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Abstract

We present a novel wavefront method based on Gaussian beams for computing high frequency
wave propagation problems. Unlike standard geometrical optics, Gaussian beams compute
the correct solution of the wave field also at caustics. The method tracks a front of two
canonical beams with two particular initial values for width and curvature. In a fast post-
processing step, from the canonical solutions we recreate any other Gaussian beam with
arbitrary initial data on the initial front. This provides a simple mechanism to include a
variety of optimization processes, including error minimization and beam width minimization,
for a posteriori selection of optimal beam initial parameters. The performance of the method
is illustrated with two numerical examples.

Keywords: wave propagation, high frequency, asymptotic approximation, summation of
Gaussian beams, wavefront methods

1. Introduction

In direct discretization methods for high frequency wave problems, a large number of grid
points is needed to resolve the wave oscillations, and the computational cost to maintain
constant accuracy grows algebraically with the frequency. At sufficiently high frequencies,
direct simulations are not feasible. As an alternative, one can use high frequency asymptotic
methods where the cost is either independent of or grows slowly with the frequency, see [1, 2].
The Gaussian beam method is one such asymptotic method for computing high frequency
wave fields in smoothly varying inhomogeneous media. It was proposed by Popov [3], based
on earlier work of Babic and Pankratova [4]. The method was first applied by Katchalov and
Popov [5], Cerveny et al. [6] and Klimeš [7] to describe high-frequency seismic wave fields
by the summation of Gaussian beams. In quantum chemistry, Gaussian beams are higher
order versions of classical coherent states, and they are used to approximate the Schrödinger
equation; see e.g. Heller, Herman and Kluk [8, 9]. Gaussian beams were later applied to
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seismic migration by Hill [10, 11]. For a rigorous mathematical analysis of Gaussian beams
we refer to [12] and the more recent investigations on accuracy [13, 14, 15, 16, 17, 18]. The
main advantage of this method is that Gaussian beams provide the correct solution also at
caustics where standard geometrical optics breaks down.

In the Gaussian beam method, the initial/boundary data or the wave sources which
generate the high frequency wave field are decomposed into Gaussian beams. Individual
Gaussian beams are computed in a Lagrangian fashion by ray tracing, where quantities such
as the curvature and width of beams are calculated from ordinary differential equations
(ODEs) along the central ray of the beams. The initial conditions for the ODEs are obtained
from the field decomposition at the boundary or the source. The contributions of the beams
concentrated close to their central rays are determined by Taylor expansion. The wave field
at a receiver is then obtained as a weighted superposition of the Gaussian beams situated
close to the receiver.

The past few years have seen a renewed interest in Gaussian beam based methods and their
applications [19, 20, 21, 22]. One new direction is the Eulerian Gaussian beam summation
methods [23, 24, 25, 26]. In this approach, the problem is formulated by Liouville-type
equations in phase space giving uniformly distributed Eulerian traveltimes and amplitudes
for multiple sources. A recent survey of Gaussian beam methods can be found in [27].
Numerical approaches for treating general high frequency initial data for superposition over
physical space were considered in [28, 29] for the wave equation.

In this paper, we revisit the Lagrangian formulation and present a wavefront method
for computing Gaussian beams. Wavefront methods have been very successful for standard
geometrical optics as they provide a simple mechanism for controlling the resolution and
accuracy of the numerical approximation [30, 31]. Using them with Gaussian beams is not as
straightforward since the beam method strongly depends on the distribution and width of the
beams at the initial front and on how they spread during their evolution, see e.g. [17, 32, 33].
We construct our novel wavefront method based on two canonical functions. We present an
efficient strategy consisting of two parts: (1) We compute the wavefronts together with a set
of canonical solutions with a priori and fixed initial data; and (2) In a post-processing step,
from the canonical solutions we recreate Gaussian beams with a posteriori, optimal selection
of initial data and compute the wave field by a weighted sum of beams. This strategy has
a few advantages. First, we can compute beams with any arbitrary initial conditions by a
simple linear combination of the canonical solutions at no extra cost. Second, our wavefront
construction provides a simple mechanism to include a variety of optimization processes, e.g.
error minimization, for a posteriori selection of optimal initial parameters. Finally, since
the geometrical optics solution can be recovered by the first set of canonical solutions, it is
possible to design an efficient hybrid method which switches between the geometrical optics
(which does not require the post-processing step) and Gaussian beam solutions smoothly.
We present numerical examples to verify the efficiency, accuracy, and the flexibility of the
algorithm.

The first step of our algorithm in part 1, which is the computation of wavefronts, is an
adaptation of the front tracking scheme in [34]. It is to be noted that in order to control the
resolution of wavefronts, we can also adapt and include other front tracking methods, such
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as the grid-based particle method [35] and the fast interface tracking method [36, 37], in the
algorithm. The main contributions of this paper include the second step of the algorithm in
part 1, i.e. the construction of canonical functions, and the fast post-processing technique in
part 2 based on an optimal selection of the beams’ initial data.

The rest of the paper is organized as follows. In Section 2 we first review the Gaussian
beam models for the computation of time harmonic high frequency waves (Sections 2.1–2.4).
We then present and discuss different choices of initial parameters in the computation of
Gaussian beams (Section 2.5). Next, in Section 3 we describe the new wavefront method
based on Gaussian beam summation and canonical functions. Numerical examples are per-
formed in Section 4. Finally, we summarize our conclusions in Section 5.

2. Gaussian beam models

Gaussian beams are asymptotic solutions of linear wave equations. They can also be
extended to some dispersive wave equations like the Schrödinger equation. Gaussian beam
summation is an approximate model for linear high frequency wave propagation problems.
In this approach, the initial/boundary data are decomposed into individual Gaussian beams,
which are computed by a system of ODEs along their central rays. The contribution of each
beam close to its central ray is approximated by Taylor expansion. The wave field is then
obtained by summing over the beams. In this section, we review the governing equations for
computing Gaussian beams and formulate the beam summation model.

2.1. High frequency waves and asymptotic approximations

We start with the scalar wave equation

vtt(t,x)− c(x)2 ∆v(t,x) = 0, (t,x) ∈ R+ × R2, (1)

where v = v(t,x) is the wave solution, t and x = (x, y)> are the temporal and spatial
variables, respectively, and c(x) is the local speed of wave propagation in the medium. We
complement the wave equation (1) with highly oscillatory initial data that generate high-
frequency solutions. The exact form of the data will not be important here, but a typical
example is v(0,x) = a(x) exp(i ω k · x), where ω � 1 is the angular frequency and |k| = 1.
We assume that the wavelength, which is inversely proportional to ω, is much smaller than the
typical scale of the medium structure (variations in the wave speed) and the wave propagation
distance (the size of the computational domain). Hence, we encounter a multiscale problem
with highly oscillatory solutions. Note that with slight modifications, the techniques we
describe here will also carry over to systems of wave equations, such as the Maxwell and
elastodynamic equations.

We consider time-harmonic waves of type

v(t,x) = u(x) exp(i ω t). (2)

Inserting the ansatz (2) into the time-dependent wave equation (1), we obtain the reduced
wave equation in the frequency domain, known as Helmholtz equation,

∆u(x) +
ω2

c(x)2
u(x) = 0, x ∈ R2. (3)
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Direct numerical simulations of (3) are very expensive, since a large number of grid points
or elements is required to resolve the wave oscillations. The computational cost for fixed ac-
curacy therefore grows at least with the rate O(ω2) in two dimensions. Consequently, in the
high frequency regime, direct simulations are not feasible. To circumvent this difficulty, ap-
proximate high frequency asymptotically valid methods are often employed. They are based
on constructing asymptotic Wentzel–Kramers–Brillouin (WKB) expansions of the solution
in inverse powers of ω:

u(x) = A(x, ω) ei ω φ(x), A(x, ω) =
∞∑
k=0

Ak(x) (i ω)−k =
K∑
k=0

Ak(x) (i ω)−k+O(ω−(K+1)). (4)

In this expansion, the phase φ and amplitudes Ak are independent of frequency and vary
on a much coarser scale than the full wave solution. They can therefore be computed at a
computational cost independent of the frequency.

2.2. Geometrical optics

One popular asymptotic method is geometrical optics (GO) [1, 38]. In its standard form,
it only considers the leading term of the series (K = 0), called the the geometrical optics
term. It introduces an error of order O(ω−1). The phase φ and amplitude A0 are real-valued
functions and satisfy the eikonal and transport PDEs respectively,

|∇φ|2 = 1/c(x)2, 2∇φ · ∇A0 + A0 ∆φ = 0. (5)

GO can also be formulated in terms of ODEs. The eikonal equation is a nonlinear Hamilton-
Jacobi equation with Hamiltonian H(x,p) = c(x) |p| ≡ 1, where p = ∇φ is called the
slowness vector. We let (x(t),p(t)) be a bi-characteristic related to this Hamiltonian, satis-
fying the so called ray equations,

dx

dt
= ∇pH = c2 p,

dp

dt
= −∇xH = −∇c

c
. (6)

The parameter t corresponds to the waves’ travel time in the sense that φ(x(t)) = φ(x(0))+t.
There are also ODEs for the amplitude [1]. The main drawback of geometrical optics is
that the approximation breaks down at caustics, where rays concentrate and the predicted
amplitude is unbounded [39].

2.3. Gaussian beams

Gaussian beams constitute another high frequency asymptotic model which is closely
related to GO and yet is valid at caustics. The solution is assumed to be of the same form
(4), but there are two important differences. First, while a GO solution is globally defined
for all rays, a Gaussian beam is a localized solution that concentrates near a single ray of
GO, known as the beam’s central ray and denoted by x∗(t). Secondly, while in GO the phase
is real-valued, in the Gaussian beam construction it is real-valued only on the central ray
of the beam. Away from the central ray, it is complex-valued with positive imaginary part.
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The solution will then be exponentially decreasing away from the central ray, maintaining its
Gaussian shape. If we only take the first term in (4), we write the Gaussian beam solution
as

uGB(x) = A0(x) ei ω φ(x). (7)

Because of the localization, one can approximate the complex-valued φ and A0 close to the
central ray (i.e. when x is close to x∗(t)) by Taylor expansions around the ray. For instance,
the simplest “first order” Gaussian beam is constructed by

φ(x) ≈ φ(x∗) + (x− x∗) · ∇φ(x∗) +
1

2
(x− x∗)>D2φ(x∗) (x− x∗), (8)

A0(x) ≈ A0(x
∗), (9)

i.e. φ and A0 are approximated to 2nd and 0th orders with respect to x − x∗, respectively.
For a given x there is some freedom in the choice of point x∗ on the central ray, around
which the Taylor expansion should be made. Typically, x∗ is taken as the point on the ray
that is closest to x, but other choices are also possible, e.g. the closest point with the same
x- or y-coordinate.

The beam’s central ray x∗(t) = (x∗, y∗)> is given by the ray tracing equations

dx∗

dt
= c(x∗) cos θ∗, x∗(0) = x∗0,

dy∗

dt
= c(x∗) sin θ∗, y∗(0) = y∗0,

dθ∗

dt
= ∂xc(x

∗) sin θ∗ − ∂yc(x∗) cos θ∗, θ∗(0) = θ∗0,

(10)

which are obtained from (6) by setting p = ∇φ = (cos θ, sin θ)>/c(x), thanks to the eikonal
equation in (5), with θ being the angle between the tangent of the ray and the positive x-axis.
In fact, the slowness vector p represents the direction of the central ray. The initial conditions
in (10) are given by the initial location x∗0 = (x∗0, y

∗
0) and initial angle θ∗0 of the central ray.

After computing the central ray from (10), the Taylor coefficients φ(x∗), ∇φ(x∗), D2φ(x∗),
and A0(x

∗) in (8) and (9) are then computed only on the central ray using the transport
equation in (5) [7]:

φ(x∗) = φ(x∗(0)) + t, ∇φ(x∗) = (cos θ∗, sin θ∗)>/c(x∗), D2φ(x∗) = TMT−1,

A(x∗) = (c(x∗)/Q)1/2,

where

T =

(
sin θ∗ cos θ∗

− cos θ∗ sin θ∗

)
, M =

(
P/Q −c1/c(x∗)2

−c1/c(x∗)2 −c2/c(x∗)2
)
,

(
c1
c2

)
= T−1∇c(x∗).

The complex-valued scalar functions P and Q are given by the dynamic ray tracing equations

dQ

dt
= c(x∗)2 P, Q(0) = Q0,

dP

dt
= g(x∗, θ∗)Q, P (0) = P0,

(11)
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where

g(x∗, θ∗) = −∂xxc(x
∗) sin2 θ∗ − 2∂xyc(x

∗) sin θ∗ cos θ∗ + ∂yyc(x
∗) cos2 θ∗

c(x∗)
. (12)

The quantities P and Q determine the wavefront curvature and the beam width.
First order Gaussian beams have an asymptotic error of size O(1/

√
ω). Beams that

are higher order accurate in ω can be constructed by taking more terms both in the WKB
expansion (4) and in the Taylor expansions of φ and A.

2.4. Gaussian beam summation

Since (3) is a linear equation, it is a natural extension to consider a superposition of
Gaussian beams to represent more general high frequency solutions that are not necessarily
localized around a single ray. We therefore consider wave fields generated by a wave source
u0(x) which concentrates on a curve x0(s) in R2 parameterized by the arc length parameter
s. Mathematically, this corresponds to finding the outgoing solution of

∆u(x) +
ω2

c(x)2
u(x) = 2 i ω u0(x) δx0(x), x ∈ R2. (13)

where the Dirac delta function δx0(x) is supported on x0(s), and u0(x) is a real-valued
smooth, compactly supported and non-oscillatory function. We note that by setting u0 to
a real-valued function, we enforce waves to propagate in the normal direction to x0(s). By
setting u0 to an oscillatory complex-valued function, we can include more general wave sources
which may not necessarily propagate in orthogonal directions to x0(s). Here, we only consider
real-valued u0 for simplicity. Under suitable conditions on c(x), problem (13) is well-posed
and has a well-defined high-frequency limit where u = u0 on x0(s); see [18] for more details.
The curve x0(s) can be interpreted as the initial wavefront of the high-frequency solution.

We introduce the notation A(x, s) and φ(x, s) for the amplitude and phase of a beam with
the initial position x0(s) of its central ray. The central rays are denoted by x∗(t, s) = (x∗(t, s),
y∗(t, s)), with angle θ∗(t, s). They satisfy (10) where the initial position is x∗(0, s) = x0(s),
and the initial angle θ∗(0, s) is chosen such that the central ray initially points normal to
x0(s). Since u0 is real, we also let φ(x0(s), s) = 0 for all s.

We decompose the wave field generated by u0 on x0(s) intoNGB ∈ N beams by discretizing
s, setting sm = mh with m = 1, . . . , NGB, where h is a small arc length representing the
beam spacing on the curve x0(s), see e.g. [7]. The initial locations of the beams’ central rays
are {x0(sm)}NGB

m=1. The initial angles θ0(sm) of the central rays, pointing normal to x0(s),
are also obtained for all discretization points. With these initial conditions, the central rays
of NGB beams are then computed by solving NGB ray tracing systems (10). In order to
compute the individual Gaussian beams, we also need to solve NGB dynamic ray tracing
systems (11) with corresponding initial conditions. Similarly to above, the dynamic ray
tracing quantities in (11) are denoted P (t, s) and Q(t, s), with the corresponding initial data
P0(s), Q0(s). After computing these quantities along NGB central rays, the contribution of
the beams concentrated close to their central rays are determined by the approximations (8)
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and (9) entered in (7). Eventually, the wave field at a fixed receiver point xR is calculated
by summing over the beams

u(xR) =

NGB∑
m=1

ψ(sm)A(xR, sm) eiωφ(xR,sm). (14)

In order to obtain the final approximation by (14), we must select the weights ψ(sm) and the
initial data P0(sm) and Q(sm) in (11) such that the weighted sum u in (14) well approximates
u0 on x0(s), i.e. u(x0(s)) ≈ u0(x0(s)). In particular, the choice of the initial data for dynamic
ray tracing systems is not straightforward and will be discussed further in Section 2.5.

In beam summation, the approximation error depends both on ω and on the spacing h
of the beams. For first order beams, the convergence rate, with perfect approximation of
data u0, was shown in [18] to be at least O(1/

√
ω) in the limit h → 0. However, numerical

evidence and theory for simplified settings in [17] suggest the rate O(1/ω + exp(−C/h
√
ω)).

Hence, the convergence rate in ω is actually faster than for the individual beams. Moreover,
the spacing h must be taken small at high frequencies, h ∼ 1/

√
ω, but the convergence in

h
√
ω is exponentially fast.

2.5. Initial data for dynamic ray tracing equations

There are many choices of initial conditions P0, Q0 and weights ψ that lead to an accurate
solution, which converges to the exact solution as h→ 0 and ω →∞, with the same rate as
when the data u0 is perfectly approximated. However, the choices are far from equivalent, as
the corresponding pre factors in the error estimates can vary considerably, leading to large
differences in accuracy. Moreover, even if two different choices give almost the same accuracy
on the initial curve x0(s), they can generate a significantly different solution quality away
from x0(s). A main difficulty in the Gaussian beam method is therefore to select the data P0,
Q0 and ψ such that the error in the Gaussian beam solution is minimized [6, 40, 17, 33, 41].
The optimal choice also depends on where the solution is sought.

Not all values of P0 and Q0 give meaningful wave fields. It can be shown that to be
admissible, the parameters must satisfy

Q0 6= 0, =(P0/Q0) > 0. (15)

Then Q(t) 6= 0 and =(P (t)/Q(t)) > 0 for all t > 0 along the central ray [3]. The former
guarantees the regularity of the Gaussian beam (with finite amplitudes at caustics), and the
latter guarantees the non-degeneracy of the beam (concentration of the solution close to the
ray).

The primary free variable is Q0, and we will only consider P0 = i in what follows. To-
gether, P0 and Q0 determine ψj. The admissibility condition (15) then reduces to simply

<Q0 > 0. (16)

We start with the typical case of a plane wave source.
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Example 1. Decomposition of a plane wave into Gaussian beams. Consider the wave field
generated by a plane wave at x0(s) = (0, s) propagating into the domain x > 0 orthogonally,
i.e. θ∗(0, s) = 0, with c ≡ 1 in a neighborhood of x0. This means that u0 ≡ 1 and we should
find Q0, P0 and ψ such that u(0, y) ≈ 1. We will show that, for each h and ω, there is a
family of possible ways to accurately approximate u0, parameterized by Q0.

For a fixed s, we have on the initial curve

φ(x0(s), s) = 0, ∇φ(x0(s), s) =

(
1
0

)
, D2φ(x0(s), s) =

(
0 0
0 P0(s)/Q0(s)

)
.

Using the closest point for Taylor expansion, (0, y)− x∗ = (0, y)− x0(s) = (0, y − s), we get
from (8) and (9),

φ(0, y, s) =
1

2
(y − s)2 P0(s)

Q0(s)
, A(x0(s), s) =

1√
Q0(s)

,

and the wave field (14) at the initial curve is

u(0, y) =
∑
m

ψ(sm)
1√

Q0(sm)
e

i
2
ω(y−sm)2

P0(sm)
Q0(sm) . (17)

We now note that the constant function can be well approximated by a weighted sum of
gaussians [10]. Indeed, for all y ∈ R,

1 =
∑
m

1√
π

h

w0

e−(y−sm)2/w2
0 +O

(
e−(w0/h)2

)
, sm = mh, (18)

with h and w0 representing the spacing of the gaussians and their half-widths; see Figure 1.
To properly choose the initial data in (17), we identify the two expressions and use P0 = i.

Figure 1: The sum of several translated gaussians is almost constant. A plane wave can therefore be decom-
posed approximately to a sum of parallel Gaussian beams.

The Gaussian beam solution (17) produces a plane wave for any Q0(sj) = Q0 if

w0 =

(
2Q0

ω

)1/2

, ψ(sm) = h
( ω

2π

)1/2
.
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There are some restrictions on the possible choices of Q0. For accuracy, i.e. to have a
small error term in (18), one must take the parameters w0 and h such that w0 > h, i.e.
Q0 > ωh2/2. This means that w0 cannot be too small since, for computational efficiency,
h ∝ 1/NGB should not be too small. Similarly, w0 should not be too big, since the evaluation
of the beams become expensive when they are wide. Moreover, (18) is in fact valid also for
complex-valued w0 with the error term replaced by O(exp(−<w2

0/h
2)). We can therefore also

allow complex-valued Q0 as long as (15) is satisfied and <w2
0 > h2, which simply means that

<Q0 > ωh2/2. We note finally that if we use different Q0 at different points, Q0 = Q0(sj),
the expansion (18) is valid with an additional approximation error of size O(w2

0).

The case of the plane wave is generic in the sense that Q0 is in general a free parameter.
The question to be answered is how to select Q0 optimally. It has been proposed that the
optimal choice should produce Gaussian beams of minimum width at the receiver point, see
e.g. [6, 40]. One should then find Q0 which minimizes the half-width, normal to the central
ray, of the Gaussian beam, which is given by

w(t, s) =

(
1

2
ω=∂2nφ(x∗(t, s), s)

)−1/2
=

(
1

2
ω=(P (t, s)/Q(t, s))

)−1/2
. (19)

The main motivation for this choice is that for wide beams, the Taylor expansion error should
be large. Moreover, from the computational point of view, it is more convenient to work with
beams which are as narrow as possible, because in the case of variable speed of propagation,
where the central rays can bend, at some distance from the rays the closest point on the ray
x∗ may become non-unique; the phase then becomes non-smooth and the Gaussian beam
approximation breaks down. However, it was shown in [17, 33] that optimally narrow beams
will not necessarily give the minimum error. In particular, White et al. [33] study different
choices of initial data. For particular types of problems, they obtain initial data which give
a more accurate approximation compared to the data obtained by the minimization of the
beam width. In general, the optimal choice of Q0 should minimize the error, not necessarily
the width. How to find it is still an open question.

As noted above, the optimal Q0 depends on the location of the receiver point, i.e. where
the beam summation (14) is evaluated. The optimal value is different for different beams
and different points along a beam’s central ray, meaning it depends both on t and s. To find
optimal solutions at different locations, we may therefore need to solve (11) for many different
initial conditions P0 and Q0. This can be computationally very expensive. However, we can
take advantage of the linearity of (11) and make the following important observation. We
specify two real-valued functions (QI , PI) and (QII , PII), called canonical solutions, which
satisfy (11) with two different sets of initial data:

(QI , PI)(0) = (1, 0), (QII , PII)(0) = (0, 1).

Consequently, the two canonical solutions satisfy the following two ODE systems

dQI

dt
= c(x∗)2 PI , QI(0) = 1,

dQII

dt
= c(x∗)2 PII , QII(0) = 0,

dPI
dt

= g(x∗, θ∗)QI , PI(0) = 0,
dPII
dt

= g(x∗, θ∗)QII , PII(0) = 1,

(20)
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where g is given by (12). Then, the complex-valued solution (Q,P ) of (11) with the initial
data (Q0, P0) is given by [6, 33]:

Q = Q0QI + P0QII , P = Q0 PI + P0 PII . (21)

Hence, from two canonical solutions, beams with all possible initial data can be computed by
taking linear combinations at no extra cost. Note that the canonical solutions also depend
on the parameter s via x∗(t, s), and when needed we write QI(t, s), etc. to indicate this.

We also note that, in particular, the geometrical optics solution can be obtained from the
first canonical solution QI ,

φGO(x∗(t)) = φ(x∗(0)) + t, AGO(x∗(t)) = A(x∗(0))

(
1

QI(t)

c(x∗(t))

c(x∗(0))

)1/2

, (22)

which corresponds to an infinitely wide beam.
There are two major advantages of using canonical solutions:

1. Optimization. Canonical solutions provide an efficient mechanism for performing and
including the optimization of initial parameters. Currently, the process of computing
the optimal initial data that minimize the error is still an open question and needs
further investigations. In this paper, we instead propose a simple strategy based on the
minimization of beam widths to find suitable initial parameters (see Example 2 below
and the numerical tests in Section 4). The key point here is that any optimization pro-
cess, based on the minimization of either beam width or error, can simply be included
in the algorithm, thanks to (20) and (21).

2. Hybridization. Since the geometrical optics solution can be recovered by the first set
of canonical solutions by (22), it is possible to design a hybrid method which switches
between the geometrical optics and Gaussian beam solutions smoothly. Such a hybrid
technique would substantially reduce the computational complexity, because in places
where there are no caustics, the computation of Gaussian beams (the post-processing
part in Algorithm 1 below) is not needed.

Example 2. Optimal selection of initial parameter Q0. In order to clarify the first advan-
tage, we present a simple optimization procedure and show how to obtain “optimal” initial
conditions for (11). Our optimization is based on minimizing the beam width at (t, s) with
P0 = i. In general, the best choice of Q0 will vary with both t and s. Consider a possi-
bly complex-valued Q0 = qr + qi i with qr > 0, so that condition (16) is satisfied. To find
Qmin

0 (t, s) corresponding to the narrowest possible beam, we write by (19) and (21),

Qmin
0 (t, s) = argmin

Q0

w(t, s) = argmax
Q0

=P (t, s)

Q(t, s)
= argmax

qr,qi

qr(QI PII − PI QII)

q2r Q
2
I + (qiQI +QII)2

. (23)

We consider two cases. First, we let Q0 be real-valued and set qi = 0. We then obtain qr by
solving the minimization problem (23). The optimal Q0 is

Qmin
0 (t, s) =

∣∣∣∣QII(t, s)

QI(t, s)

∣∣∣∣ , (24)
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which gives the minimal half-width at (s, t)

wmin =

(
4|QIIQI |

ω(QI PII − PI QII)

)1/2

.

Next, we allow Q0 to be complex-valued. In this case, we can make the beam width arbitrarily
small. Indeed, for any qr > 0 and α ∈ R, we can select

Q0 = qr − (1− α√qr)
QII(t, s)

QI(t, s)
i. (25)

and obtain the half-width

w(t, s) =

(
2qr

Q2
I + α2Q2

I

ω(QI PII − PI QII)

)1/2

,

which can be made as small as we like by taking qr small. As qr → 0, we get an infinitely
wide initial beam, however. Still, a complex-valued Q0 gives more control over the beam
character. See Section 4 where we easily improve the accuracy of the approximate solutions
by choosing a complex-valued Q0, which generates narrower, more accurate, beams compared
to a real-valued Q0.

3. Wavefront-based Gaussian beam method

The usual way to compute high frequency wave fields by Gaussian beam summation is
based on standard ray tracing, where the central rays of the beams are traced individually
by solving the ODE systems (10) and (11). The main problem with ray tracing is that it
may produce diverging rays that fail to cover the computational domain. In this case, one
needs to increase the number of rays, which in turn increases the computational cost.

In standard geometrical optics, the problem of diverging rays can be overcome by instead
using so-called wavefront methods [30, 31, 34, 42]. They are related to ray tracing, but instead
of tracing a sequence of individual rays, a wavefront is evolved in physical or phase space
according to the ODE formulations. In physical space, a wavefront at a travel-time t ≥ 0 is a
curve {x(t, s) | φ(x(t, s), s)− φ(x0(s), s)− t = 0}, i.e. an iso-phase line. Wavefront methods
provide a simple mechanism for controlling the resolution and accuracy of the numerical
approximation.

Using wavefront methods with Gaussian beams is not as straightforward, since the beam
method strongly depends on the distribution and width of the beams at the initial front. To
clarify this difficulty, let us consider a beam’s central ray x∗(t) starting at x∗(0). As discussed
in Section 2.5, it is not wise to choose the same initial conditions (Q0, P0) for all travel-times
t > 0 along the ray. A fixed initial data set generates different beam widths at different
points on the central ray. Consequently, at some travel-times along the ray, we may get very
wide beams, which generate very large errors in Taylor approximations. A naive way to get
around this problem is to compute (Q(t), P (t)) at each travel-time and for each individual
beam use a particular set of initial data that generates the narrowest beam or the smallest
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error at that particular time and for that particular beam. This, however, requires solving
many ODE systems (11) with many different initial data, which is prohibitively expensive.
We therefore need an efficient strategy to allow the computation of (Q(t), P (t)) at different
travel-times t > 0 with different initial conditions (Q(0), P (0)).

We introduce a Lagrangian wavefront-based Gaussian beam method, in which a wavefront
is evolved in phase space (x, θ) by solving the ODE systems (10) and (11). The proposed
method consists of three major steps. First, in order to overcome the problem of diverging
rays in the ray tracing method, we use an automatic refinement criterion to keep the fronts
uniformly sampled, similar to [34]. This will result in an adaptive front tracking scheme. Sec-
ondly, in order to account for the problem with initial conditions explained above, we propose
an efficient strategy based on the evolution of canonical solutions (QI , PI) and (QII , PII). Fi-
nally, we perform a post-processing step based on the Gaussian beam summation technique
to compute the wave field at any desired receiver point. We will now explain the three steps
of the algorithm in more detail.

3.1. Adaptive front tracking

We let the initial phase space wavefront be (x0(s), θ0(s)) parameterized by s, and denote
as before the exact phase space wavefront at travel-time t by (x(t, s), θ(t, s)). Next, we
introduce the numerical approximations

xnj ≈ x(n∆t, j∆s), θnj ≈ θ(n∆t, j∆s),

where (j, n) represents a marker (grid point) on a front at t = n∆t. Note that the time
and space steps, ∆t and ∆s, do not need to resolve the high frequency wave lengths, and in
general they are much bigger than 1/ω. We initialize N0 ∈ N markers on the initial front at
t = 0 as (x0

j , θ
0
j ) = (x0(j∆s), θ0(j∆s)), with j = 1, 2, . . . , N0. Each marker is then updated

by a standard ODE-solver, such as the Runge-Kutta method, applied to the ray tracing
system (10). See Figure 2 (left).

Figure 2: Wavefront construction. Markers (�) on the wavefront are propagated along the ordinary rays
(left). New markers are inserted to keep a uniform sampling of the front (middle). The information carried
by markers are interpolated onto a regular grid (right).
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When the resolution of the wavefront deteriorates, new markers are inserted and computed
by interpolation from the old markers. We add a new marker (j + 1/2, n) between markers
(j, n) and (j + 1, n) if

|xnj+1 − xnj | ≥ δx or |θnj+1 − θnj | ≥ δθ,

for some tolerances δx and δθ. See Figure 2 (middle). Eventually, we will have Nw ≥ N0

markers on the last wavefront.
In order to illustrate the importance of the above adaptive refinement strategy, we perform

a simple numerical test carried out both with and without adaptive refinement. A plane wave
propagates into the domain from the left boundary. Figure 3 shows the central rays (top
row) and θ versus y along the front t = 3.5 (bottom row) obtained by the wavefront method.
As it can be seen, in the case of no refinement (left column), the solution is poorly resolved
in places where the rays diverge. However, the solution is well resolved if refinement is
performed (right column).

−2 −1 0 1 2
−1

−0.5

0

0.5

1

y

θ

−2 −1 0 1 2
−1

−0.5

0

0.5

1

y

θ

Figure 3: A plane wave propagates into the domain from the left boundary. Top figures show the beam
central rays computed without refinement (left) and with refinement (right). Thick curves are the fronts at
t = 3.5. Bottom figures show the corresponding θ functions versus y along the front t = 3.5. In places where
the rays diverge, the non-refined solution is poorly resolved, while the refined solution is uniformly resolved.

13



Note that inserting new markers on the fronts in the wavefront method is analogous to
inserting new rays in the ray tracing method. However, here, the rays are inserted only
in places where the resolution deteriorates. These rays are traced only after this point in
time, and there is no need to compute them from the source, as is done in the ray tracing
method. Therefore, the wavefront method is computationally faster than the ray tracing
method, while keeping the same accuracy.

3.2. Evolution of canonical solutions

In parallel with computing (xnj , θ
n
j ), we also compute the corresponding real-valued canon-

ical functions (QI
n
j , PI

n
j ) and (QII

n
j , PII

n
j ) by solving the dynamic ray tracing systems (20)

with (xnj , θ
n
j ) and fixed initial conditions. When new marker points are added by interpo-

lation, new values of (QI
n
j , PI

n
j ) and (QII

n
j , PII

n
j ) are also interpolated and added. We note

that via (21) we can recreate beams with any initial data P0 and Q0 from these two canonical
solutions. We save V n

j := (xnj , y
n
j , θ

n
j , QI

n
j , PI

n
j , QII

n
j , PII

n
j )> ∈ R7 for each grid point (j, n).

3.3. Post-processing by Gaussian beam summation

Now assume we want to compute the wave field at a set of receiver points {xR} on the
front x(t, s) at t = t∗ = n∗∆t. We first select the initial spacing h of the beams, the beam
parameters (Q0, P0), and the weights ψ such that the wave source u0 is well approximated on
the initial front and such that the beam widths on the front at t = t∗ are small (see Sections
2.4 and 2.5). The initial spacing h determines the number of beams NGB ∝ 1/h and gives
a uniform discretization of the initial front with the grid points {sm}, where sm = mh and
m = 1, . . . , NGB. For instance, if the source is given on the vertical line {x |x = 0, y ∈ [0, 1]},
we get NGB = 1 + 1/h and obtain x0(sm) = (0, sm − h). We note that h ∼ 1/

√
ω � ∆s so

the number of such grid points NGB is in general much higher than the number of marker
points Nw on the wave front at t = t∗.

Each grid point on the initial front represents the initial point of a beam’s central ray. To
find the corresponding values of x, θ, P,Q at t = t∗, we do not need to recompute the
rays. Instead, we find approximations of x(t∗, sm), θ(t∗, sm) and the canonical solutions
QI(t

∗, sm), PI(t
∗, sm), QII(t

∗, sm), PII(t
∗, sm), with m = 1, . . . , NGB, by interpolating the

already computed values V n∗
j with j = 1, . . . , Nw. The complex-valued numbers Q(t∗, sm)

and P (t∗, sm) are then obtained from (21). Finally, the total wave field at the receiver points
{xR} is calculated by (14).

As an alternative way, if we need the wave field on a regular grid, we can first interpolate
V n
j values down on a regular Cartesian grid. See Figure 2 (right). We then use the same

procedure as above, but instead of a wavefront, we consider a line passing the receiver point.

Remark 1. We emphasize that a main advantage of the proposed algorithm based on the
canonical solutions (QI , PI) and (QII , PII) is that at different receivers, we can use different
initial data (Q0, P0) to evaluate the solution at no extra cost. Therefore, optimization, based
on the minimization of either the beam width or the error, is possible, and we can efficiently
approximate the field at different receivers using optimally chosen beams. Moreover, since
the geometrical optics solutions can be obtained by QI , it is practically possible to construct
a hybrid algorithm and use Gaussian beam solutions only around caustics.
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To summarize the above steps, we can divide the wavefront-based Gaussian beam al-
gorithm, outlined in Algorithm 1, into two parts: (I) the computation of wave fronts and
canonical solutions; and (II) the computation of Gaussian beams and the wave field. The cost
of computing the wavefront and the V n

j quantities is independent of ω. Since the beams are
localized, it is possible to discard most of them in the sum (14); only a few of them contribute
to the field at each receiver point. The cost to compute the field is therefore typically O(1)
per receiver point.

Algorithm 1 Wavefront-based Gaussian beam method

Part I. Calculate the front t = T and the canonical solutions.

0. Given a wave source u0 on the initial front x0(s) with initial propagation angle θ0(s).
1. Discretize the initial front into N0 grid points and obtain N0 initial data for (10).
2. Evolve the front until t = T by solving N0 ODE systems (10) with adaptive refinement.
3. In parallel with 2, solve N0 ODE systems (20) and compute canonical solutions.
4. Collect the ODE solutions {(xj, θj, QIj, PIj, QIIj, PIIj)}Nw

j=1 at t = T in VNw .

Part II. Post-processing.

0. Given a set of receiver points {xR} on the front t = T .
1. Choose initial spacing h and the number NGB of beams, see Example 1.
2. Interpolate VNw for Nw beams to find VNGB

for NGB beams.
3. Find (Q,P ) for NGB beams, based on proper choices of (Q0, P0), see Example 2.
4. Sum up the contribution of NGB beams to calculate the wave field at the receivers.

4. Numerical examples

In this section, we perform two numerical tests and employ the wavefront method de-
scribed in Section 3 to compute the high frequency wave fields. In both tests, we consider a
rectangular computational domain D = [0, 4]×[−2, 2]. The wave field is generated by a plane
wave which propagates into the domain from the left boundary on the y-axis and orthogonal
to the boundary. Consequently, we obtain the initial conditions for the ray tracing equations
(10) as x0(s) = (0, s) and θ0(s) = 0. The plane wave is refracted as it propagates through the
domain with a variable speed of propagation and form different types of caustics, including
cusps and folds. In all computations, we employ the fourth-order Runge-Kutta method for
solving the ODE systems (10) and (20). We use a fixed initial spacing of Gaussian beams
h = 0.005, which gives NGB = 1 + 4/h = 801 beams. Unless stated otherwise, we use a fixed
set of initial parameters (Q0, P0) = (1, i).

4.1. Numerical test 1

We consider the following speed of propagation

c(x, y) =
1

1 + e−y2
, (x, y) ∈ D.
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The plane wave propagating from the left boundary is refracted inside the domain, and a
cusp caustic and two fold caustics are formed. Figure 4 shows the central rays of the Gaussian
beams and the corresponding wavefronts.
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(a) Central rays
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(b) Wavefronts

Figure 4: Test 1. Central rays and wavefronts generated by a plane wave propagating into the domain from
the left boundary. The wave field is refracted inside the domain and forms a cusp and two fold caustics.

The modulus of the total wave field computed by the wavefront method along the line
x = 1 (before caustics) is shown in Figure 5(a) for two different frequencies ω = 100, 200. We
use the standard GO solution, which has an error of order O(ω−1), as a reference solution. As
can be seen, the solution obtained by the Gaussian beam method converges to the solution
obtained by geometrical optics as the frequency increases. Figure 5(b) shows the maximum
pointwise difference between the Gaussian beam solution and the geometrical optics solution.
The difference is proportional to ω−1 and agrees with the convergence rate obtained in [17].

As mentioned in Section 3, in order to find the solution along the line x = 1, we can
interpolate the solution along the wavefronts down on the line x = 1. However, here, we
employ a paraxial formulation of the governing ODEs (10) and (20) in which the variable
x is a time-like independent variable. In this setting, by choosing x = 1 as the final value
of the independent variable, we obtain the solution along the line x = 1 without requiring
interpolation.

Figure 6(a) shows the total wave field along the line x = 1.572 where a cusp caustic is
formed at y = 0. A zoomed view at the caustic is shown in Figure 6(b). Unlike the amplitude
of the geometrical optics solution, which is unbounded at the caustic, the amplitude of the
Gaussian beam solution is bounded and increases as the frequency increases. The rate of
increase is shown in Figure 6(c) and agrees with the Maslov theory, which predicts |u| =
O(ω1/4) at a cusp caustic. See e.g [43].

Figure 7 shows the total wave field along the line x = 2.5 (after the cusp where two folds
are formed). Note that in between the fold caustics, there are multiple arrival times, and
the amplitude of the wave field is very oscillatory. A zoomed view around the fold caustic is
shown in Figure 7(b). While the amplitude of the geometrical optics solution is unbounded
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Figure 5: Test 1. (a) Magnitude of the solution obtained by the wavefront Gaussian beam method with
different frequencies and by geometrical optics at x = 1. (b) The logarithmic scale of the maximum pointwise
difference between the Gaussian beam solutions and the geometrical optics solution. The difference is of
order O(ω−1).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

y

 

 

|u
GO

|

|u
GB

| (ω=100)

(a)

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
4

5

6

7

8

9

10

y

 

 

|u
GO

|

|u
GB

| (ω=400)

|u
GB

| (ω=200)

|u
GB

| (ω=100)

|u
GB

| (ω=50)

(b)

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

ω

 

 

|U
GB

|

ω
1/4

(c)

Figure 6: Test 1. (a) Absolute value of the wave field |u|, computed by GO and GB methods, along the line
x = 1.572. A cusp caustic is formed at (x, y) = (1.572, 0). (b) A zoomed view of the solution magnitude close
to the cusp caustic. While the amplitude of the GO solution is unbounded at the caustic, the GB solutions
are bounded and increase as the frequency increases. (c) Rate of increase agrees with Maslov theory.

at the caustic, the amplitude of the Gaussian beam solution is bounded and increases as the
frequency increases. The rate of increase is shown in Figure 7(c) and agrees with the Maslov
theory, which predicts |u| = O(ω1/6) at a fold caustic. See e.g [43].

Optimization. As mentioned in Section 2.5, a main advantage of the proposed wavefront
algorithm is that by using the canonical solutions (QI , PI) and (QII , PII), we can compute
the solution at different points of the domain with different initial data (Q0, P0) at no extra
cost. It provides a simple and fast mechanism for optimizing the solution. In order to verify
this, we compute and plot the magnitude of the solution along two different lines x = 1 and
x = 1.572 in the following way, see Figure 8. First, we use different fixed values Q0 = 1, 2, 1−i
with P0 = i for the initial data and calculate the corresponding solutions. Next, we use the
approach discussed in Section 2.5 and obtain optimal complex-valued initial data, which
generate beams with small widths along the lines x = 1 and x = 1.572. In particular, we
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Figure 7: Test 1. (a) Absolute value of the wave field |u|, computed by GO and GB methods, along the line
x = 2.5. Two fold caustics are formed at y = ±0.641 along this line. (b) A zoomed view of the solution
magnitude close to the fold caustic at (x, y) = (2.5, 0.641). While the amplitude of the GO solution is
unbounded at the caustic, the GB solutions are bounded and increase as the frequency increases. (c) Rate
of increase agrees with Maslov theory.
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Figure 8: Test 1. The magnitude of the Gaussian beam solution with different initial data along the lines
x = 1 (left) and x = 1.572 (right). We select the frequency ω = 100.

select Q0 = 1 − q i and P0 = i, where q = 0.78QII/QI along x = 1 and q = 0.6QII/QI

along x = 1.572. We note that Q0 is no longer fixed and varies for different points along
the lines x = 1 and x = 1.572, because the canonical solutions vary. The optimally chosen
complex-valued parameters generate narrower beams compared to those generated by the
fixed parameters. Figure 9 shows, for instance, the half-width of the beams for the fixed
parameter Q0 = 1 and the optimal parameter Q0 = 1 − q i. As shown in Figure 8, by
choosing different initial data at different points, it is possible to improve the solution. For
instance, the difference compared to geometrical optics, measured in relative L2-norm at
x = 1.572 and along y ∈ [−1.4,−0.6] is reduced from 10% when Q0 = 1 to less than 1% by
choosing the optimal initial parameters.
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Figure 9: Test 1. The half-width of the Gaussian beams solution with different initial data along the lines
x = 1 and x = 1.572. We select the frequency ω = 100.

4.2. Numerical test 2

As a second test, we choose the following speed of propagation

c(x, y) = 1 + 0.5 e−2 ((x−0.5)
2+y2), (x, y) ∈ D.

In this case, the plane wave forms two cusp caustics followed by four fold caustics. Figure 10
shows the central rays of the Gaussian beams and the corresponding wavefronts.
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Figure 10: Test 2. Central rays and wavefronts generated by a plane wave propagating into the domain from
the left boundary. The wave field is refracted inside the domain and forms two cusp and four fold caustics.

The total wave field for different frequencies along the line x = 1 and the maximum
pointwise difference between the Gaussian beam solution and the geometrical optics solution
are shown in Figure 11. The difference is proportional to ω−1, as expected.

Figure 12(a) shows the total wave field along the line x = 2.125, where two cusp caustics
are formed at y = ±1.352. A zoomed view close to the cusp caustic at (x, y) = (2.125, 1.352)
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Figure 11: Test 2. (a) Magnitude of the solution obtained by the wavefront Gaussian beam method with
different frequencies and by geometrical optics at x = 1. (b) The logarithmic scale of the maximum pointwise
difference between the Gaussian beam solutions and the geometrical optics solution. The difference is of
order O(ω−1).

is shown in Figure 12(b), and the rate of increase of the Gaussian beam solutions as the
frequency increases is shown in Figure 12(c). As it can be seen, we observe that |u| = O(ω1/4),
which is in agreement with the Maslov theory.
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Figure 12: Test 2. (a) Absolute value of the wave field |u| along the line x = 2.125. Two cusp caustics
are formed at y = ±1.352. (b) A zoomed view of the solution magnitude close to the cusp caustic at
(x, y) = (2.125, 1.352). While the amplitude of the GO solution is unbounded at the caustic, the GB solutions
are bounded and increase as the frequency increases. (b) Rate of increase agrees with Maslov theory.

Optimization. Similarly to numerical test 1, we use complex-valued initial data, which
generate beams with small widths along the lines x = 1 and x = 2.125. We compute and
plot the magnitude of the solution along these two lines in the following way, see Figure 13.
First, we use the fixed values Q0 = 1, P0 = i for the initial data and calculate the solution.
Next, we use the approach, as discussed in Section 2.5, and obtain complex-valued initial
data Q0 = 1 − q i and P0 = i, where q = 0.45QII/QI along x = 1 and q = QII/QI along
x = 2.125. These complex-valued parameters generate narrower beams compared to those
generated by the fixed parameter Q0 = 1, see Figure 14. As shown in Figure 13, by choosing
different initial data at different points, it is possible to improve the solution. For instance,
the difference compared to geometrical optics, measured in relative L2-norm at x = 2.125

20



and along y ∈ [−1, 1] is reduced from 14% to 7% by choosing the optimal initial parameters.
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(a) x = 1, q = 0.45QII/QI
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Figure 13: Test 2. The magnitude of the Gaussian beam solution with different initial data along the lines
x = 1 (left) and x = 2.125 (right). We select the frequency ω = 100.
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Figure 14: Test 2. The half-width of the Gaussian beams solution with different initial data along the lines
x = 1 and x = 2.125. We select the frequency ω = 100.

5. Conclusion

We have proposed a novel wavefront-based Gaussian beam method for computing high
frequency wave propagation problems. The method tracks a front of two canonical beams
with two particular initial values for width and curvature. Using the two sets of canonical
solutions along the front, we can efficiently recreate Gaussian beams with any arbitrary
initial data on the initial front. This provides a simple mechanism to include a variety
of optimization processes, including error minimization or beam width minimization, for a
posteriori selection of optimal beams’ initial parameters, which give more accurate solutions.
The performed numerical examples illustrate the accuracy, efficiency, and the flexibility of
the method in selecting initial parameters.

Since the geometrical optics solution can be recovered by the first set of canonical so-
lutions, it is possible to design a hybrid method which switches between the geometrical
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optics and Gaussian beam solutions smoothly. Such a hybrid method would substantially
increase the efficiency of the Gaussian beam wavefront method, because away from caustics,
the computation of Gaussian beams, which requires a post-processing step, is not needed.
The construction of a hybrid algorithm based on an optimal selection of initial parameters
is the subject of our current work and will be presented elsewhere.
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