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Abstract We propose and analyze a fast method for computing the solution of the high
frequency Helmholtz equation in a bounded one-dimensional domain with a variable wave
speed function. The method is based on wave splitting. The Helmholtz equation is split into
one–way wave equations with source functions which are solved iteratively for a given tol-
erance. The source functions depend on the wave speed function and on the solutions of the
one-way wave equations from the previous iteration. The solution of the Helmholtz equation
is then approximated by the sum of the one-way solutions at every iteration. To improve the
computational cost, the source functions are thresholded and in the domain where they are
equal to zero, the one-way wave equations are solved with geometrical optics with a compu-
tational cost independent of the frequency. Elsewhere, the equations are fully resolved with
a Runge–Kutta method. We have been able to show rigorously in one dimension that the
algorithm is convergent and that for fixed accuracy, the computational cost is asymptotically
just O(ω1/p) for a p-th order Runge–Kutta method, where ω is the frequency. Numerical
experiments indicate that the growth rate of the computational cost is much slower than a
direct method and can be close to the asymptotic rate.
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1 Introduction

Simulation of high frequency wave propagation is important in many engineering and sci-
entific disciplines. Currently the interest is driven by new applications in wireless commu-
nication (cell phones, bluetooth) and photonics (optical fibers, filters, switches). Simulation
is also used in more classical applications. Some examples in electromagnetics are antenna
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design and radar signature computation. In acoustics simulation is used for noise prediction,
underwater communication and medical ultrasonography. In this paper we consider wave
propagation problems that are governed by the 1D Helmholtz equation

uxx +
ω2

c(x)2 u = 0, ω � 1, x ∈ (−L,L) (1)

where c(x) is the speed of propagation, and ω is the frequency. The equation is augmented
by suitable boundary conditions at x =±L.

One significant difficulty with direct numerical simulation of high frequency wave prob-
lems is that the wavelength is very short compared to the computational domain and thus
many discretization points are needed to resolve the solution. For the Helmholtz equation
standard discretizations by finite difference or finite element schemes leads to sparse sys-
tems of equations with a number of unknowns N that depends on the frequency, N ∼ ωd ,
where d is the dimension of the problem. Those large systems are usually solved by itera-
tive methods. However, since the system of equations is indefinite and ill-conditioned, the
convergence rate can be very slow. Finding good preconditioners for Helmholtz is a ma-
jor challenge, see e.g. [21,34,38,23,16] and more recently [22,20,19], but even with good
precondioners the computational complexity is typically super linear in N. The cost there-
fore grows at least as ωd and direct numerical methods cannot be used as ω → ∞. Hence,
development of effective numerical methods for such problems is important.

An alternative approach is to use an asymptotic approximation such as geometrical op-
tics (GO). See for example [17,46,44,6]. Instead of the oscillating wave field, the unknowns
in GO are the phase and the amplitude which vary on a much coarser scale than the full
solution. They are therefore easier to compute numerically, at a cost independent of the
frequency. There are many numerical methods based on the GO approximation, see for ex-
ample [13,18,24,32,43,45,47]. The main disadvantage of the GO approximation is that it
is only accurate for large frequencies. It typically requires that variations in the speed of
propagation c(x) are on a scale much larger than the wave length. Another disadvantage of
GO is that it cannot capture diffracted waves that are produced when the incident field hits
edges, corners or vertexes of the obstacle or when the incident wave hits the tangent points
of the smooth scatterer (creeping waves). Moreover, GO fails at caustics where waves focus.
Techniques to overcome these problems include geometrical theory of diffraction [30] and
Gaussian beams [40,42].

The situation described above can be summarized as follows: For direct methods the
computational cost grows with the frequency for fixed accuracy, while for GO methods
the accuracy grows with the frequency for fixed computational cost. Unfortunately, the fre-
quency range and accuracy requirement of many realistic problems often fall in between
what is tractable with either of these approaches. Recently a new class of algorithms has
been proposed that combine the cost advantage of GO methods with the accuracy advantage
of direct methods. They are thus characterized by a computational cost that grows slowly
with the frequency, while at the same time being accurate also for moderately high frequen-
cies.

The main interest of the new methods has been for scattering problems [8,31,14,1,
28,11]. Those methods are based on the integral formulation of the Helmholtz equation.
The idea is to make an approximation space that incorporates the oscillatory behavior of
the solution so that the new unknown function is less oscillatory than the original. Those
methods require in principle only O(1) unknowns as ω → ∞ and they are also able to keep
the computational cost at the same level using special numerical methods for oscillatory
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integrals, see [31,8]. Most of this work has been done for convex scatterers but there are
also extensions to non-convex scatterers [9,15]. Rigorous proofs of the low cost of these
methods are difficult and require detailed results on the asymptotic behavior of the exact
solution near shadow boundaries and corners. An example of a result, due to Dominguez,
Graham and Smyshlyaev [14], concerns convex smooth scatterers in 2D. They show that the
error is controlled if the number of unknowns N and computational cost are slightly larger
than k1/9. Another result is given by Chandler-Wilde and Langdon for convex polygons
where, similarly, the cost only grows as logk, see [12].

For full domain problems of the type (1) much less has been done. In some sense this is
more difficult than the scattering problem in a homogeneous medium because the waves are
reflected at all points where the wave speed changes, not only at the surface of a scatterer.
One attempt at lowering the computational cost along the lines above has been to use plane
wave basis functions in finite element methods [39,37,4,10]. The method can be seen as
a discontinuous Galerkin method with a particular choice of basis functions and numerical
flux [26,35]. However, except in simple cases these methods do not reduce the complexity
more than by a constant factor. The method proposed by Giladi and Keller [25] is a hybrid
numerical method for the Helmholtz equation in which the finite element method is com-
bined with GO. The idea is to determine the phase factor which corresponds to the plane
wave direction a priori by solving the eikonal equation for the phase using ray tracing and
then to determine the amplitude by a finite element method choosing asymptotically derived
basis functions which incorporate the phase factor. Han and Huang [27] recently proposed
a tailored finite-point method for the 1D Helmholtz equation. They divide the domain into
intervals, in which they approximate the wave speed function c(x) by a piecewise constant
function. On each interval they solve the equation exactly and couple the solutions via trans-
mission and reflexion conditions. The speed function is assumed to be smooth and monotone
in each interval. They analyze a case when the solution decays to zero with ω and show a
frequency independent absolute (but not relative) error.

In this article we introduce a weakly frequency dependent method based on wave split-
ting for the 1D full domain problem (1). Although there are already some interesting appli-
cations in one dimension [33,3], most practical problems are of course in higher dimensions.
However, our focus in this article is on the analysis and to show that, at least in one dimen-
sion, it is possible to construct a method for which one can show rigorous error and cost
estimates that depend weakly on the frequency. The Helmholtz equation is split into one-
way wave equations which are solved iteratively, sweeping back and forth over the domain.
The full solution of (1) is approximated by the sum of those solutions. We show that this
sum converges rapidly. The one-way equations have source functions that depend on the
solutions of the one-way wave equations from the previous iteration. To improve the com-
putational cost, the source functions are thresholded and in the domain where they are equal
to zero, the one-way wave equations can be solved with geometrical optics with a computa-
tional cost independent of the frequency. Elsewhere, the equations are fully resolved. This
is only necessary in a small domain of size 1/ω , however, and we are able to show that
for fixed accuracy, the computational cost is asymptotically just O(ω1/p) for a p-th order
Runge–Kutta method. We also perform numerical experiments and the results indicate that
in practice the cost can indeed be close to this.

The paper is organized as follows. In Section 2 we derive our method. In Section 3 we
derive estimates of the solution to the one-way wave equation and show the convergence
of the algorithm. In Section 4 we do the error analysis of the numerical implementation
and show that the computational cost depends only weakly on the frequency. Numerical
examples are given in Section 5.
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2 A Fast Method for Helmholtz Equation

In this section we derive the fast method. We consider the 1D Helmholtz equation

uxx +
ω2

c(x)2 u = ω f , x ∈ (−L,L), (2)

where ω is the frequency and c(x) is the wave–speed function such that supp(cx)⊂ (−L,L).
It is augmented with the non-reflecting boundary conditions

ux(−L)− iωu(−L) =−2iωA, (3)

ux(L)+ iωu(L) = 0, (4)

which also incorporate an incoming wave with amplitude A. We are mainly concerned with
the homogeneous case when f = 0, but keep the more general form of the equation as it is
needed in the subsequent analysis also for the f = 0 case. At high frequencies GO is a good
approximation of the solution. We want to find a way to correct for the errors it makes at
lower frequencies. A natural idea would be to use the system of WKB equations

2∇φ ·∇A0 +∆φA0 = 0

... |∇φ |= 1
c

(5)

2∇φ ·∇An+1 +∆φAn+1 = ∆An,

for the amplitude and phase, that is obtained in GO when the solution is approximated by

u(x) = eiωφ(x)
∞

∑
k=0

Ak(x)(iω)−k. (6)

However, the series in (6) does not converge, even in simple settings. It is only an asymptotic
series. The main problem is that (5) only describes waves traveling in one direction. In
reality, waves are reflected whenever cx 6= 0. We therefore introduce the functions v and w
to describe waves propagating in the right-going and the left-going directions, respectively.
The full solution is the sum of these functions, u = v+w. We make the ansatz that v and w
satisfy the following one-way wave equations,

iωv+ c(x)vx−
1
2

cx(x)v = F, (7)

iωw− c(x)wx +
1
2

cx(x)w = F, (8)

with F to be determined. If z = v+w, then from a simple manipulation of (7) and (8) it
follows that z satisfies the following equation

c2zxx +ω
2z =−2iωF +α(x)z, α(x) =

1
2

ccxx−
1
4

c2
x . (9)

Thus, if F = α(x)z/2iω , then z = u, the solution of the Helmholtz equation (2) with f = 0.
We now make an expansion of v and w in powers of ω ,

v =
∞

∑
n=0

rnω
−n, w =

∞

∑
n=0

snω
−n. (10)
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Then, (7) and (8) become (with F = α(x)z/2iω)

∞

∑
n=0

(
iωrn + c(x)∂xrn−

1
2

cx(x)rn−
α(x)

2i
(rn−1 + sn−1)

)
ω
−n = 0,

∞

∑
n=0

(
iωsn− c(x)∂xsn +

1
2

cx(x)sn−
α(x)

2i
(rn−1 + sn−1)

)
ω
−n = 0,

where r−1 = s−1 = 0. Defining vn = rnω−n and wn = snω−n and setting each term to zero,
we obtain for x ∈ (−L,L) and n≥ 0

iωvn + c(x)∂xvn−
1
2

cx(x)vn =−
1

2iω
fn(x), (11)

iωwn− c(x)∂xwn +
1
2

cx(x)wn =−
1

2iω
fn(x), (12)

where
f0(x) = ω f (x), fn+1(x) =−α(x)(vn(x)+wn(x)). (13)

We will then approximate u(x) = v(x)+w(x) by zm(x) obtained by taking the first m terms
in the sums in (10),

u(x)≈ zm(x) =
m

∑
n=0

(vn(x)+wn(x)). (14)

We also need to specify initial conditions for (11) and (12). It follows from Lemma 1 below
that zm will satisfy the boundary conditions (3) and (4) for all m if we let

vn(−L) =
{

A, n = 0
0, n > 0 , wn(L) = 0, ∀n. (15)

To sum up, we solve (11) and (12) for n = 0,1,2, . . . ,m with the given initial conditions
(15) and the source function fn that is defined by (13). Then, we will show (Theorem 1 with
Tol = 0) that the solution u(x) of the Helmholtz equation (2) can indeed be approximated
well by zm given in (14). Moreover, in contrast to (6), the series (14) converges quickly for
large ω .

Remark 1 This is similar to the Bremmer series [7], where

iωvn(x)+ c(x)∂xvn(x)−
cx(x)

2
vn(x) =−

cx

2
wn−1(x),

iωwn(x)− c(x)∂xwn(x)+
cx(x)

2
wn(x) =

cx

2
vn−1(x),

with no ω−1 in the right hand side. The convergence is more subtle but has been shown in
[2,29,5,36]. We prefer (11)–(12) as it clearly separates waves of different size in terms of
ω−1, which leads to a simpler analysis.

In a direct implementation, the computational complexity of solving (11,12) would grow
algebraically with the frequency ω like for the full Helmholtz equation, since the solution
is oscillatory. To get around this we note that (11) and (12) can be simplified when fn = 0.
Then, using the ansatz vn = Aeiωφ in (11) we obtain equations for A and φ ,

∂xφ =
1

c(x)
, ∂xA =

cx(x)
2c(x)

A(x). (16)



6

This is in fact GO and can be solved at a cost independent of the frequency. Similar equations
can be obtained when the ansatz is used in (12). Thus, the computational cost estimate can
be improved by approximating the forcing functions with zero when they are small. More
precisely, we do the following. Let f̂n be the approximate forcing function and v̂n and ŵn the
corresponding approximate one-way wave equation solutions,

iω v̂n + c(x)∂xv̂n−
1
2

cx(x)v̂n =−
1

2iω
f̂n(x), (17)

iωŵn− c(x)∂xŵn +
1
2

cx(x)ŵn =−
1

2iω
f̂n(x), (18)

with initial data

v̂n(−L) =
{

A, n = 0
0, n > 0 , ŵn(L) = 0, ∀n. (19)

Here, f̂n is computed as follows. First, calculate the forcing function from the approximate
one-way solutions in the same way as before,

f̃n+1(x) =−α(x)(v̂n(x)+ ŵn(x)). (20)

Second, let

trunc(x,δ ) =
{

0, |x|< δ

x, otherwise

be the truncation function and then define f̂n as the thresholded version of f̃n,

f̂n(x) = trunc( f̃n(x),Toln), Toln =
ωTol
2n+1L

, (21)

for some tolerance Tol. As before, f̃0 = f0 = ω f .
Also for this case we will show (Theorem 1) that the solution u(x) of the Helmholtz

equation (2) can be well approximated by

u(x)≈ ẑm(x) :=
m

∑
n=0

(v̂n(x)+ ŵn(x)). (22)

Thus, (17)–(18) can be solved independently of the frequency the part of the domain where
f̂n = 0. In the part of the domain where f̂n 6= 0 a direct ODE numerical method can be
used. The solution of (2) is then approximated by (22). We will also show that the size of
the region where f̂n 6= 0 is O(1/ω) and that this implies an almost frequency independent
computational complexity (Theorem 1).

Hence, the algorithm for computing the solution of (2)–(4) is as follows: Choose some
tolerance Tol and, for n = 0,1,2, . . . , do the following

1. Replace the function f̃n by f̂n defined by (21). If f̂n ≡ 0 and n 6= 0 stop, else
2. Compute v̂n and ŵn from (17) and (18). In a domain where f̂n 6= 0 use a direct p-th order

numerical method with stepsize

∆x f ∼
Tol1/p

ω1+1/p , (23)

otherwise use geometrical optics with stepsize (Figure 1)

∆xc ∼ ω∆x f . (24)
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|f_n|

Fig. 1 Function | fn|. In a domain where | fn(x)|< Toln f̂n(x) = 0 and we can use GO to solve (17) and (18),
otherwise f̂n(x) = fn(x) and some p-th order ODE numerical scheme can be used.

3. Add v̂n + ŵn to ẑn−1. Note that in a Runge–Kutta scheme the function f̂n may need to be
evaluated in between the grid points. To obtain those values of f̂n, we use a p-th order
interpolation.

4. Compute f̃n+1 from v̂n and ŵn. Go to 1.

The solution of (2)–(4) is approximated by ẑm(x).

Remark 2 Note that a direct p-th order method is applied only in intervals of size O(ω−1).
Hence, if ∆x f is given by (23), the computational cost will be O(ω1/p). See Remark 4 for
details.

Remark 3 Extending the method to 2D would involve a number of non-trivial steps. In 2D,
waves do not propagate only backward and forward. They propagate asymptotically in the
direction ∇φ where φ solves the eikonal equation (5). A possible generalization of the 1D
method could therefore be based on one-way equations of the type

iωvn + c(x)2
∇φn ·∇vn−

c(x)2∆φn

2
vn =

fn

2iω
,

iωwn− c(x)2
∇φn ·∇wn−

c(x)2∆φn

2
wn =

fn

2iω
,

with φn solving (5) and fn derived in the same way as in 1D, namely

fn+1(x) = α(x)(vn +wn)+∇φ
⊥
n ·∇

(
c(x)2

∇φ
⊥
n ·∇(vn +wn)

)
,

α(x) =−∇

(
c2∆φn

2

)
·∇φn−

c2(∆φn)
2

4
.

In addition, the boundary conditions for φn+1 must be specified based on the solutions vn
and wn such that zn = ∑

n
j=0(v j +w j) is a good approximation of the Helmholtz equation,

and at the same time the one-way equations can be solved in a computationally cheap way.
Another complicating factor is the existence in 2D of caustics, where GO breaks down and
φn should become multi-valued.

3 Analysis

In this section we analyze the method when (17) and (18) are solved exactly. We will first
derive estimates of the solution of the equations (11) and (12) and its derivatives. We then
show that ẑm in (22) converges to the solution of (2)–(4). Next, we give an error estimate in
terms of m and Tol. As a side effect we obtain a L∞ estimate of the solution of the Helmholtz
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equation in 1D. We also show that the size of the domain where a direct method, which
resolves the wavelength, must be used is proportional to O(1/ω). More precisely, we prove
the following:

Theorem 1 Let α be defined by (9). Assume ω > 1, c(x) ∈C2[−L,L], and

β |α|L1

ω
≤ δ0 < 1, β =

1
2

√
cmax

c3
min

. (25)

If u is the solution of (2)–(4), then

|u− ẑm|∞ ≤C
(
(|A|+ | f |L1)δ

m+1
0 +Tol

)
. (26)

Moreover,

meas{ f̂n 6= 0}= meas{| f̃n| ≥ Toln} ≤
C
ω
, n≥ 1, (27)

and
|u|∞ ≤C(|A|+ | f |L1). (28)

The constants in (26)–(28) do not depend on ω .

Remark 4 From (27) it follows that for the homogeneous boundary value problem, where
f0 = ω f ≡ 0, the computational cost of our method will not grow fast with ω . More pre-
cisely, by (23)–(24),

cost ∼
m+1

∑
n=0

1
∆xc

+
meas{ f̂n 6= 0}

∆x f
∼ mω

1/p = O(ω1/p),

when δ
m+1
0 ∼Tol, i.e. m∼ log Tol/ logδ0. More generally, we can allow the forcing function

f to depend on ω and be sparse such that

meas{| f | ≥ Tol} ≤ C
ω
.

This covers for instance the physically interesting case of spikes modeling wave sources
localized to points, e.g. delta functions or regularized delta functions of type ωS(ωx) for a
compactly supported S(y).

Remark 5 Note that (25) means that

ω >
1
2

√
cmax

c3
min

∣∣∣∣12 ccxx−
1
4

c2
x

∣∣∣∣
L1

.

This puts a restriction on how fast c(x) can vary relative to the wave length, which is pro-
portional to 1/ω . To give a more concrete example of this condition, suppose c(x) changes
by O(1) over a small distance ε . Then cx ∼ 1/ε and cxx ∼ 1/ε2 in an interval of size ε , and
cx ∼ cxx ∼ 1 elsewhere. This would give,

|α|L1 =

∣∣∣∣12 ccxx−
1
4

c2
x

∣∣∣∣
L1

∼ 1/ε.

Hence, the wave length can be comparable to ε . To compare, recall that in standard ge-
ometrical the wave length must be significantly smaller than ε for the approximation to
be accurate. In fact, geometrical optics corresponds to one single iteration of the method
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(m = 0) and the error estimate above shows that, for this case, |u−z0| ∼ δ0 ∼ 1/(εω), while
for the general case (m > 0) with Tol= 0 we have |u− zm| ∼ 1/(εω)m+1.

Let us also point out that in actual numerical computations there is indeed a cut-off
frequency ωc below which the method does not converge. However, (25) does not give a
sharp estimate of ωc and the method converges also for ω smaller than what is required by
(25); see Example 3 in Section 5.

3.1 Estimates of One-Way Solutions

In order to prove Theorem 1, we begin by deriving estimates of the one-way solutions,
starting with an estimate for the general linear initial value problem. Consider

dy
dx

= iωa(x,ω)y+b(x,ω), x0 ≤ x≤ x1, y(x0) = y0, (29)

where a(x,ω) and b(x,ω) are given functions that depend on the frequency ω . We then have

Theorem 2 Suppose ω > 1 and that b(·,ω)∈Cp−1([x0,x1]) for all ω and a(·,ω)∈Cp−1([x0,x1])
uniformly in ω > 1, i.e. supx0≤x≤x1

|∂ k
x a(x,ω)|<C, for all ω > 1 and 0≤ k ≤ p−1. More-

over, suppose
C0 = sup

x0≤t,x≤x1
ω>1

∣∣∣e−ω
∫ x
t Im(a(s,ω))ds

∣∣∣< ∞.

Then, if y(x) is a solution of (29),

|y|L∞([x0,x1]) ≤C0
(
|y0|+ |b|L1([x0,x1])

)
, (30)

∣∣∣∂ k
x y
∣∣∣
L∞([x0,x1])

≤Ck

(
ω

k|y0|+
k

∑
i=1

ω
i−1|∂ k−i

x b(x,ω)|L∞([x0,x1])+ω
k|b|L1([x0,x1])

)
,

for k ≥ 1, where Ck are constants that do not depend on ω , b(x,ω) or y0.

Proof These estimates are easily obtained from the closed form expression of the exact
solution to (29)

y(x) = y0eiω
∫ x

x0
a(s,ω)ds

+
∫ x

x0

b(t,ω)eiω
∫ x
t a(s,ω)dsdt.

See [41] for details.

We can now derive bounds on the forcing functions fn and f̃n in (13) and (20) as well as
the solution and its derivatives of the equations (11) and (12). We prove the following

Theorem 3 Let vn(x), wn(x) be solutions of (11), (12) together with (13), (15) and let β be
given by (25). Assume c(x) ∈Cp[−L,L] and ω > 1. Then for p≥ 0

|∂ p
x vn|∞ ≤Cω

p(|A|+ | f |L1)

(
β

ω
|α|L1

)n

, n≥ 0. (31)

and

| fn|L1 ≤C|α|L1(|A|+ | f |L1)

(
β

ω
|α|L1

)n−1

, n≥ 1. (32)

Estimate (31) is also valid for |∂ p
x wn|∞. Moreover, if f̃n is given by (20) together with (17),

(18), (19) then estimate (32) is valid also for f̃n.



10

Proof The ODE (11) can be written on the form (29), with a(x,ω) and b(x,ω) defined by

a(x,ω) =− 1
c(x)
− i

cx(x)
2c(x)ω

, b(x,ω) =− 1
2iωc(x)

fn(x),

which satisfy the assumptions in Theorem 2 with x0 =−L, x1 = L and

C0 = sup
−L≤t,x≤L

∣∣∣e∫ x
t

cs
2c(s) ds

∣∣∣= sup
−L≤t,x≤L

∣∣∣∣e∫ x
t d
(

ln(
√

c(s))
)

ds
∣∣∣∣= sup

−L≤t,x≤L

√
c(x)√
c(t)
≤ 2βcmin,

where β is the constant defined by (25). For |b|L1 , we can estimate

|b|L1 =

∣∣∣∣− 1
2iωc(x)

fn(x)
∣∣∣∣
L1

≤ 1
2ωcmin

| fn|L1 .

Hence, from Theorem 2 with p = 0,

|vn|∞ ≤ 2βcmin

(
|vn(−L)|+ 1

2ωcmin
| fn|L1

)
≤C|vn(−L)|+ β

ω
| fn|L1 .

Moreover, f0(x) = ω f (x) and vn(−L) is given by (15). Thus,

|v0|∞ ≤C|A|+β | f |L1 ≤C(|A|+ | f |L1), |vn|∞ ≤
β

ω
| fn|L1 , n≥ 1. (33)

We obtain the corresponding results for wn in the same way. Using (13), we can estimate

| fn+1|L1 =
∫
R
|α(x)| |vn(x)+wn(x)|dx≤ |α|L1(|vn|∞ + |wn|∞). (34)

Then, for n = 1

| f1|L1 ≤ |α|L1(|v0|∞ + |w0|∞)
(33)
≤ C|α|L1 (|A|+ | f |L1)

and we use induction to prove that (32) is also valid for n ≥ 2. So, assume that (32) is true
for n = k and show that it is true for n = k+1,

| fk+1|L1 ≤ |α|L1(|vk|∞ + |wk|∞)
(33)
≤ β

ω
| fk|L1 |α|L1 ≤C|α|L1(|A|+ | f |L1)

(
β

ω
|α|L1

)k

.

Hence, (32) is proved. We now note that the only property connecting fn with vn, wn and f
that has been used so far is (34) and the fact that | f0|L1 ≤ ω| f |L1 . The same relationships
clearly hold also for f̂n, v̂n, ŵn and f . Therefore (32) holds also for f̃n.

We continue with proving (31). For p = 0 it follows from (33) and (32). For p ≥ 1, we
again use mathematical induction and Theorem 2. Assuming (31) is true for derivatives up
to the order p we show that it is also true for the derivative of order p+1. From Theorem 2,
it follows

|∂ p+1
x vn|∞ ≤Cp+1

(
ω

p+1|vn(−L)|+
p+1

∑
k=1

ω
k−1
∣∣∣∣∂ p+1−k

x
fn

2iωc

∣∣∣∣
∞

+ω
p+1
∣∣∣∣ fn

2iωc

∣∣∣∣
L1

)
. (35)
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Before we continue, let us estimate

p+1

∑
k=1

ω
k−1
∣∣∣∣∂ p+1−k

x

(
fn

2iωc

)∣∣∣∣
∞

=
p

∑
k=0

ω
k
∣∣∣∂ p−k

x

(
α

2iωc
(vn−1 +wn−1)

)∣∣∣
∞

=
p

∑
k=0

ω
k

∣∣∣∣∣ p−k

∑
m=0

(
p− k

m

)
∂

m
x (vn−1 +wn−1)∂

p−k−m
x

(
α

2iωc

)∣∣∣∣∣
∞

≤ C
ω
(|A|+ | f |L1)

(
β

ω
|α|L1

)n−1 p

∑
k=0

ω
k

p−k

∑
m=0

ω
m ≤C(|A|+ | f |L1)

(
β

ω
|α|L1

)n

ω
p

and, with δ = β |α|L1/ω ,∣∣∣∣ fn

2iωc

∣∣∣∣
L1

≤ C
ω
|α|L1(|A|+ | f |L1)δ

n−1 ≤C(|A|+ | f |L1)δ
n.

Thus if λ0 = 1 and λn = 0 for n > 0, we get from (35)

|∂ p+1
x vn|∞ ≤Cp+1

(
ω

p+1|A|λn +ω
p+1(|A|+ | f |L1)δ

n)≤Cω
p+1(|A|+ | f |L1)δ

n,

which is what we wanted to show.

3.2 Convergence of the Algorithm

In this section we show two lemmas about the convergence of the algorithm. These are
subsequently used in the proof of Theorem 1.

Lemma 1 Let f (x)∈C1[−L,L] and c(x)∈C2[−L,L]. If v(x) and w(x) satisfy (11) and (12)
with boundary conditions v(−L) = A and w(L) = 0, then z(x) = v(x)+w(x) satisfies

c2(x)zxx(x)+ω
2z(x) = f (x)+α(x)(v(x)+w(x))

with boundary conditions:

c(−L)zx(−L)− iωz(−L) =−2iωA,

c(L)zx(L)+ iωz(L) = 0.

Proof This follows from simple mathematical manipulations, see [41] for details.

Lemma 2 If
β |α|L1

ω
≤ δ0 < 1, the sequence {zm}∞

m=1 defined by (14) with c(x) ∈C2[−L,L]
converges in C2[−L,L] when m→∞ and its limit z satisfies the Helmholtz equation (2) with
boundary conditions (3) – (4). Moreover,

|z|∞ ≤C(|A|+ | f |L1), (36)

where C is a constant that depends on δ0 and c(x) but not on ω .
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Proof Let v j, w j and f j be given by (11), (12) together with (13), (15). From Lemma 1 it
follows that v j +w j satisfies

c2(v j +w j)xx +ω
2(v j +w j) = f j− f j+1, j = 0, . . . ,m (37)

with boundary conditions

c(−L)(v j(−L)+w j(−L))x− iω(v j(−L)+w j(−L)) =−2iωv j(−L), (38)

c(L)(v j(L)+w j(L))x + iω(v j(L)+w j(L)) = 0. (39)

Summing the equations (37) for j = 0, . . . ,m, we get that zm satisfies the following equation:

c2
∂xxzm +ω

2zm = f0− fm+1.

Moreover, summing (38) and (39), we get that zm satisfies the boundary conditions:

c(−L)∂xzm(−L)− iωzm(−L) =−2iωA, (40)

c(L)∂xzm(L)+ iωzm(L) = 0. (41)

Using Theorem 3, we can show that for p = 0,1,2,

|∂ p
x zm−∂

p
x zn|∞ ≤

max(n,m)

∑
j=min(n,m)

|∂ p
x v j +∂

p
x w j|∞ ≤

max(n,m)

∑
j=min(n,m)

Cω
p(|A|+ | f |L1)

(
β

ω
|α|L1

) j

≤Cω
p
δ

min(n,m)
0 → 0, m,n→ ∞.

This means that {zm}∞
m=0 is a Cauchy sequence in C2[−L,L] and there exists z ∈ C2[−L,L]

such that zm→ z as m→∞. Moreover, since | fm+1|∞ ≤C(|vm|∞ + |wm|∞)→ 0 as m→∞ by
Theorem 3, it follows that z satisfies the Helmholtz equation (2),

c2zxx +ω
2z = ω f ,

and by taking limm→∞ of (40) and (41), it follows that z satisfies the boundary conditions
(3),(4). Finally, by Theorem 3,

|zm|∞ ≤
m

∑
j=0

(|v j|∞ + |w j|∞)≤C(|A|+ | f |L1)
m

∑
j=0

(
β

ω
|α|L1

) j

≤C (|A|+ | f |L1)
m

∑
j=0

δ
j

0 .

By taking the limit m→ ∞ in both sides of this inequality we obtain (36).

3.3 Proof of Theorem 1

We can now prove Theorem 1. Let u be the solution of (2) with boundary conditions (3)-(4).
If v̂m and ŵm are solutions of (17) and (18) then from Lemma 1 it follows that v̂m(x)+ ŵm(x)
satisfies

c2(v̂m + ŵm)xx +ω
2(v̂m + ŵm) = f̂m− f̃m+1,

with boundary conditions

c(−L)(v̂m(−L)+ ŵm(−L))x− iω(v̂m(−L)+ ŵm(−L)) =−2iω v̂m(−L),

c(L)(v̂m(L)+ ŵm(L))x + iω(v̂m(L)+ ŵm(L)) = 0.
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Let em and êm solve

c2
∂xxem +ω

2em = f̂m, c2
∂xxêm +ω

2êm = f̃m− f̂m

with boundary conditions (3)-(4) with A = 0. By the uniqueness of the solution of the
Helmholtz equation with boundary conditions (3)-(4) and the fact that f̃0 = f0, it follows
that u = e0 + ê0 and

em = v̂m + ŵm + em+1 + êm+1.

Hence, by induction,

u = e0 + ê0 = v̂0 + ŵ0 + ...+ v̂m + ŵm + em+1 +
m+1

∑
j=0

ê j = ẑm + em+1 +
m+1

∑
j=0

ê j.

Thus, if ẑm is given by (22),

|u− ẑm|∞ < |em+1|∞ +
m+1

∑
j=0
|ê j|∞. (42)

Let us estimate |em|∞. Since em satisfies the Helmholtz equation, from Lemma 2 and Theo-
rem 3 it follows

|em|∞ ≤C
(
|A|+ 1

ω
| f̂m|L1

)
A=0
≤ C

ω
| f̂m|L1 ≤

C
ω
| f̃m|L1 ≤C (|A|+ | f |L1)

(
β

ω
|α|L1

)m

. (43)

Let us now estimate |êm|∞. Again, using Lemma 2, we conclude

|êm|∞ ≤C
(
|A|+ 1

ω
| f̃m− f̂m|L1

)
A=0,m≥1

=
C
ω
| f̃m− f̂m|L1 ≤

C
ω

Tolm. (44)

Now, using (43), (44) and (21), (42) becomes

|u− ẑm|∞ ≤C (|A|+ | f |L1)

(
β

ω
|α|L1

)m+1

+C
m+1

∑
j=0

Tol
2 j+1 ≤C((|A|+ | f |L1)δ

m+1
0 +Tol)

which we wanted to show.
Let us finally show (27). Define,

g(y) = meas{x ∈ [−L,L] : | f̂n(x)| ≥ y}.

Clearly, g(Toln) ≤ g(0) = 2L and g(y) = 0 for y ≥ | f̃n|∞, while for 0 < y < | f̃n|∞ it is a
decreasing function. Then,

yg(y)≤ 2L| f̃n|∞ ≤ 2LC|α|∞(|A|+ | f |L1)

(
β

ω
|α|L1

)n−1

≤C
(

β

ω
|α|L1

)n−1

and thus, using (21),

g(Toln)≤
C

Toln

(
β

ω
|α|L1

)n−1

≤ C
ω
,

which proves (27). The estimate (28) follows directly from Lemma 2. Thus, Theorem 1 is
proved.
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4 Error Analysis for Numerical Implementation

In this section we derive the error of the method when also the numerical approximation is
taken into account. Our main result is Theorem 4 where we show that the error depends only
weakly on the frequency for a fixed computational cost.

In Section 3, we showed that the solution of (2)–(4) can be approximated by the sum
zm defined by (14). Now, we want to solve for zm(x) numerically. That means that we have
to solve equations (11)–(12). As explained in Section 2 we solve them directly when | fn|>
Toln. The equations are then of the form (29). For (11), a(x,ω) and b(x,ω) are defined by

a(x,ω) =− 1
c(x)
− i

cx(x)
2c(x)ω

, bn(x,ω) =− 1
2iωc(x)

f n(x). (45)

If | fn| < Toln, then (11)–(12) are transformed into (16). In both cases we use a p-th order
Runge–Kutta (R-K) scheme; for (11)–(12) we use a fine mesh size ∆x f while for (16) we
use a coarse mesh size ∆xc. Note that in (45) we use bn(x,ω) and not b(x,ω) because the
function depends on f n(x) which depends on n.

4.1 Numerical Implementation

Before we describe the details of how the equations are solved numerically, let us introduce
some notation. We denote the grid in iteration n by Gn = {xn

1,x
n
2, . . .}. Note that the grid

will change in each iteration and thus depends on n. We further introduce grid functions that
approximate the corresponding exact functions in the grid points, the one-way solutions vn

j ≈
vn(xn

j), wn
j ≈ wn(xn

j) and the amplitude/phase solutions in (16), An
j ≈ An(x j), φ n

j ≈ φ n(x j).
When we change grids between iterations we need to interpolate the results from the

previous grid onto the next one. We let v̄n(x) be an interpolant of the numerically computed
sequence {vn

j} on Gn. Similarly, we define w̄n(x) as the interpolant of {wn
j}. Furthermore,

we set
f̄ n+1(x) :=−α(x)(v̄n(x)+ w̄n(x)) , b̄n(x,ω) =− 1

2iωc(x)
f̄ n(x) (46)

and

z̄m(x) =
m

∑
n=0

(v̄n(x)+ w̄n(x)). (47)

Note that since f (x) in the equation is known we do not need to interpolate in the first step
and thus have

f 0(x) = f̄ 0(x), b0(x) = b̄0(x). (48)

4.1.1 Construction of the Grid

The full grid Gn in iteration n will have one coarse part, Gn
c , where the mesh size is ∆xc and

one fine part Gn
f with the mesh size ∆x f . We define the reference fine and coarse grids, Gref

f

and Gref
c ,

Gref
f = {x f

j =−L+ j∆x f , j = 0, . . .J f }, ∆x f =
2L
J f

,

Gref
c = {xc

j =−L+ j∆xc, j = 0, . . .Jc}, ∆xc =
2L
Jc

.
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Fig. 2 Grids Gn−1 (top) and Gn (bottom). Here, Gn = Gn
c ∪Gn

f where Gn
c = {x1,x2,x3,x13,x14,x44, . . . ,x47}

and Gn
f = {x3, . . .x13,x14, . . . ,x44}.

For simplicity, we assume ∆xc/∆x f ∈ Z, so that every coarse point is also a fine point, i.e.
Gref

c ⊂Gref
f . Initially we take G0

c = Gref
c and G0

f = /0, since f 0 ≡ 0. Assume now that we have
Gn−1 and the approximate solutions vn−1

j and wn−1
j . Let

Fj = |α(x j)|
(
|vn−1

j |+ |w
n−1
j |
)
,

which corresponds to the f n computed on the grid Gn−1. Then Gn is defined in the following
way. First, let Rn be the indices of the coarse intervals that contain at least one “large” Fj
value,

Rn = {m : ∃xn−1
j ∈ [xc

m,x
c
m+1], Fj > Toln}.

The grid is then constructed by taking a fine grid in the intervals given by Rn and a coarse
grid elsewhere, (Figure 2)

Gn
f = Gref

f ∩{x ∈ [xc
m,x

c
m+1] : m ∈ Rn}, Gn

c = Gref
c ∩{x ∈ [xc

m,x
c
m+1] : m 6∈ Rn}.

Finally, Gn = Gn
f ∪Gn

c .

4.1.2 Solving One-Way Equations on the Fine Grid

Let us now explain the numerical approximation of (11) for x j ∈ Gn
f . For simplicity, we

suppress henceforth the iteration index on the grid points, i.e. we use x j instead of xn
j . With

a(x,ω) and bn(x,ω) defined above, (17) becomes

∂xvn(x) = iωa(x,ω)vn(x)+bn(x,ω). (49)

We solve (49) with a p-th order explicit s-stage R-K scheme, where 0 ≤ p ≤ s. From The-
orem 5 in Section 4.3.1 it follows that, whenever bn(x,ω) is available explicitly, the R-K
scheme applied to our problem reads

vn
j+1 = (1+ i∆x f ω ã(x j,∆x f ,ω))vn

j + b̃n(x j,∆x f ,ω), x j ∈ Gn
f

where ã(x,∆x f ,ω) and b̃(x,∆x f ,ω) are some functions that depend on the R-K method
used. For example,

ã(x,∆x f ,ω) =
1
2
(
a(x,ω)+a(x+∆x f ,ω)+ iωa(x,ω)a(x+∆x f ,ω)

)
,

b̃n(x,∆x f ,ω) =
1
2
(
(1+ iωa(x+∆x f ,ω))bn(x,ω)+bn(x+∆x f ,ω)

)
,
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when (49) is solved with the second order R-K method. Since bn(x,ω) is only known ex-
plicitly for n = 0, we use

vn
j+1 = (1+ i∆x f ω ã(x j,∆x f ,ω))vn

j +
˜̄bn(x j,∆x f ,ω), n≥ 1,

where ˜̄bn(x,∆x f ,ω) is computed as follows. First, compute b̄n(x,ω) by (46). Second, com-
pute ˜̄bn(x,∆x f ,ω) from b̄n(x,ω) in the same way as b̃n(x,∆x f ,ω) is computed from bn(x,ω).
For example,

˜̄bn(x,∆x f ,ω) :=
1
2
(
(1+ iωa(x+∆x f ,ω))b̄n(x,ω)+ b̄n(x+∆x f ,ω)

)
in the case of the second order R-K method. The solution of (12) is computed in a similar
way.

4.1.3 Solving One-Way Equations on the Coarse Grid

Let us now explain the numerical implementation of GO equations (16) which are used for
x j ∈ Gn

c . Discretizing the equations with the R-K method, we obtain

φ
n
j+1 = φ

n
j +∆xc

ˇ̄bn(x j,∆xc), An
j+1 = (1+∆xcǎ(x j,∆xc))An

j , x j+1− x j = ∆xc,

where ǎ(x j,∆xc) and ˇ̄bn(x j,∆xc) are functions obtained in the same way as ã(x j,∆x f ,ω)

and ˜̄bn(x j,∆x f ,ω). The solution of (17) for f̂n = 0 is then computed by

vn
j+1 = An

j+1eiωφn
j+1 = eiω∆xc

ˇ̄bn(x j ,∆xc)(1+∆xcǎ(x j,∆xc))vn
j , x j+1− x j = ∆xc.

The solution of (12) for x j ∈ Gn
c can be obtained in a similar way.

4.1.4 Final Formulation

If we let Jn be the total number of discretization points in Gn we can define the one-step
solution operator

S n(x j,ω) =

{
1+ i∆x f ω ã(x j,∆x f ,ω), x j+1− x j = ∆x f

(1+∆xcǎ(x j,∆xc))eiω∆xc
ˇ̄bn(x j ,∆xc), x j+1− x j = ∆xc.

(50)

The solution of (11) is then computed by

vn
j+1 = S n(x j,ω)vn

j +λ
n
j ∆x f

˜̄bn(x j,∆x f ,ω), j = 0, . . . ,Jn−1

where

λ
n
j =

{
1, x j+1− x j = ∆x f

0, x j+1− x j = ∆xc.

Remark 6 If the grid Gn is given as in Figure 2, we solve for vn in the following way:

1. Solve GO equations in [x1,x3],
2. Use vn

3 as initial condition and solve (11) in [x3,x13]
3. Use vn

13 as initial condition and solve GO equations in [x13,x14]
4. Use vn

14 as initial condition and solve (11) in [x14,x44]
5. Use vn

44 as initial condition and solve GO equations in [x44,x47].
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4.2 The Main Theorem

The main result of this section is the following theorem about the error in the numerical
approximation computed with the method described in Section 4.1, more precisely the error
in the interpolant of the numerical result z̄m(x) in (47).

Theorem 4 Assume ∆xp
f ω p+1 < 1 and as in the continuous case,

β |α|L1

ω
≤ δ0 < 1. (51)

Moreover, we assume
ω >C5 +C6C7, (52)

where these constants are defined in Lemma 3, Lemma 4 and Lemma 5 (see below). Let u be
the solution of equation (2). Then, there exists a δ < 1 and a constant C such that

|u(x)− z̄m(x)|∞ ≤C
(
(|A|+ | f |L1)δ

m+1 +∆xp
f ω

p+1 +∆xp
c ω +Tol

)
. (53)

Remark 7 If we take

∆x f =
Tol1/p

ω1+1/p , ∆xc = ω∆x f ,

we get from (53)
|u(x)− z̄m(x)|∞ ≤C((|A|+ | f |L1)δ

m+1 +Tol)

and as in Remark 4 we need a fixed ω-independent number of iterations m to reduce the first
term to be less than Tol.

4.3 Error Analysis

In this section, we first introduce Runge–Kutta methods and an error estimate. Then we
derive error estimates for the numerical solution of the one-way wave equations. Throughout
this section, we assume

∆x f <
1

ω1+1/p (i.e. ∆xp
f ω

p+1 < 1) (54)

and c(x) ∈Cp[−L,L] and ω > 1. In particular, this means that ∆x f ω < 1.

4.3.1 Runge–Kutta Schemes

We start with a general result on R-K schemes applied to linear ordinary equations of the
type

y′ = iωa(x,ω)y+b(x,ω), y(0) = y0, (55)

where we assume that b(·,ω) ∈Cp+1(R) for all ω and a(·,ω) ∈Cp+1(R) uniformly in ω ,
i.e. that

sup
x,ω∈R

|∂ k
x a(x,ω)| ≤C, k = 0, . . . , p+1.
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This means in particular that the solution y(x) ∈ Cp+2. We consider a p-th order explicit
s-stage R-K scheme, where 0≤ p≤ s, described by

ξ1 = iωa(x j,ω)y j +b(x j,ω),

and for k = 2, . . . ,s,

ξk = iωa(x j + γk∆x,ω)

(
y j +∆x

k−1

∑
`=1

αk,`ξ`

)
+b(x j + γk∆x,ω).

Finally,

y j+1 = y j +∆x
s

∑
k=1

βkξk,

where αk,l ,γk,βk ∈R and γk = ∑l αk,l , 0≤ γk ≤ 1. The error in one step, the local truncation
error is then defined by

τ j := y(x j +∆x)− y j+1,

when y(x) is the exact solution of (55) and y(x j) = y j. The following theorem is given
without proof. The proof can be found in [41].

Theorem 5 Suppose ∆xω ≤ 1 and ω ≥ 1. Then the local truncation error can be estimated
as

|τ j| ≤C ∆xp+1
p+1

∑
`=0
|y(p+1−`)|L∞[xn,xn+1]ω

`,

where the constant is independent of x, ω , y(x) and b(x,ω). Moreover, if |∂ p
x y| ≤ B(ω)ω p,

then
|τ j| ≤CB(ω)(∆xω)p+1.

Moreover, the Runge–Kutta scheme can be written in the following form

y j+1 = y j +∆x

[
iω ã(x j,ω,∆x)y j +

s

∑
k=1

r̃k(x j,ω,∆x)b(x j + γk∆x,ω)

]
,

where ã and r̃k do not depend on y j or b(x,ω) and r̃k(x,ω,∆x) is bounded in ω and ∆x as
long as ∆xω ≤ 1.

4.3.2 Error Estimate for One-Way Equations

Now we derive an error estimate for the one-way equations. Let us first introduce some
notation. Let τn

j be the local truncation error at x j in iteration n, i.e.,

τ
n
j = vn(x j+1)− vn

j+1,

given that for the exact solution vn(x j) = vn
j and let τn

f and τn
c be the max local truncation

errors for the fine and the coarse grid respectively, i.e.,

τ
n
f = max

x j∈Gn
f

|τn
j |, τ

n
c = max

x j∈Gn
c
|τn

j |.

Let εn
v( j) (and εn

v ) be the (maximum) global numerical error of vn
j , i.e.

ε
n
v( j) = |v

n(x j)− vn
j | j = 0, ...,Jn, ε

n
v = max

j
ε

n
v( j), (56)
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where Jn is the number of discretization points at iteration n. In the same way we define
εn

w( j) and εn
w. Finally, let

ε
n = ε

n
v + ε

n
w.

For the interpolation we use a p-th order method and we make the following two assump-
tions.

– (A1) The interpolated values are bounded by the max error in the point values and an
interpolation error governed by the smoothness of the exact solution,

|vn(x)− v̄n(x)| ≤C
(

ε
n
v +max(∆xp

f |∂
p
x vn|∞,ω∆xp

c |vn|∞)
)

≤C
(
ε

n
v +max((ω∆x f )

p,ω∆xp
c )δ

n
0
)
, (57)

where the second step follows from Theorem 3. The same estimate is assumed to hold
for wn− w̄n. As a consequence, when n≥ 1,

| f n(x)− f̄ n(x)| ≤Cα(x)
(
ε

n−1 +max((ω∆x f )
p,ω∆xp

c )δ
n−1
0
)
. (58)

Again, note that f 0(x) = f̄ 0(x) by (48).
– (A2) The interpolated value f̄ n(x) is bounded by Toln when x is in the coarse grid part,

max
x`≤x≤x`+1

| f̄ n(x)| ≤CToln, x`,x`+1 ∈ Gn
c . (59)

We are now ready to analyze the local truncation errors.

Lemma 3 The max local truncation error can be estimated

τ
n
f ≤C

(
∆x f ω

)p+1
δ

n
0 , (60)

τ
n
c ≤C5∆xc

{
max

(
(∆x f ω)p,ω∆xp

c
)

δ n
0 + εn−1+Toln

ω
, n≥ 1,

ω∆xp
c δ n

0 + Toln
ω

, n = 0,
(61)

where C and C5 are some constants that do not depend on ω .

Proof The estimate (60) follows directly from Theorem 3 and Theorem 5. Let us now prove
(61). Let ṽn be the exact solution of (11) for f n = 0, i.e. the solution of the equation that is
solved on the coarse grid Gn

c . Assume vn(x j) = ṽn(x j) = vn
j . Then,

τ
n
j = |vn(x j+1)− vn

j+1|= |vn(x j+1)−S n(x j,ω)vn(x j)|
≤ |vn(x j+1)− ṽn(x j+1)|+ |ṽn(x j+1)−S n(x j,ω)vn(x j)|.

We note that vn− ṽn satisfies the same equation as vn on [x j,x j+1] with vn(x j)− ṽn(x j) = 0,
so from (30), it follows that for n≥ 1,

|vn(x j+1)− ṽ(x j+1)| ≤
β

ω
| f n|L1([x j ,x j+1]) ≤

β

ω
(| f n− f̄ n|L1([x j ,x j+1])+ | f̄

n|L1([x j ,x j+1])). (62)

From (59) we have

β

ω
| f̄ n|L1([x j ,x j+1]) ≤

β∆xc

ω
| f̄ n|L∞([x j ,x j+1]) ≤

Cβ∆xc

ω
Toln, (63)
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and by (58),

β

ω
| f n− f̄ n|L1([x j ,x j+1]) ≤

{
C

∆xcβ |α|L1
ω

[
max

(
(∆x f ω)p,ω∆xp

c
)

δ
n−1
0 + εn−1

]
, n≥ 1,

0, n = 0,

=

{
C∆xc

[
max

(
(∆x f ω)p,ω∆xp

c
)

δ n
0 + Cτ

ω
εn−1

]
, n≥ 1,

0, n = 0.
(64)

For |ṽn(x j+1)−S n(x j,ω)vn(x j)| we calculate

|ṽn(x j+1)−S n(x j,ω)vn(x j)|=
∣∣∣An(x j+1)eiωφn(x j+1)−An

j+1eiωφn
j+1

∣∣∣
=
∣∣∣(An(x j+1)−An

j+1)e
iωφn(x j+1)+An

j+1eiωφn(x j+1)(1− eiω(φn
j+1−φn(x j+1)))

∣∣∣
≤
∣∣An(x j+1)−An

j+1)
∣∣+ |An

j+1||eCω∆xp+1
c −1|.

Using Theorem 3, Theorem 5 and Theorem 2, we obtain

∣∣An(x j+1)−An
j+1)

∣∣≤C∆xp+1
c

p+1

∑
l=0
|(An)(l) |L∞([x j ,x j+1]) ≤C∆xp+1

c |An|L∞([x j ,x j+1])

=C∆xp+1
c |ṽn|L∞([x j ,x j+1]) ≤C∆xp+1

c |vn(x j)| ≤C∆xp+1
c δ

n
0 ,

since from (16) it follows that |(An)(l) | ≤C|An| for some constant C. Similarly,

|An
j+1||eCω∆xp+1

c −1| ≤C
(
|An(x j+1)|+ |An(x j+1)−An

j+1|
)

ω∆xp+1
c

≤C
(
|ṽn(x j+1)|+∆xp+1

c δ
n
0
)

ω∆xp+1
c

≤C(1+∆xp+1
c )ω∆xp+1

c δ
n
0 ≤Cω∆xp+1

c δ
n
0 .

Hence, together with (62), (63) and (64) we get (61).

Lemma 4 Assume ω > 1 and let Jn be the total number of grid points in Gn. Then∣∣∣∣∣ j

∏
`=k

S n(x`,ω)

∣∣∣∣∣≤ Jn

∏
`=0
|S n(x`,ω)| ≤C6, 0≤ k ≤ j ≤ Jn.

where S n(x j,ω) is defined by (50) and C6 is some constant that does not depend on ω .

Proof Let us first show that∣∣S n(x j,ω)
∣∣≤ 1+C∆x f , x j ∈ Gn

f . (65)

Apply the R-K scheme to the equation

y′(x) = iωa(x j + x,ω)y(x), y(0) = 1,

where a(x,ω) is defined by (45). Then

y1 = 1+ iω∆x f ã(x j,∆x f ,ω)

and the exact solution is
y(1) = eiω

∫ x j+1
x j a(s,ω)ds

= y1 + τ0.



21

Hence,

|S n(x j,ω)|= |1+ iω∆x f ã(x j,∆x f ,ω)| ≤
∣∣∣∣eiω

∫ x j+1
x j a(s,ω)ds

∣∣∣∣+ |τ0| ≤
∣∣∣∣e∫ x j+1

x j
cx(s)
2c(s) ds

∣∣∣∣+ |τ0|

=

∣∣∣∣e∫ x j+1
x j d

(
ln
(√

c(s)
))∣∣∣∣+ |τ0| ≤

√
c(x j+1)

c(x j)
+ |τ0| ≤ 1+C∆x f + |τ0|, (66)

where C is independent of j. Since we assumed ω > 1 and (54), it follows from Theorem 2
that

|∂ p
x y|∞ ≤Cpω

p,

and we can apply Theorem 5 in (66) to obtain that

|τ0| ≤C(∆x f ω)p+1 (54)
< C∆x f ,

showing that (65) is true. Note that Cp and C in Theorem 5 are independent of j. For x j ∈Gn
c

it follows directly that S n(x j,ω) ≤ 1+C∆xc with C independent of ω . For x j ∈ Gn
f , we

calculate

∏
x j∈Gn

f

S n(x j,ω)≤ ∏
x j∈Gn

f

(
1+C∆x f

)
≤
(
1+C∆x f

)J f ≤ eCJ f ∆x f = eCL.

The same calculation can be done for x j ∈ Gn
c to obtain

∏
x j∈Gn

c

S n(x j,ω)≤ eCJc∆xc = eCL.

Taking C6 = exp(2CL) the lemma is proved.

Lemma 5 For x j ∈ Gn
f ,

∣∣∣b̃n(x j,∆x,ω)− ˜̄bn(x j,∆x,ω)
∣∣∣≤C7

{
εn−1

ω
+max

(
(ω∆x f )

p,ω∆xp
c )δ

n
0
)
, n≥ 1

0, n = 0

where C7 is some constant that does not depend on ω .

Proof The bound is trivial for n = 0 by (48). For n > 0, it follows from Theorem 5 that

b̃n(x j,ω,∆x) =
s

∑
k=1

r̃k(x j,ω,∆x)bn(x j + γk∆x),

where bn(x,∆x,ω) is defined by (45). Hence, using (58),∣∣∣b̃n(x j,∆x,ω)− ˜̄bn(x j,∆x,ω)
∣∣∣≤ s

∑
k=1

r̃k(x j,ω,∆x)
∣∣bn(x j + γk∆x,ω)− b̄n(x j + γk∆x,ω)

∣∣
≤ C

ω

s

∑
k=1

r̃k(x j,ω,∆x)
∣∣ f n(x j + γk∆x)− f̄ n(x j + γk∆x)

∣∣
≤ C

ω

(
ε

n−1 +max((ω∆x f )
p,ω∆xp

c )δ
n−1
0
)
,

since |r̃k(x j,ω,∆x)| ≤C by Theorem 5. This proves the lemma.
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Next, we prove the following

Theorem 6 Let εn
v be defined by (56). Suppose (51) and (52) hold. Then there exists a δ < 1

such that

ε
n ≤Cδ

n
(

∆xp
f ω

p+1 +∆xp
c ω +Tol

)
. (67)

Proof Define Bn = max j |b̃n(x j)− ˜̄bn(x j)|. Then, we obtain from Lemma 4

ε
n
v( j+1) ≤

∣∣∣S n(x j,ω)vn(x j)+λ
n
j ∆x f b̃n(x j)−S n(x j,ω)vn

j −λ
n
j ∆x f

˜̄bn(x j)
∣∣∣+ |τn

j |

≤S n(x j,ω)εn
v( j)+λ

n
j ∆x f B

n + |τn
j |.

Let S n
k, j(ω) = ∏

j
l=k S n(xl ,ω) with S n

k+1,k(ω) := 1. By induction on the result above,

ε
n
v( j+1) ≤S n

0, j(ω)εn
v(0)+

j

∑
k=0

S n
k+1, j(ω)

(
λk∆x f B

n + |τn
k |
)

≤C6 ∑
xk∈Gn

f

(
∆x f B

n + τ
n
f
)
+C6 ∑

xk∈Gn
c

τ
n
c

≤C6J f
(
∆x f B

n + τ
n
f
)
+C6Jcτ

n
c =

C6

∆x f

(
∆x f B

n + τ
n
f
)
+

C6

∆xc
τ

n
c ,

where C6 is the constant in Lemma 4. This is independent of j and thus true also for εn
v .

Moreover, the argument can be used for εw and therefore the estimate actually holds for εn.
From Lemma 5 and Lemma 3 for n = 0 we obtain

ε
0 ≤ τ

0
f

C6

∆x f
+ τ

0
c

C6

∆xc
≤C

(
∆xp

f ω
p+1 +∆xp

c ω +Tol
)
=: C (M+Tol) , (68)

where we also use the relation Toln = ωTol/2n+1L. For n > 0, Lemma 5 and Lemma 3 give

ε
n ≤ C6C7

ω
ε

n−1 +C max((ω∆x f )
p,ω∆xp

c )δ
n
0 +C∆xp

f ω
p+1

δ
n
0

+C5

[
max

(
(∆x f ω)p,ω∆xp

c
)

δ
n
0 +

εn−1 +Toln
ω

]
≤ C5 +C6C7

ω
ε

n−1 +C(Mδ
n
0 +Tol2−n)≤ δ̃ ε

n−1 +C′(M+Tol)δ̃ n,

where

δ̃ = max
(

C5 +C6C7

ω
,δ0,

1
2

)
< 1,

by (51) and (52). We note that there exists a δ such that δ̃ < δ < 1. Then by induction on
the estimate above and using (51), (68), we conclude that (67) holds, since

ε
n ≤ δ̃

n
ε

0 +(M+Tol)
n−1

∑
k=0

δ̃
k
δ̃

n−k = δ̃
n
ε

0 +(M+Tol)nδ̃
n ≤Cδ

n (M+Tol) .
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4.4 Proof of Theorem 4

Now, we can finally prove Theorem 4. By Theorem 6 and Theorem 1, there exists a δ < 1
such that

|u(x)− z̄m(x)|∞ ≤ |u(x)− zm(x)|∞ + |zm(x)− z̄m(x)|∞

≤C(|A|+ | f |L1)δ
m+1 +

m

∑
n=0

(|vn(x)− v̄n(x)|∞ + |wn(x)− w̄n(x)|∞) . (69)

Using (57)

m

∑
n=0
|vn(x)− v̄n(x)|∞ ≤C

m

∑
n=0

(
ε

n
v +max((ω∆x f )

p,ω∆xp
c )δ

n
0
)

≤C
((

∆xp
f ω

p+1 +∆xp
c ω +Tol

)
+max((ω∆x f )

p,ω∆xp
c )
) m

∑
n=0

δ
n

≤C
(

∆xp
f ω

p+1 +∆xp
c ω +Tol

)
.

We get the same estimate for ∑
m
n=0 |wn(x)− w̄n(x)|∞ and together with (69) we obtain (4).

5 Numerical Experiments

In this section we apply our method to compute the solution of the Helmholtz equation
in [−1,1] with different functions c(x). We compare the L2 error of our method against
the L2 error of a direct finite difference method. We use the finite difference solution with
100 points per wavelength as the exact solution. We also compare the computational cost
of the two methods. We compare the total number of grid points in which the solution is
computed in the methods and not the direct execution time, in order to factor out the effect
of differences in code optimization. In both methods, the cost is directly proportional to
this number. Note that the cost is not a smooth function of ω and the general increase in
cost with higher ω is far from monotone. In our method, we solve the equations with a 4th
order Runge–Kutta method and for the finite difference solution we use a 4th order finite
difference scheme. For the interpolation we use cubic (fourth order) spline interpolation. In
every experiment, we use

∆x f =C1
Tol1/4 minx c(x)

ω1+1/4 , ∆xc =C2ωTol∆x f ,

where the choice of constants C1 and C2 depends on the speed function. The same ∆x f is
used in the finite difference method.

5.1 Example 1

Let us first consider a nonsymmetric function c(x) that is shown in Figure 3 (left). The
absolute value of the solution for ω = 16 is plotted in Figure 3 (right). The oscillations are
due to the reflected waves which would not be present in GO. The error, computational cost
and the number of iterations needed to compute the solution in our method for Tol = 0.1,
is shown in Figure 4. The computational cost here grows essentially as ω1/4 as predicted
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Fig. 3 Function c(x) (left) used in Example 1. Absolute value of the solution for ω = 16 (right).
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Fig. 4 Comparison between the finite difference method and our method with tolerance Tol = 0.1, for 256≤
ω ≤ 4096 when the speed function is given in Figure 3. The error (top), the computational cost (middle) and
the number of iterations needed to compute the solution with our method (bottom) .

by the asymptotic theory. To illustrate how the forcing function changes in iterations, we
choose ω = 256 and plot the part of the function that is larger than Toln after the first three
iterations in Figure 5. After the fourth iteration, the forcing function is everywhere equal to
zero.
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is given in Figure 3. Everywhere else in the domain, it is equal to zero and we do not plot that part. The
dashed line represents Toln after every iteration.
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Fig. 6 Function c(x) (left) used in Example 2. Absolute value of the solution for ω = 16 (right).

5.2 Example 2

Let us now consider a more complicated speed function shown in Figure 6 (left). The abso-
lute value of the solution is plotted in Figure 6 (right). The error, computational cost and the
number of iterations needed to compute the solution in our method for Tol = 0.1 is shown in
Figure 7. For this example the computational cost grows somewhat faster than ω1/4 in the
presented range of ω .
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Fig. 7 Comparison between the finite difference method and our method with tolerance Tol = 0.1, for 256≤
ω ≤ 4096 when the speed function is given in Figure 6. The error (top), the computational cost (middle) and
the number of iterations needed to compute the solution with our method (bottom) .

5.3 Example 3

We consider a speed function that is shown in Figure 8 (left). The absolute value of the
solution is plotted in Figure 8 (right). The error, computational cost and the number of
iterations needed to compute the solution in our method for Tol = 0.1 is shown in Figure
9. There is some ambiguity in the rate of incrase for the computational cost, but it appears
slightly higher than ω1/4. For this speed function we test the change of number of iterations
needed to compute the solution as the frequency decreases. From the theoretical results it
follows that ω has to be greater than some number in order to get the prescribed error,
c.f. Theorem 1. This means that the number of iterations will increase as ω decreases. The
number of iterations plotted as a function of frequency is shown in Figure 10. It can be
noted that for ω smaller than a cut-off frequency ωc ≈ 50 the number of iterations needed
to compute the solution for Tol = 0.1 blows up. This cut-off frequency is much smaller than
the theoretical upper bound estimate ωc ≤ β |α|L1 ≈ 550 given in Theorem 1 for this case.
In our experience, this is typical, the method works well also for frequencies significantly
lower than the theoretical cut-off frequency.
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Fig. 8 Function c(x) (left) used in Example 3. Absolute value of the solution for ω = 16 (right).
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Fig. 9 Comparison between the finite difference method and our method with tolerance Tol = 0.1, for 256≤
ω ≤ 4096 when the speed function is given in Figure 8. The error (top), the computational cost (middle) and
the number of iterations needed to compute the solution with our method (bottom) .
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Fig. 10 Number of iterations as a function of ω for 40 ≤ ω ≤ 625, Tol = 0.1 and the speed function given
in Figure 8. The number of iterations increases rapidly for ω < 50. The dashed line represent the theoretical
estimate of the cut-off frequency ωc.
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