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Abstract

The Yee scheme is one of the most popular methods for electromag-
netic wave propagation. A main advantage is the structured staggered
grid, making it simple and efficient on modern computer architectures.
A downside to this is the difficulty in approximating oblique boundaries,
having to resort to staircase approximations.

In this paper we present a method to improve the boundary treatment
in two dimensions by, starting from a staircase approximation, modifying
the coefficients of the update stencil so that we can obtain a consistent
approximation while preserving the energy conservation, structure and
the optimal CFL-condition of the original Yee scheme. We prove this in
L2 and verify it by numerical experiments.

1 Introduction

One of the most common methods for electromagnetic simulations is the Yee
scheme, also called the finite-difference time-domain (FDTD) method, intro-
duced in 1966 [33]. It is based on centered explicit differencing on structured
staggered grids, making it second order, energy conserving and memory effi-
cient. A major drawback of the method is the difficulty of handling oblique
boundaries, which is due to the structured grid. This problem is well-studied
[1, 5, 10, 12, 14, 20], and there is a number of approaches to deal with it, e.g.,
the contour path FDTD [13, 19], the popular locally conformal FDTD methods
[3, 4, 35, 23, 36, 37], and hybrid FEM-FDTD methods [21, 16, 32]. There are
also many higher order algorithms available [11, 22, 34]. These however, usually
suffer from added complexity, slowing or limiting the adoption in the applied
fields, such as Electromagnetic Compatibility (EMC). The purpose of this paper
is to improve the standard method, rather than to introduce a completely new
one.
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An approach that was employed by Tornberg and Engquist in [28] is to
modify the coefficients of the stencil close to the staircase boundary to cre-
ate a consistent approximation. This is based on the accurate regularization
techniques for wave propagation and discontinuous coefficients developed in
[25, 26, 24, 27, 29]. The advantage is that one can keep the structured Yee
grid intact, making the method simple as well as easy to implement on modern
computer architectures.

In this paper we formulate a new way to modify the coefficients to satisfy
the consistency conditions in [28] while at the same time also obtain time-
stability, i.e., energy conservation, a property which we show is not present in
the original formulation. This makes the method suitable for long simulation
times. Furthermore, the modification preserves the CFL-condition of the Yee-
scheme, avoiding the need to decrease the timestep and the associated increase
in errors. The actual implementation is very simple, since one can post-process
the coefficients of a staircase approximation of the boundary before running the
simulation. This should make the method easy to incorporate in already existing
solvers. Our main contribution in the development of the new algorithm is a
rigorous stability analysis in L2.

2 Background

Consider the transverse electric (TE) and transverse magnetic (TM) modes of
Maxwell’s equations in two space dimensions. In vacuum the TM mode equation
is

ε∂tEz = ∂xHy − ∂yHx,

µ∂tHx = −∂yEz,
µ∂tHy = ∂xEz,

and the TE mode equation is

µ∂tHz = ∂yEx − ∂xEy,
ε∂tEx = ∂yHz,

ε∂tEy = −∂xHz,

where one assumes no variations along the z-axis. H denotes the magnetic field
and E the electric field, while µ and ε is the magnetic permeability and electric
permittivity, respectively.

For simplicity we will use the acoustic notation,

pt = a(x, y) (ux + vy) ,(1)

ut = b(x, y)px,(2)

vt = b(x, y)py,(3)

which is equivalent to the TM and TE mode equations under the substitutions
p = Ez,

u = Hy,

v = −Hx,

and


p = Hz,

u = −Ey,
v = Ex,
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Figure 1: Example of discretization where the computational domain is to the
left of the boundary (solid line). The (u, v) components are zero on the dashed
staircased boundary.

respectively, together with a = 1/ε and b = 1/µ. Thus we will not use the
TE/TM abbreviation any more in this context, and TE will instead refer to a
specific generalized discretization later on. The Yee scheme for (1–3) is

p
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2
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2

+ ∆tbj,l+ 1
2
D−xp

n+ 1
2

j+ 1
2 ,l+

1
2

,(5)
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= vnj+ 1

2 ,l
+ ∆tbj+ 1

2 ,l
D−yp

n+ 1
2

j+ 1
2 ,l+

1
2

.(6)

defined on a grid with xj = jh, yl = lh. Hence pj+ 1
2 ,l+

1
2
≈ p((j + 1/2)h, (l +

1/2)h), uj,l+ 1
2
≈ u(jh, (l+ 1/2)h) and vj+ 1

2 ,l
≈ v((j+ 1/2)h, lh). The difference

operators are defined by

D+xuj,l+ 1
2

=
uj+1,l+ 1

2
− uj,l+ 1

2

hx
,

D+yvj+ 1
2 ,l

=
vj+ 1

2 ,l+1 − vj+ 1
2 ,l
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D−xpj+ 1
2 ,l+

1
2

=
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1
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1
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=
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1
2
− pj+ 1

2 ,l−
1
2

hy
.

The boundary conditions for hard reflections are

n̂ · (u, v) = 0,(7)

n̂ · ∇p = 0,(8)

for (x, y) ∈ ∂Ω. What was done in [28] was to start from a staircase approxi-
mation of the boundary, like in Fig. 1, then use the generalized discretization
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ãE cosα− ãS sinα = 0 (NW)
ãW cosα+ ãS sinα = 0 (NE)
ãE cosα+ ãN sinα = 0 (SW)
ãW cosα− ãN sinα = 0 (SE)

ãE cosα+
(
ãN − ãS

)
sinα = 0 (W)

ãW cosα−
(
ãN − ãS

)
sinα = 0 (E)(

ãE − ãW
)

cosα− ãS sinα = 0 (N)(
ãE − ãW

)
cosα+ ãN sinα = 0 (S)

Table 1: Summary of the consistency conditions. The labeling corresponds to
the one defined in Fig. 2.

(a) NW (b) NE (c) SW (d) SE (e) W (f) E (g) N (h) S

Figure 2: The eight different cases for how the boundary can intersect the
update stencil for p.

(9) a(ux + vy)
∣∣∣j+1/2
l+1/2

≈
aj+1/2,l+1/2

h

(
ãEuE − ãWuW + ãNvN − ãSvS

)
,

where the new coefficients ãE, ãW, ãN, ãS are set to satisfy the consistency con-
ditions in Table 1, which arise from the boundary condition (7). We will refer
to this class of methods as Tornberg–Engquist (TE) type modifications∗. Do-
ing this removes the lowest order error term in the spatial discretization of the
boundary, which is τYee = O(1/h), thus obtaining τTE = O(1) and the error of
the full solution becomes ∆tτTE = O(h), instead of ∆tτYee = O(1).

With regards to the question of stability. There is no proof of this, but
numerical experiments indicate that the strategy for modifying the coefficients
in [28] yield an error growth proportional to ∆t at every timestep. This means
we have a stability bound of the form

‖pn−1/2‖h + ‖un‖h + ‖vn‖h ≤ Ceαtn
(
‖p−1/2‖h + ‖u0‖h + ‖v0‖h

)
, ∀n > 0,

meaning the method, while numerically stable, is not energy preserving. See
Fig. 3 for an example. Preferably we would like to have a consistent method
with α = 0,

(10) ‖pn−1/2‖h + ‖un‖h + ‖vn‖h ≤ C
(
‖p−1/2‖h + ‖u0‖h + ‖v0‖h

)
, ∀n > 0,

making it suitable for long simulation times. Note that C is independent of n.
This stronger form of stability (10) has many names in the literature, but we
will use the term time-stability as defined by [8, 30, 31, 2]. This is also called
asympotic stability or strict stability [6, 15, 18]. See [9, 7] for more on GKS
stability theory.

∗Note that TE will never refer to the transverse electric field from here on.
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Figure 3: For long times we observe exponential growth of the solution that is
independent of the number of time steps, indicating that we still have stability,
albeit not time-stability. We initialize the grid with uniformly random data
to excite all frequencies representable on the grid. Parameters of the problem
are a = b = −1, N = 64, λ = ∆t/h = 0.3, with a boundary defined by
y = (x− x̄) tanα+

√
εmach for x̄ = π(1−

√
3 +
√

2/100)/2 and α = π/6. In (c)
and (d) we divide the time step by 3, yet we still observe that the growth to
start approximately at the same physical time. Note that for the velocity field
u = (u, v) we use the Euclidean norm.
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3 A class of time-stable discretizations

To obtain a time-stable modification of the coefficients along the boundary we
consider a general numerical scheme, which we will later adapt such that it
reduces to the standard Yee scheme in the internal domain and at the same
time satisfies the consistency conditions on the boundary. Thus let
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2

)
,(13)

where we assume zero outer boundary data (homogeneous Dirichlet conditions).
The coefficients are assumed to be bounded from above and below. We also
introduce

c
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=
1

2

√
a

(1)

j+ 1
2

l+ 1
2

β
(1)

j+ 1
2

l+ 1
2
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and the discrete L2-norms generated by the inner products

〈p(1), p(2)〉h =
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(1)
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2 ,l
v

(2)
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2 ,l
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The superscripts designate different grid functions. Although we employ the
same notation for all three inner products, which one is used should be clear
from which grid functions they are applied on. Here we use the sets ΩpN , ΩuN and
ΩvN , which contains the indices corresponding to field points inside the internal
domain, for respective variable.

Theorem 3.1 (Stability). The discretization (11–13) is time-stable, i.e.,

‖pn− 1
2 ‖h + ‖un‖h + ‖vn‖h ≤ C

(
‖p− 1

2 ‖h + ‖u0‖h + ‖v0‖h
)
,
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with C independent of n, if

(17)
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and
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i∈{1,2}
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c(i) ≤ 1− δ√
2
, δ > 0,

are satisfied.

The proof follows from two Lemmas. First we need to define two discrete
quantities, Nh and Eh, by
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Lemma 3.1. For a(i)β(i) > 0, α(i)b(i) > 0, i = 1, 2, the discretization (11–13)
conserves the quantity Eh, i.e.,
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Proof. Expanding (11–13) according to

p
n+ 1

2

j+ 1
2 ,l+

1
2

= p
n− 1

2

j+ 1
2 ,l+

1
2

+ ∆t
a

(1)

j+ 1
2 ,l+

1
2

β
(1)

j+ 1
2 ,l+

1
2

β
(1)

j+ 1
2 ,l+

1
2

D+x

(
α

(1)

j,l+ 1
2

unj,l+ 1
2

)

+ ∆t
a

(2)

j+ 1
2 ,l+

1
2

β
(2)

j+ 1
2 ,l+

1
2

β
(2)

j+ 1
2 ,l+

1
2

D+y

(
α

(2)

j+ 1
2 ,l
vnj+ 1

2 ,l

)
,

un+1
j,l+ 1

2

= unj,l+ 1
2

+ ∆t
b
(1)

j,l+ 1
2

α
(1)

j,l+ 1
2

α
(1)

j,l+ 1
2

D−x

(
β

(1)

j+ 1
2 ,l+

1
2

p
n+ 1

2

j+ 1
2 ,l+

1
2

)
,

vn+1
j+ 1

2 ,l
= vnj+ 1

2 ,l
+ ∆t

b
(2)

j+ 1
2 ,l

α
(2)

j+ 1
2 ,l

α
(2)

j+ 1
2 ,l
D−y

(
β

(2)

j+ 1
2 ,l+

1
2

p
n+ 1

2

j+ 1
2 ,l+

1
2

)
,

and then divide away the coefficient as well as multiplying with the conjugate,
we get
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Hence summing gives us
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Now we need to find the form of the conserved quantity. To do this we first sum
the three terms involving inner-products in (21–23) to get
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2

)
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〉
h
.

Since both u and v are zero on the internal and external boundaries, we have
the identities

〈D+xu, v〉h = −〈u,D−xv〉h ,
〈D+yu, v〉h = −〈u,D−yv〉h ,

and we can rewrite (3) to

−∆t
〈
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(
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2
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h
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which simplifies to

(24) −∆t
〈
α(1)un, D−x
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We see that we get two identical expression with opposite sign and different time
levels n. Hence, summing (21–23) and using (24), we obtain Eh(pn+ 1

2 , un+1, vn+1) =

Eh(pn−
1
2 , un, vn), and the conservation of Eh follows.

Now we will derive the condition necessary for Eh to define an energy, more
precisely a norm that is equivalent with Nh uniformly in h.

Lemma 3.2. Suppose (18) is satisfied, then

(25) δNh ≤ Eh ≤ (2− δ)Nh.

Proof. We need to bound the second part of (19). The first of these two terms
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(
β(1)pn−

1
2

)〉
h

∣∣∣
=

∣∣∣∣∣∣
∑
j,l

λ
(
β

(1)

j+ 1
2 ,l+

1
2

p
n− 1

2

j+ 1
2 ,l+

1
2

− β(1)

j− 1
2 ,l+

1
2

p
n− 1

2

j− 1
2 ,l+

1
2

)
α

(1)

j,l+ 1
2

unj,l+ 1
2
h2

∣∣∣∣∣∣ .
Thus using the triangle inequality as well as

νγxy ≤ 1

2

(
1√
2
ν2x2 +

√
2γ2y2

)
,

we can bound (26) by

≤ λ

2

∑
j,l

√
a

(1)

j+ 1
2

l+ 1
2

β
(1)

j+ 1
2

l+ 1
2

α
(1)
j

l+ 1
2

b
(1)
j

l+ 1
2

(
1√
2

∣∣∣∣∣
√
β(1)

a(1)
pn−

1
2

∣∣∣∣∣
2

j+ 1
2

l+ 1
2

+
√

2

∣∣∣∣∣
√
α(1)

b(1)
un

∣∣∣∣∣
2

j
l+ 1

2

)
h2

+

√
a

(1)

j− 1
2

l+ 1
2

β
(1)

j− 1
2

l+ 1
2

α
(1)
j

l+ 1
2

b
(1)
j

l+ 1
2

(
1√
2

∣∣∣∣∣
√
β(1)

a(1)
pn−

1
2

∣∣∣∣∣
2

j− 1
2

l+ 1
2

+
√

2

∣∣∣∣∣
√
α(1)

b(1)
un

∣∣∣∣∣
2

j
l+ 1

2

)
h2

= λ
∑
j,l

c
(1)

j+1/2,l+1/2︷ ︸︸ ︷
1

2

√
a

(1)

j+ 1
2

l+ 1
2

β
(1)

j+ 1
2

l+ 1
2

√α(1)
j

l+ 1
2

b
(1)
j

l+ 1
2

+

√
α

(1)
j+1
l+ 1

2

b
(1)
j+1
l+ 1

2

 1√
2

∣∣∣∣∣
√
β(1)

a(1)
pn−

1
2

∣∣∣∣∣
2

j+ 1
2

l+ 1
2

+
1

2

√a(1)

j+ 1
2

l+ 1
2

β
(1)

j+ 1
2

l+ 1
2

+

√
a

(1)

j− 1
2

l+ 1
2

β
(1)

j− 1
2

l+ 1
2

√α(1)
j

l+ 1
2

b
(1)
j

l+ 1
2︸ ︷︷ ︸

c
(1)

j,l+1/2

√
2

∣∣∣∣∣
√
α(1)

b(1)
un

∣∣∣∣∣
2

j
l+ 1

2

h2
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≤ λmax
j,l

{
c
(1)

j+ 1
2 ,l+

1
2

, c
(1)

j,l+ 1
2

}( 1√
2

∥∥∥√β(1)

a(1)
pn−

1
2

∥∥∥2

h
+
√

2
∥∥∥√α(1)

b(1)
un
∥∥∥2

h

)
For the second term we get analogously

∆t
∣∣∣〈α(2)vn, D−y

(
β(2)pn−

1
2

)〉
h

∣∣∣
≤ λmax

j,l

{
c
(2)

j+ 1
2 ,l+

1
2

, c
(2)

j+ 1
2 ,l

}( 1√
2

∥∥∥√β(2)

a(2)
pn−

1
2

∥∥∥2

h
+
√

2
∥∥∥√α(2)

b(2)
vn
∥∥∥2

h

)
.

We thus see that if (18) holds, then∣∣∣∆t〈α(1)un, D−x

(
β(1)pn−

1
2

)〉
h

+ ∆t
〈
α(2)vn, D−y

(
β(2)pn−

1
2

)〉
h

∣∣∣ ≤
(1− δ)

(∥∥∥√β(1)

a(1)
pn−

1
2

∥∥∥2

h
+
∥∥∥√α(1)

b(1)
un
∥∥∥2

h
+
∥∥∥√α(2)

b(2)
vn
∥∥∥2

h

)

and the estimate (25) follows.

With this we are ready to prove Theorem 3.1.

Theorem 3.1. Let

C1 = min
Ω

{
β(1)

a(1)
,
α(1)

b(1)
,
α(2)

b(2)

}
,

C2 = max
Ω

{
β(1)

a(1)
,
α(1)

b(1)
,
α(2)

b(2)

}
,

then

‖pn−1/2‖2h + ‖un‖2h + ‖vn‖2h ≤
1

C1
Nh(pn−1/2, un, vn)

≤ 1

C1δ
Eh(pn−1/2, un, vn)

=
1

C1δ
Eh(p−1/2, u0, v0)

≤ 2− δ
δ

1

C1
Nh(p−1/2, u0, v0)

≤ 2− δ
δ

C2

C1

(
‖p−1/2‖2h + ‖u0‖2h + ‖v0‖2h

)
.

4 Reconciling consistency and stability

To construct a time-stable modification of the coefficients in (9) along the bound-
ary we use as starting point the discretization (11–13). The aim is to modify
the coefficients such that the consistency conditions in Table 1 are satisfied at
the same time as the stability requirements in Theorem 3.1.

The major restriction that the divergence form discretization (11–13) in-
troduces, compared to the update formula in (9), is that the coefficients on

10



1 cell

n
cells

Inside Outside

α = arctann

Figure 4: The discretization considered in Theorem 4.1. The p values are cen-
tered on the cells shown, with u and v on the edges.

neighbouring stencils couple. This means we have to solve a system of consis-
tency equations on the boundary. As we shall see this system of equations only
has a solution for the angles α = arctan 1/n or α = arctann, when n ∈ Z.

To see how we obtain a time-stable modification of the coefficients, consider
the divergence form equation given by

pt = a(∂x (α1u) + ∂y (α2v)),

ut = bpx,

vt = bpy,

αi = αi(x, y), i = 1, 2. We discretize this as

p
n+ 1

2

j+ 1
2 ,l+

1
2

= p
n− 1

2

j+ 1
2 ,l+

1
2

+ ∆taj+ 1
2 ,l+

1
2

×
(
D+x

(
α

(1)

j,l+ 1
2

unj,l+ 1
2

)
+D+y

(
α

(2)

j+ 1
2 ,l
vnj+ 1

2 ,l

))
,

(27)

un+1
j,l+ 1

2

= unj,l+ 1
2

+ ∆tbj,l+ 1
2
D−xp

n+ 1
2

j+ 1
2 ,l+

1
2

,(28)

vn+1
j+ 1

2 ,l
= vnj+ 1

2 ,l
+ ∆tbj+ 1

2 ,l
D−yp

n+ 1
2

j+ 1
2 ,l+

1
2

.(29)

which is a special case of (11–13), for which (17) is always satisfied. If we can
modify α(1) and α(2) such that the scheme reduces to the usual system (4–6) in
the inner domain, while at the same time it satisfies the consistency conditions
in Table 1 along the inner boundary, we get a time-stable consistent method.
Note that we obtain the time-stability by construction, as this discretization
satisfies the conditions in Theorem 3.1.

Theorem 4.1. Assume the discretization (27–29) with α(1) = α(2) = 1 away
from the (inner) boundary. Let the angle of the boundary relative to the x-axis
be given by α = arctann, n ∈ N+, giving the discretization shown in Fig. 4.
Denote the coordinate in the center bottom corner cell by (xj0+1/2, yl0+1/2).
Assume that the coefficient aj+1/2,l+1/2 is constant within each group of n cells,
i.e., that aj0+1/2,l0+1/2+i = ā for i = 0, . . . , n− 1.

Then the consistency conditions in Table 1 are satisfied if and only if

α
(1)

j0+ 1
2 ,l0+i

=
i

n
, i = 1, . . . , n− 1,(30)

α
(2)

j0+ 1
2 ,l0+i

= 1, i = 1, . . . , n− 1.(31)
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Proof. By denoting

aN
i = aj+ 1

2 ,l+i−
1
2
α

(2)

j+ 1
2 ,l+i

,

aW
i = aj+ 1

2 ,l+i−
1
2
α

(1)

j,l+i− 1
2

,

aS
i = aj+ 1

2 ,l+i−
1
2
α

(2)

j+ 1
2 ,l+i−1

,

for i = 1, . . . , n− 1, the consistency conditions for the cells become

(32)



aW
n cosα−

(
aN
n − aS

n

)
sinα = 0,

aW
n−1 cosα−

(
aN
n−1 − aS

n−1

)
sinα = 0,

...

aW
2 cosα−

(
aN

2 − aS
2

)
sinα = 0,

aW
1 cosα− aN

1 sinα = 0.

This is a system of n equations that needs to be solved. Stencils i = 2 to n is for
when the boundary is to the right (E), and stencil i = 1 is when the boundary is
to the right and down (SE). See Fig. 2 to recall what E and SE refers to. Since
α(1) = α(2) = 1 away from the boundary, the conditions we need to impose on
the coefficients are

aN
n = ā,(33)

aW
i = ā, i = 1, . . . , n,(34)

aS
i+1 = aN

i = Ai, i = 1, . . . , n− 1,(35)

where we introduced Ai as the coefficient in between cell i and i+ 1. Thus the
system (32) can be written as

(36)



ā− (ā−An−1)n = 0,

ā− (An−1 −An−2)n = 0,

...

ā− (A2 −A1)n = 0,

ā−A1n = 0,

where we note that the first equation is the sum of the other n − 1 equations.
Thus we get the unique solution

Ai =
i

n
ā, i = 1, . . . , n− 1,

and hence (30–31) follows.

Corollary 4.1. The result in Theorem 4.1 is by symmetry also valid for α =
arctan 1/n and α = arctann, n ∈ Z.

Corollary 4.2. From the system (36) we see that if arctanα 6= n, n ∈ N, then
the first equation is no longer the sum of the remaining n− 1 equations and the
system does not have a solution. Thus we can not obtain a discretization of the
form (27–29) that satisfies the consistency conditions if arctanα 6= n.

12



α1 = arctan 1
3

α2 = arctan 1
2

α = arctan 2
5

Figure 5: The staircase approximation of the α = arctan 2/5 case is shown
as a dark line. Piecewise 1/n approximation amounts to setting the angle to
α = arctan 1/3 and arctan 1/2 in the consistency conditions for the three and
two cells, respectively, that are in a horizontal row.

Remark 4.1. The condition (18) for the modifications (30–31) reduces to the
standard CFL condition cλ < 1/

√
2 for the Yee-scheme.

Remark 4.2. The O(1) truncation error in L∞ on the boundary means we get
O(
√
h) truncation error in L2, since the number of boundary cells scale as

O(1/N). Stability in L2 then implies O(
√
h) convergence. However, in [7] it

was shown that under some conditions there is a one order gain in the global
error compared to the boundary error. Although our case is not covered by this
theory, in the numerical tests in Section 5 this is what is observed, where the
convergence rate is O(h).

4.1 Piecewise and partially modified coefficients

In Theorem 4.1, time-stability was reconciled with O(h) accuracy for a subset
of rational angles. To improve the accuracy for an arbitrary angle while keeping
the time-stability of the original Yee scheme, one can approximate the boundary
by piecewise 1/n angles, as illustrated in Fig. 5. As an example, consider the
boundary given by the line with the angle α = arctan 2/5 with respect to the
x-axis. The usual staircasing gives a repeated pattern of 1/2 and 1/3 cells.
Again, this can be seen clearly in Fig. 5. Instead of setting α = arctan 2/5 in
the consistency relations, we set either α = arctan 1/2 or arctan 1/3 depending
on if the cell is part of a 1/2 or 1/3 group of cells.

Effectively, this means that like the Yee scheme we still have O(1) errors in
L∞, but with a much smaller constant. See e.g. Fig. 17, which shows that the
computed field is qualitative much improved.

Hence we see that we can construct a piecewise approximation of an angled
boundary by the repeated application of (30). We will refer to this method as
piecewise modification, or piecewise Tornberg–Engquist.

An alternative way to piecewise approximate a non-integer angle is to simply
skip the first equation in the system (32). Applying the same conditions (33–35)
then gives the coefficients

α
(1)

j0+ 1
2 ,l0+i

=
i

tanα
, i = 1, . . . , n− 2,(37)

α
(1)

j0+ 1
2 ,l0+n−1

= 1,(38)

α
(2)

j0+ 1
2 ,l0+i

= 1, i = 1, . . . , n− 1.(39)
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Figure 6: Exact field used for convergence study.

It has been observed in some cases that the error in the outer most cell, i.e., in
this case top cell, is insignificant compared to the rest, making this strategy in
modification effective. Eq. (37–39) will be referred to as partial modification,
or partial Tornberg–Engquist. It should be emphasized that both piecewise and
partial Tornberg–Engquist modifications are time-stable.

5 Test cases

5.1 Straight boundary

We run the numerical tests on a [0, 2π]× [0, 2π] ⊂ R2 domain with homogeneous
Dirichlet outer boundary conditions for the (u, v) field. The field is set to an
exact solution, and the timestepped until t = 0.3π, when we measure the error
in (discrete) L2 and L∞ norms. The coefficients are set to a = b = −1. To
test the modified coefficients we set an internal inclined boundary defined by
y(x) = (x− x̄) tanα so that the inner domain and boundary becomes

Ω = {(x, y) ⊂ [0, 2π]× [0, 2π] | y > (x− x̄) tanα},
Γ = {(x, y) ⊂ [0, 2π]× [0, 2π] | y = (x− x̄) tanα}.

The angle α is relative to the x-axis. When measuring errors we only include an
inner subset Ω̄ ⊂ Ω of the domain in such a way that the effects from the outer
boundary has not yet propagated into the area where we measure. Outside of
the discrete L2-norm defined by (14–16), we also use

‖p‖∞ = max
j,l∈Ωp

N

|pj+1/2,l+1/2|,

‖u‖∞ = max
j,l∈Ωu

N

|uj,l+1/2|,

‖v‖∞ = max
j,l∈Ωv

N

|vj+1/2,l|.

The exact solution for a reflected harmonic wave is used. Let

ϕ = eikI ·x + eikx
?

eikR·(x−x?)

where kI = (k, 0), kR = k · (cos 2α, sin 2α), k = ω/c and x? = (x?, y?) is any
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Figure 7: Numerical stability test of the piecewise modifications by initializing
with random data to excite all frequencies. The angle of the boundary is α =
arctan 2/5 and is divided into sections with α = arctan 1/2 and α = arctan 1/3.
CFL is 0.3.

point on the boundary. Then the fields given by

p(x, y, t) =
1

b
<(∂tϕe

−iωt),(40)

u(x, y, t) = <(∇ϕe−iωt),(41)

satisfy both (1–2) and the boundary conditions (7–8). These are visualized in
Fig. 6 for k = 5.

We observe the stability of the piecewise modification of coefficients in Fig. 7,
where the modification is according to Theorem 4.1. This verifies the analysis,
as we appear to have time-stability with the field bounded independently of the
time t.

In Fig. 8–10 we can observe the resulting fields when time stepping with
standard Yee, Tornberg–Engquist modified coefficients and piecewise modifica-
tions for the angle arctan 2/5. In both cases where the coefficients are modified
we see a clear improvement in the quality of the solution. In the standard Yee
case we clearly see the O(1/h) truncation error being generated at the boundary
and then being propagated into the domain.

With regards to accuracy we plot the convergence in Fig. 11–12 at t = 0.3π.
We see that the unmodified Yee scheme behaves as O(

√
h) in the discrete L2

norm and O(1) in L∞. Both type of modifications, standard Tornberg–Engquist
and piecewise modifications, give a clear O(h) convergence in both L2 and L∞
for α = arctan 1/3. The most interesting case is when α = arctan 2/5 in Fig. 12.
We see a marked improvement in the point wise error for piecewise modifica-
tions compared to the traditional Yee scheme, and a solid O(h) convergence in
L2. Partial modification according to (37–39) gives, in this case, the same con-
vergence line as Tornberg–Engquist. This indicates that the error is not evenly
distributed, with most of it occurring in and near the corner cells (bottom in
Fig. 4), and very little in the cells where the consistency condition is violated.

Fig. 12b might be source of concern, since it appears we do not have conver-
gence. However running the test for grid resolutions typically used in applica-
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tions, which are in usually in the span of 10–90 points per wavelength, we get
Fig. 13, where we clearly see first order convergence in L∞. The errors gener-
ated by the staircasing has a broad spectrum, seen in Fig. 14, and modifying
the coefficients removes most of the high frequency errors.

5.2 Cylinder

The second test case is when we replace the straight inclined inner boundary
with a circular cylinder at (xc, yc) = (π, π) with radius R = 4π/15. Again we
compare against the exact solution for the scattering of a harmonic wave, which
in polar coordinates (r, θ) is given by

ϕinc(r, θ) = eikr cos θ = J0(kr) +

∞∑
n=1

2(i)nJn(kr) cosnθ,

ϕref(r, θ) =

∞∑
n=0

MnH
(1)
n (kr) cosnθ

together with (40–41). The expansion coefficients for the reflected field are
determined by the boundary conditions, giving

M0 = − J ′0(kR)

H
(1)′

0 (kR)
,

Mn = −2(i)nJ ′n(kR)

H
(1)′
n (kR)

These include Bessel functions Jn as well as Hankel functions of first kind H
(1)
n .

The domain is

Ω = {(x, y) ⊂ [0, 2π]× [0, 2π] | (x− xc)2 + (y − yc)2 ≥ 1}

and we measure the error in the subset Ω̄ = ([π/2, 3π/2] × [π/2, 3π/2]) ∩ Ω at
time t = 0.3π, meaning that the effects from the outer boundary is cropped.

Close-ups of the time-evolved field is shown in Fig. 17, where we see a drastic
difference in quality compared to standard Yee. Convergence results are shown
in Fig. 15, where we see a clear improvement, especially in L2. The convergence
line in L∞ flattens out for finer resolutions similarly as for the straight line
case. However, in Fig. 16 we still observe convergence for grid spacings typically
employed in applications. N denotes the number of grid points along each axis.
It should be noted that Dey–Mittra style locally conformal methods suffer from a
similar loss of convergence at small grid spacings, albeit for completely different
reasons [17].
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(a) Standard Yee
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(b) Tornberg–Engquist
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(c) Piecewise modified

Figure 8: close-ups of the computed p field for the angle arctan 2/5 of the inner
boundary. The grid size is n = 900 and the field is shown at t = 0.3π.
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Figure 9: close-ups of the computed u field for the angle arctan 2/5 of the inner
boundary. The grid size is n = 900 and the field is shown at t = 0.3π.

x/π

y
/π

 

 

0.9 1 1.1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−2

0

2

4

6

8

10

(a) Standard Yee

x/π

y
/π

 

 

0.9 1 1.1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−2

0

2

4

6

8

(b) Tornberg–Engquist
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Figure 10: close-ups of the computed v field for the angle arctan 2/5 of the inner
boundary. The grid size is n = 900 and the field is shown at t = 0.3π.
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Figure 11: Convergence study in L∞ and L2 norm for the angle α = arctan 1/3.
(◦) is standard FDTD, (×) is Tornberg–Engquist and (?) is piecewise modifica-
tion. Dashed lines indicate slope of 1/2 and 1.

18



10
−2

10
−1

10
0

h

M
a

x
 n

o
rm

 e
rr

o
r

(a) p field

10
−2

10
−1

10
0

h

M
a

x
 n

o
rm

 e
rr

o
r

(b) u field

10
−2

10
−1

h

L
2
 e

rr
o

r

(c) p field

10
−2

10
−1

h

L
2
 e

rr
o

r

(d) u field

Figure 12: Convergence study in L∞ and L2 norm for the angle α = arctan 2/5.
(◦) is standard FDTD, (×) is Tornberg–Engquist and (?) is piecewise modifica-
tion. Dashed lines indicate slope of 1/2 and 1. The error for partial modification
according to (37–39) is also computed and gives the same convergence line as
Tornberg–Engquist.
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Figure 13: The same setup as Fig. 12b but restricted to h ∈ [10−2, 10−1], which
corresponds to approximately 10–100 points per wave length. This gives the
convergence of the velocity field u for grid resolutions typical in applications.
The wave number is k = 5 and the angle is α = arctan 2/5. (◦) is standard
FDTD, (×) is Tornberg–Engquist and (?) is piecewise modification. The dashed
line indicates slope of 1.
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(b) Piecewise modified

Figure 14: FFT of the error along x = π in the middle of the domain. A sharp
reduction of high frequency errors for modified coefficients is observed.
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Figure 15: Convergence study in L∞ and L2 norm for the cylinder case. (◦) is
standard FDTD, (×) is Tornberg–Engquist and (?) is piecewise modification.
Dashed lines indicate slope of 1/2 and 1.
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Figure 16: The same setup as Fig. 15b but restricted to h ∈ [10−2, 10−1],
corresponding to approximately 10–100 points per wave length. This gives the
convergence of the velocity field u for grid resolutions typical in applications. (◦)
is standard FDTD, (×) is Tornberg–Engquist and (?) is piecewise modification.
The dashed line indicates slope of 1.
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(b) p field, piecewise modified
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(c) u field, standard Yee
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(d) u field, piecewise modified
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(e) v field, standard Yee
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(f) v field, piecewise modified

Figure 17: Close-ups of the computed v field. The grid size is N = 400 and the
field is shown at t = 0.3π.
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6 Conclusions

We have extended the consistent boundary treatment in [28] of the Yee scheme
for oblique boundaries in two dimensions, such that we obtain time-stability,
i.e., strict energy conservation. This is done by modifying the coefficients of the
update stencil near the boundary without changing the simple structure of the
Yee scheme, including the optimal CFL condition. Stability has been proved
using the energy method. Both stability and accuracy is demonstrated with
numerical tests. Some, but not all of the properties established here extend
to three dimensions and material interfaces. This will be further studied and
discussed in a subsequent publication.
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