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Abstract. A new iterative method, the WaveHoltz iteration, for solution of the Helmholtz equation is presented. WaveHoltz
is a fixed-point iteration that filters the solution of wave equation with time-periodic forcing and boundary data. The WaveHoltz
iteration corresponds to a linear and coercive operator which, after discretization, can be recast as a positive definite linear
system of equations. The solution to this system of equations approximates the Helmholtz solution and can be accelerated by
Krylov subspace techniques. Analysis of the continuous and the discrete cases are presented as are numerical experiments.
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1. Introduction. The defining feature of waves are their ability to propagate over large distances
without changing their shape. It is this property that allows them to carry information which underpins
all communication, be it through speech or electronic transmission of data. Waves can also be used to
probe the interior of the earth, the human body or engineering structures like buildings or bridges. This
probing can be turned into images of the interior by the means of solving inverse problems. Harnessing
the nature of waves requires high-order accurate and efficient numerical methods that are able to simulate
wave propagation in three dimensions and over long distances. For cutting edge problems in scientific and
engineering research such simulations must be carried out on parallel high-performance computing platforms
and thus the numerical methods must scale while being easy to implement and generally applicable.

In this paper we focus on approximating solutions to the scalar wave equation in the frequency domain,
i.e. the Helmholtz equation

(1.1) ∇ · (c2(x)∇u) + ω2u = f(x).

However, to to obtain such solutions we will use time domain discretizations of the wave equation. The
motivation for developing high order accurate and scalable Helmholtz solvers comes from both mathematics
and applications. On the mathematics side the recent results by Engquist and Zhao [14] give sharp lower
bounds on the number of terms in a separated representation approximation of the Green’s function of the
Helmholtz equation as a function of the frequency (wavenumber). These bounds limit the applicability of
the state of the art sweeping preconditioners in the high frequency regime and, for example, for interior
and wave guide problems. Motivation also comes from applications in seismology, optics and acoustics. For
example in full waveform inversion the problems are very large and the robustness of the inversion process
can be enhanced by combining frequency and time domain inversion in a multi-scale fashion to avoid getting
trapped in local minima.

Designing efficient iterative solvers for the Helmholtz equation (1.1) is notoriously difficult and has been
the subject of much research (for detailed reviews see Ernst and Gander, [17], Gander and Zhang [19], and
Erlangga, [15]). The main two difficulties in solving the Helmholtz equation are the resolution requirements
and the highly indefinite character of the discretized system of equations.

Assuming that (1.1) has been scaled so that the mean of c(x) is about 1 then the typical wavelength
is λ = 2π/ω and the typical wavenumber is ω/2π. In order to numerically propagate solutions to the time
dependent wave equation corresponding to (1.1) with small errors it is crucial to control the dispersion by
using high order methods. The basic estimate by Kreiss and Oliger [29] shows that in order to propagate a
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wave over J wavelengths with a pth order finite difference method and with an error no greater than ε one
must choose the number of points per wavelength PPW(J, p) as

PPW(J, p) ≥ C(p, ε)J
1
p .

Here C(p, ε) depends on the tolerance ε but decreases with increasing order of accuracy p. Consequently, for
a problem in d-dimensions and with fixed physical size the number of wavelengths in the domain will scale as
ωd and to maintain a fixed tolerance the total number of degrees of freedom needed, Np(ω) = O(ωd(1+ 1

p )),
is very large for high frequencies.

The dependence on p and ω in Np(ω) immediately reveals two fundamental criteria for designing high
frequency Helmholtz solvers:

1. The solvers must be parallel, memory lean and they must scale well. In 3D the number of
degrees of freedom representing the solution cannot be stored on a single computer, and even on a
parallel computer it is important to preserve the sparsity of the discrete version of (1.1).

2. The underlying discretizations must be high order accurate. At high frequencies and in 3D the
extra penalty due to pollution / dispersion errors becomes prohibitive.

Further, the linear system matrix, A, resulting from direct discretization of (1.1) is indefinite so that the
robust and easy to implement preconditioned conjugate gradient (PCG) method cannot be used. Instead
the method of necessity becomes the preconditioned generalized minimal residual method (GMRES). To effi-
ciently precondition GMRES one must exploit the intrinsic properties of the wave equation. The oscillatory
nature of the Helmholtz Green’s function and its discrete counterpart A−1 can only be well approximated if
the (unconditioned) Krylov subspace is allowed to grow quite large (with “large” scaling adversely with the
frequency ω , [17]). The slow growth of the “spanning power” of the Krylov vectors is due to the underlying
local connectivity of the discretization, preventing information to propagate rapidly. Efficient precondi-
tioners must thus accelerate the propagation of information or reduce the cost of each iteration. Without
preconditioners the iteration typically stagnates.

Perhaps the first contribution that aimed to improve the propagation of information was the Analytic
Incomplete LU preconditioner (AILU) by Gander and Nataf [18]. The AILU preconditioner finds an LDLT
factorization from an approximation of the same pseudodifferential operators that are used to construct
non-reflecting boundary conditions [11, 1, 24] and sweeps forward then backward along one of the coordinate
directions in a structured grid.

The pioneering works on sweeping preconditioners by Engquist and Ying [12, 13] were major break-
throughs in the solution of the Helmholtz equation. Similar to the AILU, the preconditioners in [12, 13] use
a LDLT decomposition but exploit the low rank properties of off-diagonal blocks together with perfectly
matched layers to obtain solvers that converge in a small number of GMRES iterations. The papers [12, 13]
were the two first instances of iterative Helmholtz solvers that converge in a small number of iterations that
is almost independent of frequency.

Once it had been established that low rank approximations, combined with clever use of sweeping and
perfectly matched layers (PML), could be used to find Helmholtz solvers with linear scaling then many ex-
tensions and specializations were constructed. For example, in [34] Stolk introduced a domain decomposition
method with transmission conditions based on the perfectly matched layer (PML) that is able to achieve
near linear scaling. Chen and Xiang, [10], and Vion and Geuzaine, [36], also considered sweeping domain
decomposition method combined with PML and showed that their methods could be used as efficient pre-
conditioners for the Helmholtz equation. The method of polarized traces by Zepeda-Núñez, Demanet and
co-authors, [41, 40, 39], is a two step sweeping preconditioner that compresses the traces of the Greens
function in an offline computation and utilizes incomplete Green’s formulas to propagate the interface data.
See also the recent review by Gander and Zhang [19] for connections between sweeping methods.

Alongside iterative methods there are some attractive direct and multigrid methods. Examples from the
class of direct methods are the Hierarchically Semi-Separable (HSS) parallel multifrontal sparse solver by
deHoop and co-authors, [37], the spectral collocation solver by Gillman, Barnett and Martinsson, [20], and
the p-FEM approach of Bériot, Prinn and Gabard, [6], which utilizes an a priori error indicator to choose
the polynomial order of each element . Notable examples of multigrid methods are the Wave-ray method by
Brandt and Livshits [8, 31] and the shifted Laplacian preconditioner with multigrid by Erlangga et al. [16].
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As mentioned previously, the invention of sweeping preconditioners was a breakthrough and it is likely
that they will have lasting and continuing impacts for the solution of the Helmholtz equation in various
settings. There are, however, some limitations. First, in the recent paper [14], Engquist and Zhao provide
precise lower bounds on how the number of terms that are needed to approximate the Helmholtz Green’s
function depends on the frequency. In particular, for the high frequency regime they show that for interior
problems and waveguides the rank of the off-diagonal elements grows fast, rendering sweeping preconditioners
less efficient. They also show that the situation is, in general, worse in 3D than in 2D. This lack of compress-
ibility may, in cases of practical importance, increase the cost of both the factorization and compression as
well as the application of the compressed preconditioner. We note that this loss of compressibility at high
frequency will also prevent direct methods such as [37, 20, 6] from reaching their most efficient regimes. An
additional drawback of direct methods is their memory consumption for 3D problems.

Another potential drawback with the sweeping methods is the long setup times before the solve. Of
course all of the algorithms above do not suffer from this deficiency but many of them do. This may not
be problematic when considering a background velocity that does not change but this is not the case, for
example, when inverting for material parameters. In this case the velocity model will change constantly,
necessitating a costly factorization in each update.

Finally, the two criterions 1.) and 2.) above are not so easy to meet for sweeping preconditioners. The
sweep itself is intrinsically sequential and although there have been at least partially successful attempts to
parallelize the sweeping methods it is hard to say that they are easy to parallelize in a scalable way. In a
similar vein most of the methods use (and some rely on) low order discretizations. Although it is possible
to use higher order accurate discretizations together with sweeping preconditioners, their scarcity in the
literature is noticeable.

Another approach that is somewhat popular in the engineering literature is to simply run the wave
equation for a long time to get a Helmholtz solution, see e.g. [27]. The theoretical underpinning of this
approach is the limiting amplitude principle which says that every solution to the wave equation with an
oscillatory forcing, in the exterior of a domain with reflecting boundary conditions tends to the Helmholtz
solution. However, since the limiting amplitude principle only holds for exterior problems this approach does
not work for interior problems and becomes very slow for problems with trapping waves. See e.g. the articles
by Ladyzhenskaya [30], Morawetz [33] and Vainberg [35].

An alternative approach, the so called Controllability Method (CM), was originally proposed by Bristeau
et al. [9]. In the CM the solution to the Helmholtz equation is found by solving a convex constrained least-
squares minimization problem where the deviation from time-periodicity is minimized in the classic wave
equation energy. The basic ingredients in an iteration step in CM are: a.) the solution of a forward wave
and a backward wave equation over one time-period, and b.) the solution of a symmetric coercive elliptic
(and wave number independent) problem.

In [9] and the later spectral element implementations of CM by Heikkola et al. [26, 25] only sound-soft
scatterers were considered. For more general boundary conditions the minimizer of the cost functional of
[9] is not unique but alternative cost functionals that does guarantee uniqueness (and thus convergence to
the Helmholtz solution) were recently proposed by Grote and Tang in [22]. We also note that if the wave
equation is formulated as a first order system it is possible to avoid solving the elliptic problem [21, 23].

In what follows we will present an alternative to the controllability method. Our method, which we call
the WaveHoltz Iteration method (WHI), only requires a single forward wave equation solve and no elliptic
solves but produces a positive definite (and sometimes symmetric) iteration that can be accelerated by, e.g.
the conjugate gradient method or other Krylov subspace methods. As the WaveHoltz iteration is built from
a time domain wave equation solver we claim and hope to demonstrate that it meets both criterion 1. and
2. above.

The rest of the paper is organized as follows. In Section 2 we present and analyze our method and
its extensions, in Section 3 we briefly outline the numerical methods we use to solve the wave equation, in
Section 4 we present numerical experiments, and in Section 5 we summarize and conclude.

Before proceeding we would like to acknowledge that although our method is distinct from the controlla-
bility method, it was the work by Grote and Tang, [22], that introduced us to CM and inspired us to derive
the method discussed below.
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2. WaveHoltz: A New Method for Designing Scalable Parallel Helmholtz Solvers. We con-
sider the Helmholtz equation in a bounded open smooth domain Ω,

(2.1) ∇ · (c2(x)∇u) + ω2u = f(x), x ∈ Ω,

with boundary condtions of the type

(2.2) iαωu+ β(c2(x)~n · ∇u) = 0, α2 + β2 = 1, x ∈ ∂Ω.

We assume f ∈ L2(Ω) and that c ∈ L∞(Ω) with the bounds 0 < cmin ≤ c(x) ≤ cmax < ∞ a.e. in Ω. Away
from resonances, this ensures that there is a unique weak solution u ∈ H1(Ω) to (2.1). Due to the boundary
conditions u is in general complex valued.

We first note that the function w(t, x) := u(x) exp(iωt) is a T = 2π/ω-periodic (in time) solution to the
forced scalar wave equation

wtt = ∇ · (c2(x)∇w)− f(x)eiωt, x ∈ Ω, 0 ≤ t ≤ T,
w(0, x) = v0(x), wt(0, x) = v1(x),

αwt + β(c2(x)~n · ∇w) = 0, x ∈ ∂Ω,(2.3)

where v0 = u and v1 = iωu. Based on this observation, our approach is to find this w instead of u. We
could thus look for initial data v0 and v1 such that w is a T -periodic solution to (2.3). However, there may
be several such w, see [22], and we therefore impose the alternative constraint that a certain time-average
of w should equal the initial data. More precisely, we introduce the following operator acting on the initial
data v0 ∈ H1(Ω), v1 ∈ L2(Ω),

(2.4) Π

[
v0

v1

]
=

2

T

∫ T

0

(
cos(ωt)− 1

4

)[
w(t, x)
wt(t, x)

]
dt, T =

2π

ω
,

where w(t, x) and its time derivative wt(t, x) satisfies the wave equation (2.3) with initial data v0 and v1. The
result of Π[v0, v1]T can thus be seen as a filtering in time of w(·, x) around the ω-frequency. We will further
motivate the choice of time averaging in the analysis below. By construction, the solution u of Helmholtz
now satisfies the equation

(2.5)
[

u
iωu

]
= Π

[
u
iωu

]
.

The WaveHoltz method then amounts to solving this equation with the fixed point iteration

(2.6)
[
v
v′

](n+1)

= Π

[
v
v′

](n)

,

[
v
v′

](0)

≡ 0.

Provided this iteration converges and the solution to (2.5) is unique, we obtain the Helmholtz solution as
u = limn→∞ vn.

Remark 1. Note that each iteration is inexpensive and that T is reduced by the reciprocal of ω as ω
grows. If we assume that the number of degrees of freedom in each dimension scales with ω and that we
evolve the wave equation with an explicit method this means that the number of timesteps per iteration is
independent of ω. Also note that the iteration is trivial to implement (in parallel or serial) if there is already
a time domain wave equation solver in place. The integral in the filtering is carried out independently for
each degree of freedom and simply amounts to adding up a weighted sum (e.g. a trapezoidal sum) of the
solution one timestep at a time. Finally, note that WHI allows all the advanced techniques that have been
developed for wave equations (e.g. local timestepping, non-conforming discontinuous Galerkin finite elements
h- and p-adaptivity etc.) can be transferred to the Helmholtz equation and other time harmonic problems.
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2.1. Iteration for the Energy Conserving Case. Here we consider boundary conditions of either
Dirichlet (β = 0) or Neumann (α = 0) type. This is typically the most difficult case for iterative Helmholtz
solvers when Ω is bounded. The wave energy is preserved in time and certain ω-frequencies in Helmholtz are
resonant, meaning they equal an eigenvalue of the operator −∇· (c2(x)∇). Moreover, the limiting amplitude
principle does not hold, and one can thus not obtain the Helmholtz solution by solving the wave equation
over a long time interval.

We start by introducing a simplified iteration for this case. With the given boundary conditions the
solution to Helmholtz will be real valued, since f is a real valued function. Without loss of generality, we
may then take wt(0, x) = 0 and w(t, x) = u(x) cos(ωt), since for a T -periodic real valued solution there is a
time when wt(0, x) = 0. We choose that time as the initial time so that (2.3) becomes

wtt = ∇ · (c(x)2∇w)− f(x) cos(ωt), x ∈ Ω, 0 ≤ t ≤ T,
w(0, x) = v(x), wt(0, x) ≡ 0,

αwt + β(c2(x)~n · ∇w) = 0, x ∈ ∂Ω.(2.7)

The simplified iteration is then defined as

(2.8) vn+1 = Πvn, v0 ≡ 0,

where

(2.9) Πv =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
w(t, x)dt, T =

2π

ω
,

with w(t, x) solving the wave equation (2.7) with initial data v = vn ∈ H1(Ω). We now analyze this iteration.
By the choice of boundary conditions the operator −∇·(c2(x)∇) has a point spectrum with non-negative

eigenvalues with corresponding eigenfunctions that form an orthonormal basis of L2(Ω) . Denote those
eigenmodes (λ2

j , φj(x)), with ‖φj‖L2(Ω) = 1 . We assume that the angular frequency ω is not a resonance,
i.e. ω2 6= λ2

j for all j. The Helmholtz equation (2.1) is then wellposed.
We recall that for any q ∈ L2(Ω) we can expand

q(x) =

∞∑
j=0

q̂jφj(x),

for some coefficients q̂j and

||q||2L2(Ω) =

∞∑
j=0

|q̂j |2, c2min||∇q||2L2(Ω) ≤
∞∑
j=0

λ2
j |q̂j |2 ≤ c2max||∇q||2L2(Ω).

We start by expanding the Helmholtz solution u, the initial data v to the wave equation (2.7), and the
forcing f in this way,

u(x) =

∞∑
j=0

ûjφj(x), v(x) =

∞∑
j=0

v̂jφj(x), f(x) =

∞∑
j=0

f̂jφj(x).

Then,

−λ2
j ûj + ω2ûj = f̂j ⇒ ûj =

f̂j
ω2 − λ2

j

.

For the wave equation solution w(t, x) with initial data w = v and wt = 0 we have

(2.10) w(t, x) =

∞∑
j=0

ŵj(t)φj(x), ŵj(t) = ûj

(
cos(ωt)− cos(λjt)

)
+ v̂j cos(λjt).
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Fig. 2.1: The filter transfer function β for ω = 10.

The filtering step (2.9) then gives

Πv =

∞∑
j=0

v̄jφj(x), v̄j = ûj(1− β(λj)) + v̂jβ(λj),

where

β(λ) :=
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(λt)dt.

We introduce the linear operator S : L2(Ω)→ L2(Ω),

(2.11) S
∞∑
j=0

ûjφj(x) :=

∞∑
j=0

β(λj)ûjφj(x),

which gives the filtered solution of the wave equation with f = 0, when applied to the initial data v. We
can then write the iteration as

(2.12) vn+1 = Πvn = S(vn − u) + u.

The operator S is self-adjoint and has the same eigenfunctions φj(x) as −∇ · (c2(x)∇) but with the (real)
eigenvalues β(λj). The convergence properties of the iteration depend on these eigenvalues and it is therefore
of interest to study the range of the filter transfer function β. Figure 2.1 shows a plot of β which indicates
that the eigenvalues of S are inside the unit interval, with a few of them being close to 1 (when λj ≈ ω), and
most of them being close to zero (when λj � ω). In the appendix we show the following lemma about β.

Lemma 2.1. The filter transfer function β satisfies β(ω) = 1 and

0 ≤ β(λ) ≤ 1− 1

2

(
λ− ω
ω

)2

, when

∣∣∣∣λ− ωω
∣∣∣∣ ≤ 1

2
,

|β(λ)| ≤ 1

2
, when

∣∣∣∣λ− ωω
∣∣∣∣ ≥ 1

2
,

|β(λ)| ≤ b0
ω

λ− ω
, when λ > ω.

where b0 = 3
4π . Moreover, close to ω we have the local expansion

(2.13) β(ω + r) = 1− b1
( r
ω

)2

+R(r/ω)
( r
ω

)3

, b1 =
2π2

3
− 1

4
≈ 6.33, ||R||∞ ≤

5π3

6
.
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Remark 2. It is easy to see that β(ω) = 1 for any constant besides 1/4. The particular choice 1/4 is
made to ensure that β′(ω) = 0, which is necessary to keep β ≤ 1 in a neighborhood of ω. We explore other
possibilities in Section 2.3.

From this lemma we can derive some results for the operator S. To do this we first quantify the non-
resonance condition. We let

δj =
λj − ω
ω

,

be the relative size of the gap between λj and the Helmholtz frequency, and then denote the smallest gap
(in magnitude) by δ,

δ = δj∗ , j∗ = argminj |δj |.
Then we have

Lemma 2.2. Suppose δ > 0. The spectral radius ρ of S is strictly less than one, and for small δ,

(2.14) ρ = 1− b1δ2 +O(δ3),

with b1 as in Lemma 2.1. Moreover, S is a bounded linear map from L2(Ω) to H1(Ω).

Proof. From Lemma 2.1 we get

ρ = sup
j
|β(λj)| ≤ sup

j
max

(
1− 1

2
δ2
j ,

1

2

)
≤ max

(
1− 1

2
δ2,

1

2

)
< 1.

For the more precise estimate when δ is small we will use (2.13). Since 1 > ρ ≥ β(ω+ωδ)→ 1 as δ → 0, we
can assume that ρ > 1− η2/2, with η := b1/2||R||∞, for small enough δ. Then, since |β(ω+ωδj)| ≤ 1− η2/2
for |δj | > η by Lemma 2.1, we have

ρ = sup
|δj |≤η

β(ω + ωδj) = β(ω + ωδk∗),

for some k∗ with |δk∗ | ≤ η. If δk∗ = δj∗ (where δ = |δj∗ |) then (2.13) gives (2.14). If not, we have η ≥ |δk∗ | ≥ δ
and by Lemma 2.1

0 ≤ β(ω + ωδk∗)− β(ω + ωδj∗) = −b1(δ2
k∗ − δ2) +R(δk∗)δ3

k∗ −R(δj∗)δ3
j∗ ≤ −b1(δ2

k∗ − δ2) +
b1
2

(δ2
k∗ + δ2),

which implies that δ2
k∗ ≤ 3δ2 and that

0 ≤ b1(δ2
k∗ − δ2) ≤ R(δk∗)δ3

k∗ −R(δj∗)δ3
j∗ ≤ ||R||∞(1 + 3

√
3)δ3.

Therefore,

ρ = 1− b1δ2
k∗ +O(δ3

k∗) = 1− b1δ2 + b1(δ2 − δ2
k∗) +O(δ3

k∗) = 1− b1δ2 +O(δ3
k∗ + δ3) = 1− b1δ2 +O(δ3).

This shows (2.14). For the second statement, we note first that by (2.1),

|λjβ(λj)| ≤ ω

{
1, λj ≤ ω,
b0λj

λj−ω , λj > ω,
= ω

{
1, λj ≤ ω,
b0(1 + 1/δj), λj > ω,

≤ ωmin(1, b0(1 + 1/|δ|)) =: D.

Suppose now that g ∈ L2(Ω) and

g(x) =

∞∑
j=0

ĝjφj(x).

Then

||Sg||2H1(Ω) ≤
∞∑
j=0

|β(λj)|2|ĝj |2 +

∞∑
j=0

λ2
j

c2min

|β(λj)|2|ĝj |2 ≤
(

1 +
D2

c2min

) ∞∑
j=0

|ĝj |2 =

(
1 +

D2

c2min

)
||g||2L2(Ω).

This proves the lemma.
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Letting en := u− vn we can rearrange (2.12) and obtain

en+1 = Sen ⇒ ||en+1||L2(Ω) ≤ ρ||en||L2(Ω) ⇒ ||en||L2(Ω) ≤ ρn||e0||L2(Ω) → 0,

which shows that vn converges to u in L2. By Lemma 2.2 all iterates vn ∈ H1(Ω) since v0 = 0. We can
therefore also get convergence in H1. Let

en(x) =

∞∑
j=0

ênj φj(x),

and consider similarly
∞∑
j=0

|ên+1
j |2λ2

j =

∞∑
j=0

β(λj)
2|ênj |2λ2

j ≤ ρ2
∞∑
j=0

|ênj |2λ2
j ⇒

||∇en||2L2(Ω) ≤
1

c2min

∞∑
j=0

|ênj |2λ2
j ≤

ρ2n

c2min

∞∑
j=0

|ê0
j |2λ2

j ≤ ρ2n c
2
max

c2min

||∇e0||2L2(Ω) → 0.

We conclude that the iteration converges inH1 with convergence rate ρ. By Lemma 2.1 we have ρ ∼ 1−6.33δ2

and, not surprisingly, the smallest gap, δ, determines the convergence factor. We have thus showed

Theorem 2.3. The iteration in (2.8) and (2.9) converges in H1(Ω) for the Dirichlet and Neumann
problems away from resonances to the solution of the Helmholtz equation (2.1). The convergence rate is
1−O(δ2), where δ is the minimum gap between ω and the eigenvalues of −∇ · (c2(x)∇).

As discussed in the introduction, the dependence of the convergence rate on ω is often of interest. For the
energy conserving case, however, this question is ambiguous as the problem is not well-defined for all ω. As
soon as ω = λj there are either no or an infinite number of solutions. In higher dimensions, the eigenvalues
λj get denser as j increases, meaning that in general the problem will be closer and closer to resonance
as ω grows. Therefore, solving the interior undamped Helmholtz equation for high frequencies, with pure
Dirichlet or Neumann boundary conditions, may not be of great practical interest.

Nevertheless, we can make the following analysis. By the work of Weyl [38] we know that the eigenvalues
grow asymptotically as λj ∼ j1/d in d dimensions. The average minimum gap δ when ω ≈ λj is then

δ ≈ 1

λj+1 − λj

∫ λj+1

λj

min(λ− λj , λj+1 − λ)

ω
dλ =

λj+1 − λj
4ω

∼ (j + 1)1/d − j1/d

ω
≈ j1/d−1

dω
∼ ω1−d

ω
∼ ω−d.

When the convergence rate is 1−O(δ2), the number iterations to achieve a fixed accuracy grows as O(1/δ2).
This shows that the number of iterations would grow at the unacceptable rate ω2d for the iteration.

Fortunately, one can accelerate the convergence by using the conjugate gradient method in the energy
conserving case and with any other Krylov method in the general case. The linear system that we actually
want to solve is

(I − S)v =: Av = b := Π0.

Moreover, with b = Π0 pre-computed we can easily evaluate the action of A at the cost of a single wave solve.
Precisely, since Av = v − Πv + b we simply carry out the evaluation of Av by evolving the wave equation
for one period in time with v as the initial data and then subtract the filtered solution from the sum of the
initial data and the right hand side b.

The operator A is self adjoint and positive, since −1/2 < β(λj) < 1, which implies that the eigenvalues
of A lie in the interval (0, 3/2). The condition number of A is of the same order as 1 − ρ, where ρ is the
spectral radius of S, i.e. by the simple analysis above, cond(A) ∼ ω2d. If this system is solved using the
(unconditioned) conjugate gradient method the convergence rate is 1− 1/

√
cond(A) ∼ 1− 1/ωd, [7]. Thus,

then the method just requires ∼ ωd iterations for fixed accuracy.

Remark 3. The operator A is self-adjoint and coercive when δ > 0 since

〈Au, u〉 = 〈(I − S)u, u〉 =

∞∑
j=0

(1− β(λj))|ûj |2 ≥ (1− ρ)||u||2.
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This should be contrasted with the original indefinite Helmholtz problem, which is not coercive. In fact, the
eigenvalues satisfy the simple relation λWHI = 1− β(λHelmholtz +ω) > 0. The two formulations are however
mathematically equivalent for the interior Dirichlet and Neumann problems away from resonances, as the
analysis above shows.

The coercivity also implies that the solution to (2.5) for the simplified iteration is unique since w = Πw
is equivalent to A(w − u) = 0.

Remark 4. A discretization would have approximately a fixed number of grid points per wavelength,
leading to a (sparse) matrix of size N × N with N ∼ ωd. Hence, the number of iterations for WHI would
be O(N2) and the total cost O(N3) since each iteration costs O(N). This should be compared with a direct
solution method which is better than O(N3) when the matrix is sparse.

Remark 5. In the Krylov accelerated case this analysis suggests that the number of iterations would now
be O(N) and the total cost O(N2). However, in the experiments below we observe slightly better complexity
for interior problems and significantly better complexity for open problems. In fact, for the open problems
we find that, in both two and three dimensions, the number of iterations scale as ∼ ω which is the required
number of iterations for the information to travel through the domain.

2.2. Analysis of the Discrete Iteration. To better understand the effects of discretizations we
consider the following discrete version of the algorithm for the energy conserving case described above in
Section 2.1. We introduce the temporal grid points tn = n∆t and a spatial grid with N points together with
the vector wn ∈ RN containing the grid function values of the approximation at t = tn. We also let f ∈ RN
hold the corresponding values of the right hand side. The discretization of the continuous spatial operator
−∇ · (c2(x)∇), including the boundary conditions, is denoted Lh and it can be represented as an N × N
matrix. The values −∇ · (c2(x)∇w) are then approximated by Lhwn. As in the continuous case, we assume
Lh has the eigenmodes (λ2

j , φj), such that Lhφj = λ2
jφj for j = 1, . . . , N , where all λj are strictly positive

and ordered as 0 ≤ λ1 ≤ . . . ≤ λN .
We let the Helmholtz solution u be given

−Lhu+ ω2u = f.

The numerical approximation of the iteration operator is denoted Πh, and it is implemented as follows.
Given v ∈ RN , we use the leap frog method to solve the wave equation as

(2.15) wn+1 = 2wn − wn−1 −∆t2Lhw
n −∆t2f cos(ωtn),

with time step ∆t = T/M for some integer M , and initial data

w0 = v, w−1 = v − ∆t2

2
(Lhv + f).

The trapezoidal rule is then used to compute Πhv,

(2.16) Πhv =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)
wn, ηn =

{
1
2 , n = 0 or n = M,

1, 0 < n < M.

With these definitions we can prove

Theorem 2.4. Suppose there are no resonances, such that δh = minj |λj −ω|/ω > 0. Moreover, assume
that ∆t satisfies the stability and accuracy requirements

(2.17) ∆t <
2

λN + 2ω/π
, ∆tω ≤ min(δh, 1).

Then the fixed point iteration v(k+1) = Πhv
(k) with v(0) = 0 converges to v∞ which is a solution to the

discretized Helmholtz equation with the modified frequency ω̃,

−Lhv∞ + ω̃2v∞ = f, ω̃ = 2
sin(∆tω/2)

∆t
.

The convergence rate is at least ρh = max(1− 0.3δ2
h, 0.6).
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Proof. We expand all functions in eigenmodes of Lh,

wn =

N∑
j=1

ŵnj φj , f =

N∑
j=1

f̂jφj , u =

N∑
j=1

ûjφj , v =

N∑
j=1

v̂jφj , v∞ =

N∑
j=1

v̂∞j φj .

Then the Helmholtz eigenmodes of u and v∞ satisfy

ûj =
f̂j

ω2 − λ2
j

, v̂∞j =
f̂j

ω̃2 − λ2
j

.

We note that ω̃ is not resonant and v̂∞j is well-defined for all j, since by (C.2) and (2.17)

|ω̃ − λj | ≥ |ω − λj | − |ω̃ − ω| ≥ ωδh −
∆t2ω3

24
≥ ω

(
δh −

1

24
min(δh, 1)2

)
> 0.

The wave solution eigenmodes are given by the difference equation

(2.18) ŵn+1
j − 2ŵnj + ŵn−1

j + ∆t2λ2
j ŵ

n
j = −∆t2f̂j cos(ωtn).

with initial data

ŵ0
j = v̂j , ŵ−1

j = v̂j

(
1− 1

2
∆t2λ2

j

)
− 1

2
∆t2f̂j .

By (2.17)
|2−∆t2λ2

j | < 2,

and the characteristic polynomial for the equation, r2 +(∆t2λ2
j−2)r+1, then has two roots on the boundary

of the unit circle. The solution is therefore stable and is given by (the verification of which is found in
Appendix B)

(2.19) ŵnj = (v̂j − v̂∞j ) cos(λ̃jtn) + v̂∞j cos(ωtn),

where λ̃j is well-defined by the relation

2
sin(∆tλ̃j/2)

∆t
= λj .

Now, let

Πhv =

∞∑
j=1

v̄jφj .

Then the numerical integration gives

v̄j =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)(
(v̂j − v̂∞j ) cos(λ̃jtn) + v̂∞j cos(ωtn)

)
= (v̂j − v̂∞j )βh(λ̃j) + v̂∞j βh(ω) = v̂jβh(λ̃j) + (1− βh(λ̃j))v̂

∞
j ,

where

βh(λ) =
2∆t

T

M∑
n=0

ηn cos(λtn)

(
cos(ωtn)− 1

4

)
,

and we used the fact that the trapezoidal rule is exact, and equal to one, when λ = ω. (Recall that for
periodic functions the trapezoidal rule is exact for all pure trigonometric functions of order less than the
number of grid points.) Hence, if |βh(λ̃j)| < 1 the j-th mode in the fixed point iteration converges to v̂∞j .
This is ensured by the following lemma, the proof of which is found in Appendix C.
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Lemma 2.5. Under the assumptions of Theorem 2.4,

(2.20) max
1≤j≤N

|βh(λ̃j)| ≤ ρh =: max(1− 0.3δ2
h, 0.63).

Since the bound |βh(λ̃j)| ≤ ρh < 1 in the lemma is uniform for all j the convergence v(k) → v∞ with rate at
least ρh follows. This concludes the proof of the theorem.

Remark 6. The discretization above is used as an example to illustrate the impact of going from the
continuous to the discrete iteration. For a particular discretization we can improve the iteration further by
using the knowledge of how it approximates ω and the eigenvalues of the continuous operator. Indeed, for
the discretization above, let us define ω̄ by the relation

ω = 2
sin(∆tω̄/2)

∆t
.

Then if we use f cos(ω̄tn) instead of f cos(ωtn) in the time stepping (2.15), the limit will be precisely the
Helmholtz solution, v∞ = u. Furthermore, the condition ∆tω ≤ min(δh, 1) can be quite restrictive for
problems close to resonance. It is only important to ensure convergence of the iterations. Another way to
do that is to slightly change the discrete filter by replacing the constant 1/4 in (2.16) by a ∆t-dependent
number such that |βh(λ)| < 1 for λ 6= ω. Another option is to use a higher order quadrature rule, which
would mitigate the restriction on ∆t.

2.3. Tunable Filters. In Lemma 2.1 we saw that the filter transfer function satisfies β(ω) = 1 and
−1/2 < β(r) < 1 when r 6= ω and that these conditions guaranteed convergence of the WaveHoltz iteration.
To improve convergence when r ≈ ω we now consider a more general filter transfer function

β̄(λ) =
2

T

∫ T

0

(cos(ωt) + α(t)) cos(λt) dt, α(t) = a0 +

∞∑
n=1

an sin(nωt),(2.21)

where we refer to α(t) as a time-dependent shift. . As before , necessary conditions for convergence are
β̄(ω) = 1, β̄′(ω) = 0. Straightforward calculations reveal that these conditions require that the two first
coefficients must satisfy

a1 =
1

2π
(1 + 4a0).

The remaining terms in the sum are orthogonal to cos(λt) when λ = ω. Carrying out the integration in full
for each term yields the general form

β̄(λ) =
λω sin(λT )

π(λ2 − ω2)
+ a0

ω sin(λT )

πλ
+

∞∑
n=1

an
nω2

π(λ2 − n2ω2)
(cos(λT )− 1) ,

from which it follows that another necessary condition is |a0| < 1/2 since |β̄(r)| < 1 and

β̄(0) = a0 lim
λ→0

ω sin(2πλ/ω)

πλ
= 2a0.

We note that the standard filter, where a0 = −1/4 and a1 = 0, satisfies the necessary conditions.

Remark 7. For the remaining coefficients an we only need to ensure that |β̄(r)| < 1 which leaves large
freedom to design β̄. For example we may try to maximize |β̄′′(ω)| (minimize β̄′′(ω)) so that β̄(r) is sharply
peaked around r = ω. We do not pursue a systematic study of this here but illustrate the utility of the added
flexibility of (2.21) with numerical experiments below in Section 4.
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2.4. Multiple Frequencies in One Solve. We can use the WaveHoltz algorithm to solve for multiple
frequencies at once. Suppose we look for the solutions ui of

∇ · (c2(x)∇ui) + ω2
i ui = fi(x), i = 1, . . . , N,

with the same c and boundary condition for all i. To find those solutions we include all frequencies in the
wave equation part of the iteration (2.3), and solve

wtt = ∇ · (c(x)2∇w)−
N∑
i=1

fi(x) cos(ωit).(2.22)

We then seek a decomposition

(2.23) w(x, t) ≡
N∑
i=1

ui(x) cos(ωit),

of the solution. The filtering part of the WaveHoltz iteration is also updated to reflect the multiple frequencies

vn+1 =
2

T

∫ T

0

(
N∑
i=1

cos(ωit)−
1

4

)
w(x, t) dt.

As before we take v0 = 0 when we deal with energy conserving boundary conditions. To this end we assume
that the frequencies are related by an integer multiple in a way so that the period T can be chosen based on
the lowest frequency.

The different ui(x) in (2.23) can be found as follows. Once we have found the time periodic solution to
(2.22) evolve one more period and sample w(x, t) at N distinct times tj , j = 1, . . . , N . We then have

ui(x) =

N∑
j=1

βijw(x, tj),

where the coefficients βij are the elements of A−1 with the elements of A being aij = cos(ωjti).

2.5. WaveHoltz Iteration for Impedance Boundary Conditions. For impedance and other
boundary conditions that leads to a decreasing energy for the wave equation we cannot make the sim-
plifying assumption in (2.3) that wt(0, x) = 0 but we must seek both v0(x) and v1(x) in (2.3). To do so we
define an extended iteration (2.8) where we apply Π to both the displacement and the velocity:

(2.24)
[
v
v′

](n+1)

= Π̃

[
v
v′

](n)

,

[
v
v′

](0)

≡ 0,

where

(2.25) Π̃

[
v
v′

]
=

2

T

∫ T

0

(
cos(ωt)− 1

4

)[
w(t, x)
wt(t, x)

]
dt, T =

2π

ω
.

Here w(t, x) and its time derivative wt(t, x) satisfies the wave equation (2.3) with initial data v0(x) ≡ v(n)

and v1(x) ≡ v′(n).

3. Wave Equation Solvers. In this section we briefly outline the numerical methods we use in the
experimental section below. We consider both discontinuous Galerkin finite element solvers and finite dif-
ference solvers. In all the experiments we always use the trapezoidal rule to compute the integral in the
WaveHoltz iteration.
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3.1. The Energy Based Discontinuous Galerkin Method. Our spatial discretization is a direct
application of the formulation described for general second order wave equations in [3, 4]. Here we outline
the spatial discretization for the special case of the scalar wave equation in one dimension and refer the
reader to [3] for the general case.

The energy of the scalar wave equation is

H(t) =

∫
D

v2

2
+G(x,wx)dx,

where

G(x,wx) =
c2(x)w2

x

2
,

is the potential energy density, v is the velocity (not to be confused with the iterates vn above) or the time
derivative of the displacement, v = wt. The wave equation, written as a second order equation in space and
first order in time then takes the form

wt = v,

vt = −δG−f(x) cos(ωt),

where δG is the variational derivative of the potential energy

δG = −(Gwx)x = −(c2(x)wx)x.

For the continuous problem the change in energy is

(3.1)
dH(t)

dt
=

∫
D

vvt + wt(c
2(x)wx)x dx = −

∫
D

vf(x) cos(ωt)dx+[wt(c
2(x)wx)]∂D,

where the last equality follows from integration by parts together with the wave equation. Now, a variational
formulation that mimics the above energy identity can be obtained if the equation v−wt = 0 is tested with the
variational derivative of the potential energy. Let Ωj be an element and Πs(Ωj) be the space of polynomials
of degree s, then the variational formulation on that element is:

Problem 1. Find vh ∈ Πs(Ωj), wh ∈ Πr(Ωj) such that for all ψ ∈ Πs(Ωj), φ ∈ Πr(Ωj)∫
Ωj

c2φx

(
∂whx
∂t
− vhx

)
dx = [c2φx · n

(
v∗ − vh

)
]∂Ωj

,(3.2) ∫
Ωj

ψ
∂vh

∂t
+ c2ψx · whx+ψf(x) cos(ωt) dx = [ψ (c2 wx)∗]∂Ωj

.(3.3)

Let [[ζ]] and {ζ} denote the jump and average of a quantity ζ at the interface between two elements,
then, choosing the numerical fluxes as

v∗ = {v} − τ1[[c2 wx]]

(c2 wx)∗ = {c2 wx} − τ2[[v]],

will yields a contribution −τ1([[c2 wx]])2 − τ2([[v]])2 from each element face. To this end we choose τi > 0
(so called upwind or Sommerfeld fluxes) which together with the choice that the approximation spaces be
of the same degree r = s result in methods that are r + 1 order accurate in space and measured in the L2

norm. We note that even in the case of energy conserving numerical fluxes the formulation does not lead to
a symmetric matrix for the WaveHoltz iteration (it is of course positive definite though).

Physical boundary conditions can also be handled by appropriate specification of the numerical fluxes,
see [3] for details. The above variational formulation and choice of numerical fluxes results in an energy
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identity similar to (3.1). However, as the energy is invariant to certain transformations the variational
problem does not fully determine the time derivatives of wh on each element and independent equations
must be introduced. In this case there is one invariant and an independent equation is

∫
Ωj

(
∂wh

∂t − v
h
)

= 0.
Denoting the degrees of freedom on element Ωj by vj and wj the semi-discretization according to (3.2)-

(3.3) on element Ωj can be written

S(
∂wj
∂t
− vj) = L1(vj−1, vj , vj+1, wj−1, wj , wj+1),(3.4)

M
∂vj
∂t

+ Swj + fj cos(ωt) = L2(vj−1, vj , vj+1, wj−1, wj , wj+1),(3.5)

where the elements of the element matrices M and S are Mkl =
∫

Ωj
φxφldx and Skl =

∫
Ωj
c2(φk)x(φl)xdx

respectively and the lift operators L1 and L2 represents the numerical fluxes. Note that a convenient way
to directly enforce the independent equation is to compute the time derivatives of wj according to

∂wj
∂t

= vj = S†L1(vj−1, vj , vj+1, wj−1, wj , wj+1),

where S† is the pseudo inverse of S.

3.2. Finite Difference Discretizations. For the finite difference examples we exclusively consider
Cartesian domains (x, y, z) ∈ [Lx, Rx]× [Ly, Ry]× [Lz, Rz] discretized by uniform grids (xi, yj , zk) = (Lx +
ihx, Ly + jhy, Lz + khz), with i = 0, . . . , nx and hx = (Rx − Lx)/nx, etc.

When we have impedance boundary conditions on the form wt±~n ·∇w = 0 we evolve the wave equation
as a first order system in time according to the semi-discrete approximation

dvijk(t)

dt
= (Dx

+D
x
− +Dy

+D
y
− +Dz

+D
z
−)wijk,(3.6)

dwijk(t)

dt
= vijk,(3.7)

for all grid points that do not correspond to Dirichlet boundary conditions. On boundaries with impedance
conditions we find the ghost point values by enforcing (here illustrated on the top of the domain)

(3.8) vijnz
−Dz

0wijnz
= 0.

Here we have used the standard forward, backward and centered finite difference operators, for example
hxD

x
+wi,j,k = wi+1,j,k − wi,j,k etc. For problems with variable coefficients the above discretization is gener-

alized as in [5].
We note that in some of the examples where we require high order accuracy we use the summation by

parts discretization for variable coefficients developed by Mattson in [32] and described in detail there.

3.3. Time Discretization. In most of the numerical examples we use either an explicit second order
accurate centered discretization of wtt (for finite differences with energy conserving boundary conditions
we eliminate v and time discretize wtt directly as in the analysis in Section 2.2) or the classic fourth order
accurate explicit Runge-Kutta method.

For some of the DG discretizations we employ Taylor series time-stepping in order to match the order
of accuracy in space and time. Assuming that all the degrees of freedom have been assembled into a vector
w we can write the semi-discrete method as wt = Qw with Q being a matrix representing the spatial
discretization. Assuming we know the discrete solution at the time tn we can advance it to the next time
step tn+1 = tn + ∆t by the simple formula

w(tn + ∆t) = w(tn) + ∆twt(tn) +
(∆t)2

2!
wtt(tn) . . .

= w(tn) + ∆tQw(tn) +
(∆t)2

2!
Q2w(tn) . . .
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Method / b. c. WHI LSQR QMR CG GMRES
D-D 94.5(-15) 76.1(-15) 75.9(-15) 151.5(-15) 97.9(-15)
N-N 49.2(-15) 142.8(-15) 144.4(-15) 158.5(-15) 144.1(-15)
D-N 28.3(-15) 55.4(-15) 81.9(-15) 272.3(-15) 67.0(-15)

Table 4.1: Maximum error for various combinations of boundary conditions and methods.

The stability domain of the Taylor series which truncates at time derivative number NT includes part of the
imaginary axis if mod(NT, 4) = 3 or mod(NT, 4) = 0 (see e.g. [28]) . However as we use a slightly dissipative
spatial discretization the spectrum of our discrete operator will be contained in the stability domain of all
sufficiently large choices of NT (i.e. the NT should not be smaller than the spatial order of approximation).
Note also that the stability domain grows linearly with the number of terms.

4. Numerical Examples. In this section we illustrate the properties of the proposed iteration and its
Krylov accelerated version by a sequence of numerical experiments in one, two and three dimensions.

4.1. Examples in One Dimension. We begin by presenting some very basic numerical experiments
in one dimension.

4.1.1. Convergence of Different Iterations / Solvers at a Fixed Frequency. We start by re-
peating the example described in Section 3.5 in [23]. This example is used in [23] to illustrate that the
original cost functional from [9] (denoted J in [23]) does not yield the correct solution due to the existence
of multiple minimizers.

The example solves the Helmholtz equation with c = 1 and with the exact solution

u(x) = 16x2(x− 1)2, 0 ≤ x ≤ 1.

Here both u (and wt for the time-dependent problem) and ux vanish at the endpoints so any boundary
condition of the form

αwt + β(~n · wx) = 0, α2 + β2 = 1,

will be satisfied. Dirichlet boundary conditions correspond to α = 1 and Neumann boundary conditions
correspond to α = 0, all other values will be an impedance boundary condition. Here, as in [23], we take the
frequency to be ω = π/4.

We discretize using the energy based DG method discussed above and use upwind fluxes which adds
a small amount of dissipation. For this experiment we use 5 elements with degree q = 7 polynomials and
we use an 8th order accurate Taylor series method in time. We set ∆t so that nt∆t = T = 2π/ω while
making the inequality ∆t ≤ CCFL∆x/(q + 1) as sharp as possible (in this experiment we fix CCFL = 1/2).
With this resolution in space and time the truncation errors are negligible and we expect that the observed
convergence properties should match those of the continuous analysis.

As mentioned above we expect that our method works best when combined with a classical iterative
Krylov subspace method. The energy based DG method will produce a matrix A with real eigenvalues in
(0, 3/2) but it will not yield a symmetric matrix A. We present results for the WaveHoltz iteration (denoted
WHI in figures and tables), and its acceleration with Matlab implementations of LSQR, QMR, CG and
GMRES (we use the default unconditioned settings with a tolerance of 10−13). In Figure 4.1 we display
the convergence histories for various combinations of boundary conditions. The residuals for the Krylov
accelerated iterations are the ones returned by the Matlab functions and the residual for the WaveHoltz
iteration is simply the L2 norm of the difference between two subsequent iterations. As can be seen the
convergence behavior for QMR and GMRES are uniformly the fastest and appears to be insensitive to the
type of boundary condition used. Note that the numerical method used here does not yield a symmetric
matrix and CG is not guaranteed to work. Evidence of this loss or stagnation of convergence can be found
in the cases D-D and D-N in Figure 4.1.

The actual errors in the converged solutions can be found in Table 4.1, where it can be seen that the
error for all of the iteration methods are close to the residual tolerance.
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Fig. 4.1: Convergence of the residual for the plain WaveHoltz iteration and its accelerated versions using LSQR,
QMR, CG and GMRES. The titles of the figures indicate the boundary conditions used to the left and right, e.g.
D-N means Dirichlet on the left and Neumann on the right.
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Fig. 4.2: Left: Number of iterations divided by ω as a function of ω for different boundary conditions. Middle and
right: Zoom in around a resonance for the Dirichlet problem when using Krylov acceleration (middle) and when using
WHI (right).

4.1.2. Convergence with Increasing Frequency. To study how the number of iterations scale with
the Helmholtz frequency ω we solve the wave equation on the domain x ∈ [−6, 6] with constant wave speed
c2(x) = 1 and with a forcing

f(x) = ω2e−(ωx)2 ,

that results in the solution being O(1) for all ω. The solver is the same as in the previous example. We
keep the number of degrees of freedom per wave length fixed by letting the number of elements be 5dωe.
We always take the polynomial degree to be 7 and the number of Taylor series terms in the timestepping to
be 8. As we now also consider impedance boundary conditions, with α = 1/2, we use WHI accelerated by
GMRES.

We report the number of iterations it takes to reach a GMRES residual smaller than 10−10 for the
six possible combinations of Dirichlet, Neumann and impedance boundary conditions for 50 frequencies
distributed evenly between 1 and 100. The results are displayed to the left in Figure 4.2 where we plot the
number of iterations divided by ω as a function of ω. It is clear that the asymptotic scaling is linear with
growing frequency. Interestingly all the combinations of boundary conditions collapse to two different curves
with the Dirichlet-Dirichlet and impedance-impedance conditions converging the fastest.

We know from the analysis in Section 2.1 that the rate of convergence of the WaveHoltz iteration
deteriorates near resonant frequencies (for non-impedance problems) but from Figure 4.2 it appears that
all frequencies converge more or less the same rate. To study the behavior of the accelerated algorithm for
homogenous Dirichlet boundary conditions we zoom in around ω ≈ 19.114 where the continuous problem
has a resonance. In the middle graph in Figure 4.2 we display the required number of iterations around
the resonant frequency. As can be seen there is some deterioration but only in very narrow band around
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Fig. 4.3: Left: Convergence history of the near resonant frequency 4.1π for the WaveHoltz filter and a tunable filter,
and that of the frequency 1.5π for reference. Middle: The error between successive WaveHoltz iterates with the
usual WaveHoltz filter. Right: Convergence of the solution for the CG accelerated WaveHoltz iteration with a point
forcing.

a frequency that is slightly less than 19.114 and probably is the modified resonant frequency discussed in
Section 2.2. This behavior can be contrasted to the growth of the number of iterations for the WaveHoltz
iteration without GMRES acceleration, see the right figure in Figure 4.2. Clearly the acceleration of the
WaveHoltz iteration by GMRES improves the robustness of the method near resonances.

4.1.3. Multiple Frequencies in One Solve. Here we illustrate the technique described in Section 2.4
for finding solutions of multiple frequencies at once. We set ω = 1 and ωj = 2j−1ω for j = 1, . . . , 4, and
consider the domain x ∈ [0, 1]. We use the finite difference discretization discussed in Section 3.2 with
Dirichlet boundary conditions . The time evolution is done by a second order centered discretization of wtt,
as was done in the discrete analysis in Section 2.2 . The problem is forced by a point source centered at
x = 1/2 for j = 1, . . . , 4, and we consider a constant wave speed c2(x) = 1 . We display the convergence
with decreasing h in Figure 4.3 on the right, where it can be seen that each solution uj converges at a rate
of h2.

4.1.4. Tunable Filters. Here we consider solving a Helmholtz problem in the domain x ∈ [0, 1] with
Dirichlet boundary conditions and constant wave speed c2 = 1. The discretization is the same as in the
previous experiment and we use a point source centered at x = 1/2. A straightforward calculation shows
that the resonant frequencies of the problem are integer multiples of π and we specifically consider solving
the Helmholtz problem with frequency ω = 4.1π, which has a minimum relative gap to resonance of δ =
1/41 ≈ 0.024. As discussed previously, we expect that the convergence rate of the WaveHoltz iteration will
stagnate since ω is close to resonance. We compare the convergence against the problem with frequency
ω = 1.5π which has a minimum relative gap to resonance of δ = 1/3. The iteration history is displayed in
Figure 4.3 on the left . It can be seen that the usual WaveHoltz iteration converges rapidly for the frequency
1.5π but that of 4.1π stagnates considerably. In the middle of Figure 4.3 we display the difference between
successive WaveHoltz iterates for the Helmholtz problem with frequency ω, from which it is clear that the
residual is a scaling of the resonant mode sin(4πx).

To improve the rate of convergence close to resonance we leverage a tunable filter as mentioned in Section
2.3. To obtain this filter, we consider the filter transfer function (2.21) and truncate the sin expansion of the
time-dependent shift α(t) to 12 terms such that an = 0 for n > 11. In this example we take the usual choice
of a0 = −1/4 for the constant term in the filter transfer function (2.21) which, as discussed in Section 2.3,
requires a1 = 0. We then perform a minimization over a discrete set of 3000 equispaced points rj ∈ [0, 16π]
of the empirically constructed functional

J(a2, a3, . . . , a11) = 10.6β̄′′(ω) + 0.1
∑

|rj−ω|>0.1

|β̄(rj)|20,(4.1)

via 100 steepest descent iterations. The first term in the functional (4.1) minimizes the second derivative at
the peak ω = 4.1π, while the second weakly enforces that |β(r)| ≤ 1 for all r > 0 to ensure convergence of
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usual WaveHoltz filter and the updated tunable filter near the resonant frequency 4π.

the fixed point iteration.
In Figure 4.4 on the right we see that the updated filter is steeper near ω = 4.1π so that repeated

application of the updated filter will more quickly remove the resonant mode with frequency 4π and we
thus expect faster convergence. This is confirmed in the resulting iteration history of the updated filter,
shown in Figure 4.3 on the left . The cost of improving convergence behavior near resonance, however, is a
larger value of β̄ for many other modes as shown in Figure 4.4 on the left . A more careful investigation of
optimized filters is left for the future.

4.2. Problems in Two Dimensions. In this section we present experiments in two space dimensions.

4.2.1. Convergence in Different Geometries. In this example we solve the Helmholtz equation
with a constant wave speed, c2 = 1, in the domain (x, y) ∈ [−1, 1]2 and with forcing

f(x, y) = −ω2e−σ[(x−0.01)2+(y−0.015)2],

where σ = max(36, ω2) . We vary the frequency according to ω = 1/2 + k, k = 1, . . . , 100, and keep the
number of points per wavelength roughly constant by choosing nx = ny = 8dωe. Here we use the finite
difference method outlined in Section 3.2 combined with the classic fourth order Runge-Kutta method in
time with a timestep ∆t = hx/c.

For each frequency we solve six different problems consisting of combinations of Dirichlet and impedance
boundary conditions with zero to four open sides and with the two open boundary case forking into two
cases: (1) the open boundaries are opposite each other, or (2) next to each other forming a corner. In Figure
4.5 we display the real part of the solution for the frequency ω = 77.5 for the six different problems.

In this example, the WaveHoltz iteration is accelerated by GMRES without restarts. Given that the
storage requirement for GMRES grows with the number of iterations, it is often beneficial (especially for high
frequency problems) to integrate and average over several periods to allow further propagation of information
within the domain while mitigating the rapid growth of the Krylov subspace. For this example we thus choose
to perform the WaveHoltz iteration with an integration time of 10 periods (i.e. we choose T = 10 2π

ω ). In
Figure 4.6 we report the number of iterations needed to reduce the relative residual below 10−7. It is clear
from the results that the geometries where the waves can get trapped are considerably more difficult and
requires more iterations. The computational results appear to indicate that the number of iterations to
reach the tolerance scale as ω1.55 for the inner Dirichlet problem and similarly for the waveguide and the
case with three Dirichlet boundary conditions. As the frequency increases and the distance between resonant
frequencies decreases the iteration is not able to reduce the relative residual below the tolerance 10−7 within
the prescribed maximum 1000 iterations. On the other hand for geometries with no trapped waves we see
faster convergence (see the left figure in Figure 4.6) with the number of iterations scaling roughly as ω9/10.

To the right in Figure 4.6 we display the residual as a function of the number of right hand side evaluations
(for the wave equation this is equivalent to taking a timestep and for the direct discretization of Helmholtz
this is equivalent to one application of the sparse system matrix, the cost of these are roughly equivalent)

18



Fig. 4.5: Typical solutions computed with the GMRES accelerated WHI at ω = 77.5. The thick lines indicate
Dirichlet boundary conditions.
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Fig. 4.6: To the left: number of iterations as a function of frequency to reduce the relative residual below 10−7 for
problems with no trapped waves. Middle: the same but for problems with trapped waves and for the interior problem.
Both are with the GMRES accelerated WHI . To the right: Residuals for the GMRES accelerated WHI , the CG
accelerated WHI and for GMRES solution of the directly discretized Helmholtz problem.

when ω = 51.5 for the pure Dirichlet boundary condition problem. The three different results are for: 1. the
WaveHoltz acceleration, 2. the WaveHoltz iteration accelerated with conjugate gradient and based on the
same spatial discretization but with a second order accurate centered discretization of wtt using ∆t = 0.7hx
and, 3. a direct discretization of the Helmholtz equation (using the spatial discretization described in Section
3.2) combined with GMRES for solving the resulting system of equations. Precisely we use GMRES with
restart every 100 iterations. For space reasons we only display this for one frequency but note that although
the results may differ a bit between frequencies the trend is similar in the problems we have investigated.

It is clear from the residuals that both the GMRES and conjugate gradient accelerated WaveHoltz
iterations are radically faster than applying GMRES to the direct discretization of Helmholtz. As all the
methods use the same spatial discretization this is an indication of the importance of changing the problem
from an indefinite system of equations to a positive definite and to a symmetric positive definite system.

Remark 8. We note that the problems considered in this experiment can be naturally solved with integral
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Fig. 4.7: Left: the speed of sound (squared) used in example 4.2.2. Red indicates a rigid wall and black indicates open
walls. Middle: Number of iterations as a function of frequency. Right: Compute time normalized by the frequency
times the number of degrees of freedom.

Fig. 4.8: The magnitude of the Helmholtz solution for, from left to right, ω = 25π, 50π and 100π.

equation techniques since the the wave speed is constant. In addition as the problem is posed in two dimensions
and can be stored in memory a good sparse solver will also be a very good alternative. What we want to
demonstrate is: 1. The positive definiteness of the accelerated WHI makes it faster than standard iterative
techniques for the direct discretization of Helmholtz, 2. The complexity is different for open and closed
problems as predicted by the theory in [14].

4.2.2. Smoothly Varying Wave Speed in an Open Domain. In this example we consider a
smoothly varying medium in a box (x, y) ∈ [−1, 1]2. The wave speed is

c2(x, y) = 1− 0.4e
−
(

x2+y2

0.252

)4

,

and is also depicted in Figure 4.7.
Here we use the energy based DG solver and impose a right going plane wave eiω(t−x) through impedance

boundary conditions on the left, bottom and top faces of the domain. On the right boundary we impose a
zero Dirichlet condition. In all the computations we use degree 5 polynomials and a 6th order Taylor series
method. The elements used form a Cartesian structured grid and we scale the number of elements so that we
have 8 degrees of freedom per wavelength. The WHI is applied with an integration time of 5 periods and is
accelerated by GMRES with a termination tolerance 10−7 on the relative residual. We solve the Helmholtz
problem with ω = kπ, k = 3, 4, . . . , 100 and measure the total time from start to time of solution and we
also measure the number of iterations needed to converge. The results, displayed in Figure 4.7, again show
that for this type of open problem the iteration appears to require Niter ∼ O(ω0.9) iterations to converge
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to a fixed tolerance. In terms of total computational time we observe TTotal ∼ O(ωNDOF) which is slightly
higher than what would be expected from the O(ω0.9) behavior.

However, as the distance traveled by the wave solution is proportional to cT = 2πc/ω and the information
must travel through the domain at least once the time to solution is as good as can be expected. To reduce
the computational complexity further we would need to propagate the solution faster than the speed of sound
by applying a preconditioner or some type of multi-level strategy. Although we believe this is possible we
leave such attempts to future work.

The magnitude of the solutions with ω = 25π, 50π and 100π are plotted in Figure 4.8.
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Fig. 4.9: The maximum error GMRES residuals as a function of number of iterations for four different mesh sizes.
The rates of convergence agree with the order of the method.

4.2.3. Convergence of the Approximation Error and the Residual. As our iteration leads to a
linear system of equations (and consequently a different residual) we should check that the residual is still
a suitable proxy for the discretization error. Although we have no reason to believe this would not be the
case we note that we have not yet performed a detailed analysis and resort to checking this numerically. We
consider the same computational domain and method as above but with speed of sound c = 1 and with zero
Dirichlet boundary conditions. We set ω = 2 and choose the forcing so that the solution is

u = −(x2 − 1)2(y2 − 1)2,

and compute the solution using polynomials of degree three in the energy DG method and a fourth order
accurate Taylor time stepper. In Figure 4.9 we display the maximum errors in u and the residuals for each
GMRES iteration for Cartesian grids with grid spacings 1/2, 1/4, 1/8 and 1/16. As can be seen the residuals
and the errors track well until the errors saturate. To the right in the figure we also indicate the rates of
convergence based on the subsequent grid refinements. As expected they are very close to four.

4.2.4. The Marmousi2 Model. In the last two examples in this section we use the sixth order
summation-by-parts finite difference operators developed by Mattson in [32]. Here we use the classic fourth
order Runge-Kutta method for timestepping. In this example we simulate the solution caused by a point
source placed in a material model where the speed of sound is taken from P-wave velocity in the Marmousi2
model1. We discretize the full model which consists of 13601× 2801 grid points and covers a domain that is
roughly 17×3.5 kilometers. On the top surface we prescribe a zero Dirichlet condition and on the remaining
three sides we add a 50 grid point wide supergrid layer (see [2]) that is terminated by zero Dirichlet boundary
conditions. We accelerate the WHI by the transpose free quasi minimal residual (TFQMR) method and
terminate the iteration when the relative residual is below 10−5. We perform each iteration over 8 periods
and take 500 timesteps per iteration. The time periodic point forcing is applied near the surface in grid
point (6750, 2600) and we perform computations with ω = 200, 400 and 800.

1http://www.agl.uh.edu/downloads/downloads.htm
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Fig. 4.10: Displayed is the base 10 logarithm of the magnitude of the Helmholtz solution (log10 |u|) caused by a point
source near the surface. The results are, from top to botton, for ω = 800, 400 and 200.

Fig. 4.11: Zoom in of the base 10 logarithm of the magnitude of the Helmholtz solution (log10 |u|) caused by a point
source near the surface. The results are, from left to right, for ω = 800, 400 and 200.

As the number of unknowns is relatively large, ∼ 76 · 106, we parallelize the finite difference solver by
a straightforward domain decomposition with the communication handled by MPI. The simulations were
carried out on Maneframe II at the Center for Scientific Computation at Southern Methodist University
using 60 dual Intel Xeon E5-2695v4 2.1 GHz 18-core Broadwell processors with 45 MB of cache each and
256 GB of DDR4-2400 memory. The results displayed in Figure 4.10 and 4.11 illustrate the ability of the
method to find solutions to large problems and at high frequencies.

4.2.5. Multiple Frequencies. In this final example in two dimensions we again use the sixth order
accurate summation-by-parts discretization from [32] with homogenous Dirichlet boundary conditions on the
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Fig. 4.12: Computation of three Helmholtz problems by one solve. The frequencies are ω = 15, 30 and 60. The
material model is also displayed, red is c2 = 1 and dark blue is c2 = 0.1.

10
1

10
2

10
0

10
1

10
2

It
e
ra

ti
o
n
s

Corner

5 free sides

Free space
0.97

10
0

10
1

10
2

10
0

10
1

10
2

10
3

It
e
ra

ti
o
n
s

TFQMR

CG

2.57

Fig. 4.13: To the left: number of iterations as a function of frequency to reduce the relative residual below 5 ·10−5 for
problems with no trapped waves. Here WHI is accelerated by TFQMR. To the right: the same but for the interior
problem. Here WHI is accelerated with either CG or TFQMR.

domain (x, y) ∈ [−1, 1]2. The spatial discretization size is the same in both coordinates and is taken to be
2/300. The velocity model is taken to be smoothly varying. Precisely we have that

c2(x, y) = 1− 0.9

(
e
−
(

(x2+(y−0.4)2−0.42)

0.22

)4

+ e
−
(

(x2+(y+0.4)2−0.32)

0.22

)4)
,

see also Figure 4.12. We consider three frequencies, ω = 15, 30, 60, and use the same forcing in Helmholtz
for all frequencies,

f(x, y) =
σ

π
e−σ(x2+y2), σ = (4ω)2.

Here we use the WaveHoltz iteration over three periods of the lowest frequency, accelerated by GMRES
(with tolerance 10−8). We time step using a centered second order approximation to wtt with a timestep
∆t = 1/600. Since we solve for three frequencies at once we adjust the filter as described in Section 2.3 and
extract all three solutions at once. Those solutions along with the material model are displayed in Figure
4.12.

4.3. Problems in Three Dimensions. In this section we present experiments in three dimensions.

4.3.1. Convergence in Different Geometries. We solve the wave equation in a box (x, y, z) ∈
[−1, 1]3 with the smoothly varying medium

c2(x, y, z) = 1 +
1

10
e−(x2+y2+z2).
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Fig. 4.14: Displayed is the base 10 logarithm of the magnitude of the Helmholtz solution (log10 |u|) caused by a point
source near the surface for ω = 200 (left) and ω = 300 (right) at the slice x = 0.1.

We use a uniform grid (xi, yj , zk) = (−1 + ih,−1 + jh,−1 + kh) with grid spacing h = 1/n and choose
n = max(d10ωe, 20) to keep the resolution fixed. The Helmholtz problem is forced by

(4.2) F (x, y, z) = ω3e−36ω2((x−x0)2+(y−y0)2+(z−z0)2),

where x0 = 1/100, y0 = 3/250, and z0 = 1/200. We impose a mixture of boundary conditions consisting of
homogenous Dirichlet and/or impedance boundary conditions: (1) impedance on all sides, (2) Dirichlet at
z = 1 and impedance on all other sides, (3) Dirichlet at z = −1, y = 1, and x = 1 with impedance on all
other sides, and (4) Dirichlet on all sides. We solve the equations in first order form in time and use the
semi-discrete approximation described in Section 3.2.

In this example the WaveHoltz iteration is performed over 5 periods, numerically integrated in time with
the classic Runge Kutta method of order four, and accelerated by TFQMR method. For the pure Dirichlet
problem we also use CG but note that although the spatial discretization leads to a symmetric WHI matrix
when combined with a centered finite difference approximation in time the matrix is only close to symmetric
when combined with the slightly dissipative Runge Kutta method. The experiments indicate that this slight
non-symmetry does not destroy the convergence iteration of CG in this case.

In Figure 4.13 we report the number of iterations needed to reduce the relative residual below 5·10−5. As
was seen before in the 2D case, the fully Dirichlet case is notably more difficult and requires more iterations
than the other problems considered. The computational results indicate that the number of iterations to
reach the tolerance scale as ω2.57 for the inner Dirichlet problem with either CG or TFQMR, with the former
taking fewer overall iterations than the latter. By comparison, the set of problems with boundary conditions
(1)-(3) listed above appear to converge in a number of iterations that scales as ω0.97, i.e. close to linear in
the frequency ω.

4.3.2. Scattering from a Plate. For our final example, we again consider the box (x, y, z) ∈ [−1, 1]3

with smoothly varying medium

c2(x, y, z) =
1

2
[3 + sin(16πz) sin(4π(x+ y))] ,

and impose Dirichlet boundary conditions at z = 1 and impedance boundary conditions on all other sides.
We use a uniform grid (xi, yj , zk) = (−1 + ih,−1 + jh,−1 + kh) with grid spacing h = 1/n where n is
the number of gridpoints along a single dimension. The discretization in space and in time is exactly as in
the previous example and the problem is forced by F (x, y, z) as in (4.2) with x0 = 1/100, y0 = 3/250, and
z0 = 4/5. As in the Marmousi example in the previous section, we parallelize the finite difference solver
by a straightforward domain decomposition with the communication handled by MPI. This simulation was
carried out on Maneframe II at the Center for Scientific Computation at Southern Methodist University
using 64 dual Intel Xeon E5-2695v4 2.1 GHz 18-core Broadwell processors with 45 MB of cache each and 256
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GB of DDR4-2400 memory. The magnitude of the solution with ω = 200 and ω = 300 is plotted in Figure
4.14. We use n = 1000 for a total of 109 gridpoints in the first case, and n = 1500 for a total of 3.375 · 109

gridpoints in the second for roughly 15-16 points per wavelength.

5. Summary and Future Work. We have presented and analyzed the WaveHoltz iteration, a new
iterative method for solving the Helmholtz equation. The iteration results in positive definite and sometimes
symmetric matrices that are more amenable for iterative solution by Krylov subspace methods. In choosing
a Krylov subspace method we note that CG is the most efficient and memory lean choice when the resulting
system is symmetric positive definite, otherwise GMRES generally outperforms other methods such as QMR,
LSQR, and TFQMR. As the iteration is based on solving the wave equation it naturally parallelizes and
can exploit techniques and spatial discretizations that have been developed for the time dependent problem.
Numerical experiments indicate that our iteration appears to converge significantly faster than when the
Helmholtz equation is discretized directly and solved iteratively with GMRES.

We believe that the numerical and theoretical results above are promising and note that there are many
possible avenues for future exploration. For example we have exclusively used unconditioned Krylov solvers
here but the spectral properties of the operator S indicate that preconditioning should be possible. Further,
we have not tried to exploit adaptivity in space or time or any type of sweeping ideas here and we have only
briefly touched on the possibilities for more advanced filter design. We hope to study both the numerical
and theoretical properties of these in the future.

Finally, here we only analyzed the energy conserving problem. We have carried out a preliminary but
(we believe) suboptimal analysis of the impedance problem. We hope to improve our analysis of this case in
the near future.

6. Acknowledgement. We would like to acknowledge the careful reading of the manuscript by the
reviewers that led to several improvements and clarifications. In particular one of the reviews was extremely
careful and thorough and we want to extend an extra thank you for this.

Appendix A. Proof of Lemma 2.1.

Proof. We show the results for the rescaled transfer function

β̄(r) := β(rω) =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(rωt)dt =

1

π

∫ 2π

0

(
cos(t)− 1

4

)
cos(rt)dt.

By direct integration we get

β̄(r) =
1

π

∫ 2π

0

1

2
(cos((r + 1)t) + cos((r − 1)t))− 1

4
cos(rt)dt =(A.1)

1

2π

(
sin(2π(r + 1))

r + 1
+

sin(2π(r − 1))

r − 1
− 1

2

sin(2πr)

r

)
= sinc(r + 1) + sinc(r − 1)− 1

2
sinc(r),(A.2)

where
sinc(r) =

sin(2πr)

2πr
.

We use the fact that sin(x) ≤ x − α̃x3 in the interval x ∈ [0, π] for any α̃ ∈ [0, π−2]. This leads to the
following estimate for the sinc function

(A.3) 0 ≤ sinc(r) ≤ 1− αr2, r ∈ [−0.5, 0.5], α ∈ [0, 4].

We also note that sinc(r + n) = sinc(r)r/(r + n) for all integer n.
We now first consider 0 ≤ r ≤ 0.5 and use (A.3) with α = 4 and α = 0,

|β̄(r)| = sinc(r)

∣∣∣∣ r

r + 1
+

r

r − 1
− 1

2

∣∣∣∣ =
1

2
sinc(r)

1 + 3r2

1− r2
≤ 1

2

1− 4r2 + 3r2

1− r2
=

1

2
.

For 0.5 ≤ r ≤ 1.5 we instead center around r = 1 and get for |δ| ≤ 0.5,

β̄(1 + δ) = sinc(δ)
3(δ + 1)2 + 1

2(2 + δ)(1 + δ)
≥ 0,
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since sinc(δ) ≥ 0. Moreover, using again (A.3) with α = 1,

β̄(1 + δ) ≤ (1− δ2)
3(δ + 1)2 + 1

2(2 + δ)(1 + δ)
=

4 + 2δ − 3δ2 − 3δ3

2(2 + δ)
≤ 4 + 2δ − 2δ2 − δ3

2(2 + δ)
= 1− δ2

2
.

Finally, for r > 1 we have 1/(r + 1)− 1/2r ≥ 0 and therefore

|β̄(r)| = | sin(2πr)|
2πr

(
r

r + 1
+

r

r − 1
− 1

2

)
≤ 1

2π

(
1

r + 1
+

1

r − 1
− 1

2r

)
≤ 3

4π

1

(r − 1)
.

We note also that for r ≥ 1.5 this gives |β̄(r)| ≤ 3/2π ≤ 1/2.
To prove (2.13) we use the Taylor expansion of β̄ around r = 1,

β̄(1 + δ) = 1 +
δ2

2
β̄′′(1) +

δ3

6
R̄(δ),

where R̄(δ) is the remainder term, which can be bounded as

|R̄(δ)| ≤ sup
r≥0

∣∣∣β̄(3)(r)
∣∣∣ ≤ 1

π

∫ 2π

0

t3
(

1 +
1

4

)
dt = 5π3.

Hence, |R(δ)| ≤ |R̄(δ)|/6 ≤ 5π3/6. Finally,

β′′(1) = sinc′′(2) + sinc′′(0)− 1

2
sinc′′(1) =

−1

2
− (2π)2

3
+ 1 = −2b1.

This shows (2.13) and concludes the proof of the lemma.

Appendix B. Verification of Discrete Solution. Here we verify that (2.19) is indeed a solution to
the difference equation (2.18). Direct substitution yields

ŵn+1
j − 2ŵnj + ŵn−1

j + ∆t2λ2
j ŵ

n
j = (v̂j − v̂∞j ) cos(λ̃jtn)

(
cos(λ̃j∆t)− 2 + ∆t2λ2

j + cos(λ̃j∆t)
)

+ v̂∞j cos(ωtn)
(
cos(ω∆t)− 2 + ∆t2λ2

j + cos(ω∆t)
)

= (v̂j − v̂∞j ) cos(λ̃jtn)
(
−4 sin2(λ̃j∆t/2) + ∆t2λ2

j )
)

+ v̂∞j cos(ωtn)
(
−4 sin2(ω∆t/2) + ∆t2λ2

j

)
= v̂∞j cos(ωtn)

(
−ω̃2 + λ2

j

)
∆t2 = −∆t2fj cos(ωtn).

Second, the initial conditions are satisfied since

ŵ0
j = (v̂j − v̂∞j ) + v̂∞j = v̂j ,

ŵ−1
j = (v̂j − v̂∞j ) cos(λ̃j∆t) + v̂∞j cos(ω∆t) = (v̂j − v̂∞j )

(
1− 1

2
∆t2λ2

j

)
+ v̂∞j

(
1− 1

2
∆t2ω̃2

)
= v̂j

(
1− 1

2
∆t2λ2

j

)
+

1

2
∆t2v̂∞j

(
λ2
j − ω̃2

)
= v̂j

(
1− 1

2
∆t2λ2

j

)
− 1

2
∆t2f̂j .

This shows that (2.19) solves (2.18).

Appendix C. Proof of Lemma 2.5.

Proof. In general, we introduce the trapezoidal rule applied to cos(αt) in [0, 1],

Th(α) := h

M∑
n=0

ηn cos(αtn) ≈
∫ 1

0

cos(αt)dt =
sin(α)

α
, h = 1/M,

from which we attain the following lemma:
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Lemma C.1. The error in Th(α) satisfies2∣∣∣∣∫ 1

0

cos(αt)dt− Th(α)

∣∣∣∣ ≤ h2|α|
π2

, when |hα| ≤ π.

Proof. A direct calculation shows that

Th(α) = g(hα)

∫ 1

0

cos(αt)dt, g(x) =
x

2 tan(x/2)
.

The function g(x) can be bounded as 1− x2/π2 ≤ g(x)≤ 1 for |x| ≤ π. This gives∣∣∣∣∫ 1

0

cos(αt)dt− Th(α)

∣∣∣∣ = |1− g(hα)|
∣∣∣∣ sinαα

∣∣∣∣ ≤ (hα)2

π2

∣∣∣∣ sinαα
∣∣∣∣ ≤ h2|α|

π2
.

Since (
cos(ωt)− 1

4

)
cos(λt) =

1

2

(
cos((ω + λ)t) + cos((ω − λ)t)− 1

2
cos(λt)

)
,

and h = ∆t/T , we can write

βh(λ) =
∆t

T

M∑
n=0

ηn

(
cos((ω + λ)tn) + cos((ω − λ)tn)− 1

2
cos(λtn)

)
=

[
Th(T (ω + λ)) + Th(T (ω − λ))− 1

2
Th(Tλ)

]
.

From Lemma C.1 we then get that

|β(λ̃j)− βh(λ̃j)| ≤
h2

π2

(
|T (ω + λ̃j)|+ |T (ω − λ̃j)|+

1

2
|T λ̃j |

)
≤ 5h2T

2π2
(ω + λ̃j) =

5∆t2

2π2T
(ω + λ̃j),

when
π ≥ hT (ω + λ̃j) = ∆t(ω + λ̃j),

which is true by (2.17) and the fact that arcsin(x) ≤ πx/2 for x ∈ [0, 1]:

(C.1) λ̃j =
2

∆t
arcsin

(
∆tλj

2

)
≤ π

2
λj .

Next, we use the inequality |x− sin(x)| ≤ x3/6 for |x| ≤ π/2 to show that

(C.2)
∣∣∣∣ sin(xh)

h
− x
∣∣∣∣ =

1

h
|sin(xh)− xh| ≤ (xh)3

6h
=
h2x3

6
, |hx| ≤ π

2
.

It gives us an estimate for λ̃j − λj ,

|λj − λ̃j | =

∣∣∣∣∣∣
sin
(

∆tλ̃j/2
)

∆t/2
− λ̃j

∣∣∣∣∣∣ ≤ ∆t2

24
λ̃3
j ,

which is valid for all j since ∆tλ̃j/2 ≤ ∆tπλj/4 ≤ ∆tπλN/4 ≤ π/2, by (2.17) and (C.1).
By Lemma 2.1

|β(ω + r)| ≤

{
1− r2

2ω2 , |r/ω| ≤ 1
2 ,

1
2 , |r/ω| ≥ 1

2 .

2Note that this estimate is sharper than the standard error estimate for the trapezoidal rule, which would have the factor
α2 from the second derivative of the integrand, not just α.
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We now claim that the statement (2.20) in the lemma holds for all j if ∆tω ≤ min(δh, 1). On the one hand,
if |ω − λ̃j | ≥ ω/2, by (2.17) and (C.1)

|βh(λ̃j)| ≤ |β(λ̃j)|+
5∆t2

2π2T
(ω + λ̃j) ≤

1

2
+

5∆t2

2π2T
(ω + λ̃j)=

1

2
+

5∆tω

4π3
∆t(ω + λ̃j) ≤

1

2
+

5∆tω

4π2
≤ 0.63.

On the other hand, if |ω − λ̃j | < ω/2,

|ω − λ̃j |
ω

≥ |ω − λj |
ω

− |λ̃j − λj |
ω

≥ δh −
∆t2

24ω
λ̃3
j ≥ δh −

∆t2

24ω
(ω + |λ̃j − ω|)3 ≥ δh −

(3/2)3

24
∆t2ω2 ≥ 55

64
δh,

since min(δh, 1)2 ≤ δh. Then

|βh(λ̃j)| ≤ |β(λ̃j)|+
5∆t2

48T
(ω + λ̃j) ≤ 1− 1

2

(
|ω − λ̃j |

ω

)2

+
5∆t2ω

96π
(ω + ω + ω/2)

≤ 1− 552

2 · 642
δ2
h + ∆t2ω2 25

192π
≤ 1−

(
552

2 · 642
− 25

192π

)
δ2
h ≤ 1− 0.3δ2

h.

This proves the lemma.
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