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Abstract

In this paper we analyse the Waveholtz method, a time-domain iterative method
for solving the Helmholtz iteration, in the constant-coefficient case in all of
R?. We show that the difference between a Waveholtz iterate and the outgoing
Helmholtz solution satisfies a Helmholtz equation with a particular kind of forc-
ing. For this forcing, we prove a frequency-explicit estimate in weighted Sobolev
norms, that shows a decrease of the differences as 1/4/m in terms of the iteration
number n. This guarantees the convergence of the real parts of the Waveholtz
iterates to the real part of the outgoing solution of the Helmholtz equation.
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1 Introduction
The Helmholtz equation
V- (AVu) 4+ wiu = f, in Q, (1)

subject to appropriate boundary conditions is a useful model for a variety of real-world
wave phenomena, such as the propagation of electromagnetic, underwater, or seismic
waves. In this paper we consider an iterative time-domain method called Waveholtz
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[1] for numerically solving the Helmholtz equation. In particular, we present a proof
of convergence when the domain € is the full space R?. Numerical approximation
of solutions to the Helmholtz equation presents several difficulties, especially when
the frequency parameter w is large. Discretisation of such equations produces large
linear systems of equations, and solving these systems by use of Krylov space meth-
ods is relatively difficult, as the matrices associated to the systems are indeterminate
and large. Furthermore standard preconditioners do not work well; see for instance
[2]. These issues have motivated the study of specialised preconditioners of the linear
systems, including among others shifted Laplacian preconditioners [3], the analytic
incomplete LU preconditioner [4], sweeping preconditioners [5] as well as methods
based on domain decomposition [6-8]. Despite the progress that has been made, diffi-
culties remain especially in the high-frequency context, for interior problems, and for
problems with high-contrast material parameters. Efficient implementation of high-
order versions of the preconditioned methods on large computers is also a challenge.
The Waveholtz method, introduced in [1], aims to alleviate some of these issues by
transferring the Helmholtz equation into a time-domain setting and working with an
associated wave equation. Potential benefits of this approach include the existence
of memory-lean, parallelizable, and high-order provably stable numerical methods for
solving the wave equation. The time-domain approach for solving Helmholtz has also
been used in the Controllability Method [9] and for preconditioning [10].

The Waveholtz method is an iterative method aimed at computing a solution to the
Helmholtz equation by finding the fixed point of an affine operator, the evaluation of
which requires solving an associated wave equation. Indeed, the method is motivated
by the observation that a solution u to the Helmholtz equation formally defines a fixed
point of the map II given by

T
IMv(x) :—/O K(t)w(z,t)dt, (2)

where T' = 27 /w is the period corresponding to the frequency parameter w and the
function w(z,t) is the solution to the associated wave equation

O*w =V - (*(x)Vw) — f(x) cos(wt), (x,t) € Q x (0,T),
w(zx,0) = v(z), x €, (3)
5‘tw(x,0) = 07 €T € Q,

with boundary conditions consistent with those of (1). The function K(t) is a kernel
given by

2 1
K(t) = f(cos(wt) - 1). (4)
A function u that solves (1) then formally defines a fixed point of II, since the function

v(z,t) = u(z) cos(wt) formally solves the initial-value problem (3) for v(z) = u(x) so
that one would have

T
IMu = u(x) /0 K(t) cos(wt)dt = u. (5)



In fact, the choice of K (t) is made precisely so that the integral over (0,T) of cos(wt)
against K (t) will equal 1. The Waveholtz method then consists of iterating the map
IT from the starting point u° = 0 to find a sequence of functions

u” ="’

which converges towards the fixed point u that solves the Helmholtz equation (1).

In this paper we will analyze the convergence of the Waveholtz method. Earlier
work on convergence has considered bounded domains. In [1] it is shown for homoge-
neous Dirichlet or Neumann boundary conditions and variable wave speed c(x) that
the iterates converge in H'-norm with convergence rate 1 — O(3?) to the solution of
the Helmholtz equation, where d is the relative gap between the Helmholtz frequency
w and the nearest eigenvalue of the operator —V - (¢2?V). Additional convergence
results for the Dirichlet and Neumann case were given in [11]. The proofs of these
results have relied on the possibility to decompose functions of interest into a sum of
eigenfunctions of the operator —V - (c?V), a strategy which is naturally only available
for domains and boundary conditions where the existence of an orthonormal basis of
eigenfunctions is guaranteed. This is the case for Neumann or Dirichlet boundary con-
ditions. However, such systems of eigenfunctions do not exist for instance in the case
of bounded domains with impedance or absorbing conditions. In these cases there are
no theoretical convergence results, except in one dimension [11]. Nonetheless, there is
ample numerical evidence of the convergence of the Waveholtz method in more gen-
eral settings; convergence has been studied numerically for a variety of geometries and
boundary conditions [1, 12—-14]. The observed convergence however remains to be fully
explained theoretically.

In this paper we study convergence of Waveholtz for the constant-coefficient
Helmholtz equation set in the full space R?,

Au + w?u = f(z), z € RY, (6)
subject to the Sommerfeld condition

lim |x|% (0r —iw)u(z) = 0.
|z]| =00

This model problem shares some similarities to the case of bounded domains with
impedance or absorbing boundary conditions. Crucially neither of these two kinds of
problems allows for decomposing functions in L? into eigenfunctions of the operator
—V - (3(x)V). The associated wave equation is in this case

02w = Aw — f(z) cos(wt), (z,t) e RY x (0,7T),
w(z,0) = v(x), z € RY, (7)
Oyw(z,0) = 0, r € R

The main result of this paper is Theorem 3 which shows a frequency explicit estimate of
the difference between real parts of the Waveholtz iterates and the outgoing solution of



(6). In particular, these differences decreases as n~2 where n is the iteration number,
which implies that the Waveholtz method applied to (6) produces iterates whose real
parts converge to the real part of the outgoing solution of (6). Note that solutions to
(1) and (6) are not in L?*(R?). The results in Theorem 3 are therefore given in norms
for weighted Sobolev spaces. This introduces some technical difficulties as the domain
of the Waveholtz operator II needs to be extended to these spaces in the analysis.
The paper is organized as follows. First in Section 2 we introduce some notation,
terminology, and results that are used in the proofs that follow. Second, in Section
3 we state and prove our convergence result for the Waveholtz iteration. The proof
in Section 3 makes use of an estimate for solutions of particular kinds of Helmholtz
equations. The statement and proof of this estimate is found in Section 4. Finally, the
proof of a technical result used in the proof of Theorem 3 is found in Appendix A.

2 Preliminaries

It is well-known that the Helmholtz equation on R in general does not have solutions
in the usual Sobolev space H'(R%), so that in order to analyse the Helmholtz equation
on an unbounded domain it is required to define appropriate weighted function spaces.
The approach that we will take is that of Agmon in [15], in which the following spaces
are defined:

Definition 1 The weighted LP space LE(R?) is defined by
d
LERY) = {1+ 142 || o gty < o0}

where (z) := (1 + |x\2)_1/2. For 1 < p < oo the vector space is a Banach space with norm

£l e ray == £ () | o (met)-
The weighted Sobolev spaces Hf (Rd) are defined similarly by

kmd

Hg (R ) = {f : HfHHf(Rd) < OO},

with norm .

2
£ 1| o ety = ( > ||a“f||%g<w>) :

|| <k

We will denote by f the Fourier transform of f € L?(R%), using the convention

f&) = /Rd f(z) exp(—2mitx)dz.

We also denote by C§°(Q2) the set of compactly supported smooth functions on the
open set 2 C R%. The reader may recall that there are several equivalent norms one
might use to define the spaces H*(R?). We will occasionally use the norm given by
the relationship

1F vy = 166 F(E) | 2 ray (8)



for k € R. Using this convention it becomes clear from Definition 1 that f € H*(R%)
precisely when f € L2(R9). We also note that for sy < s1, we have

d d
L%, (RY) € L, (RY),

where the embeddings are continuous. This provides some intuition about the spaces:
the larger the value s is, the more restrictive the space L%(R%) becomes, as in order
for the norm || - || 2(ra) to be finite a function in L?(R4) must decay rapidly enough
to compensate for the weight (x)*, which grows on the order of |z|*. The case s = 0
produces the standard L2-space, whereas a negative weight —s allows for a certain
growth of the functions f € L2 (R?), which can be controlled by the weight (x)~*.
We shall also make use of the following trace estimate.

Proposition 1 (Theorem 9.4 in [16]) Suppose Q@ C R is an open bounded subset such that
its boundary 0 is a (d — 1)-dimensional smooth manifold. Then if s > % the trace operator

T:H*(Q) — Ho™ 2 (092) is bounded, satisfying

ol s oy < Ellvllis @),

for some K € RY and every v € H*(Q).

The following Proposition demonstrates the usefulness of the spaces H*(R%) when
studying the Helmholtz equation.

Proposition 2 (Theorem 4.1 (i) in [15]) Suppose s > %, and let
R(z) = (A —2)" " LARY) — HZ,(RY),

be the resolvent operator of —A. For any w? € R the limit

lim R(z) =: R(w2),

zZ—w
Jm{z}>0
exists as an element of the space of bounded linear operators between the spaces LE (Rd) and
H? (RY), endowed with the uniform operator topology.

The proposition shows that any source term f € L2(R?) in the Helmholtz equation
on R? produces a solution u = R(w?)f € H2 (R?). Solutions u defined in this way
will be called outgoing. These solutions are precisely those satisfying the Sommerfeld
condition

d—1 .
lim |z|72 (9, — iw)u(z) = 0.
|z]|— o0
That the limit R(z) — R(w?) in the proposition exists in the uniform operator
topology means that
IR(2) = R(w?)|| — 0,
as z — w? with z such that Jm{z} > 0, where | - || here denotes the standard norm
on the space of bounded linear operators from L2(R?) into H? ,(R%). This is a version



of the so-called limiting absorption principle: the operator —A —w? has a well-defined
resolvent which can be understood as the limit as o — 0% of resolvents of the type

(—A—(w?—ia))

3 Convergence of Waveholtz

In the section we will prove the convergence of Waveholtz iterates in the open case
(6) where the Helmholtz solution is sought in the whole space R?. The main result
is Theorem 3 which gives a frequency-explicit estimate of the real part of the error
in iteration n. In what follows we denote by f the forcing used in (6) and by u the
corresponding outgoing solution. We denote by u™ the the Waveholtz iterates defined
by
™t =TI, u’(z) =0,

with IT as in (5). Each iterate produces a corresponding error e” defined by e” = u” —u.
With this we are ready to state our convergence result.

Theorem 3 Suppose s > g and f € Lg(]Rd). Then for w > 1 the Waveholtz iterates u™

converge in HL j(RY)-norm to the real part of the outgoing solution u to (6), with the error
e at the nth iteration satisfying

9 _1
1Re{e" M2 may < Co®* 72| fll L2 gy,
where C is independent of f, u, w and n. If also f € H} (Rd) we have the estimate

_ _1
1Refe" Higpn ey < Cw®'n 72| fll 1 may,

for the same C.

Remark 1 The frequency-explicit result in Theorem 3 can be used to estimate how the con-
vergence rate depends on w. We note first that the solution u also depends on w so to be able
to compare errors for different frequencies we will choose the source f of the form

34d
flx) =w = S(wa),
with § € H} (R™) for some s > 3/2. In the high-frequency regime w — oo, this source

concentrates in the origin and generates a solution of size O(1) in w for constant coefficients;
see for instance scaling discussions in [17]. Following the same derivation as in Section 4.1.3

we get g = W S(z) and the estimate (35) for g is then replaced by

d—1
gl 2 ray = T 1S 12 grary-
The final estimate becomes
_1 1 _1
[Re{e"Hizz (ray < Cw’ 2NL(B")ISIIL2(Ray < Cw®™ 20" 2||S]| L2 (Ray.-

Since the solution is O(1) in w this error corresponds to the relative error. It thus scales as
w* 121/ 2 and to reduce it below a fixed given tolerance when w grows, n needs to scale
as n ~ w?*~!. Since s must be larger than 3/2 in Theorem 3, the best scaling that can be

n

proved is n ~ w2 However, in numerical computations on finite domains with absorbing

type boundary conditions, the scaling n ~ w is typically observed. We therefore conjecture

that the optimal limit for s in Theorem 3 is actually s > 1, as this would give the scaling
1+

n~w



Remark 2 To further understand the error we suppose that the source S has compact support
in |z] < 2m, i.e. that f has compact support in |z| < T = 27/w. We then note that because
of finite speed of propagation, the Waveholtz approximation u" (z) will be identically zero
outside the the ball |z| < (n 4 1)T. The total error in u" will therefore be composed of
an O(1) exterior error, outside that ball, and an interior error, inside the ball. Assuming
lu| ~ 1/]z|(?=1)/2  the exterior error will be

1
1 5 _ 1
< Al 23dr>2 (AT g

IIun—ulles<|x|><n+1>T>~</(n+1)T pd—1 Vas—1

The exterior error provides a lower bound for the total error. Comparing it to the upper
bound of the total error derived in the previous remark, we note that the two errors scale
in the same way with w and n when s = 1. The scaling of the error estimate would thus be
optimal in this case, but again require that s > 1 was the limit in Theorem 3.

3.1 Proof of Theorem 3.1
The proof of Theorem 3.1 is given in two steps. First we show that the error e™ is the
outgoing solution to a Helmholtz equation

Ae™ +wie" = F,, 9)

with a source term Fj, of a certain form which will be given shortly. Second, we apply
an estimate derived in Section 4 for the Helmholtz equation with this type of source
term, which allows us to estimate e”.

3.1.1 The error equation

To derive (9) we show a sequence of short lemmata.

Lemma 4 Suppose g € Lz(Rd) and a > 0. Then a solution to

Av + W + iwav = g,
satisfies v € H?(RY).

Proof 1f we apply the Fourier transform to the equation we find

be) = 9©)
o8 = —|€12 + w? +iaw’
By the Plancherel theorem

2 B N2 12 e (1+¢%)? 12
o0y = [+ 16715006 = [ il

< Clonw) / 1§12dg = Cla,w) lgll32 -
]Rd

Since ||g|| 2 (ray < oo by assumption, we conclude that v € H2(RY). O



Key to the analysis of the Waveholtz iteration is the operator S defined on C§°(R9)
by

T
Sv(x) :/ K(t)w(z,t)dt, (10)
0
where w(x,t) solves the initial-value problem
02w = Aw, (z,t) € RY x (0,T),
w(z,0) = v(x), r € RY (11)
Oyw(z,0) = 0, r € R

We note that the operator S is a special case of the operator II, corresponding to
a source term f = 0 on the domain R?. In the analysis of the Waveholtz iteration
on an open bounded domain € it is sufficient to find a continuous extension of this
operator into L?(2) or H'(Q), which is relatively simple to do. In the unbounded case,
however, we will need to extend the operator S into the weighted spaces in which we
expect to find our solutions to the Helmholtz equation. The fact that this is possible
is demonstrated in the next proposition.

Proposition 5 The operator S extends uniquely to a bounded linear operator from Lg (Rd)
to L? (]Rd) and from Hg’(Rd) to Hg)(Rd) for all s € R and postive integers p. Furthermore,
functions v in L?(R?) satisfy

Su(€) = B(IEN), (€) (12)

where -
BN = / K (t) cos(M)d. (13)
0

Provided the source term in (6) satisfies f € L% (Rd) and t > %, the operator 11 also extends

as an operator on HP(R?), and
v = S(v — u) + u, (14)
for the outgoing solution u to (6).

The proof of this result is given in the Appendix. We also note that the property
(14) implies that w is a fixed point of I, since

Mu=S(u—u)+u=80+u=u,
as S is a linear operator. Furthermore, since e”*! = ITu"™ — u by definition, we find
Se™ =S(u" —u) =Mu"™ —u = e, (15)

We now show that the operator S commutes with the Laplace operator for sufficiently
smooth functions.

Lemma 6 Ifv € H>(R?), then
(AoS)v=(SoA)w



Proof By Proposition 5 we know that for any v € H?(R%) we have Sv € H?(R?) as well.
This means that ASv is well-defined and lies in LQ(Rd). Similarly, since v € H?(R?) we have
Av € L*(R?) so that by Proposition 5 we have S(Av) € L%(R%). We want to show that
S(Av) = A(Sw) as elements of L?(R?). As the Fourier transform is an isometry of the space
L%(RY) onto itself, this equality holds precisely if the corresponding equality in the Fourier
domain,

(S(80))(€) = (A(Sv)(©),
holds. Let us investigate this. On the one hand Proposition 5 tells us that
(A(S))(€) = ~[¢1*5u(€) = —[¢*B(1EDb(©),
whilst on the other we have
(S(Av))(&) = BUlehAv(e) = —I¢I*BEND(E).

We see that the two functions have the same image under the Fourier transform, implying
that they must be equal. This concludes the proof. O

Lemma 7 Suppose s > %, g€ Lg (Rd). Denote by v and w the outgoing solutions to
Av + w?v = g,

and
Aw + wiw = Sg.

These exist and lie in HES(Rd)A Moreover, w = Sv.

Proof Let us denote by vo the solution to
Avg + w2va + iwave = g.
Lemma 4 tells us that these vy lie in H2(R?), so that we by Lemma 6 find
S(Ava + w2va + iwava) = ASvq + w28va + iwaSva = Sg.
That is, the function wa = Sva satisfies
Awg + w2wa + iwawa = Sg.
Since g and Sg both lie in Lg (Rd) by Proposition 5, Proposition 2 ensures that

v= lim va and w= lim Sva,
a—07+ a—07t

exist as functions in H2 ,(R?). Furthermore, Proposition 5 tells us that S : H?  (R?) —
H? ,(RY) is bounded, which means that
w= lim Swva :S( lim va) = Sv.

a—0t a—0t

This concludes the proof. O

Proposition 8 Suppose f € Lg(]Rd) with s > % Then the error €™ of the nth Waveholtz
iterate is an outgoing solution to (9), with F, = —S" f, that is

Ae" + wle" = —S"f. (16)



Proof By definition el

= ug — u = —u, which is the outgoing solution to
Ae® +w?e = —f.

Since f € L? (Rd) and S is bounded on this domain by Proposition 5, we get —S™ f € L? (Rd)
for all n > 0. Induction then gives the result upon observing that if " is an outgoing
solution to Ae™ + w?e™ = —S™f, then Lemma 7 implies that ¢™ 1! is the outgoing solution
to Ae™tl 4 w2en Tt = 87 FLf gince €T = Se™ by (15). O

3.1.2 Estimate of the error

Having shown that the error e™ itself is the outgoing solution to the Helmholtz equation
(9) we can study properties of such solutions to understand the behaviour of e” as
n — oo. We know by Proposition 8 that e™ satisfies (16) and by Proposition 5 that

SnfE) = BMENf(©). (17)

If f, 8™, and s were to satisty the relevant assumptions (H1) through (H3) in Section 4,
Theorem 9 would therefore give us the bound

1Re{e" Mz ey < Cw® 2N (B fll L2 o), (18)

and similar for the H! , norm with the additional assumption (H4). The assumptions
of Theorem 3 are precisely that assumptions (H1) and, (H4) for the H case, hold,
and we will show below that (H2) and (H3) also hold.

To remove the w-dependency of our norms of interest we will work with the rescaled
transfer function B(r) := B(wr). With this scaling N, (8") = N1(8"), and we will
demonstrate that for n € Z*,

Ni(B") < Mn™'/2, (19)
for some constant M independent of n. The estimate (18) will then imply that
n s— _1
[Re{e" L2 may < Cw?*™*n 2| fll 2 ray, (20)

for some constant C, and similarly for the H! .-norm, finally proving Theorem 3.
It remains to prove (19), which amounts to estimating

||Bn||Loo(R\15)7 ”BnHLl(R) and HDan”Ll(O,a)-

To this end we investigate the function B(r). It has been shown in [1] that § satisfies

] -1 —12 r-1]<4, e 3D - 1] <
1B(r)] < 9 3, r=1>3 < {3 r=11>4,  (21)
-, r>w, P r>w,

10



where a = 3/4m, for the choice of kernel K (t) as in (4). To simplify our estimate of
the norm || D13"||L1(0,5y we will choose § = 1/4.
For the max-norm we then get from (21),

=n — " 31\"
13 ey < sup |30 g() . (22)
1—r|>1/4 32

For the L'-norm, the definition (13) of 3 shows that § is an even function, so that,
again using (21),

HBTL”Ll(R) = 2/0 |Bn(7’)|d7“ =2 (/02 |Bn|dT+A2 |Bn|d7"—‘r‘/g BndT>

2 2

3 LI o
<2 / 27”dr—|—/ e~ 5 =17y 4 a"/ ——dr
0 1 3 (r—1)n

2
o1 _1 - _r2 a\" 2 _1
—9(2 +nE e 2dr+<§) — <Cn2, (23)
2

since a/2 = 3/87 < 1. In order to estimate the norm | D18"(|11(0,5) we write the
function 5 on an alternative form. Integration of the definition of B(r) using the
integral (13) shows that

-
e

B(r) = sinc(r + 1) + sinc(r — 1) — %sinc(r),

where we use the convention sinc(x) = sin(27x)/27z. One can rewrite this expression
to find the form

B(r) = %sin(%’r)(L L ),

r2—1 4r
which means that )

Bl+71) = sinc(r)(l . m)

We now define the symmetric part of 3, centered around one, as
_ 3 7‘2
Bsym (1) = sinc(r) (1 + m),
for which Beym (1) = Bsym(—7). Since |sin(z)| < |x—23/37| for |z| < 7/2, we have that

4
|sinc(x)] <1 — ga:Q,

which gives an estimate of Bsy,m
2

~ 4 2 1 x
By ()] < (1 - ;’"2> (1+5) s Fed < o84

11



We finally let w be the ratio between 8 and Bsym,

6
(3r2 4+ 4)(2r3 4+ 6r +4)’

wrzL<1+T): —r3Q(r r)=
=Gy =1 Q)

where @ is a smooth function on (—d,d). One can check that when |r| <46 =1/4,

QU< <1 )] = 3IQE + Q)] < asr,

4(4 - 60)

where c¢5 = 3 + d max|; <5 |Q'(7)[. Then

5 517 Z s
—n gr(l+r)—pl—r —n w(r)” —w(—r)"
J R e (L G e
0 0 r 0 r

1 o n / 1

<5 [ 1Bam(r)] sup njw'(s)|lw(s)[* " dr

0 [s|<r

Cs o 4w 4 1 2 2 1

< S [ e(=ti)nr sup ns?|(1+ [s|*)[" " dr
2 0 |s|<r

5

2 Jo
¢s 1o [T (camyiis)e? o —1/2

SETL / / eCF IO 2, - o m1/2, (24)

0

Together, (22), (23) and (24) prove (19). These estimates and (17) also show that
assumptions (H2) and (H3) indeed hold, justifying the argument made above. We can
therefore conclude that the estimate (20) holds, which completes the proof of Theorem
3.

4 Estimate of the Helmholtz Equation

In this section we prove a result which provides a bound for the weighted norms of
solutions to the Helmholtz equation (25) in terms of a weighted norm of the forcing
function F'. The result requires the following assumptions:

(H1) s > % and w > 1.
(H2) The forcing function F' satisfies

F(&) = h(EDf(€)

with % a real-valued function in L'(R) N L>(R) and f a real-valued function in
L2(RY).
(H3) There is some 0 < § < 1 such that the function h satisfies

||DwiL||L1(O,5w) < 00,

12



where D,,g denotes the function

gw+2) —glw—2)

Dwg(x) = 27

The estimate comes in two forms, one for the case where assumptions (H1) through
(H3) hold, and another for the case where the following stronger regularity condition
on f also holds:

(H4) f € HY(R?).

In what follows we let Is = (1 — d,1 + J), so that wls = (w — wd,w + wd). Using this
notation we have

Theorem 9 Suppose the assumptions (H1)-(HS3) given above hold. Let
. N . .
Nu(h) == w ||| L) + [[DwhllLi0,ws) + 1Al Lo m\wrs)-
Then if a > 0 and w > 1, the solution u to
Au + w?u + iawu = F, (25)

satisfies - .
1Re{u}lpz ey < Cw™ “No(W)IfllL2(Ra),

for some constant C independent of a and w, but dependent on, 6, d, and s. If in addition
assumption (H4) holds, then also

1Re{ubll ey < Cw™* T N (R)£ 1 2 o)

for the same constant C. The same bounds hold for outgoing solutions in the case o = 0.

Remark 8 Agmon shows a similar estimate in [15], for general F' € L? (Rd), namely that for
5> % one can find C' € R depending on w2, d, and s such that

lullgz_(gay < ClIF| L2 ra)
for any outgoing solution u satisfying the Helmholtz problem
Au + u=F

With F' of the type considered in Theorem 9, this result, along with the error equation of
Proposition 8 produces

le™ gz gty < 1S™ 2 ey
an expression one might expect to be sufficient to show convergence of the Waveholtz method.

However, the right-hand side of this relation does not converge to zero in general, as one can
see for instance in the case d = s = 1, where

2 2 2 2
IS™ ll Lz = 18" F @) 22y = IS" Fllz2 @y + [||21°S™ FI| 2 gy -
The first of these terms converges to zero since the L?-norm of 8" converges to zero,

IS™ 1l L2y = 18" (€D S )l 2@y < 182 @)l Fll oo =) = -

13



When investigating the second term ||\a;|28”fHL2(R), however, we find that it does not

approach zero as n — oo. Its norm can be understood in terms of the norm of derivatives of
the Fourier transform,

l1212S™ F1| gy = 192 (8™ (€D F©) ]2y

The fundamental difference from the first term involving just 8™ f is that the LP-norms of the
derivatives of 8" do not approach zero as n — oo. The same thing happens with other choices
of s. This stands in contrast to what we have seen above, namely that || DwS8" |11 (0,m5) — 0
with n.

4.1 Proof of Theorem 9

The proof is given in four steps. First, in Section 4.1.1, we consider just w = 1 and
f € LY(R?), proving Theorem 9 for this case. Second, we extend the proof to the case
when f € H!(R?) in Section 4.1.2. Third, in Section 4.1.3, we use scaling arguments
to convert the proof for w = 1 to a proof with general w > 1. This gives frequency-
explicit estimates. Last, we prove the final statement in the theorem about outgoing
solutions in Section 4.1.4.

4.1.1 An estimate for the case w =1

Suppose that

Au+u+iau =F
where F' and « is as described in Theorem 9 with w = 1. The plan is to find a
bound for some weighted norm of Re{u} by the following observation. Let (-, -) be
the usual L? inner product. Suppose we found an estimate of the type ‘(%e{u}, v)‘ <
M ||v]| L2 (ray, where v is real-valued and M is some constant independent of v. Choosing
v = ()" 2*Re{u} would then produce a bound for a weighted norm of Re{u}:

1Re{u}l|7s oy = |(Re{u}, Re{u}(z) )| < Mjv]|L2mey = M|Re{u}l2 , (26)

so that in turn |[Re{u}| > < M. Such an estimate is our goal. We suppose therefore

v to be real-valued and sufficiently regular to Fourier transform. Then (Re{u},v) =
Re{(u,v)} = Re{(4,0)}, and an estimate of the type (26) could be found by investi-
gating this last inner product. We therefore start by computing the Fourier transform
of the Helmholtz solution w,

F(§)

a§) = T €2 +ia’

which permits us to write

(4, 0) = /R PO e (27)

d 1—‘§|2+i04
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Introducing the set Q5 = {& € R? : ||¢| — 1| < 6} we divide the integral in (27) into
three parts (@, ) = I1 + Iz + I3, where

_ Fo*(€)
= /]Rd\ﬂs L—[§]2 + i ™

L CE N G
= /951|§|2+md§ fo la= /Q (e~ 1) v

We will next find upper bounds for the absolute value of each of these integrals in
turn, which will allow us to find an upper bound for |Re{ (@, 0)}|.
We start with I7. Since |1 — [£]?| > § outside g4, we have

and

1 - PO 1 .- .
<5 [, IDI©wENE < gl [ 1@

)

1. A ) 1, -
< thHLw(R\L;)Hf||L2(Rd)HUHL?(]R") = th”Lw(R\L;)HfHLQ(Rd)HU||L2(R")- (28)

For I, and I3 we will use spherical coordinates and therefore introduce some new

notation. Let
Fryo (r) + ( T)A (-r), d=1,
rn)o* .

Then we can write

I ::/I 7h(r)g(r)' rd=ldr — I, I3 := /15 —_2h(r)g(r) —rd=1dr.,

s 1—r?+ia (r—1)+ia

Before estimating these integrals, we prove a Lemma about the function g(r).

Lemma 10 The following holds for the function g defined above.
(i) g is real-valued if f and v are real-valued.
(i) If s > %, then ;
—d; \2
lg(r)] < Kair™ )1 fll L2 ey vl L2 ey
with K1 independent of v, v, and f, but dependent on d and s.
(%ii) If s > %, then

lg'(r)] < Kar™ 1) 22 £ 12

again with Ko independent of v, v, and f, but dependent on d and s.

2, (RY) ||UHL2+1(R‘1)

Proof We first note that this function g is indeed real-valued, due to the assumptions that f
and v are real-valued. In the case d = 1 we have

g"(r) = f*(r)o(r) + f*(=r)o(=r) = f(=r)0" (=) + f(r)d" (r) = 9(r),
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since the assumption that f and v are real-valued means that f* (r) = f(—r), and similarly
for ©. If d > 1 we have, by symmetry of the sphere,
1 P % P A~k
oty =g [ Pl )+ F )i (e
7] =

; f 0 f K = F(rm)o™ (r
= 5/|n|=1f(m)v (rn) + f(rn) v(m)dn—/ Re{ f(rn)o* (rn) }dn.

In|=1
This proves (i). We now estimate |g(r)|. In the case d > 1 we denote by B? the set of points
¢ in R? such that |¢| < 1, and by 7 : B — 9B? the trace map, so that

lg(r)] < /I - |fo" (rm)ldn < |7 f(r )l L2 opy IT0(r )| 20 59)- (29)
We can then use Proposition 1 to find
I7f(r)llL2opay < ITf(r)l ) S K )llmegay < Kl )z may,

provided s > % Now using the convention (8) we see that ||~ || s (gay = || - | L2(ra) and

fry =70 (7).

T

H*"% (9B

we see that
I7f )l 2omey < KIFE ey = K= |7 (2))]

T

—d, s
L2(d) < Kr 2 (r)° (£l L2 (ray
and similar for [|79(r )| 12 (5pa), which in light of (29) means that
2 —d; \2
lg(r)| < KZr ™) (£ | L2 ey 10l 2 ey -

For d = 1, we instead note that H®(B') is continuously embedded in C°(B?!) for s > %; see
[16, Theorem 9.8]. This means that

lg(r)| < 2 £ () oo (s 10(r )| L= (81
<K () 1) e

r

for some K and such s, by arguments similar to the ones used in the higher-dimensional case.
Denoting by K the constants found in the estimates above for the different values of d, we
have proved (%i). Finally, for (i71) we similarly have

g@I=lor [ fone e
i

< K ) [ £l 2wy vl 2 ey,

IN

1 n A~k 1 - o
’/m\ﬂ -V f(rn)|[ (rn)!chH—f/Ml:1 |Frm)||n - Yy (rm) |,

T T

and these integrals can be estimated in the same way as (29), producing

K2 P Ak r Ak
191 < == IV f r Mlaze @y 197 (e ety + 1 £ M are @y [ V00" () 12 )
< KHf(r-)n [o(r )]l < 2K )22 £l e ]| .2
=~ r Hs+1(Rd) Hs+1(Rd) =~ LS+1(Rd) LS+1(Rd),

for s > % Again use [16, Theorem 9.8] in the one-dimensional case, this time for the function
g’ (r), producing

1 2 . 1.2 .
19" (M) < 100 F (I zee ey 190 Loe 1) + ZIF Moo (1) 1000 ()| 2o (1)

- —2 2s5+s
< Kr7(r) Iz, wllvllzz, &)
by an argument near-identical to the one for d > 1. Denoting by Ko the constants found
above, we have shown the estimate in the statement of the lemma, for all d. O
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We now turn our attention to estimating the remaining integrals I, and I3. For Iy we

recall that R )
e [ (S R0y,
s \I=r2tia =2(r—1)+ia
and investigate how we can simplify this fraction. We have

1 1
1—r2+ia  —2(r—1)+ia|

[ 2(r = 1) Fia — (1 - |r? +ia)
(1—r24ia)(—2(r—1) +iq)

1 (1-r)? 11
<= =— .
“21-r?|lr—1 2741

This means that by also using Lemma 10,

7(r)g(r)] 4 / 5 (r)*
I < — 2 dr < K h d
|I2] < " 20r+ 1) r (IS 1||f\Lg(Rd)||”||L§(Rd) 15| (T)|r(r+1) T
< Bl fllez@ayllvll 2@y 17l vy, (30)

where B € R is some constant which is independent of «, but depends on § and s.
Finally, for I35 we note that

Re{l3} = ﬁ)%e{/l Mrd_ldr} _ 1 /11+5 MM—%M

(r—1)+i«a 2 Jis (7"—1)2—|—°‘T2

since h and g are real-valued. This is due to (H2) and Lemma 10, as f and v are
real-valued. After a suitable change of variables this can be written as

Re{l3} = —% /05 (147 th(1 +r)g(1 +:2);g— P Th(1 —r)g(1 — ") v dr.

We find

(14 ) th(1 +7)g(1 +7) — (1 — )4 h(l —r)g(l — 1)
2r

5
[Re{l3}] §/ dr
0

6 A
g/ |(1+r)dflg(1+r)D1h(r)|dr

0

6 ~

+/ ’h(l—r)g(l—&—r)Dl(td_l)(r)’dr
0
5 A~
+/0 |h(1 —r)(1 —r)d_lDlg(r)|dr

§
< Clglli~asy [ 11k + i1 = )] ar

17



)
D19l L0 / (1 — r)|dr. (31)
0

Each of these terms can be estimated using the results in Lemma 10. In particular,
noting that if s > 1/2, then

9llLoe 15) = sup l9(r)| < sup EKar = (r)*|| fl| 2z [0]] 2 ety
rels

rels
D19l (0,6) < Ng" (")l Los (15) < sup Kor™ 4 (r) ez ®llvliee, ®),
and (31) tells us that for such s
Re{I3} < (Chl|h]l L ry + CQHDliLHLl(O,é))Hf||L§+1(Rd ollzz, | ®a), (32)

where C1,Cy € R' are some real numbers independent of «, but dependent on 6,
s and d. Now, bringing together the results (28), (30), (32), and denoting by C the
maximum over the constants in these results, produces

[93e{(a,0)} < C(IhllLa@) + [ DrhllLao,s) + Wl Lo s ) 11l c2, ey 191l 2, ey,
= CNMi(W)1fllz2, @ 1l| 2, ey

when s’ > 3/2. Choosing v(z) = ()2 Re{u}(z) then yields
1Re{ublZs oy < CNIR)IF o2, oy |Be{u}l iz, ga)-

This implies .

[Re{ublz @) < CNi(B)|flL2Ra),
which proves Theorem 9 for w = 1 in the case where assumptions (H1) through (H3)
hold.

4.1.2 Extension to the H!(R%)-norm

We now consider the case where in addition to the assumptions (H1)-(H3), we add
the assumption (H4) that f € H!(R?). Suppose again that u is the unique solution of

Au+u+iau = F.
We then consider the function u; = 0,,u which is the unique solution to
Auj + uj +iou; = Oy, F. (33)
Moreover, since F/(€) = h(|¢])f(€), we get

Du, F(€) = i&h(1€)) F(6) = h((€]) (16 £ () = h(|€)Ps, F(€).
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We can then apply Theorem 9 to equation (33) to find
1Re{0s, u}l| 12 (may = 100, Re{ubl L2 oy < CNL(A)|O0, fll 2t

provided that 9,, f € L2(R?). Since we have assumed f € H}(R?) we find

-

196 (w2 qaoy = (30 10°Refu}Ba uoy)” < CMIF 3y

la]<1
This shows the bound in the case that assumptions (H1) through (H4) hold.

4.1.3 The case of w > 1

We aim now to extend the above result to the case of general w > 1 in a manner that
makes it clear how the estimate scales with increasing w. Suppose therefore that u
solves the equation

Au + wu +iawu = F, (34)

for some w > 1 and that assumptions (H1) through (H3) hold for this . Then defining

(z) == u(w™lz), & :=w e, and G(z) := w2F(w™x) produces

At(z) + (z) +ida(z) = w ? (Au(w™'z) + wu(w™ ') + iawu(w™ ' z))
=w?F(w2) = G(2).

That is, the function @(z) satisfies the Helmholtz equation (25) with w = 1 and

G (&) = w2 F(w€) = w'2h(wlé]) f(wE) = k(I€)F(E),

where we defined k(|€]) = h(w|¢]) and §(€) = w®2f(wf), or equivalently g(x) =
w2 f(w™tx). Because of the assumptions made on the function F, the function G also
satisfies assumptions (H1) through (H3), as ||D11%||L1(075) = ||DwaL||L1(0,w5). In fact,
Ni(k) = N, (h) since

Ikl LRy = w ™ 1Al Loy, &l Loo \15) = Pl Loo (R\wIs)-

In light of the above calculation, and since it is proven for w = 1, we can therefore
apply Theorem 9 to the function %, producing the estimate

[Re{a}|rz gy < CNL(R)llgll 2 (ray

with C independent of w and a. Now since w > 1,

Itelbl1e oy = (| el ) 2odn)” = w [ Reful e uoy,
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as for w > 1 we have w(z) > (wz), and by assumption s > 1. For those same reasons
we find

1
_ s \2 dig
oz = (w2 [ 1@ wa)ds)” <ot 2 . @9
R
so that we finally get

_4d ~ _ >
1Re{u}llrz ey < w72 [Refd}| 2 may < Cw? 2NL(R) 1 fll 2 (ra),

where C is independent of w and «. In the case that we impose on F also the
assumption (H4), we can similarly find

N

IBe{@} i gy = (D o0 Refu(@ 0} )

o<1
d_g_
> w2 [ Re{u}ar (go),

again using the assumption that w > 1. A similar calculation produces the corre-
sponding estimate

dyg
gl e ray < w272 fll a2 may,
so that the discussion in Section 4.1.2 gives

[Re{utlm (ray < CW?S?le(iL)Hf”Hg(Rd)' (36)
This generalises Theorem 9 to the case w > 1.

4.1.4 The case of outgoing solutions

Finally we turn our attention to the case of outgoing solutions u to equation (34).
We will first consider the case where assumptions (H1) through (H3) hold, as the case
where (H4) holds can be done entirely analogously. Let z, = w? + iaw, and denote
by R(z) the resolvent operator (—A — 2)~1, which is is known to be well-defined for
z not on the positive real axis. Recall Proposition 2, which states that the limit

lim R(zq) =: R(w?)

a—0t

exists as an element of the space of bounded linear operators from L2(R%) to H2 _(R%),
endowed with the uniform operator topology, provided that s > % We get for u, :=
—R(24)F and ug := —R(w?)F, since || - ||L35(Rd) <|- ||H35(]Rd),

[Re{ug — Ua}HLis(Rd) < luo — ua”HES(Rd) = |R(2a)F — R(WQ)F”HES(Rd)

a—0t
< |R(2a) = R IF| 120y =% 0.
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This implies that Re{uy} — Re{ug} as a — 01, when considered as elements of
the space L2 (R?). Using our previous results we see that

[Re{uotllrz (ray = ali%l+ [Re{ualtllrz gy < Cw* 2N, (B £

L2(R%)>

as stated. By the same argument, the corresponding estimate holds for the H! .-norm
of Re{up} if assumption (H4) hold. This concludes the proof of Theorem 9.

5 Conclusion

We have presented the Waveholtz iteration for the unbounded domain R? in the
constant-coefficient case, and shown that the real part of the iterates converge as n=%
in H' -norm to the real part of the outgoing solution to the Helmholtz equation,
under suitable assumptions on the weight parameter s and forcing f. The number of
iterations required to achieve a prescribed tolerance has been shown to grow at most
as w?T with the frequency parameter w, although numerical experiments suggest that
the optimal growth rate is w. The key points of difference between previous analyses
of the Waveholtz method is that the unbounded domain considered here required
us to suitably extend the operators IT and S, and that the analysis could not make
reference to any eigenfunction expansion of the Helmholtz solution, as is possible when
considering Waveholtz on a bounded domain with Dirichlet or Neumann boundary
conditions. We instead analysed the iteration in terms of the limiting behaviour of the
damped Helmholtz equation, by investigating the Fourier transform of the iterates. It
remains open to prove whether the method converges for variable wave speeds.

Appendix A Extension and boundedness of § and I1

We aim here to prove Proposition 5 which primarily states that the operator S, which
was originally defined on the set C§°(R?), can for any real s and nonnegative p be
extended to a bounded linear operator from the weighted Sobolev space HP(R?) to
itself.

Proof of Prop 5 We start by proving (12). This identity is true for u € C§°(R?), which we
now show in the same way as in [1]. The Fourier transform of w in (7) with f = 0 satisfies
an ordinary differential equation for each fixed &

At + €)% = 0.
This has the solution w(¢,£) = (&) cos(|€]t) when the initial data is w(0,z) = u(z) and
wt (0, z) = 0. Consequently, by (10) and (13),

. T T
Su(e) = /0 K(8)i(t, €)dt = a(€) /0 K (t) cos(|€]t)dt = B(E)a().

Finally, by the boundedness of S from LQ(Rd) to itself, shown below, the result extends to
all L2-functions.

Next, to prove the extension of S to the weighted Sobolev spaces, we note that since the
solution operator for the wave equation is well-defined between these spaces, the operator S
is a well-defined linear operator from C§°(RY) to C§°(R?). As the set C§°(R?) is dense in
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H? (Rd) for every real s and non-negative p, the Bounded Linear Transformation Theorem
implies that demonstrating

ISull g2 may < Cllullgrgay, — Yu € C3°(RY), (A1)

is enough to prove the the claim in the Proposition 5. Here we recall that as defined in
Section 2,

sy = 3 [ 102u(e) (@) da.

la|<p

We use the convention L2(R?) = H?(R?) to include also L2(R?), and thus aim to show the
bound (A1) for all s and non-negative p.
For the proof we will need the open cover {€;},cn of R? defined by

_{{xeRd||x<T}, j=0,
T e eRNG-DT <2l <G+ DT}, 21,
with 7' = 27 /w, and the extended sets
Q§:{QOU91, j="0
Q; 1UQUQ 4, J2>1.
A key property of these sets is that
if supp(u) C ©; then supp(Su) C Qj, (A2)

by the finite speed of propagation in the wave equation. Let us begin with the case s = 0. Take
u € C§°(RY). By (12) and Parseval, one term in the sum for HSU”%{P(Rd), can be estimated as

au$2$: 2|a| ()2 2|o¢|ﬁ 2
[ @zsa@ls = [ e seuora < [ e P

= /Rd |0%u(x) | d, (A3)

since |8(£)] < 1 for all £ by (21). Then (A1) follows for s = 0. We now consider H? (R%) with
s #0. Let {¢;} be a smooth partition of unity subordinate to {€2;}, such that

Z ¢j(x) =1, supp(¢;) C Q;.
=0

To simplify the argument that follows we choose in particular ¢y given by

do(z) =g (%ﬁ) ;

where 0 < € < T is some fixed real number and g is the smooth transition function defined by

(&
1, 1< x.

This function ¢g is then identically zero outside of the open ball defined by |z| < T — ¢,
identically one in the closed ball defined by |z| € [0,¢], and smoothly transitioning between
zero and one in the shell defined by |z| € (¢,T — ¢€). It can be shown that defining for each
J > 0 the function ¢; by

oj(x) = ¢o(|z| —jT)
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produces a smooth partition of unity subordinate to the open cover given by the sets ;.
This choice means that for any j and multi-index «,

10% b1l oo ey < lldollwial oo (ray- (Ad)
That is, the derivatives of ¢; can be bounded independently of j.

Using the partition of unity ¢;, we then have supp(u¢;) C Q; and supp(Su¢;) C Qf
by (A2). Since Qf N Q. = 0 when |j — k| > 4, it follows that (97 Su¢;)(9z Sudy) = 0 when
|7 — k| > 4, and consequently

o0

(O Su) @) = | (05 Sug;) x] (i (05 Sud;)( |)2
§=0

j=0

=3 N (08 Sudy)(@)]|(95 Sudy)(x))|

j=0|k—75|<3

3% T sl +Esun@l <7505l
J=0]k—j]<3 =0

Hence,

fel 2, \2s - (el Nz 2 - 2s .
[ J@zsu@ o) dxs7j§_jo/Rd|(aw8u¢J>< )2 da,
and using (A3),

/ |02 Sudy) (@) [ ()2 de = / 102 Su;) ()| () > da
R4 ¢

< sup (z)>* /Q (02 5us)) @) *dw < sup (@)? /R @2 us;) (@) Pde

mGQe

sup,, ¢<$>2S ’
W /Q |05 ue) (@) (2)**de.

= sup ()% [ [(0Fu0,)@) o <

z€EQS

Since (1+ [2])/v/2 < (2) < 1+ [e],

14+(j+2)T) %5 _ sp \2l ,
(5 7) =+ mtor) o s>0.521
)T
T

su ol 14+(j—2 2s 3T 2s| .
?L olsl (1+(]+1) < (1+ e 2)T) » 5<0, 722
inf,eq, ()2 (1+27)% = (1+ 2721 $>0,7=0

20s )
(W) < (14212l s<0,j<1.

Therefore, we obtain with C(T,s) = 2|s‘(1 + 3T)2|5‘,

a 2, \2s - o N (z 2 225 da
JRENORS dxsm(T,s@/Q_|(ax<u¢J>)< P @d

<70(T 52 3 Z/ 0% u() 102 65 (2) P ()2 de

[v[<]al3=0

<7C(T, )2 dollro ey 3 / 0 u(z) 2(x) dz.

[vI<lal
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Note that we here needed the property (A4) for the final step. The full norm is therefore
bounded as

ISullr gay < Z/ (82 Su)(z)|* (z)** da

la|<p
<7015 3 loolyiare S / 0 u(z) 2 ()
la|<p [vI<]el
<c§j/‘wa 2(2)?*dz = Cllullyp .
la|<p

This concludes the proof that S can be extended continuously.
We now use this extension of S to show that IT can also be extended to a continuous
operator on HY(R?) such that, whenever s > % and f € L2(RY),

Sv=8v—u)+u, (A5)

where u is the outgoing solution to the Helmholtz equation (6). Note that these requirements
on s and f are necessary to guarantee the existence of u. We begin by noting that the original
definition of II shows that for v € C$°(RY),

ITv = Sv + 110.

This expression is then used to extend II to any domain that S has been extended to. It
remains to show that the extension satisfies (A5). We therefore investigate I10. By definition

it is given by
T
110 :/ K(t)w(z,t)dt,
0

where w solves the initial-value problem

Ofw = Aw — F(z,t), (;lc,t)eIRdx(O,T)7
w(z,0) = wo(z), z R, (A6)
Orw(z,0) =0, zeRY,

for F = f(z)cos(wt) and wg = 0, which is well-posed since f is assumed to be in LQ(Rd).
Thus, I10 is well-defined. To derive an expression for I10 we consider the limiting absorption
principle and solutions uq to the damped Helmholtz problem (25). One can note that for
wa = Vw? + iaw the function r(z,t) = ua(r)Re{exp(iwat)} solves the problem (A6) with
wo = uq and F = f(xz)Re{exp(iwat)}. If we finally denote by v(z,t) the solution to (A6) for
F =0 and wg = uq, we can combine these observations to see that, for all a > 0,

T
110 = K Ywdt = / K@) (w+ (r—v)— (r—wv))dt
0

/ K(t)rdt — Sua + / K(t)(w —r + v)dt.

For the final equality we used the fact that fo t)vdt = Suq, by definition of S. We now
aim to see how this expression behaves as a — 0+. As S has been extended continuously,
the term Sue approaches Su as o — 07, where u is the outgoing solution to the Helmholtz
equation (6). Moreover, the first term satisfies

T
fim [ K@)rdt= lim ua(e / K (t) exp(—Im{wa }t) cos(Me{wa })dt

a—0t Jo a—0t
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= u(x) /OT K(t) alim+ (exp(—ﬁm{wa}t) cos(%e{wa}t))dt

—0

T
= u(x)/o K (t) cos(wt)dt = u(x),

where the exchange of the limit and the integral is justified by use of the Dominated Conver-
gence Theorem, with the dominating function K (t). If we denote by ¢ the function w —r + v,
we see that g solves the problem (A6) for F(z,t) = f(x)Re{exp(iwt) —exp(iwat)} and wy = 0.
This function F' approaches zero in the L? sense, so that we by the standard estimate

t
laOll ) < C [ NFC 7)oy

know that for every ¢t € (0,T), ¢ — 0 in L? as a — 0T, which also means that the term
fOT K(t)qdt — 0 in L? as a — 01, We conclude that
T T
0= lim (/ K(t)rdt — Sua +/ K(t)th) =u— Su,
a—07t 0 0
so that we can continuously extend II by
My=8Sv+T0=8(v—u)+u
for v € HY(RY). O
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