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Abstract

In this paper we analyse the Waveholtz method, a time-domain iterative method
for solving the Helmholtz iteration, in the constant-coefficient case in all of
Rd. We show that the difference between a Waveholtz iterate and the outgoing
Helmholtz solution satisfies a Helmholtz equation with a particular kind of forc-
ing. For this forcing, we prove a frequency-explicit estimate in weighted Sobolev
norms, that shows a decrease of the differences as 1/

√
n in terms of the iteration

number n. This guarantees the convergence of the real parts of the Waveholtz
iterates to the real part of the outgoing solution of the Helmholtz equation.
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1 Introduction

The Helmholtz equation

∇ · (c2∇u) + ω2u = f, in Ω, (1)

subject to appropriate boundary conditions is a useful model for a variety of real-world
wave phenomena, such as the propagation of electromagnetic, underwater, or seismic
waves. In this paper we consider an iterative time-domain method called Waveholtz
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[1] for numerically solving the Helmholtz equation. In particular, we present a proof
of convergence when the domain Ω is the full space Rd. Numerical approximation
of solutions to the Helmholtz equation presents several difficulties, especially when
the frequency parameter ω is large. Discretisation of such equations produces large
linear systems of equations, and solving these systems by use of Krylov space meth-
ods is relatively difficult, as the matrices associated to the systems are indeterminate
and large. Furthermore standard preconditioners do not work well; see for instance
[2]. These issues have motivated the study of specialised preconditioners of the linear
systems, including among others shifted Laplacian preconditioners [3], the analytic
incomplete LU preconditioner [4], sweeping preconditioners [5] as well as methods
based on domain decomposition [6–8]. Despite the progress that has been made, diffi-
culties remain especially in the high-frequency context, for interior problems, and for
problems with high-contrast material parameters. Efficient implementation of high-
order versions of the preconditioned methods on large computers is also a challenge.
The Waveholtz method, introduced in [1], aims to alleviate some of these issues by
transferring the Helmholtz equation into a time-domain setting and working with an
associated wave equation. Potential benefits of this approach include the existence
of memory-lean, parallelizable, and high-order provably stable numerical methods for
solving the wave equation. The time-domain approach for solving Helmholtz has also
been used in the Controllability Method [9] and for preconditioning [10].

The Waveholtz method is an iterative method aimed at computing a solution to the
Helmholtz equation by finding the fixed point of an affine operator, the evaluation of
which requires solving an associated wave equation. Indeed, the method is motivated
by the observation that a solution u to the Helmholtz equation formally defines a fixed
point of the map Π given by

Πv(x) :=

∫ T

0

K(t)w(x, t)dt, (2)

where T = 2π/ω is the period corresponding to the frequency parameter ω and the
function w(x, t) is the solution to the associated wave equation

∂2
tw = ∇ · (c2(x)∇w)− f(x) cos(ωt), (x, t) ∈ Ω× (0, T ),

w(x, 0) = v(x), x ∈ Ω, (3)

∂tw(x, 0) = 0, x ∈ Ω,

with boundary conditions consistent with those of (1). The function K(t) is a kernel
given by

K(t) =
2

T

(
cos(ωt)− 1

4

)
. (4)

A function u that solves (1) then formally defines a fixed point of Π, since the function
v(x, t) = u(x) cos(ωt) formally solves the initial-value problem (3) for v(x) = u(x) so
that one would have

Πu = u(x)

∫ T

0

K(t) cos(ωt)dt = u. (5)
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In fact, the choice of K(t) is made precisely so that the integral over (0, T ) of cos(ωt)
against K(t) will equal 1. The Waveholtz method then consists of iterating the map
Π from the starting point u0 ≡ 0 to find a sequence of functions

un := Πnu0

which converges towards the fixed point u that solves the Helmholtz equation (1).
In this paper we will analyze the convergence of the Waveholtz method. Earlier

work on convergence has considered bounded domains. In [1] it is shown for homoge-
neous Dirichlet or Neumann boundary conditions and variable wave speed c(x) that
the iterates converge in H1-norm with convergence rate 1 − O(δ2) to the solution of
the Helmholtz equation, where δ is the relative gap between the Helmholtz frequency
ω and the nearest eigenvalue of the operator −∇ · (c2∇). Additional convergence
results for the Dirichlet and Neumann case were given in [11]. The proofs of these
results have relied on the possibility to decompose functions of interest into a sum of
eigenfunctions of the operator −∇· (c2∇), a strategy which is naturally only available
for domains and boundary conditions where the existence of an orthonormal basis of
eigenfunctions is guaranteed. This is the case for Neumann or Dirichlet boundary con-
ditions. However, such systems of eigenfunctions do not exist for instance in the case
of bounded domains with impedance or absorbing conditions. In these cases there are
no theoretical convergence results, except in one dimension [11]. Nonetheless, there is
ample numerical evidence of the convergence of the Waveholtz method in more gen-
eral settings; convergence has been studied numerically for a variety of geometries and
boundary conditions [1, 12–14]. The observed convergence however remains to be fully
explained theoretically.

In this paper we study convergence of Waveholtz for the constant-coefficient
Helmholtz equation set in the full space Rd,

∆u+ ω2u = f(x), x ∈ Rd, (6)

subject to the Sommerfeld condition

lim
|x|→∞

|x|
d−1
2

(
∂r − iω

)
u(x) = 0.

This model problem shares some similarities to the case of bounded domains with
impedance or absorbing boundary conditions. Crucially neither of these two kinds of
problems allows for decomposing functions in L2 into eigenfunctions of the operator
−∇ · (c2(x)∇). The associated wave equation is in this case

∂2
tw = ∆w − f(x) cos(ωt), (x, t) ∈ Rd × (0, T ),

w(x, 0) = v(x), x ∈ Rd, (7)

∂tw(x, 0) = 0, x ∈ Rd.

The main result of this paper is Theorem 3 which shows a frequency explicit estimate of
the difference between real parts of the Waveholtz iterates and the outgoing solution of
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(6). In particular, these differences decreases as n− 1
2 where n is the iteration number,

which implies that the Waveholtz method applied to (6) produces iterates whose real
parts converge to the real part of the outgoing solution of (6). Note that solutions to
(1) and (6) are not in L2(Rd). The results in Theorem 3 are therefore given in norms
for weighted Sobolev spaces. This introduces some technical difficulties as the domain
of the Waveholtz operator Π needs to be extended to these spaces in the analysis.

The paper is organized as follows. First in Section 2 we introduce some notation,
terminology, and results that are used in the proofs that follow. Second, in Section
3 we state and prove our convergence result for the Waveholtz iteration. The proof
in Section 3 makes use of an estimate for solutions of particular kinds of Helmholtz
equations. The statement and proof of this estimate is found in Section 4. Finally, the
proof of a technical result used in the proof of Theorem 3 is found in Appendix A.

2 Preliminaries

It is well-known that the Helmholtz equation on Rd in general does not have solutions
in the usual Sobolev space H1(Rd), so that in order to analyse the Helmholtz equation
on an unbounded domain it is required to define appropriate weighted function spaces.
The approach that we will take is that of Agmon in [15], in which the following spaces
are defined:

Definition 1 The weighted Lp space Lp
s(Rd) is defined by

Lp
s(Rd) =

{
f :
∥∥f⟨x⟩s∥∥

Lp(Rd)
< ∞

}
,

where ⟨x⟩ := (1 + |x|2)−1/2. For 1 ≤ p ≤ ∞ the vector space is a Banach space with norm

∥f∥Lp
s(Rd) := ∥f⟨x⟩s∥Lp(Rd).

The weighted Sobolev spaces Hk
s (Rd) are defined similarly by

Hk
s (Rd) =

{
f :
∥∥f∥∥

Hk
s (Rd)

< ∞
}
,

with norm

∥f∥Hk
s (Rd) =

( ∑
|α|≤k

∥∂αf∥2L2
s(Rd)

) 1
2

.

We will denote by f̂ the Fourier transform of f ∈ L2(Rd), using the convention

f̂(ξ) =

∫
Rd

f(x) exp(−2πiξx)dx.

We also denote by C∞
0 (Ω) the set of compactly supported smooth functions on the

open set Ω ⊂ Rd. The reader may recall that there are several equivalent norms one
might use to define the spaces Hk(Rd). We will occasionally use the norm given by
the relationship

∥f∥Hk(Rd) = ∥⟨ξ⟩kf̂(ξ)∥L2(Rd), (8)
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for k ∈ R. Using this convention it becomes clear from Definition 1 that f ∈ Hs(Rd)

precisely when f̂ ∈ L2
s(Rd). We also note that for s2 ≤ s1, we have

L2
s1(R

d) ⊂ L2
s2(R

d),

where the embeddings are continuous. This provides some intuition about the spaces:
the larger the value s is, the more restrictive the space L2

s(Rd) becomes, as in order
for the norm ∥ · ∥L2

s(Rd) to be finite a function in L2
s(Rd) must decay rapidly enough

to compensate for the weight ⟨x⟩s, which grows on the order of |x|s. The case s = 0
produces the standard L2-space, whereas a negative weight −s allows for a certain
growth of the functions f ∈ L2

−s(Rd), which can be controlled by the weight ⟨x⟩−s.
We shall also make use of the following trace estimate.

Proposition 1 (Theorem 9.4 in [16]) Suppose Ω ⊂ Rd is an open bounded subset such that
its boundary ∂Ω is a (d− 1)-dimensional smooth manifold. Then if s > 1

2 the trace operator

τ : Hs(Ω) −→ Hs− 1
2 (∂Ω) is bounded, satisfying

∥τv∥
Hs− 1

2 (∂Ω)
≤ K∥v∥Hs(Ω),

for some K ∈ R+ and every v ∈ Hs(Ω).

The following Proposition demonstrates the usefulness of the spaces Hk
s (Rd) when

studying the Helmholtz equation.

Proposition 2 (Theorem 4.1 (i) in [15]) Suppose s > 1
2 , and let

R(z) := (−∆− z)−1 : L2
s(Rd) −→ H2

−s(Rd),

be the resolvent operator of −∆. For any ω2 ∈ R+ the limit

lim
z→ω2

Im{z}>0

R(z) =: R(ω2),

exists as an element of the space of bounded linear operators between the spaces L2
s(Rd) and

H2
−s(Rd), endowed with the uniform operator topology.

The proposition shows that any source term f ∈ L2
s(Rd) in the Helmholtz equation

on Rd produces a solution u = R(ω2)f ∈ H2
−s(Rd). Solutions u defined in this way

will be called outgoing. These solutions are precisely those satisfying the Sommerfeld
condition

lim
|x|→∞

|x|
d−1
2

(
∂r − iω

)
u(x) = 0.

That the limit R(z) −→ R(ω2) in the proposition exists in the uniform operator
topology means that

∥R(z)−R(ω2)∥ −→ 0,

as z −→ ω2 with z such that Im{z} > 0, where ∥ · ∥ here denotes the standard norm
on the space of bounded linear operators from L2

s(Rd) into H2
−s(Rd). This is a version
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of the so-called limiting absorption principle: the operator −∆−ω2 has a well-defined
resolvent which can be understood as the limit as α → 0+ of resolvents of the type(
−∆− (ω2 − iα)

)−1
.

3 Convergence of Waveholtz

In the section we will prove the convergence of Waveholtz iterates in the open case
(6) where the Helmholtz solution is sought in the whole space Rd. The main result
is Theorem 3 which gives a frequency-explicit estimate of the real part of the error
in iteration n. In what follows we denote by f the forcing used in (6) and by u the
corresponding outgoing solution. We denote by un the the Waveholtz iterates defined
by

un+1 = Πun, u0(x) ≡ 0,

with Π as in (5). Each iterate produces a corresponding error en defined by en = un−u.
With this we are ready to state our convergence result.

Theorem 3 Suppose s > 3
2 and f ∈ L2

s(Rd). Then for ω ≥ 1 the Waveholtz iterates un

converge in H1
−s(Rd)-norm to the real part of the outgoing solution u to (6), with the error

en at the nth iteration satisfying

∥Re{en}∥L2
−s(Rd) ≤ Cω2s−2n− 1

2 ∥f∥L2
s(Rd),

where C is independent of f , u, ω and n. If also f ∈ H1
s (Rd) we have the estimate

∥Re{en}∥H1
−s(Rd) ≤ Cω2s−1n− 1

2 ∥f∥H1
s (Rd),

for the same C.

Remark 1 The frequency-explicit result in Theorem 3 can be used to estimate how the con-
vergence rate depends on ω. We note first that the solution u also depends on ω so to be able
to compare errors for different frequencies we will choose the source f of the form

f(x) = ω
3+d
2 S(ωx),

with S ∈ H1
s (Rn) for some s > 3/2. In the high-frequency regime ω → ∞, this source

concentrates in the origin and generates a solution of size O(1) in ω for constant coefficients;
see for instance scaling discussions in [17]. Following the same derivation as in Section 4.1.3

we get g = ω
d−1
2 S(x) and the estimate (35) for g is then replaced by

∥g∥L2
s(Rd) = ω

d−1
2 ∥S∥L2

s(Rd).

The final estimate becomes

∥Re{en}∥L2
−s(Rd) ≤ Cωs− 1

2Nω(β
n)∥S∥L2

s(Rd) ≤ Cωs− 1
2 n− 1

2 ∥S∥L2
s(Rd).

Since the solution is O(1) in ω this error corresponds to the relative error. It thus scales as

ωs−1/2n−1/2, and to reduce it below a fixed given tolerance when ω grows, n needs to scale
as n ∼ ω2s−1. Since s must be larger than 3/2 in Theorem 3, the best scaling that can be

proved is n ∼ ω2+ . However, in numerical computations on finite domains with absorbing
type boundary conditions, the scaling n ∼ ω is typically observed. We therefore conjecture
that the optimal limit for s in Theorem 3 is actually s > 1, as this would give the scaling

n ∼ ω1+ .
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Remark 2 To further understand the error we suppose that the source S has compact support
in |x| ≤ 2π, i.e. that f has compact support in |x| ≤ T = 2π/ω. We then note that because
of finite speed of propagation, the Waveholtz approximation un(x) will be identically zero
outside the the ball |x| ≤ (n + 1)T . The total error in un will therefore be composed of
an O(1) exterior error, outside that ball, and an interior error, inside the ball. Assuming

|u| ∼ 1/|x|(d−1)/2, the exterior error will be

||un − u||L2
−s(|x|>(n+1)T ) ∼

(∫ ∞

(n+1)T

rd−1r−2sdr

rd−1

) 1
2

=
((n+ 1)T )−s+ 1

2

√
2s− 1

∼ ωs− 1
2 n−s+ 1

2 .

The exterior error provides a lower bound for the total error. Comparing it to the upper
bound of the total error derived in the previous remark, we note that the two errors scale
in the same way with ω and n when s = 1. The scaling of the error estimate would thus be
optimal in this case, but again require that s > 1 was the limit in Theorem 3.

3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is given in two steps. First we show that the error en is the
outgoing solution to a Helmholtz equation

∆en + ω2en = Fn, (9)

with a source term Fn of a certain form which will be given shortly. Second, we apply
an estimate derived in Section 4 for the Helmholtz equation with this type of source
term, which allows us to estimate en.

3.1.1 The error equation

To derive (9) we show a sequence of short lemmata.

Lemma 4 Suppose g ∈ L2(Rd) and α > 0. Then a solution to

∆v + ω2v + iωαv = g,

satisfies v ∈ H2(Rd).

Proof If we apply the Fourier transform to the equation we find

v̂(ξ) =
ĝ(ξ)

−|ξ|2 + ω2 + iαω
.

By the Plancherel theorem

∥v∥2H2(Rd) =

∫
Rd

(1 + |ξ|2)2|v̂|2dξ =

∫
Rd

(1 + |ξ|2)2

(ω2 − |ξ|2)2 + α2ω2
|ĝ|2dξ

≤ C(α, ω)

∫
Rd

|ĝ|2dξ = C(α, ω)∥g∥2L2(Rd).

Since ∥g∥L2(Rd) < ∞ by assumption, we conclude that v ∈ H2(Rd). □
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Key to the analysis of the Waveholtz iteration is the operator S defined on C∞
0 (Rd)

by

Sv(x) =
∫ T

0

K(t)w(x, t)dt, (10)

where w(x, t) solves the initial-value problem

∂2
tw = ∆w, (x, t) ∈ Rd × (0, T ),

w(x, 0) = v(x), x ∈ Rd, (11)

∂tw(x, 0) = 0, x ∈ Rd.

We note that the operator S is a special case of the operator Π, corresponding to
a source term f = 0 on the domain Rd. In the analysis of the Waveholtz iteration
on an open bounded domain Ω it is sufficient to find a continuous extension of this
operator into L2(Ω) or H1(Ω), which is relatively simple to do. In the unbounded case,
however, we will need to extend the operator S into the weighted spaces in which we
expect to find our solutions to the Helmholtz equation. The fact that this is possible
is demonstrated in the next proposition.

Proposition 5 The operator S extends uniquely to a bounded linear operator from L2
s(Rd)

to L2
s(Rd) and from Hp

s (Rd) to Hp
s (Rd) for all s ∈ R and postive integers p. Furthermore,

functions v in L2(Rd) satisfy

Ŝv(ξ) = β(|ξ|)v̂, (ξ) (12)

where

β(λ) =

∫ T

0
K(t) cos(λt)dt. (13)

Provided the source term in (6) satisfies f ∈ L2
t (Rd) and t > 1

2 , the operator Π also extends

as an operator on Hp
s (Rd), and

Πv = S(v − u) + u, (14)

for the outgoing solution u to (6).

The proof of this result is given in the Appendix. We also note that the property
(14) implies that u is a fixed point of Π, since

Πu = S(u− u) + u = S0 + u = u,

as S is a linear operator. Furthermore, since en+1 = Πun − u by definition, we find

Sen = S(un − u) = Πun − u = en+1. (15)

We now show that the operator S commutes with the Laplace operator for sufficiently
smooth functions.

Lemma 6 If v ∈ H2(Rd), then (
∆ ◦ S

)
v =

(
S ◦∆

)
v
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Proof By Proposition 5 we know that for any v ∈ H2(Rd) we have Sv ∈ H2(Rd) as well.
This means that ∆Sv is well-defined and lies in L2(Rd). Similarly, since v ∈ H2(Rd) we have
∆v ∈ L2(Rd) so that by Proposition 5 we have S(∆v) ∈ L2(Rd). We want to show that
S(∆v) = ∆(Sv) as elements of L2(Rd). As the Fourier transform is an isometry of the space
L2(Rd) onto itself, this equality holds precisely if the corresponding equality in the Fourier
domain,

̂(S(∆v)
)
(ξ) = ̂(∆(Sv)

)
(ξ),

holds. Let us investigate this. On the one hand Proposition 5 tells us that

̂(∆(Sv)
)
(ξ) = −|ξ|2Ŝv(ξ) = −|ξ|2β(|ξ|)v̂(ξ),

whilst on the other we have

̂(S(∆v)
)
(ξ) = β(|ξ|)∆̂v(ξ) = −|ξ|2β(|ξ|)v̂(ξ).

We see that the two functions have the same image under the Fourier transform, implying
that they must be equal. This concludes the proof. □

Lemma 7 Suppose s > 1
2 , g ∈ L2

s(Rd). Denote by v and w the outgoing solutions to

∆v + ω2v = g,

and
∆w + ω2w = Sg.

These exist and lie in H2
−s(Rd). Moreover, w = Sv.

Proof Let us denote by vα the solution to

∆vα + ω2vα + iωαvα = g.

Lemma 4 tells us that these vα lie in H2(Rd), so that we by Lemma 6 find

S
(
∆vα + ω2vα + iωαvα

)
= ∆Svα + ω2Svα + iωαSvα = Sg.

That is, the function wα = Svα satisfies

∆wα + ω2wα + iωαwα = Sg.

Since g and Sg both lie in L2
s(Rd) by Proposition 5, Proposition 2 ensures that

v = lim
α→0+

vα and w = lim
α→0+

Svα,

exist as functions in H2
−s(Rd). Furthermore, Proposition 5 tells us that S : H2

−s(Rd) →
H2

−s(Rd) is bounded, which means that

w = lim
α→0+

Svα = S
(

lim
α→0+

vα
)
= Sv.

This concludes the proof. □

Proposition 8 Suppose f ∈ L2
s(Rd) with s > 1

2 . Then the error en of the nth Waveholtz
iterate is an outgoing solution to (9), with Fn = −Snf , that is

∆en + ω2en = −Snf. (16)
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Proof By definition e0 = u0 − u = −u, which is the outgoing solution to

∆e0 + ω2e0 = −f.

Since f ∈ L2
s(Rd) and S is bounded on this domain by Proposition 5, we get −Snf ∈ L2

s(Rd)
for all n ≥ 0. Induction then gives the result upon observing that if en is an outgoing
solution to ∆en + ω2en = −Snf , then Lemma 7 implies that en+1 is the outgoing solution
to ∆en+1 + ω2en+1 = −Sn+1f , since en+1 = Sen by (15). □

3.1.2 Estimate of the error

Having shown that the error en itself is the outgoing solution to the Helmholtz equation
(9) we can study properties of such solutions to understand the behaviour of en as
n → ∞. We know by Proposition 8 that en satisfies (16) and by Proposition 5 that

Ŝnf(ξ) = βn(|ξ|)f̂(ξ). (17)

If f , βn, and s were to satisfy the relevant assumptions (H1) through (H3) in Section 4,
Theorem 9 would therefore give us the bound

∥Re{en}∥L2
−s(Rd) ≤ Cω2s−2Nω(β

n)∥f∥L2
s(Rd), (18)

and similar for the H1
−s norm with the additional assumption (H4). The assumptions

of Theorem 3 are precisely that assumptions (H1) and, (H4) for the H1
−s case, hold,

and we will show below that (H2) and (H3) also hold.
To remove the ω-dependency of our norms of interest we will work with the rescaled

transfer function β̄(r) := β(ωr). With this scaling Nω(β
n) = N1(β̄

n), and we will
demonstrate that for n ∈ Z+,

N1(β̄
n) ≤ Mn−1/2, (19)

for some constant M independent of n. The estimate (18) will then imply that

∥Re{en}∥L2
−s(Rd) ≤ Cω2s−2n− 1

2 ∥f∥L2
s(Rd), (20)

for some constant C, and similarly for the H1
−s-norm, finally proving Theorem 3.

It remains to prove (19), which amounts to estimating

∥β̄n∥L∞(R\Iδ), ∥β̄n∥L1(R) and ∥D1β̄
n∥L1(0,δ).

To this end we investigate the function β̄(r). It has been shown in [1] that β̄ satisfies

|β̄(r)| ≤


1− 1

2 (r − 1)2, |r − 1| ≤ 1
2 ,

1
2 , |r − 1| ≥ 1

2 ,
a

r−1 , r > ω,

≤


e−

1
2 (r−1)2 , |r − 1| ≤ 1

2 ,
1
2 , |r − 1| ≥ 1

2 ,
a

r−1 , r > ω,

(21)
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where a = 3/4π, for the choice of kernel K(t) as in (4). To simplify our estimate of
the norm ∥D1β̄

n∥L1(0,δ) we will choose δ = 1/4.
For the max-norm we then get from (21),

∥β̄n∥L∞(R\Iδ) ≤ sup
|1−r|≥1/4

|β̄(r)|n ≤
(
31

32

)n

. (22)

For the L1-norm, the definition (13) of β shows that β̄ is an even function, so that,
again using (21),

∥β̄n∥L1(R) = 2

∫ ∞

0

|β̄n(r)| dr = 2

(∫ 1
2

0

|β̄n|dr +
∫ 3

2

1
2

|β̄n|dr +
∫ ∞

3
2

|β̄n|dr

)

≤ 2

(∫ 1
2

0

2−ndr +

∫ 3
2

1
2

e−
n
2 (r−1)2dr + an

∫ ∞

3
2

1

(r − 1)n
dr

)

= 2

(
2−n−1 + n− 1

2

∫ −
√

n
2

√
n
2

e−
r2

2 dr +
(a
2

)n 2

n− 1

)
≤ Cn− 1

2 , (23)

since a/2 = 3/8π < 1. In order to estimate the norm ∥D1β̄
n∥L1(0,δ) we write the

function β̄ on an alternative form. Integration of the definition of β̄(r) using the
integral (13) shows that

β̄(r) = sinc(r + 1) + sinc(r − 1)− 1

2
sinc(r),

where we use the convention sinc(x) = sin(2πx)/2πx. One can rewrite this expression
to find the form

β̄(r) =
1

π
sin(2πr)

( r

r2 − 1
− 1

4r

)
,

which means that

β̄(1 + r) = sinc(r)
(
1 +

r2

2r2 + 6r + 4

)
.

We now define the symmetric part of β̄, centered around one, as

β̄sym(r) = sinc(r)
(
1 +

r2

2r2 + 4

)
,

for which β̄sym(r) = β̄sym(−r). Since | sin(x)| ≤ |x−x3/3π| for |x| ≤ π/2, we have that

| sinc(x)| ≤ 1− 4π

3
x2,

which gives an estimate of β̄sym,

|β̄sym(r)| ≤
(
1− 4π

3
r2
)(

1 +
r2

4

)
≤ e−

4π
3 r2e

1
4 r

2

≤ e(−
4π
3 + 1

4 )r
2

.
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We finally let w be the ratio between β̄ and β̄sym,

w(r) =
β̄(1 + r)

β̄sym(r)
= 1− r3Q(r), Q(r) =

6

(3r2 + 4)(2r3 + 6r + 4)
,

where Q is a smooth function on (−δ, δ). One can check that when |r| ≤ δ = 1/4,

|Q(r)| ≤ 6

4(4− 6δ)
≤ 1, |w′(r)| = 3r2|Q(r)|+ |r|3|Q′(r)| ≤ cδr

2,

where cδ = 3 + δmax|r|≤δ |Q′(r)|. Then∫ δ

0

|D1β̄
n(r)|dr =

∫ δ

0

∣∣∣∣ β̄n(1 + r)− β̄(1− r)

r

∣∣∣∣ dr =

∫ δ

0

|β̄n
sym(r)|

∣∣∣w(r)n − w(−r)n

r

∣∣∣dr
≤ 1

2

∫ δ

0

|β̄n
sym(r)| sup

|s|≤r

n|w′(s)||w(s)|n−1dr

≤ cδ
2

∫ δ

0

e(−
4π
3 + 1

4 )nr
2

sup
|s|≤r

ns2|(1 + |s|3)|n−1dr

≤ cδ
2
n

∫ δ

0

e(−
4π
3 + 1

4 )nr
2

r2e(n−1)r2δdr

≤ cδ
2
n−1/2

∫ ∞

0

e(−
4π
3 + 1

4+δ)r2r2dr = Cn−1/2. (24)

Together, (22), (23) and (24) prove (19). These estimates and (17) also show that
assumptions (H2) and (H3) indeed hold, justifying the argument made above. We can
therefore conclude that the estimate (20) holds, which completes the proof of Theorem
3.

4 Estimate of the Helmholtz Equation

In this section we prove a result which provides a bound for the weighted norms of
solutions to the Helmholtz equation (25) in terms of a weighted norm of the forcing
function F . The result requires the following assumptions:

(H1) s > 3
2 and ω ≥ 1.

(H2) The forcing function F satisfies

F̂ (ξ) = ĥ(|ξ|)f̂(ξ)

with ĥ a real-valued function in L1(R)∩L∞(R) and f a real-valued function in
L2
s(Rd).

(H3) There is some 0 < δ < 1 such that the function ĥ satisfies

∥Dωĥ∥L1(0,δω) < ∞,

12



where Dωg denotes the function

Dωg(x) =
g(ω + x)− g(ω − x)

2x
.

The estimate comes in two forms, one for the case where assumptions (H1) through
(H3) hold, and another for the case where the following stronger regularity condition
on f also holds:

(H4) f ∈ H1
s (Rd).

In what follows we let Iδ = (1− δ, 1 + δ), so that ωIδ = (ω − ωδ, ω + ωδ). Using this
notation we have

Theorem 9 Suppose the assumptions (H1)-(H3) given above hold. Let

Nω(ĥ) := ω−1∥ĥ∥L1(R) + ∥Dωĥ∥L1(0,ωδ) + ∥ĥ∥L∞(R\ωIδ).

Then if α > 0 and ω ≥ 1, the solution u to

∆u+ ω2u+ iαωu = F, (25)

satisfies
∥Re{u}∥L2

−s(Rd) ≤ Cω2s−2Nω(ĥ)∥f∥L2
s(Rd),

for some constant C independent of α and ω, but dependent on, δ, d, and s. If in addition
assumption (H4) holds, then also

∥Re{u}∥H1
−s(Rd) ≤ Cω2s−1Nω(ĥ)∥f∥H1

s (Rd),

for the same constant C. The same bounds hold for outgoing solutions in the case α = 0.

Remark 3 Agmon shows a similar estimate in [15], for general F ∈ L2
s(Rd), namely that for

s > 1
2 one can find C ∈ R depending on ω2, d, and s such that

∥u∥H2
−s(Rd) ≤ C∥F∥L2

s(Rd)

for any outgoing solution u satisfying the Helmholtz problem

∆u+ ω2u = F.

With F of the type considered in Theorem 9, this result, along with the error equation of
Proposition 8 produces

∥en∥H2
−s(Rd) ≤ ∥Snf∥L2

s(Rd),

an expression one might expect to be sufficient to show convergence of the Waveholtz method.
However, the right-hand side of this relation does not converge to zero in general, as one can
see for instance in the case d = s = 1, where

∥Snf∥L2
1(R) = ∥Snf⟨x⟩∥2L2(R) = ∥Snf∥2L2(R) +

∥∥|x|2Snf
∥∥2
L2(R).

The first of these terms converges to zero since the L2-norm of βn converges to zero,

∥Snf∥L2(R) = ∥βn(|ξ|)f̂(ξ)∥L2(R) ≤ ∥βn∥L2(R)∥f̂∥L∞(R) → 0.

13



When investigating the second term
∥∥|x|2Snf

∥∥
L2(R), however, we find that it does not

approach zero as n → ∞. Its norm can be understood in terms of the norm of derivatives of
the Fourier transform, ∥∥|x|2Snf

∥∥
L2(R) = ∥∂2ξ

(
βn(|ξ|)f̂(ξ)

)
∥L2(R).

The fundamental difference from the first term involving just Snf is that the Lp-norms of the
derivatives of βn do not approach zero as n → ∞. The same thing happens with other choices
of s. This stands in contrast to what we have seen above, namely that ∥Dωβ

n∥L1(0,ωδ) → 0
with n.

4.1 Proof of Theorem 9

The proof is given in four steps. First, in Section 4.1.1, we consider just ω = 1 and
f ∈ L1

s(Rd), proving Theorem 9 for this case. Second, we extend the proof to the case
when f ∈ H1

s (Rd) in Section 4.1.2. Third, in Section 4.1.3, we use scaling arguments
to convert the proof for ω = 1 to a proof with general ω ≥ 1. This gives frequency-
explicit estimates. Last, we prove the final statement in the theorem about outgoing
solutions in Section 4.1.4.

4.1.1 An estimate for the case ω = 1

Suppose that
∆u+ u+ iαu = F

where F and α is as described in Theorem 9 with ω = 1. The plan is to find a
bound for some weighted norm of Re{u} by the following observation. Let ( · , · ) be
the usual L2 inner product. Suppose we found an estimate of the type

∣∣(Re{u}, v)
∣∣ ≤

M∥v∥L2
s(Rd), where v is real-valued andM is some constant independent of v. Choosing

v = ⟨x⟩−2sRe{u} would then produce a bound for a weighted norm of Re{u}:

∥Re{u}∥2L2
−s(Rd) =

∣∣(Re{u},Re{u}⟨x⟩−2s)
∣∣ ≤ M∥v∥L2

s(Rd) = M∥Re{u}∥L2
−s
, (26)

so that in turn ∥Re{u}∥L2
−s

≤ M . Such an estimate is our goal. We suppose therefore

v to be real-valued and sufficiently regular to Fourier transform. Then (Re{u}, v) =
Re{(u, v)} = Re{(û, v̂)}, and an estimate of the type (26) could be found by investi-
gating this last inner product. We therefore start by computing the Fourier transform
of the Helmholtz solution u,

û(ξ) =
F̂ (ξ)

1− |ξ|2 + iα
,

which permits us to write

(û, v̂) =

∫
Rd

F̂ v̂∗(ξ)

1− |ξ|2 + iα
dξ. (27)
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Introducing the set Ωδ = {x ∈ Rd :
∣∣|ξ| − 1

∣∣ < δ} we divide the integral in (27) into
three parts (û, v̂) = I1 + I2 + I3, where

I1 :=

∫
Rd\Ωδ

F̂ v̂∗(ξ)

1− |ξ|2 + iα
dξ,

and

I2 :=

∫
Ωδ

F̂ v̂∗(ξ)

1− |ξ|2 + iα
dξ − I3, I3 :=

∫
Ωδ

F̂ v̂∗(ξ)

−2(|ξ| − 1) + iα
dξ.

We will next find upper bounds for the absolute value of each of these integrals in
turn, which will allow us to find an upper bound for |Re{(û, v̂)}|.

We start with I1. Since |1− |ξ|2| ≥ δ outside Ωd, we have

|I1| ≤
1

δ

∫
Rd\Ωδ

|ĥ(|ξ|)f̂(ξ)v̂(ξ)|dξ ≤ 1

δ
||ĥ||L∞(R\Iδ)

∫
Rd\Ωδ

|f̂(ξ)v̂(ξ)|dξ

≤ 1

δ
||ĥ||L∞(R\Iδ)||f̂ ||L2(Rd)||v̂||L2(Rd) =

1

δ
||ĥ||L∞(R\Iδ)||f ||L2(Rd)||v||L2(Rd). (28)

For I2 and I3 we will use spherical coordinates and therefore introduce some new
notation. Let

g(r) =

{
f̂(r)v̂∗(r) + f̂(−r)v̂∗(−r), d = 1,∫
|η|=1

f̂(rη)v̂∗(rη)dη, d > 1.

Then we can write

I2 :=

∫
Iδ

ĥ(r)g(r)

1− r2 + iα
rd−1dr − I3, I3 :=

∫
Iδ

ĥ(r)g(r)

−2(r − 1) + iα
rd−1dr.

Before estimating these integrals, we prove a Lemma about the function g(r).

Lemma 10 The following holds for the function g defined above.

(i) g is real-valued if f and v are real-valued.

(ii) If s > 1
2 , then

|g(r)| ≤ K1r
−d⟨r⟩2s∥f∥L2

s(Rd)∥v∥L2
s(Rd),

with K1 independent of r, v, and f , but dependent on d and s.

(iii) If s > 1
2 , then

|g′(r)| ≤ K2r
−d−1⟨r⟩2s+2∥f∥L2

s+1(Rd)∥v∥L2
s+1(Rd),

again with K2 independent of r, v, and f , but dependent on d and s.

Proof We first note that this function g is indeed real-valued, due to the assumptions that f
and v are real-valued. In the case d = 1 we have

g∗(r) = f̂∗(r)v̂(r) + f̂∗(−r)v̂(−r) = f̂(−r)v̂∗(−r) + f̂(r)v̂∗(r) = g(r),
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since the assumption that f and v are real-valued means that f̂∗(r) = f̂(−r), and similarly
for v̂. If d > 1 we have, by symmetry of the sphere,

g(r) =
1

2

∫
|η|=1

f̂(rη)v̂∗(rη) + f̂(−rη)v̂∗(−rη)dξ

=
1

2

∫
|η|=1

f̂(rη)v̂∗(rη) + f̂(rη)∗v̂(rη)dη =

∫
|η|=1

Re{f̂(rη)v̂∗(rη)}dη.

This proves (i). We now estimate |g(r)|. In the case d > 1 we denote by Bd the set of points
ξ in Rd such that |ξ| < 1, and by τ : Bd −→ ∂Bd the trace map, so that

|g(r)| ≤
∫
|η|=1

|f̂ v̂∗(rη)|dη ≤ ∥τ f̂(r ·)∥L2(∂Bd)∥τ v̂(r ·)∥L2(∂Bd). (29)

We can then use Proposition 1 to find

∥τ f̂(r ·)∥L2(∂Bd) ≤ ∥τ f̂(r ·)∥
Hs− 1

2 (∂Bd)
≤ K∥f̂(r ·)∥Hs(Bd) ≤ K∥f̂(r ·)∥Hs(Rd),

provided s > 1
2 . Now using the convention (8) we see that ∥ ·̂ ∥Hs(Rd) = ∥ · ∥L2

s(Rd) and

f̂(r ·) = r−d ̂
f
( ·
r

)
,

we see that

∥τ f̂(r ·)∥L2(∂Bd) ≤ K∥f̂(r ·)∥Hs(Rd) = Kr−d
∥∥∥f ( ·

r

)∥∥∥
L2

s(Rd)
≤ Kr−

d
2 ⟨r⟩s∥f∥L2

s(Rd),

and similar for ∥τ v̂(r ·)∥L2(∂Bd), which in light of (29) means that

|g(r)| ≤ K2r−d⟨r⟩2s∥f∥L2
s(Rd)∥v∥L2

s(Rd).

For d = 1, we instead note that Hs(B1) is continuously embedded in C0(B1) for s > 1
2 ; see

[16, Theorem 9.8]. This means that

|g(r)| ≤ 2∥f̂(r ·)∥L∞(B1)∥v̂(r ·)∥L∞(B1)

≤ K̄r−2
∥∥∥f( ·

r

)∥∥∥
L2

s(R)

∥∥∥v( ·
r

)∥∥∥
L2

s(R)
≤ K̄r−1⟨r⟩2s∥f∥L2

s(R)∥v∥L2
s(R),

for some K̄ and such s, by arguments similar to the ones used in the higher-dimensional case.
Denoting by K1 the constants found in the estimates above for the different values of d, we
have proved (ii). Finally, for (iii) we similarly have

|g′(r)| =
∣∣∣∂r ∫

|η|=1
f̂(rη)v̂∗(rη)dη

∣∣∣
≤ 1

r

∫
|η|=1

∣∣η · ∇η f̂(rη)
∣∣∣∣v̂∗(rη)∣∣dη +

1

r

∫
|η|=1

∣∣f̂(rη)∣∣∣∣η · ∇η v̂
∗(rη)

∣∣dη,
and these integrals can be estimated in the same way as (29), producing

|g′| ≤ K2

r

(
∥∇η f̂(r ·)∥Hs(Rd)∥v̂

∗(r ·)∥Hs(Rd) + ∥f̂(r ·)∥Hs(Rd)∥∇η v̂
∗(r ·)∥Hs(Rd)

)
≤ 2K2

r
∥f̂(r ·)∥Hs+1(Rd)∥v̂(r ·)∥Hs+1(Rd) ≤ 2K2r−d−1⟨r⟩2s+2∥f∥L2

s+1(Rd)∥v∥L2
s+1(Rd),

for s > 1
2 . Again use [16, Theorem 9.8] in the one-dimensional case, this time for the function

g′(r), producing

|g′(r)| ≤ 1

r
∥∂η f̂(r ·)∥L∞(B1)∥v̂(r ·)∥L∞(B1) +

1

r
∥f̂(r ·)∥L∞(B1)∥∂η v̂(r ·)∥L∞(B1)

≤ K̄r−2⟨r⟩2s+s∥f∥L2
s+1(R)∥v∥L2

s+1(R),

by an argument near-identical to the one for d > 1. Denoting by K2 the constants found
above, we have shown the estimate in the statement of the lemma, for all d. □
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We now turn our attention to estimating the remaining integrals I2, and I3. For I2 we
recall that

I2 =

∫
Iδ

( ĥ(r)g(r)

1− r2 + iα
− ĥ(r)g(r)

−2(r − 1) + iα

)
rd−1dr,

and investigate how we can simplify this fraction. We have∣∣∣∣ 1

1− r2 + iα
− 1

−2(r − 1) + iα

∣∣∣∣ =
∣∣∣∣∣−2(r − 1) + iα−

(
1− |r2 + iα

)
(1− r2 + iα)(−2(r − 1) + iα)

∣∣∣∣∣
≤ 1

2

(1− r)2∣∣1− r2
∣∣∣∣r − 1

∣∣ = 1

2

1

r + 1
.

This means that by also using Lemma 10,

|I2| ≤
∫
Iδ

|ĥ(r)g(r)|
2(r + 1)

rd−1dr ≤ K1∥f∥L2
s(Rd)∥v∥L2

s(Rd)

∫
Iδ

|ĥ(r)| ⟨r⟩2s

r(r + 1)
dr

≤ B∥f∥L2
s(Rd)∥v∥L2

s(Rd)∥ĥ∥L1(R), (30)

where B ∈ R is some constant which is independent of α, but depends on δ and s.
Finally, for I3 we note that

Re{I3} = Re
{∫

Iδ

ĥ(r)g(r)

−2(r − 1) + iα
rd−1dr

}
= −1

2

∫ 1+δ

1−δ

ĥ(r)g(r)(r − 1)

(r − 1)2 + α2

4

rd−1dr,

since ĥ and g are real-valued. This is due to (H2) and Lemma 10, as f and v are
real-valued. After a suitable change of variables this can be written as

Re{I3} = −1

2

∫ δ

0

(1 + r)d−1ĥ(1 + r)g(1 + r)− (1− r)d−1ĥ(1− r)g(1− r)

r2 + α2

4

rdr.

We find

|Re{I3}| ≤
∫ δ

0

∣∣∣∣ (1 + r)d−1ĥ(1 + r)g(1 + r)− (1− r)d−1ĥ(1− r)g(1− r)

2r

∣∣∣∣dr
≤
∫ δ

0

∣∣(1 + r)d−1g(1 + r)D1ĥ(r)
∣∣dr

+

∫ δ

0

∣∣ĥ(1− r)g(1 + r)D1

(
td−1

)
(r)
∣∣dr

+

∫ δ

0

∣∣ĥ(1− r)(1− r)d−1D1g(r)
∣∣dr

≤ C∥g∥L∞(Iδ)

∫ δ

0

(∣∣D1ĥ(r)
∣∣+ ∣∣ĥ(1− r)

∣∣) dr
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+ ∥D1g(r)∥L∞(0,δ)

∫ δ

0

∣∣ĥ(1− r)
∣∣dr. (31)

Each of these terms can be estimated using the results in Lemma 10. In particular,
noting that if s > 1/2, then

∥g∥L∞(Iδ) = sup
r∈Iδ

|g(r)| ≤ sup
r∈Iδ

K1r
−d⟨r⟩2s∥f∥L2

s(Rd)∥v∥L2
s(Rd)

∥D1g∥L∞(0,δ) ≤ ∥g′(r)∥L∞(Iδ) ≤ sup
r∈Iδ

K2r
−d−1⟨r⟩2s+2∥f∥L2

s+1(R)∥v∥L2
s+1(R),

and (31) tells us that for such s

|Re{I3}| ≤
(
C1∥ĥ∥L1(R) + C2∥D1ĥ∥L1(0,δ)

)
∥f∥L2

s+1(Rd)∥v∥L2
s+1(Rd), (32)

where C1, C2 ∈ R+ are some real numbers independent of α, but dependent on δ,
s and d. Now, bringing together the results (28), (30), (32), and denoting by C the
maximum over the constants in these results, produces

|Re{(û, v̂)}| ≤ C
(
∥ĥ∥L1(R) + ∥D1ĥ∥L1(0,δ) + ∥ĥ∥L∞(R\Iδ)

)
∥f∥L2

s′ (R
d)∥v∥L2

s′ (R
d),

= CN1(ĥ)∥f∥L2
s′ (R

d)∥v∥L2
s′ (R

d),

when s′ > 3/2. Choosing v(x) = ⟨x⟩−2s′Re{u}(x) then yields

∥Re{u}∥2L2
−s′ (R

d) ≤ CN1(ĥ)∥f∥L2
s′ (R

d)∥Re{u}∥L2
−s′ (R

d).

This implies
∥Re{u}∥L2

−s(R) ≤ CN1(ĥ)∥f∥L2
s(Rd),

which proves Theorem 9 for ω = 1 in the case where assumptions (H1) through (H3)
hold.

4.1.2 Extension to the H1
s (R

d)-norm

We now consider the case where in addition to the assumptions (H1)–(H3), we add
the assumption (H4) that f ∈ H1

s (Rd). Suppose again that u is the unique solution of

∆u+ u+ iαu = F.

We then consider the function uj = ∂xju which is the unique solution to

∆uj + uj + iαuj = ∂xjF. (33)

Moreover, since F̂ (ξ) = ĥ(|ξ|)f̂(ξ), we get

∂̂xjF (ξ) = iξj ĥ(|ξ|)f̂(ξ) = ĥ(|ξ|)
(
iξj f̂(ξ)

)
= h(|ξ|)∂̂xjf(ξ).
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We can then apply Theorem 9 to equation (33) to find

∥Re{∂xju}∥L2
−s(Rd) = ∥∂xjRe{u}∥L2

−s(Rd) ≤ CN1(ĥ)∥∂xjf∥L2
s(Rd),

provided that ∂xjf ∈ L2
s(Rd). Since we have assumed f ∈ H1

s (Rd) we find

∥Re{u}∥H1
−s(Rd) =

( ∑
|α|≤1

∥∂αRe{u}∥2L2
−s(Rd)

) 1
2 ≤ CN1(ĥ)∥f∥H1

s (Rd).

This shows the bound in the case that assumptions (H1) through (H4) hold.

4.1.3 The case of ω ≥ 1

We aim now to extend the above result to the case of general ω ≥ 1 in a manner that
makes it clear how the estimate scales with increasing ω. Suppose therefore that u
solves the equation

∆u+ ω2u+ iαωu = F, (34)

for some ω ≥ 1 and that assumptions (H1) through (H3) hold for this F . Then defining
ũ(x) := u(ω−1x), α̃ := ω−1α, and G(x) := ω−2F (ω−1x) produces

∆ũ(x) + ũ(x) + iα̃ũ(x) = ω−2
(
∆u(ω−1x) + ω2u(ω−1x) + iαωu(ω−1x)

)
= ω−2F (ω−1x) = G(x).

That is, the function ũ(x) satisfies the Helmholtz equation (25) with ω = 1 and

Ĝ(ξ) = ωd−2F̂ (ωξ) = ωd−2ĥ(ω|ξ|)f̂(ωξ) = k̂(|ξ|)ĝ(ξ),

where we defined k̂(|ξ|) = ĥ(ω|ξ|) and ĝ(ξ) = ωd−2f̂(ωξ), or equivalently g(x) =
ω−2f(ω−1x). Because of the assumptions made on the function F , the function G also

satisfies assumptions (H1) through (H3), as ∥D1k̂∥L1(0,δ) = ∥Dωĥ∥L1(0,ωδ). In fact,

N1(k̂) = Nω(ĥ) since

∥k̂∥L1(R) = ω−1∥ĥ∥L1(R), ∥k̂∥L∞(R\Iδ) = ∥ĥ∥L∞(R\ωIδ).

In light of the above calculation, and since it is proven for ω = 1, we can therefore
apply Theorem 9 to the function ũ, producing the estimate

∥Re{ũ}∥L2
−s(Rd) ≤ CNω(ĥ)∥g∥L2

s(Rd),

with C independent of ω and α. Now since ω ≥ 1,

∥Re{ũ}∥L2
−s(Rd) =

(
ωd

∫
Rd

|Re{u}|2⟨ωx⟩−2sdx
) 1

2 ≥ ω
d
2−s∥Re{u}∥L2

−s(Rd),
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as for ω ≥ 1 we have ω⟨x⟩ ≥ ⟨ωx⟩, and by assumption s > 1
2 . For those same reasons

we find

∥g∥L2
s(Rd) =

(
ωd−4

∫
Rd

|f(x)|2⟨ωx⟩2sdx
) 1

2 ≤ ω
d
2+s−2∥f∥L2

s(Rd), (35)

so that we finally get

∥Re{u}∥L2
−s(Rd) ≤ ωs− d

2 ∥Re{ũ}∥L2
−s(Rd) ≤ Cω2s−2Nω(ĥ)∥f∥L2

s(Rd),

where C is independent of ω and α. In the case that we impose on F also the
assumption (H4), we can similarly find

∥Re{ũ}∥H1
−s(Rd) =

( ∑
|α|≤1

∥ω−|α|∂αRe{u(ω−1x)}∥2L2
−s(Rd)

) 1
2

≥ ω
d
2−s−1∥Re{u}∥H1

−s(Rd),

again using the assumption that ω ≥ 1. A similar calculation produces the corre-
sponding estimate

∥g∥H1
s (Rd) ≤ ω

d
2+s−2∥f∥H1

s (Rd),

so that the discussion in Section 4.1.2 gives

∥Re{u}∥H1
−s(Rd) ≤ Cω2s−1Nω(ĥ)∥f∥H1

s (Rd). (36)

This generalises Theorem 9 to the case ω ≥ 1.

4.1.4 The case of outgoing solutions

Finally we turn our attention to the case of outgoing solutions u to equation (34).
We will first consider the case where assumptions (H1) through (H3) hold, as the case
where (H4) holds can be done entirely analogously. Let zα = ω2 + iαω, and denote
by R(z) the resolvent operator (−∆ − z)−1, which is is known to be well-defined for
z not on the positive real axis. Recall Proposition 2, which states that the limit

lim
α→0+

R(zα) =: R(ω2)

exists as an element of the space of bounded linear operators from L2
s(Rd) to H2

−s(Rd),
endowed with the uniform operator topology, provided that s > 1

2 . We get for uα :=
−R(zα)F and u0 := −R(ω2)F , since ∥ · ∥L2

−s(Rd) ≤ ∥ · ∥H2
−s(Rd),

∥Re{u0 − uα}∥L2
−s(Rd) ≤ ∥u0 − uα∥H2

−s(Rd) = ∥R(zα)F −R(ω2)F∥H2
−s(Rd)

≤ ∥R(zα)−R(ω2)∥∥F∥L2
s(Rd)

α→0+−→ 0.
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This implies that Re{uα} −→ Re{u0} as α −→ 0+, when considered as elements of
the space L2

−s(Rd). Using our previous results we see that

∥Re{u0}∥L2
−s(Rd) = lim

α→0+
∥Re{uα}∥L2

−s(Rd) ≤ Cω2s−2Nω(β
n)∥f∥L2

s(Rd),

as stated. By the same argument, the corresponding estimate holds for the H1
−s-norm

of Re{u0} if assumption (H4) hold. This concludes the proof of Theorem 9.

5 Conclusion

We have presented the Waveholtz iteration for the unbounded domain Rd in the
constant-coefficient case, and shown that the real part of the iterates converge as n− 1

2

in H1
−s-norm to the real part of the outgoing solution to the Helmholtz equation,

under suitable assumptions on the weight parameter s and forcing f . The number of
iterations required to achieve a prescribed tolerance has been shown to grow at most
as ω2+ with the frequency parameter ω, although numerical experiments suggest that
the optimal growth rate is ω. The key points of difference between previous analyses
of the Waveholtz method is that the unbounded domain considered here required
us to suitably extend the operators Π and S, and that the analysis could not make
reference to any eigenfunction expansion of the Helmholtz solution, as is possible when
considering Waveholtz on a bounded domain with Dirichlet or Neumann boundary
conditions. We instead analysed the iteration in terms of the limiting behaviour of the
damped Helmholtz equation, by investigating the Fourier transform of the iterates. It
remains open to prove whether the method converges for variable wave speeds.

Appendix A Extension and boundedness of S and Π

We aim here to prove Proposition 5 which primarily states that the operator S, which
was originally defined on the set C∞

0 (Rd), can for any real s and nonnegative p be
extended to a bounded linear operator from the weighted Sobolev space Hp

s (Rd) to
itself.

Proof of Prop 5 We start by proving (12). This identity is true for u ∈ C∞
0 (Rd), which we

now show in the same way as in [1]. The Fourier transform of w in (7) with f = 0 satisfies
an ordinary differential equation for each fixed ξ

∂2t ŵ + |ξ|2ŵ = 0.

This has the solution ŵ(t, ξ) = û(ξ) cos(|ξ|t) when the initial data is w(0, x) = u(x) and
wt(0, x) = 0. Consequently, by (10) and (13),

Ŝu(ξ) =
∫ T

0
K(t)ŵ(t, ξ)dt = û(ξ)

∫ T

0
K(t) cos(|ξ|t)dt = β(ξ)û(ξ).

Finally, by the boundedness of S from L2(Rd) to itself, shown below, the result extends to
all L2-functions.

Next, to prove the extension of S to the weighted Sobolev spaces, we note that since the
solution operator for the wave equation is well-defined between these spaces, the operator S
is a well-defined linear operator from C∞

0 (Rd) to C∞
0 (Rd). As the set C∞

0 (Rd) is dense in
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Hp
s (Rd) for every real s and non-negative p, the Bounded Linear Transformation Theorem

implies that demonstrating

∥Su∥Hp
s (Rd) ≤ C∥u∥Hp

s (Rd), ∀u ∈ C∞
0 (Rd), (A1)

is enough to prove the the claim in the Proposition 5. Here we recall that as defined in
Section 2,

∥u∥2Hp
s (Rd) =

∑
|α|≤p

∫
Rd

|∂αx u(x)|2⟨x⟩2sdx.

We use the convention L2
s(Rd) = H0

s (Rd) to include also L2
s(Rd), and thus aim to show the

bound (A1) for all s and non-negative p.
For the proof we will need the open cover {Ωj}j∈N of Rd defined by

Ωj =

{
{x ∈ Rd | |x| < T}, j = 0,

{x ∈ Rd | (j − 1)T < |x| < (j + 1)T}, j ≥ 1,

with T = 2π/ω, and the extended sets

Ωe
j =

{
Ω0 ∪ Ω1, j = 0,

Ωj−1 ∪ Ωj ∪ Ωj+1, j ≥ 1.

A key property of these sets is that

if supp(u) ⊂ Ωj then supp(Su) ⊂ Ωe
j , (A2)

by the finite speed of propagation in the wave equation. Let us begin with the case s = 0. Take
u ∈ C∞

0 (Rd). By (12) and Parseval, one term in the sum for ∥Su∥2Hp
s (Rd), can be estimated as∫

Rd

∣∣(∂αxSu)(x)∣∣2dx =

∫
Rd

|ξ|2|α||β(ξ)û(ξ)|2dξ ≤
∫
Rd

|ξ|2|α||û(ξ)|2dξ

=

∫
Rd

|∂αx u(x)|2dx, (A3)

since |β(ξ)| ≤ 1 for all ξ by (21). Then (A1) follows for s = 0. We now consider Hp
s (Rd) with

s ̸= 0. Let {ϕj} be a smooth partition of unity subordinate to {Ωj}, such that

∞∑
j=0

ϕj(x) = 1, supp(ϕj) ⊂ Ωj .

To simplify the argument that follows we choose in particular ϕ0 given by

ϕ0(x) = g

(
T − ε− |x|
T − 2ε

)
,

where 0 < ε < T is some fixed real number and g is the smooth transition function defined by

g(x) =


0, x ≤ 0,

e−
1
x

e−
1
x +e

− 1
1−x

, 0 < x < 1,

1, 1 ≤ x.

This function ϕ0 is then identically zero outside of the open ball defined by |x| < T − ε,
identically one in the closed ball defined by |x| ∈ [0, ε], and smoothly transitioning between
zero and one in the shell defined by |x| ∈ (ε, T − ε). It can be shown that defining for each
j > 0 the function ϕj by

ϕj(x) = ϕ0
(
|x| − jT

)
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produces a smooth partition of unity subordinate to the open cover given by the sets Ωj .
This choice means that for any j and multi-index α,

∥∂αϕj∥L∞(Rd) ≤ ∥ϕ0∥W |α|,∞(Rd). (A4)

That is, the derivatives of ϕj can be bounded independently of j.
Using the partition of unity ϕj , we then have supp(uϕj) ⊂ Ωj and supp(Suϕj) ⊂ Ωe

j
by (A2). Since Ωe

j ∩ Ωe
k = ∅ when |j − k| ≥ 4, it follows that (∂αxSuϕj)(∂

α
xSuϕk) ≡ 0 when

|j − k| ≥ 4, and consequently

|(∂αxSu)(x)|2 =
∣∣∣ ∞∑
j=0

(∂αxSuϕj)(x)
∣∣∣2 ≤

( ∞∑
j=0

|(∂αxSuϕj)(x)|
)2

=

∞∑
j=0

∑
|k−j|≤3

∣∣(∂αxSuϕj)(x)
∣∣∣∣(∂αxSuϕk)(x)

∣∣
≤ 1

2

∞∑
j=0

∑
|k−j|≤3

∣∣(∂αxSuϕj)(x)
∣∣2 +

∣∣(∂αxSuϕk)(x)
∣∣2 ≤ 7

∞∑
j=0

∣∣(∂αxSuϕj)(x)
∣∣2.

Hence, ∫
Rd

∣∣(∂αxSu)(x)∣∣2⟨x⟩2sdx ≤ 7

∞∑
j=0

∫
Rd

∣∣(∂αxSuϕj)(x)
∣∣2⟨x⟩2sdx,

and using (A3),∫
Rd

∣∣(∂αxSuϕj)(x)
∣∣2⟨x⟩2sdx =

∫
Ωe

j

∣∣(∂αxSuϕj)(x)
∣∣2⟨x⟩2sdx

≤ sup
x∈Ωe

j

⟨x⟩2s
∫
Ωe

j

∣∣(∂αxSuϕj)(x)
∣∣2dx ≤ sup

x∈Ωe
j

⟨x⟩2s
∫
Rd

∣∣(∂αx uϕj)(x)
∣∣2dx

= sup
x∈Ωe

j

⟨x⟩2s
∫
Ωj

∣∣(∂αx uϕj)(x)
∣∣2dx ≤

supx∈Ωe
j
⟨x⟩2s

infx∈Ωj
⟨x⟩2s

∫
Ωj

∣∣(∂αx uϕj)(x)
∣∣2⟨x⟩2sdx.

Since (1 + |x|)/
√
2 ≤ ⟨x⟩ ≤ 1 + |x|,

supx∈Ωe
j
⟨x⟩2s

infx∈Ωj
⟨x⟩2s

≤ 2|s|



(
1+(j+2)T
1+(j−1)T

)2s
=
(
1 + 3T

1+(j−1)T

)2|s|
, s > 0, j ≥ 1(

1+(j−2)T
1+(j+1)T

)2s
≤
(
1 + 3T

1+(j−2)T

)2|s|
, s < 0, j ≥ 2

(1 + 2T )2s = (1 + 2T )2|s| , s > 0, j = 0(
1

1+(j+1)T

)2s
≤ (1 + 2T )2|s| , s < 0, j ≤ 1.

.

Therefore, we obtain with C(T, s) = 2|s|(1 + 3T )2|s|,∫
Rd

∣∣(∂αxSu)(x)∣∣2⟨x⟩2sdx ≤ 7C(T, s)

∞∑
j=0

∫
Ωj

∣∣(∂αx (uϕj)
)
(x)
∣∣2⟨x⟩2sdx

≤ 7C(T, s)2|α|
∑

|γ|≤|α|

∞∑
j=0

∫
Ωj

|∂γxu(x)|2|∂α−γ
x ϕj(x)|2⟨x⟩2sdx

≤ 7C(T, s)2|α|∥ϕ0∥W |α|,∞(Rd)

∑
|γ|≤|α|

∫
Rd

|∂γxu(x)|2⟨x⟩2sdx.
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Note that we here needed the property (A4) for the final step. The full norm is therefore
bounded as

∥Su∥2Hp
s (Rd) ≤

∑
|α|≤p

∫
Rd

|(∂αxSu)(x)|2⟨x⟩2sdx

≤ 7C(T, s)
∑
|α|≤p

∥ϕ0∥W |α|,∞

∑
|γ|≤|α|

∫
Rd

|∂γxu(x)|2⟨x⟩2sdx

≤ C
∑
|α|≤p

∫
Rd

|∂αx u(x)|2⟨x⟩2sdx = C∥u∥2Hp
s (Rd).

This concludes the proof that S can be extended continuously.
We now use this extension of S to show that Π can also be extended to a continuous

operator on Hp
s (Rd) such that, whenever s > 1

2 and f ∈ L2
s(Rd),

Sv = S(v − u) + u, (A5)

where u is the outgoing solution to the Helmholtz equation (6). Note that these requirements
on s and f are necessary to guarantee the existence of u. We begin by noting that the original
definition of Π shows that for v ∈ C∞

0 (Rd),

Πv = Sv +Π0.

This expression is then used to extend Π to any domain that S has been extended to. It
remains to show that the extension satisfies (A5). We therefore investigate Π0. By definition
it is given by

Π0 =

∫ T

0
K(t)w(x, t)dt,

where w solves the initial-value problem

∂2tw = ∆w − F (x, t), (x, t) ∈ Rd × (0, T ),

w(x, 0) = w0(x), x ∈ Rd, (A6)

∂tw(x, 0) = 0, x ∈ Rd,

for F = f(x) cos(ωt) and w0 = 0, which is well-posed since f is assumed to be in L2(Rd).
Thus, Π0 is well-defined. To derive an expression for Π0 we consider the limiting absorption
principle and solutions uα to the damped Helmholtz problem (25). One can note that for
ωα :=

√
ω2 + iαω the function r(x, t) = uα(x)Re{exp(iωαt)} solves the problem (A6) with

w0 = uα and F = f(x)Re{exp(iωαt)}. If we finally denote by v(x, t) the solution to (A6) for
F = 0 and w0 = uα, we can combine these observations to see that, for all α > 0,

Π0 =

∫ T

0
K(t)wdt =

∫ T

0
K(t)

(
w + (r − v)− (r − v)

)
dt

=

∫ T

0
K(t)rdt− Suα +

∫ T

0
K(t)(w − r + v)dt.

For the final equality we used the fact that
∫ T
0 K(t)vdt = Suα, by definition of S. We now

aim to see how this expression behaves as α → 0+. As S has been extended continuously,
the term Suα approaches Su as α → 0+, where u is the outgoing solution to the Helmholtz
equation (6). Moreover, the first term satisfies

lim
α→0+

∫ T

0
K(t)rdt = lim

α→0+
uα(x)

∫ T

0
K(t) exp(−Im{wα}t) cos(Re{ωα}t)dt
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= u(x)

∫ T

0
K(t) lim

α→0+

(
exp(−Im{wα}t) cos(Re{ωα}t)

)
dt

= u(x)

∫ T

0
K(t) cos(ωt)dt = u(x),

where the exchange of the limit and the integral is justified by use of the Dominated Conver-
gence Theorem, with the dominating function K(t). If we denote by q the function w− r+v,
we see that q solves the problem (A6) for F (x, t) = f(x)Re{exp(iωt)−exp(iωαt)} and w0 = 0.
This function F approaches zero in the L2 sense, so that we by the standard estimate

∥q(·, t)∥H1(R) ≤ C

∫ t

0
∥F (·, τ)∥L2(Rd)dτ,

know that for every t ∈ (0, T ), q → 0 in L2 as α → 0+, which also means that the term∫ T
0 K(t)qdt → 0 in L2 as α → 0+. We conclude that

Π0 = lim
α→0+

(∫ T

0
K(t)rdt− Suα +

∫ T

0
K(t)qdt

)
= u− Su,

so that we can continuously extend Π by

Πv = Sv +Π0 = S(v − u) + u

for v ∈ Hp
s (Rd). □
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[11] Garcia, F., Appelö, D., Runborg, O.: Extensions and Analysis of an Iterative
Solution of the Helmholtz Equation via the Wave Equation (2022). https://arxiv.
org/abs/2205.12349
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