f (x) = ‖x‖−1 the order is 1. The large decrease in order is exactly the property we would like to
address with the correction technique.

The idea is to add a correction term to (32), which makes up for the integral over Nh. In the following, we describe
an approach for defining such corrections in detail.

4.2. Corrections for the trapezoidal rule
From this point forward, we will assume the function f can be factored into the following form

f (x) = s(x − x0)v(x), x ∈ Rn \ {x0} (34)

where s represents an integrable function, singular in the origin, and v represents a smooth compactly supported
function in Rn. In this Section we discuss a general approach to developing high order quadratures for the integration
of such type of functions. In Section 5 we will provide specific choices of s for use with single- and double-layer
kernels arising from the Laplace or Helmholtz operator.

The trapezoidal rule is a sum of the function values on the grid, where all values have the same weight hn.
Improving the order of accuracy of the trapezoidal rule by modifying the weights close to the singularity point has been
an approach studied and applied successfully with different kinds of singular behaviors and in different dimensions.
See for example [25, 16, 26].

The following is a brief presentation of the one- and two-dimensional corrections found in [16], where x0 is always
assumed to be the origin.

The starting point is the punctured trapezoidal rule in one dimension. When s(x) = |x|γ for −1 < γ < 0, an error
expansion of the following type can be derived,∫

s(x)v(x)dx = T 0
h [s v] + h1+γω v(0) + O(h3+γ).

The goal is to find the constant ω, which is independent of v (but depends on γ), and use it to correct the rule as

Q0
h[ f ] := T 0

h [ f ] + h1+γωv(0).

While T 0
h is of order 1 + γ, the method Q0

h is of order 3 + γ. Note that Q0
h only modifies the original trapezoidal rule

in one point; the value in the singular point is replaced by the value of the smooth part v(0), weighted by ω and a
suitable power of h. In general ω is a functional of the singular function s and we write ω = ω[s].
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In order to find ω[s] we define ω̄(h) as the actual error of T 0
h for a fixed h and a smooth test function g with

g(0) = 1, scaled by h1+γ. More precisely,∫
s(x)g(x)dx = T 0

h [s g] + h1+γω̄(h). (35)

From the error expansion above, since g(0) = 1, we see that

ω̄(h) =
1

h1+γ

(∫
s(x)g(x)dx − T 0

h [s g]
)

= ω[s] + O(h2).

Hence, the weight ω̄(h) converges to ω[s] , 0 for h→ 0+, independent of g.
This is a crucial property, which makes it possible to compute, store and reuse ω for the integration of any

integrand of the kind (34). In order to do that one needs to be able to accurately compute the integral
∫

s(x)g(x)dx
containing the test function. As this computation is only needed for one function g, it can be done either by analytical
means or adaptive high order numerical integration. If the test function g is chosen more flat at the singularity point,
such that 0 = g′(0) = g′′(0) = . . . one can show that the convergence will be faster, which makes the numerical
computations easier. In fact, g would be ideally the constant function g(x) = 1 but in order to avoid dealing with the
boundary conditions of trapezoidal rule and keep the expression of T 0

h equal to the Riemann sum with the exclusion
of a single node, g is taken compactly supported.

Higher order corrections are also possible, where more terms in the error expansion are cancelled. The weights
must then be modified in more points close to the singularity. The condition (35) can be interpreted as requiring
that T 0

h , corrected with the weight ω̄(h), integrate s(x)g(x) exactly. When multiple weights are used, the weights
are similarly defined by requiring that the modified method integrates not only s(x)g(x) exactly but also s(x)g(x)x,
s(x)g(x)x2, . . . . A set of h-dependent weights are then obtained, which converge as h→ 0+.

One can also apply the same idea to other singularities. In [26] this was done for s(x) = − log |x|. Then the factor
h1+γ must be replaced by an expression a(h) = h(2 − log h) and a second order method is obtained∫

s(x)v(x)dx = Q0
h[s v] + O(h2), Q0

h[s v] = T 0
h [s v] + a(h)ω[s] v(0).

In two dimensions, similar to one dimension, for functions (34) with s(x) = ‖x‖−1, the corrected trapezoidal rule is
defined as

Q0
h[s v] := T 0

h [s v] + hω[s] v(0)

where ω[s] is calculated as the limit:

ω[s] := lim
δ→0+

1
δ

(∫
R2

s(x)g(x)dx − T 0
δ [s g]

)
, (36)

for a test function g with g(0) = 1. In [16] it was proven that the corrected method for s(x) = ‖x‖−1 is third order
accurate, ∫

R
s(x)v(x)dx = Q0

h[s v] + O(h3) . (37)

Corrections for singularity unaligned to the grid
To prepare for the proposed quadrature rules for implicit boundary integrals, we first generalize the approach

presented in Section 4.2 to the case when the singularity does not lie on a grid node. We consider two dimensions and
retain the assumption that f can be factorized as s(x−x0)v(x) where s has a singularity and v is smooth and compactly
supported. However, the singularity is now in a point x0 which may not be part of the grid. We let x∆ be the grid node
closest to x0,

x∆ = arg min
x∈hZ2

‖x − x0‖ ,

or one of the closest in the case that it may not be unique, such that

(α, β) =
x0 − x∆

h
, for some α, β ∈ [−1/2, 1/2) ,
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βh
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Δ

x
0

}}

}
Fig. 4. Singularity unaligned to the grid

Position of the singularity point x0 relative to the closest grid node x∆; the parameters α, β are used to characterize its position relative to the grid.

as shown in Figure 4. When (α, β) , 0 the usual trapezoidal rule is well-defined also for the singular function and
the same type of error expansion holds as for the punctured trapezoidal rule in the previous Section. However, the
error constant is not uniform and blows up as (α, β) → 0. We therefore use the punctured trapezoidal rule also for
unaligned grids as the base method for correction.

The singular functions considered in this paper are of the form f (x) = s(x − x0)v(x) where |s(x)| ∼ ||x||−1. For
those functions the same scaling in h as s(x) = ||x||−1 is appropriate and we define the single-correction trapezoidal
rule for unaligned grids in two dimensions as

Q̄2D
h [ f ] := T 0

h [s( · − x0) v( · )] + hω[s;α, β]v(x∆). (38)

The weight is given as the limit of the sequence:

ω[s;α, β] := lim
δ→0+

ωδ[s;α, β]. (39)

where as before ωδ[s;α, β] is defined using a smooth compactly supported test function g with g(0) = 1,

ωδ[s;α, β] :=

∫
R2 s(x − x0)g(x − x0)dx − T 0

δ

[
s( · − x0) g( · − x0)

]
δ g(x∆ − x0)

=

=

∫
R2 s(x)g(x)dx − T 0

δ

[
s( · − (α, β)δ) g( · − (α, β)δ)

]
δ g(−(α, β)δ)

. (40)

In the last step we shifted the exact integral by x0 and the trapezoidal rule by x∆, the closest node of the grid δZ2, to
show that the weight, in addition to s, only depends on the difference x∆ − x0, i.e. on α and β, not on x0 itself.

The expression converges quickly when the stepsize δ is halved, and the accurate computation of ω is possible
without needing specialized quadratures for singular integrands. In this paper, ω[s;α, β] will be computed offline
and tabulated for a suitable set of (α, β), and for relevant functions s; for values outside of the tabulation, we will
use interpolation. In the next Section, we will discuss a few specific cases involving layer kernels, and we shall then
present more details about the approximation of ω via tabulation and interpolation.

When α = β = 0 we get the same weights as in the aligned case. In particular, for s(x) = ‖x‖−1 the limit (39)
will find the same weight as the one found in [16]. For the more general kernels considered in this paper and with
unaligned grids, in numerical experiments we observe an error expansion of the type∫

R2
s(x − x0)v(x)dx = Q̄2D

h [s( · − x0) v( · )] + F1(α, β)h2 + F2(α, β)h3 + O(h4), (41)

where F1 is a smooth function of α, β. Moreover, F1(0, 0) = 0 , F2(0, 0), which means that we have the same
third order error (37) as for s(x) = ‖x‖−1 when the grid is aligned. The properties of F1 will be further explored in
Section 6.2. Proving these error results rigorously is in program for future research.
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4.3. Corrected trapezoidal rules for implicit boundary integrals

We describe our approach in developing corrected trapezoidal rules for the family of integrals defined in (19):∫
R3

K(x∗, y)ρ(y)δΓ,ε(y)dy, x∗ ∈ Γ. (42)

Without loss of generality, we consider, as the target point, x∗ = (x∗, y∗, z∗) ∈ Γ, where the surface normal at x∗ is
n = (n1, n2, 1): from this point forward we will only consider this case, and if the normal direction points instead more
towards the ~x or ~y directions, we can apply a change of coordinates and proceed with the same reasoning. To simplify
notation we let f be the integrand

f (y) := K(x∗, y)ρ(y)δΓ,ε(y) . (43)

Notice that f in (43) is compactly supported in Tε, if Γ is a compact point set. Furthermore, since the restricted kernel
K(x∗, y) = K(x∗ + t n, y) for all t ∈ R, the integrand f is singular along this line.

The plan is then to construct a quadrature for (42) “plane-by-plane” on the grid hZ3. First the standard trapezoidal
rule is used in the z-direction,∫

R3
f (x, y, z)dxdydz =

∫
R

{∫
R2

f (x, y, z)dxdy
}

dz ≈ h
∑

k

∫
R2

f (x, y, kh)dxdy.

Then, the corrected trapezoidal rule is used to compute the integrals on each plane,∫
R2

f (x, y, kh)dxdy ≈ Q̄2D
h [ f ( · , · , kh)].

See Figure 5 for an illustration. As the z-component of n is 1, f is singular in one point only when restricted to the
planes. We can therefore use the quadrature rules described above.

We let ȳ = (x, y) denote a point in the xy-plane and introduce the projection onto this plane

ȳ = πy = π(x, y, z) = (x, y) . (44)

For a fixed z, the singular point ȳ0 of f ( · , · , z) is then given by

ȳ0(z) = πy0(z), y0(z) = x∗ + (z − z∗)n = (ȳ0(z), z) . (45)

The corresponding closest grid node is denoted by ȳ∆(z) and its shift parameters α = α(z), β = β(z). The
factorization of f ( · , · , z) will be of the kind

f (ȳ, z) = s(ȳ − ȳ0(z), z)v(ȳ, z) , (46)

where s is smooth in the second argument, which ensures that the partial integral
∫

f dxdy is smooth in z, justifying
the use of the standard trapezoidal rule in this variable. The functions s and v correspond to factorizations specific to
the kernel K and the geometry of Γ. They will be discussed in detail in the next Section.

With this notation we can now give the precise form of the corrected method∫
R2

f (x, y, z)dxdy ≈ T 0
h [s( · − ȳ0(z), z)v( · , z)] + hω[s( · , z);α(z), β(z)]v(ȳ∆(z), z).

After the discretization, zk = kh, and we can write the full method as

Qh[ f ] = h
∑
k∈Z

{
T 0

h
[
s( · − ȳ0(zk), zk)v(π · , zk)

]
+ hω

[
s( · , zk);α(zk), β(zk)

]
v(ȳ∆(zk), zk)

}
= h3

∑
k∈Z

∑
ȳ∈(hZ2\Nh(y0(zk)))

s(ȳ − ȳ0(zk), zk)v(ȳ, zk) + h2
∑
k∈Z

ω[s( · , zk);α(zk), β(zk)]v(y∆(zk))

= h3
∑

x∈(hZ3\Nh(x∗))

f (x) + h2
∑
k∈Z

ω[s( · , zk);α(zk), β(zk)]v(y∆(zk)), (47)



16 Federico Izzo et al / Journal of Computational Physics (2022)

y0 = (α(zk),β(zk))h + yΔ(zk)(zk)

Fig. 5. Intersections of the line in three dimensions
Intersection of the line passing through x∗ with direction n with the planes {z = zk}: on every plane, the intersection will be y0(zk) (orange circle),
and the closest grid node will be y∆(zk) (red square). The parameters which characterize the position of y0(zk) with respect to the grid hZ2 are
(α(zk), β(zk)) such that ȳ0(zk) = (α(zk), β(zk))h + ȳ∆(zk).

where
Nh(x∗) :=

⋃
k

Nh(y0(zk)) =
⋃

k

y∆(zk) . (48)

Then we can see that this method is of the form (21) with Nh(x) as in (48) and

Rh(x) = h2
∑
k∈Z

ω
[
s( · , zk);α(zk), β(zk)

]
v(y∆(zk)) . (49)

5. Factorization of the Laplace kernels and the resulting quadratures

In the previous Section 4.3 we have seen the corrected trapezoidal rule (47) for the family of integrals of the kind
(42). We have however not gone into detail about the form of the singular functions and the consequent splitting (46)
involved, as they depend on the functions (43) and the corresponding kernels

K(x, y) = K(x, PΓy)

where K is one of the Laplace layer kernels:

(SL) : G0(x, y) =
1

4π
1

‖x − y‖
,

(DL) :
∂G0

∂ny
(x, y) =

1
4π

(x − y)T ny

‖x − y‖3
,

(DLC) :
∂G0

∂nx
(x, y) = −

1
4π

(x − y)T nx

‖x − y‖3
.

(50)

In this section, we will derive the proposed quadrature rules for the above kernels. In the same way the surface inte-
gral of the single-layer potential (2) in the non-parametric setting becomes the volume integral (19), the double-layer
(3) and double-layer conjugate (8) potentials are extended to volume integrals in the tubular neighborhood Tε ⊂ R3.
Between the DL and DLC kernels we will only consider the DLC kernel, because the singularity behavior is identical.

In Section 5.1 we present our approach to define the factorization f = s v in (46). s describes K close to the
singularity point and it will be written as the product of S `, where S takes a very simple form that is easy to work
with. After introducing the function S , we will explain how to find the corresponding function ` in Section 5.1.1,
and then show the full expression of (47) in Section 5.1.2. Finally, in Section 5.2, we will describe how the weights
ω[s;α, β] are defined from S ` and computed. A brief outline of the process can be found in Table 1.
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Table 1. Key ingredients in Section 5.

∫
R3

K(x∗, y)ρ(y)δΓ,ε(y)︸                 ︷︷                 ︸
= f (y)

dy ≈ Qh[ f ] = h3
∑

y∈hZ3\Nh(x∗)

f (y)︸                ︷︷                ︸
=T 0

h [ f ]

+ h2
∑
k∈Z

ωk v(y∆(kh))︸                  ︷︷                  ︸
Rh(x∗)

In Section 5.1:



f (y) = f (ȳ, z) = S (y − y0(z),n) `
(

ȳ − ȳ0(z)
‖ȳ − ȳ0(z)‖

; z
)

︸                                    ︷︷                                    ︸
=s(ȳ−ȳ0(z),z) from (46)

v(y) ,

where

S (r,n) := ‖n‖ ‖r × n‖−1 , r,n ∈ R3 ,

`(q; z) := limt→0+

K(x∗, t(q1, q2, 0) + y0(z))
S (t(q1, q2, 0),n)

, q ∈ S1 ,

}
in Section 5.1.1.

Additive splitting:

f (y) = S (y − y0(z),n) v̂(y) + S (y − y0(z),n) `
(

ȳ − ȳ0(z)
‖ȳ − ȳ0(z)‖

; z
)

V(y) ,

where

V(y) := ρ(y) δΓ,ε(y) ,

v̂(ȳ, z) :=


 K(x∗, y)

S (y − y0(z),n)
− `

(
ȳ − ȳ0(z)
‖ȳ − ȳ0(z)‖

; z
) V(y) , y , y0(z) ,

0 , y = y0(z) .



in Section 5.1.2.

In Section 5.2:



ωk := ω(kh) ,

ω(z) := ω[s(ȳ, z); α(z), β(z)]

≈ c0 ω

[
1
‖ȳ‖

; α, β
]

+
∑N

j=1

{
c j ω

[
cos(2 jψ(ȳ))
‖ȳ‖

; α(z), β(z)
]

+ d j ω

[
sin(2 jψ(ȳ))
‖ȳ‖

; α(z), β(z)
]}

,

where c0, c j, d j come from s((ȳ, z), n) ‖ȳ‖ ≈ c0 +
∑N

j=1

{
c j cos(2 jψ(ȳ)) + d j sin(2 jψ(ȳ))

}
, and

ȳ = ‖ȳ‖ ( cos(ψ(ȳ)), sin(ψ(ȳ))) .
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Fig. 6. Discontinuous behavior
Left column: kernel multiplied by the singular function (51). Center column: function ` analytically found by taking the limit (53). Right column:
plot of the function used in the additive splitting f /S − `.

5.1. Correction formula for the three kernels
Let x∗ ∈ Γ be a target point with normal to the surface n = (n1, n2, n3), n3 , 0, ‖n‖ = 1. We want to apply the

three-dimensional second order correction formula (47) to the layer potential
∫
R3 K(x∗, y)ρ(y)δΓ,ε(y)dy with one of the

three layer kernels (50), for example the single-layer kernel K(x, y) = G0(x, y) = (4π‖x − y‖)−1. The starting point is
the following singular function:

S : (r,n) ∈
(
R3 \ {0}

)
× R3 7→

(
‖r × n‖
‖n‖

)−1

∈ R , (51)

which represents the reciprocal of the distance from a point r to the line with direction n passing through the origin:
{t n : t ∈ R}.

This choice is equivalent to approximating the distance on the denominator of the three kernels (50) as ‖x∗−PΓy‖ ≈
‖x∗ − yT M(x∗)‖, where yT M(x∗) is the projection of y onto the tangent plane to Γ at x∗. The reciprocal of the distance
‖x∗ − yT M(x∗)‖ is conveniently given by S (x∗ − y,n).

With S , we write formula (46) as

f (ȳ, z) = S ((ȳ, z) − y0(z),n)ṽ(ȳ, z). (52)

The function ṽ( · , z) defined via f and S in (52), while bounded, is discontinuous at ȳ0(z) for all three kernels. In
Figure 6 the left column shows the behaviour of f /S for f written using the three Laplace layer kernels.

The next step is to isolate the discontinuous behavior in ṽ(ȳ, z). We observe Figure 6 that ṽ has different limits at
ȳ0(z), depending on the approaching angle. So we will derive the function ` which has the same discontinuity. More
precisely,

`(q; z) := lim
t→0

K(x∗, (tq1, tq2, 0) + y0(z))
S ((tq1, tq2, 0),n)

, q = (q1, q2) , ‖q‖ = 1 . (53)
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We write ṽ as

ṽ(ȳ, z) = `

(
ȳ − ȳ0(z)
‖ȳ − ȳ0(z)‖

; z
)

v(ȳ, z) (54)

This defines the new function v which is smooth; hence f = S · ` · v, and the weights for the corrected trapezoidal
rule will be therefore derived for the singular function

s(y) = s(ȳ, z) = S (y,n) `
(

ȳ
‖ȳ‖

; z
)
.

5.1.1. Derivation of the formula for the new factor
Due to the closest point projection in K, the limit function ` depends on the intrinsic geometry of Γ (the principal

curvatures) as well as the orientation and distance of y0(z) to Γ (the signed distance η = η(z)). For different values of
z but fixed direction q, PΓ may map the lines (tq, 0) + y0(z) to different curves on Γ. The speed at which these curves,
PΓ((tq, 0) + y0(z)), pass through the target point x∗ may vary, depending on the curvature of the curve.

To calculate explicitly the limit that defines `, we will replace the projection PΓ by PΓ̃, a high order local ap-
proximation of the closest point projection to the osculating paraboloid at x∗. In the following, we will present the
derivation of an explicit formula for `, based on

`(q; z) = lim
t→0

K(x∗, PΓ̃((tq1, tq2, 0) + y0(z)))
S ((tq1, tq2, 0),n)

, (55)

and building up from the simplest case. In the derivations, we let τ1, τ2,n be the orthonormal basis of R3 composed
of the principal directions τi, with corresponding principal curvature κi, ordered such that τ1 × τ2 = n. We write a
point in this basis as

(a, b, c)T := aτ1 + bτ2 + c n .

We first assume the z planes are parallel to the tangent plane T M(x∗), i.e. n = e3. Thus we want to find the limit

lim
t→0

K(x∗, PΓ̃((tp1, tp2, η)T + x∗))
S ((tp1, tp2, η)T + x∗,n)

, p = (p1, p2) ,
√

p2
1 + p2

2 = 1 . (56)

For convenience, we translate the problem so that x∗ is in the origin, and work only in the τ1, τ2,n basis. See a
representation of this setting in the left plot of Figure 7. The paraboloid Γ̃ will then be

Γ̃ =

{(
x, y,

1
2

(κ1x2 + κ2y2)
)

T
: x, y ∈ R

}
.

In a sufficiently small neighborhood of the origin, a point (x, y, η)T and its closest point

PΓ̃((x, y, η)T ) = (x̄, ȳ,
(
κ1 x̄2 + κ2ȳ2

)
/2)T

satisfy

(x, y, η)T −

(
x̄, ȳ,

1
2

(
κ1 x̄2 + κ2ȳ2

))
T

=

(
η −

1
2

(
κ1 x̄2 + κ2ȳ2

))
(−κ1 x̄,−κ2ȳ, 1)T ;

i.e. the vector pointing to the closest point on Γ̃ should be normal to the surface, with magnitude equal to the distance
to the surface. Along (tp1, tp2, η)T , we have:


tp1 = p̄1 − κ1 p̄1[η − (κ1 p̄2

1 + κ2 p̄2
2)/2]

tp2 = p̄2 − κ2 p̄2[η − (κ1 p̄2
1 + κ2 p̄2

2)/2]
⇒


p̄1 =

t
1 − κ1η

p1 + O(t3) ,

p̄2 =
t

1 − κ2η
p2 + O(t3) .

(57)
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For example if p = (1, 0) the limit is taken along the τ1 direction, the projected point will travel along the curve
corresponding to the first principal direction, and the limit value for the double-layer conjugate kernel will be:

lim
t→0

K(x∗, (tp1, tp2, η)T )
S ((tp1, tp2, η)T ,n)

∣∣∣∣∣∣
p=(1,0)

= lim
t→0+
−

1
4π

(x∗ − PΓ̃((t, 0, η)T )) · n
‖x∗ − PΓ̃((t, 0, η)T )‖3

‖(t, 0, η)T − (0, 0, η)T ‖

= lim
t→0+
−

1
4π

− 1
2κ1

t2

(1−κ1η)2 + O(t4)[
t2

(1−κ1η)2 + O(t4) + 1
4

κ2
1 t4

(1−κ1η)4 + O(t6)
]3/2 t

=
1

8π
κ1(1 − κ1η) .

In general, we have

lim
t→0

K(x∗, (tp1, tp2, η)T )
S ((tp1, tp2, η)T ,n)

= lim
t→0+
−

1
4π

(x∗ − PΓ̃((tp1, tp2, η)T ))T n
‖x∗ − PΓ̃((tp1, tp2, η)T )‖3

‖(tp1, tp2, η)T − (0, 0, η)T ‖

= lim
t→0+
−

1
4π

− 1
2κ1

t2 p2
1

(1−κ1η)2 −
1
2κ2

t2 p2
2

(1−κ2η)2 + O(t4){
t2 p2

1
(1−κ1η)2 +

t2 p2
2

(1−κ2η)2 + O(t4) + 1
4

[
κ2

1 p2
1

(1−κ1η)4 +
κ2

2 p2
2

(1−κ2η)4 + O(t2)
]2

t4

}3/2 t

=
1

8π

κ1
p2

1

(1 − κ1η)2 + κ2
p2

2

(1 − κ2η)2 p2
1

(1 − κ1η)2 +
p2

2

(1 − κ2η)2

3/2 . (58)

We now consider the more general case in which n , e3. Again we consider the target point to be in the origin:
x∗ = 0. We define the plane Πz := {(x, y, η(z))T : x, y ∈ R} parallel to the tangent plane T M(x∗) at distance
η(z) := dΓ(y0(z)). Fixed z ∈ R, the projection

PΠz : x = (x1, x2, x3) ∈ R3 7→ (I − n ⊗ n)x +
z

n3
n ∈ Πz

takes a point x to the intersection of the line {x + tn : t ∈ R} and the plane Πz.
Let q = (q1, q2) ∈ S1, and let (tq1, tq2, 0) + y0(z) be a point on the z plane. To find the limit, we first consider the

projection of the line (tq1, tq2, 0) + y0(z) onto the plane Πz, and then apply the previous formula; in the expression of
(58) we consequently have

(t p1(q1, q2), t p2(q1, q2), η(z))T = PΠz ((tq1, tq2, 0) + y0(z))

instead of (tq1, tq2, 0) + y0(z). This change does not affect the limit expression because of the property

PΓ̃ ((tx, ty, 0) + y0(z)) = PΓ̃ ((tx, ty, η(z))T ) + O(t2)

for small values of t, which expresses how the orientation of the plane z with respect to the basis τ1, τ2,n does not
affect significantly the projection of points close to the singularity point y0(z).

Let
( p̃1, p̃2, 0)T = PΠ0 (q1, q2, 0)

be the projection of (q1, q2, 0) onto the tangent plane T M(x∗) = Π0; then

p̃1 = p̃1(q1, q2) =

q1 cos θ0 −
q2

c
(ab cos θ0 + (b2 + c2) sin θ0)√

1 +
(a cos θ0+b sin θ0)2

c2

, (59)

p̃2 = p̃2(q1, q2) =

q1 sin θ0 +
q2

c
(ab sin θ0 + (a2 + c2) cos θ0)√

1 +
(a cos θ0+b sin θ0)2

c2

, (60)
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and (58) will be valid with

p = (p1, p2) = ( p̃1, p̃2)/
√

p̃2
1 + p̃2

2 . (61)

The expressions relating p̃1, p̃2 to p1, p2 can be visualized in the right plot of Figure 7. The circle {t(q1, q2, 0) +

y0(z) : q2
1 + q2

2 = 1} on the plane z, projected onto the plane Πz will become an ellipse in general.

Fig. 7. Limit computation setting
The surface is approximated around the target point with a paraboloid defined by the surface’s principal curvatures and directions. Points on the
circles on each plane are mapped to the closest points on the paraboloid Γ̃ (instead of Γ) for calculation of the limit defined in (55). Right plot:
n , ~z; a circle (blue) drawn on the z plane (yellow plane) around the singular point y0(z) becomes an ellipse (red) when projected on the plane Πz
(blue plane) parallel to the tangent plane of Γ in x∗. The angle ψ between e1 and a given direction (red direction) on the plane z will correspond to
the angle ψ̄ between τ1 and the projected direction (yellow direction) on the plane Πz.

The parameters a, b, c, θ0 relate τ1, τ2 to the standard R3 basis {ei}
3
i=1. They are given by

(a, b, c) = (sin θ cos ξ, sin θ sin ξ, cos θ) ,

where θ is such that cos θ = n3, i.e. it is the second spherical coordinate of n; ξ is such that tan ξ = eT
3 τ2/eT

3 τ1, hence
it is the angle between τ1 and the projection of e3 on the plane τ1, τ2; and θ0 is such that tan θ0 = eT

1 τ2/eT
1 τ1, meaning

it is the angle between τ1 and the projection of e1 on the plane τ1, τ2.
Given a unit vector (q1, q2) on the z plane, formulae (59-60) map it to the unit vector p1τ1 + p2τ2. The unit

direction (p1, p2) on the plane Πz, (p1, p2, 0)T , is the corresponding direction in which the limit (in the definition (55)
of `(q; z)) will be evaluated. Recall that the formula for the limit for any given direction is already derived in (58).
For convenience, we write the unit vector (q1, q2) = (cosψ, sinψ), and correspondingly we will treat p1, p2, defined
in (59-61), as functions of ψ.

Thus we write the formulae for ` for the double-layer conjugate, double-layer, and single-layer kernels as:

(DL-DLC): `(ψ, z) =
1

8π

κ1
p2

1(ψ)
(1 − κ1η(z))2 + κ2

p2
2(ψ)

(1 − κ2η(z))2 p2
1(ψ)

(1 − κ1η(z))2 +
p2

2(ψ)
(1 − κ2η(z))2

3/2 , (62)

(SL): `(ψ, z) =
1

4π

 p2
1(ψ)

(1 − κ1η(z))2 +
p2

2(ψ)
(1 − κ2η(z))2

−
1
2

. (63)
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Again, η(z) = dΓ(y0(z)) is the signed distance of y0(z) to the surface.

The center and right column in Figure 6 illustrate how the formulae found approximate the behaviour f /S . The
center column plots the function ` in (62-63) found for the three Laplace layer kernels, while the right column shows
the difference between the function ` found and the values f /S .

5.1.2. The quadrature formulae
With ` defined above, we will work with the following singular function-smooth function factorization:

f (ȳ, z) = s(ȳ − ȳ0(z), z)v(ȳ, z) (64)

with s(ȳ, z) = S ((ȳ, z),n) ` (ȳ/‖ȳ‖; z)

where the weight for the corrected trapezoidal rule applied to f is computed with s = S · `. The function s completely
captures the asymptotic behavior of the given kernel K in ȳ0(z) and we can apply (38) to f (ȳ, z):

Q̄2D
h [ f (·, z)] = T 0

h [s( · − ȳ0(z), z) v( · )] + hω[s( · , z);α(z), β(z)]
f (ȳ∆, z)

s(ȳ∆ − ȳ0(z), z)
, (65)

if (α(z), β(z)) , (0, 0), otherwise

Q̄2D
h [ f ( · , z)] = T 0

h [s( · − ȳ0(z), z) v( · )] + hω[s( · , z); 0, 0] v(ȳ0, z) .

As long as ` is non-zero, the function v is well-defined through (64), away from ȳ0(z) and by continuity at ȳ0(z). As
can be seen from (62) and (63), this is always the case for the single-layer kernel but for the double-layer kernels
in general only if κ1 and κ2 have the same sign. Even though ` is zero only at isolated points, we cannot apply
formula (65) as it is numerically problematic. We need a different approach which works as follows.

We use the discontinuity subtraction from K: first, to shorten the formulae below, we define the smooth function

V(ȳ, z) := ρ(ȳ, z)δΓ,ε(ȳ, z)

so that f (ȳ, z) = K(x∗, (ȳ, z))V(ȳ, z). We then replace the splitting in (64) by

f (ȳ, z) = S ((ȳ, z) − (ȳ0(z), z),n)v̂(ȳ, z) + s(ȳ − ȳ0(z), z)V(ȳ, z),

where

v̂(ȳ, z) =

 K(x∗, (ȳ, z))
S ((ȳ, z) − (ȳ0(z), z),n)

− `

(
ȳ − ȳ0(z)
‖ȳ − ȳ0(z)‖

; z
) V(ȳ, z) .

Then v̂ is well-defined everywhere, bounded and continuous around ȳ0, by construction of ` via the limit (53). We
therefore rewrite (65) as

Q̄2D
h [ f ( · , z)] = Q̄2D

h [K(x∗, ( · , z))V( · , z)]

= Q̄2D
h

[  K(x∗, ( · , z))
S (( · , z) − y0(z),n)

− `

(
· − ȳ0(z)
‖ · −ȳ0(z)‖

; z
) S (( · , z) − y0(z),n) V( ·, z)

+ S (( · , z) − y0(z),n) `
(
· − ȳ0(z)
‖ · −ȳ0(z)‖

; z
)

V( ·, z)
]

= T 0
h

[
K(x∗, ( · , z))V( · , z)

]
+

+ h
{
ω[S (( · , z) − y0(z),n);α(z), β(z)]

(
K(x∗, (ȳ∆, z))

S ((ȳ∆, z) − (ȳ0(z), z),n)
− `

(
ȳ∆ − ȳ0(z)
‖ȳ∆ − ȳ0(z)‖

; z
))

+ ω[s( · , z);α(z), β(z)]
}

V(ȳ∆, z) , (66)

where inside the braces only the second term remains if (α(z), β(z)) = (0, 0).
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Our corrected trapezoidal rule (66) for the implicit boundary integral takes the form:

Qh[ f ] =h3
∑

y∈(hZ3\Nh(x∗))
f (y) + h2

∑
k∈Z

V(y∆(zk))Rh,k(y∆(zk)), (67)

where

Rh,k(y∆(zk)) := (68)

=


ω[S (( · , zk) − y0(zk),n);α(zk), β(zk)]

 K(x∗, y∆(zk))
S ((ȳ∆(zk), zk) − y0(zk),n)

− `

(
ȳ∆(zk) − ȳ0(zk)
‖ȳ∆(zk) − ȳ0(zk)‖

; zk

)
+ω[s(·, zk);α(zk), β(zk)] , if α(zk), β(zk) , 0,

ω[s(·, zk); 0, 0], otherwise.

The general correction form (21) of this method is then valid for Nh(x) as in (48) and

Rh(x) = h2
∑
k∈Z

V(y∆(zk))Rh,k(y∆(zk)) .

5.2. Approximation and tabulation of the weights

We approximate the singular functions using a Fourier interpolation, then tabulate the weights for the simpler
singular terms of the expansion, and compose the general weights for any behavior needed.

Given a π-periodic function `( · ; z), such as (62) or (63), we wish to compute the weight ω[s( · , z);α, β], where s
comes from the factorization (64):

s(ȳ, z) = S ((ȳ, z),n)`(ȳ/‖ȳ‖; z) .

Both the factors in this expression can be seen as functions of the angle of approach, ψ, to the singular point 0:

S ((ȳ, z),n) ` (ȳ/‖ȳ‖; z) =
S n(ψ(ȳ))
‖ȳ‖

`(ψ(ȳ); z) where ȳ = ‖ȳ‖(cos(ψ(ȳ)), sin(ψ(ȳ))) .

Given the dependence on z is only present in ` through η(z), we write ω[s;α, β] instead of ω[s(·, z);α, β].
We use Fourier interpolation to approximate this function with a trigonometric polynomial:

S n(ψ)`(ψ; z) ≈ c0 +

N∑
j=1

[
c j cos(2 jψ) + d j sin(2 jψ)

]
. (69)

Since the weight ω[s;α, β] is a linear functional of the singular function,

ω[s;α, β] ≈ c0 ω

[
1
‖ȳ‖

;α, β
]
+ (70)

+

N∑
j=1

{
c j ω

[
cos(2 jψ(ȳ))
‖ȳ‖

;α, β
]

+ d j ω

[
sin(2 jψ(ȳ))
‖ȳ‖

;α, β
]}

.

Therefore, we can precompute the weights for the basis functions and for certain values of α and β:{
ω

[
cos(2 jψ(ȳ))
‖ȳ‖

;α, β
]}N

j=0
and

{
ω

[
sin(2 jψ(ȳ))
‖ȳ‖

;α, β
]}N

j=1
. (71)

For values outside of the precomputed tables, we interpolate.
In the evaluation of ω

[
cos(2 jψ(ȳ))
‖ȳ‖ ;α, β

]
using formulae (40) and (39), we need the value of the integral:∫∫

R2
cos(2 jψ(ȳ))
‖ȳ‖ g(ȳ)dȳ for some test function g. We use g(ȳ) = exp(−‖ȳ‖8) which has derivatives ∂kg(0) = 0, k ∈
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N2, 0 < |k| < 8. Then∫∫
R2

cos(2 jψ(ȳ))
‖ȳ‖

g(ȳ)dȳ =

∫ 2π

0
dψ

∫ ∞

0
dr

{
r exp(−r8) cos(2 jψ)

r

}
=

=

(∫ 2π

0
cos(2 jψ)dψ

) (∫ ∞

0
exp(−r8)dr

)
=

= 2πδ0 j

∫ ∞

0
exp(−r8)dr ≈ 2πδ0 j

∫ R

0
exp(−r8)dr ,

where δ0 j is the Kronecker delta; R is set to 1.9 as the integrand is essentially zero at double precision. The integral∫ R
0 exp(−r8)dr is computed once with high precision using common integration libraries and reused for all instances

as a constant.

It is impractical to tabulate precomputations of the coefficients {c j}
N
j=0, {d j}

N
j=1 as they depend on too many vari-

ables. Instead, we compute c j and d j on the fly, by solving the square linear system

c0 +

N∑
j=1

[
c j cos(2 jψi) + d j sin(2 jψi)

]
=S n(ψi)`(ψi; z), ψi =

iπ
2N + 1

, i = 0, · · · , 2N.

Because of the smoothness of the π-periodic functions we deal with, we can use a relatively small N in order to
accurately approximate the weights.

In the next Section, we present numerical convergence studies using weights computed with N = 22. The small
linear system can be inverted efficiently, e.g. using FFT, with a negligible computational time.

In the convergence studies, an array of weights of dimensions (45,101,101) has been precomputed, with 101
values for α and β in

[
− 1

2 ,
1
2

]
and 45 for the Fourier series with N = 22. Biquintic interpolation is used to approximate

the weights for given (α, β) outside of the precomputed values.
In the case ` ≡ 1, {c j}

N
j=0 and {d j}

N
j=1 depend only on θ and φ. In that case, they can also be precomputed, stored,

and used in an interpolation process when needed.

6. Numerical Examples

We demonstrate the convergence and accuracy of the proposed quadrature rules by evaluating the double layer
potential with constant density on the surface Γ ⊂ R3. We demonstrate the numerical errors computed by the proposed
corrected trapezoidal rule for approximating

I =

∫
Γ

∂G0

∂ny
(x∗, y) dσy .

The value of I is known explicitly to be −1/2 for any x∗ ∈ Γ. So, we report

E1(h) :=

∣∣∣∣∣∣Qh

[
∂G0

∂ny
(x∗, · )

]
+

1
2

∣∣∣∣∣∣ , (72)

for several randomly chosen x∗ ∈ Γ. We will compare the results for the four different quadrature rules, including the
two new quadrature rules QL

IBIM defined by the regularization (30) and Qh defined in (67).
The integral is first extended to the tubular neighborhood of Tε, as in (16)-(18), using the compactly supported

C∞ averaging function

φ(x) =

a exp
(

2
x2 − 1

)
, if |x| < 1,

0, otherwise;
(73)

here a ≈ 7.51393 normalizes the integral
∫
R φ(x)dx to 1.

The surfaces chosen for the tests are a sphere and a torus, centered in a random point in 3D and rotated with
random angles along the x-, y- and z-axes.
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Fig. 8. Torus
Left: the torus used in the tests. Right: the torus and the projections of the Cartesian grid nodes inside the tubular neighborhood Tε. The projected
nodes serve as the quadrature nodes.

The sphere is characterized by center

C = (0.5475547095598521, 0.6864792402110276, 0.3502726366462485) · 10-1

and radius R = 0.7. The torus is described by the following parametrization

T (θ, φ) = Q

(R2 cos θ + R1) cos φ
(R2 cos θ + R1) sin φ

R2 sin θ

 + C (74)

where R1 = 0.7, R2 = 0.2, C is the same as the sphere, and Q = Qz(c)Qy(b)Qx(a) is the composition of the three
rotation matrices. The terms Qx(a), Qy(a), and Qz(a) are the matrices corresponding to a rotation by an angle a around
the x, y, and z axes respectively.

The parameters used for the rotations were:

a = 0.2440241225550843

b = 0.7454097947651017

c = 0.2219760487439292 · 101

Of course to test our algorithms, we retain no information about the parameterizations. The test sphere and torus
are represented only by dΓ and PΓ on the given grid. Figure 8 shows the torus that we use and the points used in the
quadrature rule in a configuration. The Jacobian JΓ is approximated using a fourth-order centered differencing of PΓ

on the grid, see [8].

6.1. Convergence studies

We compare the numerical orders of convergence for the quadrature rules discussed in this paper. The quadratures
are defined on the grid nodes in Tε. The parameter ε, which describes the width of the tubular neighborhood, comes
into play through the function δΓ,ε, and the factor h/ε determines the number of grid nodes in a cross section of the
tubular neighborhood T h

ε . It consequently determines how well the integrand is resolved. The errors for the proposed
quadratures are formally O

((
h
ε

)p)
, p ≥ 2, as h → 0. Thus, for fixed ε = O(1), we see the order of convergence

resembling p. If we choose ε ∼ h1/q, we will formally have the errors scale as O(hp(1−1/q)). If ε ∼ h, then the method
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Fig. 9. Sphere tests
Averaged E1(h) errors (72) on 50 random target points on a sphere. Errors for the punctured trapezoidal rule (32) (black crosses) and the three
considered methods in the evaluation of the double-layer potential: QC constant regularization (26) (blue upward triangles); QL cappuccio regu-
larization (30) (red downward triangles); Qh corrected trapezoidal rule (67) (magenta circles). The three plots reflect three different settings for the
tubular neighborhood width: left plot ε = 0.1; center plot ε ∼ h0.7; right plot ε ∼ h0.8.

will not converge formally, but in the range of the grid resolution considered in practice, the method may yield results
with acceptable accuracy.

In Figures 9, 10, and 11 the errors are shown as function of the Cartesian grid’s spacing h; the first figure shows
the errors for the sphere, while the others show them for the tilted torus. We show also how the errors scale for ε ∼ h0

(left plot in Figure 9, and Figure 10), and ε ∼ hα for different αs (other plots in Figure 9, and Figure 11).
In Figure 10 we show the error curves for three target points; affected by their relative positions to the grid and the

surface, the errors at some target point is larger than at others. Furthermore, the errors at each target point oscillate as
one varies h.

We now show that the accuracy of the weights used in the tests is sufficient for the discretization used. In the
previous tests, the number of terms in the Fourier expansion was 2N + 1 with N = 22, and each term was tabulated
in α, β with Nα,β = 101 values each. We repeated the same test as in Figure 10 for the smallest h ≈0.00437, first
decreasing N to 11, and then decreasing Nα,β to 51. The corresponding results are in the following table:

N Nα,β avg. error
22 101 2.05289·10-6

22 51 2.05290·10-6

11 101 2.05277·10-6

The table suggests that for this range of parameters, the error from the correction of trapezoidal rule is dominating.
For ε ∼ O(1), the formal order of convergence for the proposed quadrature is O(h2), but we have observed a rate

of O(h2.5). In the next subsection, we present a property of our quadrature that we believe leads to the increase in
accuracy.

6.2. Order increase from error cancellation

As discussed in Section 4.3, our corrected trapezoidal rule is applied on every plane in Tε (see Figure 5), and the
error for the whole integral is a sum of the quadrature errors on each relevant plane.

For a fixed target point the singular line intersects each plane at a different location relative to the grid. The
relative positions are given by the shift parameters α and β, which depend on both the plane’s z-coordinate and the



Federico Izzo et al / Journal of Computational Physics (2022) 27

0.005 0.01 0.015 0.02
10

-6

10
-5

10
-4

10
-3

10
-2

0.005 0.01 0.015 0.02
10

-7

10
-6

10
-5

10
-4

Fig. 10. Torus tests - 1
Tilted torus with 50 random target points on the surface. Tubular neighborhood width constant with respect to h: ε = 0.1. Left figure: mean error
E1(h) plotted for the four different methods considered (punctured trapezoidal rule (32) (black crosses), constant regularization (26) (blue upward
triangles), linear regularization (30) (red downward triangles), and corrected trapezoidal rule (67) (magenta circles). Right figure: distribution of
the E1(h) errors for the 50 target points for the corrected trapezoidal rule. The yellow, green and purple convergence lines correspond to three
of the randomly generated target points: they correspond respectively to the parameters (θ, φ) = (0.674795533436653,1.5287503395568336),
(5.5902567180364535,3.0915183172680867), (3.0463292511788698,5.738447188350594).

grid spacing h. More precisely, let ȳ0(z) = (x0(z), y0(z)). Then

α =

{
x0(z)

h
+

1
2

}
−

1
2
, β =

{
y0(z)

h
+

1
2

}
−

1
2
,

where {x} denotes the fractional part of x. Defining the 1-periodic function r(x) = {x + 1/2} − 1/2 and using the
expression for the singular line ȳ0(z) in (45) where n = (n1, n2, 1), we can write

α = α(h, z/h) = r
(

z n1 + x0(0)
h

)
, β = β(h, z/h) = r

(
z n2 + y0(0)

h

)
.

This shows that the relative location (α, β) may vary rapidly between planes both in h and z when h is small, and since
r is discontinuous, the variation is non-smooth.

Let E(z, h) be the quadrature error for one plane. Based on (41) we can express it as

E(h, z) = F1(α(h, z/h), β(h, z/h), z) h2 + O(h3), (75)

where F1 is a smooth function of (α, β, z). In Figure 13 we can see the function F1(α, β, z) for a specific value of z.
The total error for the three-dimensional integral, is then

Etot(h) =
∑

k

hE(h, zk) = D(h)h2 + O(h3),

where, noting that zk/h = k,
D(h) =

∑
k

hF1(α(h, k), β(h, k), zk).

The coefficient D(h) is thus the mean of the error coefficients on the different planes. Since F1 is smooth, and evaluated
in a compact set, D is therefore bounded in h. However, α and β are non-smooth in h and underresolved in the second
argument in the sum. Therefore, D is not a smooth function of h. This accounts for the irregular convergence plots.
See for instance the left subplot in Figure 12 or the right one in Figure 10.
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Fig. 11. Torus tests - 2
Tilted torus with 50 random target points; tubular neighborhood width ε dependent on h. Mean error for the three considered methods in the
evaluation of the double-layer potential. Top plots: QC

IBIM constant regularization (blue upward triangles); QL
IBIM linear regularization, cappuccio

(red downward triangles); Qh corrected trapezoidal rule (magenta circles). From left to right, the four plots represent: ε ∼ h0.5, ε ∼ h0.75, ε ∼ h0.9,
ε = 5h.

The analysis above would predict second order accuracy for the method, when ε is independent of h. However, in
practical computations we typically observe the higher order convergence rate 2.5. We believe this can be explained
by a further property of F1. Looking at Figure 13, we may notice a skew-symmetry in F1(α, β, z) for fixed z. It is
reasonable to expect that the average value of F1 over α and β is much smaller in module compared to the maximum
error. In fact, we conjecture that the average value of F1 for fixed z is zero,∫ 1/2

−1/2

∫ 1/2

−1/2
F1(α, β, z)dαdβ = 0.

In the sum of F1(α(h, k), β(h, k), zk), defining D(h) the first two arguments (α, β) vary much faster than the third (zk).
If the sequence k 7→ (α(h, k), β(h, k)) has some ergodic property the sum will behave similar to the full integral, which
would be zero

D(h) ≈
∫ ∫ 1/2

−1/2

∫ 1/2

−1/2
F1(α, β, z)dαdβdz = 0.

A precise analysis of this effect is beyond the scope of this article. Here we just show in Figure 12 an example of how
F1(α(h, k), β(h, k), zk) and (α(h, k), β(h, k)) may vary for two different h that are very close to each other.
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Appendix A. Appendix

Appendix A.1. Relating curvatures and the principal directions on parallel surfaces
Let Ω ⊂ R3 be a bounded domain, and let dΓ and PΓ be the signed distance function and the closest point projection

defined in (10) and (11) in Section 2.3. We assume that the distance function is twice continuously differentiable in
the tubular neighborhood Tε :=

{
z ∈ R3 : |dΓ(z)| < ε

}
.
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Fig. 12. Error behavior and nonsmooth convergence
Single target point on a “flat” torus. In the left half of the figure, it is shown the convergence behavior of the error for the double-layer potential,
with two discretizations highlighted (upward and downward triangles). In the right half of the figure, top plots show the error behavior for the

discretization h ≈ 4.57 · 10−3 (downward triangle in the left figure) on the corrected planes as function of η(z) = n̄(z − z∗) with n̄ =

√
n2

1 + n2
2 + 1,

which corresponds to the error 3.61 · 10−8. Bottom plots show the error behavior for the discretization h ≈ 4.66 · 10−3 (upward triangle in the left
figure) on the corrected planes as function of η(z) which corresponds to the error 5.03 · 10−6. The left figures show the signed error as function of
η(z); the right plot shows the distribution of the (α(h, k), β(h, k)) values on the different planes, where the color represents the value of the error.
From the mean µ and variance σ printed on top of the left plots we can see that the top case has mean much smaller than the bottom case, and the
variance is half. This explains the much smaller error (downward triangle) compared to the other (upward triangle).

The derivation of the proposed quadratures relies heavily on the knowledge of geometrical information of the
surface Γ, through that of the level sets of dΓ. In this Section, we relate the principal curvatures and the corresponding
directions on different parallel surfaces Γη := {z ∈ Tε : dΓ(z) = η} , for η ∈ [−ε, ε].

Let z be an arbitrary point in Tε, and η = dΓ(z). The curvature information of Γη at z can be retrieved from the
Hessian of dΓ. Through eigenvalue decomposition, we have

HdΓ
(z) = ∇2dΓ(z) =

[
n τ1 τ2

] 0 −κ̄1
−κ̄2

 [ n τ1 τ2

]T

where κ̄1 and κ̄2 are the principal curvatures of Γη at z and τ1, τ2 the corresponding principal directions.
One can derive easily that the following formula, relating the principle curvatures κi of Γ at PΓz and κ̄i of Γη at z:

−κi =
−κ̄i

1 + dΓ(z)κ̄i
, i = 1, 2.

See for example [30] ( §14.6 Appendix: Boundary Curvatures and Distance Function). The principal directions will
remain the same:

Lemma 1. Let Γ be a C2 surface, z̄ ∈ Γ; let Γη be a parallel surface, and z ∈ Γη such that z̄ = PΓz. The principal
directions at z coincide with the principal directions at z̄.

Proof. The tangent plane T Mη(z) for Γη at z is parallel to the tangent plane T M0(z̄) for Γ at z̄.
Let (b1,b2) be an orthonormal basis for the plane T M0(z̄), and v = b1 cos θ+b2 sin θ a unit vector.We can consider

the plane Hv passing though z̄ and parallel to the normal vector, and Hv ∩ Γ will locally be the support of the regular
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Fig. 13. Error as function of α and β
Error F1(α, β, η) seen for η ≈ −0.056; the singularity line has direction defined by the spherical coordinates (θ, φ) ≈ (2.298, 3.154). The mean over
α and β is 0.01625.

curve γθ(s), which is the normal section of Γ at z̄. Corresponding to the normal section we can calculate the normal
curvature κ(θ) of Γ at z̄ along v.

Then κ(θ) is a periodic function in [0, π]. The minimum and maximum attained by the curvature are the two
principal curvatures κ1 := minθ κ(θ) = κ(θ1) and κ2 := maxθ κ(θ) = κ(θ2). Consequently, κ′(θi) = 0, i = 1, 2, and
κ′′(θ2) < 0 < κ′′(θ1). Corresponding to these values are two unit vectors on T M0(z̄), which form an orthonormal basis,
called principal directions.

On T Mη(z), we can use the same exact setup, the same basis (b1,b2), and same unit vectors v = b1 cos θ+b2 sin θ.
We know that the curvatures will be transformed via the relation

κ̄(θ) =
κ(θ)

1 − ηκ(θ)
.

The maximum and minimum values of this function are going to be again θ1 and θ2, as

κ̄′(θi) =
κ′(θi)[

1 − ηκ(θi)
]2 = 0 , i = 1, 2

κ̄′′(θi) =
κ′′(θi)[

1 − ηκ(θi)
]2 ;

then the values θi, i = 1, 2 are extrema also for this case, and the second derivatives have the same sign as the ones on
Γ. Consequently the angles at which maximum and minimum are attained are the same, and the principal directions
on the two parallel surfaces coincide.

Appendix A.2. Calculation of the regularizations of the double-layer kernels
Given a target point x ∈ Γ, and r0 > 0, letM(x, r0) ⊂ Γ be a neighborhood of x dependent on the parameter r0; we

will define it more clearly later. We want to find ΨΓ,r0 such that∫
M(x,r0)

1
4π

(x − y)T ny

‖x − y‖3
dσy =

∫
M(x,r0)

∂G0

∂ny
(x, y)dσy =

∫
M(x,r0)

ΨΓ,r0 (x, y)dσy .

We approximate the surface using a paraboloid, and we assume the surface is positioned with the target point in
the origin x = 0, and the normal in the target placed along the z-axis: nx = (0, 0, 1). Given the principal curvatures
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of the surface in the target point x, κ1 and κ2, and assuming the corresponding principal directions lie along the x-axis
and y-axis respectively, the surface is described around the origin as as P(x, y) := (x, y, z(x, y)), with z such that

z(0, 0) =
∂z
∂x

(0, 0) =
∂z
∂y

(0, 0) =
∂2z
∂x∂y

(0, 0) = 0,

and
∂2z
∂x2 (0, 0) = κ1,

∂2z
∂y2 (0, 0) = κ2 .

The paraboloid is the surface Γ̃ defined for points close to the origin with coordinates (x, y, z(x, y)) with z(x, y) :=
1
2 (κ1x2 + κ2y2). The paraboloid Γ̃ approximates the surface Γ with errors of the third order: O(x3, y3, x2y, xy2). The
Jacobian J(x, y) is going to be the norm of the normal vector to the surface

J(x, y) =

√
1 +

(
∂z
∂x

(x, y)
)2

+

(
∂z
∂y

(x, y)
)2

=

√
1 + κ2

1 x2 + κ2
2y2 .

By using this approximation of the surface and considering as the neighborhoodM(x, r0) the set

Mr0 :=
{
P(x, y) :

√
x2 + y2 ≤ r0

}
we can rewrite the integral as ∫

Mr0

∂G0

∂ny
(0,P(x, y))dσx,y =

∫
Mr0

F(x, y)J(x, y)dxdy,

where

F(x, y) :=
1

8π
κ1x2 + κ2y2[

x2 + y2 + 1
4
(
κ1x2 + κ2y2)2

] 3
2
√

1 + κ2
1 x2 + κ2

2y2
.

In the article [7] the function ΨΓ,r0 (x, y) = CΓ,r0 is defined as a constant with respect to x and y:∫
Mr0

∂G0

∂ny
(0,P(x, y))dσx,y ≈

∫
Mr0

CΓ,r0 dσx,y .

The constant CΓ,r0 represents the average of the integrand overMr0 . From elementary calculation, we have

CDL
F (r0) =

∫
Mr0

F(x, y)J(x, y)dxdy =

=

∫ 2π

0
dθ

∫ r0

0
dr {r F(r cos θ, r sin θ)J(r cos θ, r sin θ)} =

=
κ1 + κ2

8
r0 +

κ1 + κ2

512
(−5κ2

1 + 2κ1κ2 − 5κ2
2)r3

0 + O(r5
0) ,

CΓ(r0) =

∫
Mr0

J(x, y)dxdy =

∫ 2π

0
dθ

∫ r0

0
dr {r J(r cos θ, r sin θ)}

= πr2
0 +

π

8
(κ2

1 + κ2
2)r4

0 + O(r6
0) .

Then

Cr0 =
CDL

F (r0)
CΓ(r0)

=
κ1 + κ2

8πr0
−
κ1 + κ2

512π

(
13κ2

1 − 2κ1κ2 + 13κ2
2

)
r0 + O(r3

0).

Finally, ∂G0
∂ny

(x − y), x, y ∈ Γ can then be regularized as:

Kreg,DL
r0,C

(x, y) :=


∂G0

∂ny
(x, y) , ‖x − y‖ ≥ r0 ,

CΓ,r0 , ‖x − y‖ < r0 .

(A.1)
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The same reasoning can be applied to the double-layer conjugate kernel, where in the previous calculations the
expression of F is

F(x, y) :=
1

8π
κ1x2 + κ2y2[

x2 + y2 + 1
4
(
κ1x2 + κ2y2)2

] 3
2

,

and the result is the following regularization:

Kreg,DLC
r0,C

(x, y) :=


∂G0

∂nx
(x, y) , ‖x − y‖ ≥ r0 ,

CDLC
Γ,r0

, ‖x − y‖ < r0 ,

(A.2)

where
CDLC

Γ,r0
=
κ1 + κ2

8πr0
−

5
1536

κ1 + κ2

π
(3κ2

1 + 2κ1κ2 + 3κ2
2)r0 + O(r3

0) .

For the case of the secondary kernel of the Helmholtz equation, the function F is

F(x, y) :=
1
2

κ1x2 + κ2y2

x2 + y2 + 1
4
(
κ1x2 + κ2y2)2 ,

and the regularization becomes

Kreg,HL
r0,C

(x, y) :=


(x − y)T ny

‖x − y‖2
, ‖x − y‖ ≥ r0 ,

CHL
Γ,r0

, ‖x − y‖ < r0 ,

(A.3)

where
CHL

Γ,r0
=
κ1 + κ2

4
−
κ1 + κ2

256
(13κ2

1 − 2κ1κ2 + 13κ2
2)r2

0 + O(r4
0) .

New regularization with linear function (cappuccio)
An potential improvement on (26) can be made by building ΨΓ,r0 as linear with respect to the distance from the

singularity ΨΓ,r0 (x, y) = ΨΓ,rL
0
(x, y) := a0

‖x−y‖
r0

+ a1:∫
Mr0

F(x, y)J(x, y)dxdy =

∫
Mr0

(
a0
‖0 − P(x, y)‖

r0
+ a1

)
J(x, y) dxdy .

The second property we impose is the following: we express P(x, y) = P(r cos θ, r sin θ) in polar coordinates, and
impose

ΨL
Γ,r0

(r0 cos θ, r0 sin θ) =
1

2π

∫ 2π

0
F(r0 cos θ, r0 sin θ)dθ .

We call:

Cr2 =

∫
Mr0

‖0 − P(x, y)‖J(x, y)dxdy

CDL
F =

∫
Mr0

F(x, y)J(x, y)dxdy

CΓ =

∫
Mr0

J(x, y)dxdy

φ0 =
1

2π

∫ 2π

0
F(r0 cos θ, r0 sin θ)dθ
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then the conditions imposed form the following linear system:

a0 + a1 = φ0
a0

r0
Cr2 + a1CΓ = CDL

F

from which we find:

a0 =
CDL

F − φ0CΓ

Cr2 − r0CΓ

r0 =

= −
3

16
κ1 + κ2

πr0
+

3
5120

κ1 + κ2

π
(21κ2

1 − 2κ1κ2 + 21κ2
2)r0 + O(r3

0)

a1 =
φ0Cr2 −CDL

F r0

Cr2 − r0CΓ

=
κ1 + κ2

4πr0
−

3
2560

κ1 + κ2

π
(23κ2

1 − 6κ1κ2 + 23κ2
2)r0 + O(r3

0)

This regularization is then:

Kreg,DL
r0,L

(x, y) :=


∂G0

∂ny
(x, y) , ‖x − y‖ ≥ r0 ,

a0
‖x − y‖

r0
+ a1 , ‖x − y‖ < r0 .

(A.4)
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