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Abstract.We present a multiple-patch phase space method for computing trajectories on two-dimensional
manifolds possibly embedded in a higher-dimensional space. The dynamics of trajectories are given by
systems of ordinary differential equations (ODEs). We split the manifold into multiple patches where each
patch has a well-defined regular parameterization. The ODEs are formulated as escape equations, which are
hyperbolic partial differential equations (PDEs) in a three-dimensional phase space. The escape equations
are solved in each patch, individually. The solutions of individual patches are then connected using suitable
inter-patch boundary conditions. Properties for particular families of trajectories are obtained through a
fast post-processing.

We apply the method to two different problems: the creeping ray contribution to mono-static radar cross
section computations and the multivalued travel-time of seismic waves in multi-layered media. We present
numerical examples to illustrate the accuracy and efficiency of the method.

Keywords. ODEs on a manifold; Phase space method; Escape equations; High frequency wave propagation;
Geodesics; Creeping rays; Seismic waves; Travel-time

1 Introduction

We want to compute trajectories on two-dimensional compact manifolds possibly embedded
in a higher-dimensional space. The dynamics of the trajectories we consider are given by
systems of ODEs in a phase space. In many problems, we need to compute a large number
of trajectories. In other words, the dynamical systems of ODEs need to be integrated for
many different initial conditions. Examples include geodesics computation in computational
geometry [11], robotics [2] and the theory of general relativity.

Our motivation for this comes from high frequency wave propagation problems. We
consider the problem of scattering of a time-harmonic incident field by a bounded scatterer
D. We split the total field into an incident and a scattered field. The scattered field in the
region outside D is given by the Helmholtz equation,

∆W + n(x)2ω2W = 0, x ∈ R
3 \ D̄, (1)

where n(x) is the index of refraction, and ω is the angular frequency. We can impose either
a Dirichlet, Neumann or Robin boundary condition on the boundary of the scatterer ∂D
and the Sommerfeld radiation condition at infinity.

The computational cost of direct numerical simulations of (1) grows algebraically with
the frequency. Therefore, at high frequencies, numerical methods based on approximations
of (1) are needed.

Geometrical optics (GO), for example, considers simple waves,

W (x) ≈ a(x)eiωφ(x), x ∈ R
3, (2)
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when ω → ∞. The amplitude a(x) and the phase function φ(x) depend only mildly on ω,
and the computational cost will then be independent of ω. GO can be formulated either as
PDEs for φ and a, known as eikonal and transport equation, respectively, or as a system of
ordinary differential equations (ODEs).

Geometrical theory of diffraction (GTD), [18] is a correction to the GO approximations by
adding diffraction effects. One type of diffracted rays are creeping rays which are generated
at the shadow line of the scatterer and propagate along geodesics on the surface, continuously
shedding diffracted rays in their tangential direction. A wave field, associated to a creeping
ray, is generated on the surface

Ws(u) = a(u)eiωφ(u), (3)

where φ(u) and a(u) are surface phase and amplitude and u ∈ R
2 is a parameterization of

the surface. The creeping rays are related to (3) in the same way as the standard GO rays
are related to (2). Similar to GO rays, creeping rays can also be formulated either as PDEs
or as a system of ODEs.

There are two different approaches to compute the standard GO and creeping rays and
the associated wave fields in (2) and (3); Lagrangian and Eulerian methods.

Lagrangian methods are based on ODEs. The simplest Lagrangian method is standard ray
tracing [6, 24, 13, 29] which gives the phase and amplitude solution along a ray. Interpolation
must then be applied to obtain the solution everywhere. But, in regions where rays cross or
diverge this can be rather difficult. The interpolation can be simplified by using wave front
methods [38, 10]. In these methods, instead of individual rays, an interface representing a
wave front is evolved.

Eulerian methods, on the other hand, are based on PDEs. The PDEs are discretized
on fixed computational grids to control accuracy everywhere, and there is no problem with
interpolation. The simplest Eulerian methods solves the eikonal and transport equations
[37, 36, 8, 20]. However, these equations only give the correct solution when it is a single
wave. In the case of crossing waves, more elaborate schemes have been devised based on a
third formulation of geometrical optics as a kinetic equation set in phase space. A survey of
this research effort, in the free space GO case, is given in [7, 31, 25]. In the surface ray case,
see [26, 39] for some recent works.

Fomel and Sethian [9] presented a fast phase space method for computing solutions of
static Hamilton-Jacobi equations in phase space. Their method is based on escape equations
which are time-independent PDEs in a three-dimensional phase space. The PDE solutions,
computed by a fast marching method, give the information for all trajectories from all
possible starting configurations.

Recently, the authors extended the fast phase space method [26] to efficiently computing
all possible creeping rays on a hypersurface. The escape solutions contains information
for all incident angles. The phase and amplitude of the field are then extracted by a fast
post-processing. This method is computationally attractive when the solution is sought for
many different sources but with the same index of refraction, for example for computing the
mono-static radar cross section (RCS). The computational cost of solving the PDEs is less
than tracing all rays individually. If the surface is discretized by N2 points the complexity
is O(N3 log N), which is close to optimal. In the mono-static RCS case, direct ray tracing
would cost O(N4) if a comparable number of incidence angles (N2) and rays per angle (N)
are considered.
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However, it is only applicable for the scatterer surfaces with simple geometries. It assumes
that the surface is represented by a single parameterization, and therefore surfaces with
coordinate singularities cannot be treated, and the singularity has to be excised. Most
scatterer surfaces with complicated geometries, for example, cannot be represented by a
single non-singular explicit parameterization. This problem can be resolved by splitting the
scatterer surface into several simpler surfaces with explicit parameterizations. These multiple
patches collectively cover the scatterer surface in a non-singular manner. Moreover, one can
get other benefits by this way:

1. Smaller gradients in the solution by refining the patches with higher varying velocity
coefficients.

2. Possibility to parallelize, since the patches can be handled independently.

3. Less internal memory needed.

4. Using the possible symmetry of the scatterer (for example for an ellipsoid).

In this paper, we consider a two-dimensional compact manifold M embedded in R
d and

compute trajectories on the manifold. We first consider the case when the manifold is
represented by a single regular parameterization and modify the fast phase space method
[9, 26] to a more general class of problems. Second, we consider the case when the manifold
is represented by an atlas of charts and modify the single-patch phase space method to this
case. In both cases, dynamics of trajectories are given by systems of first-order ODEs.

Multiple-patch (or multi-block) finite difference schemes have long been used in compu-
tational science. They are a sub-class of domain decomposition methods for solving PDEs
by iteratively solving sub-problems on smaller sub-domains [5]. However, the scheme pre-
sented here is not based on iterations. Another domain decomposition method related to
the multiple-patch algorithm is the slowness matching Eulerian method [34], where local
single-valued solutions of the eikonal equations are patched together by slowness matching
to obtain a global, multi-valued traveltime field.

In Section 2, we give the governing equations describing the dynamics of trajectories
on two classes of compact manifolds: the manifolds which can be represented by a single
regular parameterization and the manifolds which are described by an atlas of charts. The
construction of the single and multiple-patch schemes are described in Section 3 and 4,
respectively. In Section 5 and 6, we present applications in computing creeping rays and
seismic waves, together with sample numerical results from a prototype implementation of
the scheme.

2 Governing Equations

Consider a two-dimensional compact manifold M embedded in R
d. We want to compute

trajectories on the manifold. Since we are interested in applications to wave propagation
problems, it is natural to consider the trajectories as rays, and we will use this terminology
henceforth.

We consider two cases: when the manifold is represented by a single regular parameteri-
zation, and when the manifold is represented by an atlas of charts. In both cases, dynamics
of rays are given by systems of three first-order ODEs describing the rate of change of the
rays’ location and direction along the ray trajectories.
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2.1 Single-Patch Manifolds

First, assume that the manifold can be represented by a regular parameterization x = X̄(u),
where x ∈ M , and the parameters u = (u, v) belong to a set Ω ⊂ R

2. Note that if M is a
hypersurface or a plane embedded in R

3, then x = (x, y, z) ∈ R
3, and if M is a plane in R

2,
then x = (x, y) ∈ R

2.
We introduce the phase space P = R

2 × S, where S = [0, 2 π], and consider the triplet
γ = (u, v, θ) as a point in this space. Let the rays be given by a system of three ODEs

γ̇ = g(γ), (4)

where the dot denotes differentiation with respect to the parameter τ being the arc length
along the rays, and g = (g1, g2, g3) is a given three-vector function which is periodic in θ ∈ S.
The ray trajectories on M are then confined to a subdomain Ωp = Ω×S ⊂ P in phase space.
Note that the parameter values u = (u, v) represent the rays’ location X̄(u) on M , and the
angle θ represents the direction of the rays.

Remark 1. A generic Hamiltonian system with Hamiltonian H(u,p) in four-dimensional
space Ω×R

2, with p ∈ R
2, can typically be reduced to the form (4). Here, θ can, for instance,

be an angle representing the direction of vector p. For example, if H = |p|2 + V (u) ≡ C,
one can reduce it by setting

p = (C − V (u))1/2 (cos θ sin θ)⊤,

where C is determined by initial data. See also Section 5 and Section 6 for more examples.

Moreover, let any information transporting along the rays, represented by a (possibly
vector-valued) function β(τ), be given by a more general system of the form

β̇ = α(γ, β), (5)

where α(γ, β) is some given function. For example, when β is the length of the ray, we have
α ≡ 1.

2.2 Multiple-Patch Manifolds

There are two main classes of problems for which representing the manifold by a single
parameterization is not applicable: the manifolds which cannot be described by a single
regular parameterization due to singularities, e.g. an airplane surface, and the manifolds
with different (discontinuous) material properties, e.g. earth consisting of materials with
different seismic velocities. The former is of topological and geometrical nature related to
the underlying manifold, and the latter is more special application oriented.

We therefore, secondly, consider the more general case when M is described by an atlas of
charts (Mj , wj), with j = 1, . . . , P , where the sets Mj collectively cover M , and the mapping
wj : Mj → Ω is bijective. In particular, we assume that Ω is the unit square and Mj are
patches with parametric equations

x = X̄j(u) : [0, 1]2 → Mj ⊂ R
d,

and the mappings are wj = X̄−1
j . Then M =

⋃

j w−1
j ([0, 1]2). Note that although the sets are

closed, we still consider M as an atlas. We assume further that the patches stick together
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along their sides (patch boundaries) and denote the side between two connected patches Mj

and Mj′ by Sjj′. Note that it is possible to have j = j′, for instance when M is a torus.
When j 6= j′, we have Sjj′ = Mj ∩Mj′. It is also possible that a patch does not share a side
with another patch, for example, if the manifold has boundary (e.g. a finite cylinder). We
denote such a side by S0j which belongs only to Mj. Denote the set of all sides by S.

For each patch with the id number j, let the rays be given by a system of three equations
set in Ωp,

γ̇ = gj(γ), (6)

where gj = (gj
1, g

j
2, g

j
3) is a given three-vector function. Note that gj may be different for

different j. As before, the systems (6) are natural structures for Hamiltonian systems on
four-dimensional spaces Ω×R

2 with Hamiltonian Hj(u,p) whose order are reduced by one.
Correspondingly, let any information transporting along the rays, represented by a (pos-

sibly vector-valued) function β(τ), be given by a system of the form

β̇ = αj(γ, β), (7)

where αj(γ, β) is a given function.
A main difference between the numerical methods for the single patch representation

of the manifold and the multiple-patch case is that in the latter we need to connect the
solutions of adjacent patches and impose suitable conditions at the inter-patch boundaries.
In order to treat this problem, we need to introduce a global space, which is bijective with
the space ZP × Ωp, and in which the boundary conditions are defined and can easily be
handled. Here ZP = {1, 2, . . . , P}. We first note that by our assumptions above, there is a
bijective mapping between (j,u) ∈ ZP ×Ω and x ∈ M , except when x is at patch boundaries
(x ∈ Sjj′). Now, let TxM be the tangent plane (the set of tangent vectors) to M at point
x ∈ M and TM =

⋃

x∈M TxM be the tangent bundle of M . The dimension of TM is twice
the dimension of M . An element of TM is a pair Γ := (x,q) where x ∈ M and q ∈ TxM .
We consider the unit tangent bundle UTM of M which contains all unit-normed tangent
vectors (‖q‖ = 1). Note that UTM is a three-dimensional manifold embedded in R

2d.
We now want to prove that the unit tangent bundle UTM is in fact the global manifold

which is bijective with the space ZP ×Ωp. But, before the proof, we notice that, by construc-
tion, for each point Γ = (x,q) ∈ UTM , there is a well-defined patch id number j = J (Γ),
except when x is on patch boundaries. We extend this function also to the patch boundaries
as follows:

• if x ∈ Sjj′ and q 6‖ Sjj′, then J (Γ) = limǫ→0 arg minj dist(x + ǫq, Mj), which means
that J (Γ) is the id of the patch into which the ray starting at Γ enters.

• if x ∈ Sjj′ and q ‖ Sjj′, then J (Γ) = max(j, j′).

Where by q ‖ Sjj′, we mean that q is parallel to the patch boundary in an interval around
x ∈ Sjj′. Therefore in this case, Γ belongs to both UTMj and UTMj′ , and we can choose
either of j′ and j′ as the value of the function J (Γ). In order to have a well-defined function,
we choose the larger one. Moreover, if x is at a corner sharing several patches j, j′, j′′, . . . ,
and q is parallel to Sjj′, we again choose J (Γ) = max(j, j′).

We now prove the following Lemma.
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Lemma 1. Suppose the Jacobian Jj = DuX̄j ∈ R
d×2 has full rank for all (j,u) ∈ ZP × Ω.

For each j there is then a bijective mapping Wj : UTMj → Ωp given by Wj(Γ) = γ, where

Γ = (x,q), q =
Jj(wj(x))ŝ(θ)

|Jj(wj(x))ŝ(θ)|
, ŝ(θ) =

(
cos θ
sin θ

)

, γ = (wj(x), θ). (8)

Moreover, there is a bijective mapping between (j, γ) ∈ ZP × Ωp and Γ = (x,q) ∈ UTM .

Proof. First assume that x ∈ Mj and q ∈ UTxMj . Since the mapping wj = X̄−1
j is bijective,

there is u such that X̄j(u) = x, given by u = wj(x). Moreover, since the Jacobian Jj(u) has
full rank, its columns span the tangent plane at x, and since q belongs to this plane, there
exists a solution θ to

Jj(u)ŝ(θ)

|Jj(u)ŝ(θ)|
= q, ŝ(θ) =

(
cos θ
sin θ

)

.

The second statement follows since J (Γ) is well-defined for all Γ ∈ UTM . This proves the
lemma.

Note that the atlas of charts (UTMj , Wj) describe the space UTM =
⋃

j W−1
j (Ωp).

Figure 1 shows a schematic representation of the two-dimensional manifold M , the three-
dimensional space UTM and the corresponding bijective mappings to the parameter space
Ω and phase space Ωp.

M UTM

Mj UTMj

wj Wj

Ω

Ωp

Figure 1: A schematic representation of the two-dimensional manifold M embedded in R
d and the three-

dimensional space UTM embedded in R
2d. The bijective mappings wj and Wj map a chart j of these

manifolds to the two-dimensional parameter space Ω and the three-dimensional phase space Ωp, respectively.

2.2.1 Boundary Conditions

We may have different boundary conditions at the patch boundaries. In some problems, the
rays are continuous at the patch boundaries. Such problems include geodesics and creeping
rays computations on a hypersurafce with constant index of refraction. In these problems,
the boundary conditions are determined easily by the continuity of rays. In some problems,
the rays may not be continuous at the patch boundaries. For example, seismic propagation
in a multi-layered media with different seismic velocities is such a problem, in which the
boundary conditions are determined by Snell’s law of refraction or the law of reflection.

6



As was mentioned before, the inter-patch boundary conditions are given in physical space
in terms of Γ ∈ UTM , rather than in terms of γ ∈ Ωp. Let Γ = (x,q), where x ∈ Sjj′

and j′ = J (Γ) 6= j, which means that the ray arrives at the side Sjj′ from patch Mj . The
inter-patch boundary condition at Sjj′ is given by,

Γ̃ = Ljj′(Γ),

where Ljj′ is some known function, and Γ̃ = (x̃, q̃) ∈ UTM
J (Γ̃). For example, depending

on the ray arriving at the side Sjj′ from patch Mj , we may have the following boundary
conditions:

• if the ray is continuous, then Ljj′ is the identity function

x̃ = x, q̃ = q.

• if the ray is refracted, then
x̃ = x, q̃ = S̃(x,q).

• if the ray is reflected, then
x̃ = x, q̃ = R̃(x,q).

Here, the functions S̃ and R̃ are determined by Snell’s law of refraction and the law of
reflection, respectively. See Section 6.2 for more details.

In the next two sections, we present a patch-based phase space method for computing ray
trajectories on manifolds. First, we consider the case when the manifold is represented by a
single parameterization and construct a single-patch phase space method based on writing
the systems (4-5) in a Eulerian framework. Next, we consider a wider class of manifolds which
are represented by multiple parameterizations and introduce a multiple-patch phase space
method based on solving the Eulerian version of systems (6-7) in each patch and connecting
the solutions of individual patches using suitable inter-patch boundary conditions. In both
methods, properties for particular ray families are obtained through a fast post-processing.

3 Single-Patch Phase Space Scheme

We consider the case when the two-dimensional manifold M embedded in R
d is represented by

a single regular parameterization. The objective is to compute the ray trajectories together
with the information transported along them on M . First, the system of ODEs (4) and (5),
describing rays and other information, are formulated as time-independent Eulerian PDEs
in phase space. These equations are then solved numerically on a fixed computational grid.
The solution to the PDEs is post-processed to extract information for a particular family of
rays.

3.1 Mathematical Formulation

We consider a ray γ̄(τ) satisfying (4), starting at γ̄(0) = γ = (u, v, θ) ∈ Ωp and ending at
the boundary ∂Ωp = ∂Ω × S. We call this end point (U, V, Θ) ∈ ∂Ωp the escape point of the
ray. See Figure 2. We then define three types of unknown escape functions for this ray, as
follows:
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• F : P → P, F (γ) = (U, V, Θ) is the escape point.

• Φ : P → R is the length of the ray. We also refer to this as the travel-time of the ray.

• B : P → R is a function representing a relation between the β-values at the escape and
starting points, where β satisfies (5).

(u, v)

θ

Θ(U, V )
∂Ω

Figure 2: A ray trajectory in the parameter space, starting at γ = (u, v, θ) ∈ Ωp and ending at the escape
point F (γ) = (U, V, Θ) ∈ ∂Ωp.

Each escape function f(γ) of the above types satisfies an ODE,

d

dτ
f(γ(τ)) = h

(
γ(τ), f(γ(τ))

)
, (9)

where the forcing term h is 0, 1 and α(γ, f) for f = F , f = Φ and f = B, respectively.
Using the chain rule, the escape PDE for each escape function f(γ) reads

g1(γ) fu + g2(γ) fv + g3(γ) fθ = h(γ, f), γ ∈ Ωp, (10)

with the boundary condition at inflow points of ∂Ωp,

f(γ) = b, γ ∈ ∂Ωinflow
p , ∂Ωinflow

p =
{
γ ∈ ∂Ωp | n̂(γ)⊤ g(γ) < 0

}
,

with n̂ being the outward normal vector in the phase space.
Note that for the first two types of escape functions f = F and f = Φ, the boundary

value b is γ and 0, respectively. For the third type f = B, if for instance B is the difference
or ratio between β-values at the escape and starting points, the boundary value are b = 0 or
b = 1, respectively.

The escape equation (10) is a linear hyperbolic equation, and the variable velocity coef-
ficients g = (g1, g2, g3) are known and determine the characteristic direction at every point
γ ∈ Ωp.

One important property of the solutions to the escape PDEs is that they are in general
discontinuous due to discontinuous boundary conditions. This happens, for example, when
a characteristic touches a boundary tangentially, such that at some points on the plane the
characteristic is in-going, and suddenly it becomes out-going.
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3.2 Numerical Solution of the escape PDEs

We now want to solve (10) numerically. We discretize the phase space domain Ωp = Ω × S

uniformly, setting ui = i∆u, vj = j∆v and θk = k∆θ, with the step sizes ∆u = ∆v = 1
N

and

∆θ = 2π
N

, assuming Ω is the unit square. Moreover, let fijk approximate an escape function
f(ui, vj , θk).

In addition to the boundary condition at inflow points, since the function f is periodic in
θ, we use periodic boundary conditions,

f(u, v, 0) = f(u, v, 2 π),

as numerical boundary conditions.
There are different methods for solving the escape equation (10). One way is to discretize

the PDEs in the phase space using a finite difference, finite volume or finite element approxi-
mation and arrive at a system of linear equations Af̄ = b̄, where A is a N3×N3 matrix with
a sparse structure and b̄ ∈ R

N3
represents the boundary conditions. This system can then

be solved iteratively, and one can speed up the computations using suitable preconditioners
[12, 4]. However, in the case that characteristics change direction many times in the phase
space domain, it is difficult to find good preconditioners.

Another way to solve the escape equations is to write them as

ft + g1 fu + g2 fv + g3 fθ = h,

and solve these time-dependent equations until the steady state ft = 0. This method can be
seen as an iterative method. Finding a fast algorithm which is not much restricted by the
CFL condition is analogous to finding a good preconditioner in the iterative method.

Yet, another way to solve the equation (10) is to compute the approximate solution
fijk using a ray tracing method, which traces back along the characteristic to the initial
boundary from each grid point (i, j, k). The main drawback with this method is that it will
be expensive, because one needs to trace back all N3 points in the domain all the way to
the boundary.

Instead, we use a Fast Marching algorithm, given by Fomel and Sethian [9]. A similar
method in two-dimensional space was also proposed in [16]. The basic idea of the algorithm
is to march the solution outwards from the boundary and use the characteristic directions
to update grid values. Note that in the algorithm, we always also compute Φijk besides fijk.

First, the grid points are divided into three classes:

• Accepted: the correct values of fijk and Φijk have been computed.

• Considered: adjacent to Accepted for which fijk and Φijk have already been computed,
but may be corrected by a later computation.

• Far: the correct values of fijk and Φijk are not known.

The major steps of the algorithm are then as follows:

0. Start with all nodes (ui, vj , θk) ∈ Ωp in Far, and assign Φijk at these nodes a large value.
This large value needs to be greater than the length (travel-time) of every possible ray in
the computational domain. Put the boundary nodes (ui, vj, θk) ∈ ∂Ωinflow

p in Accepted,
and assign fijk and Φijk at these nodes the correct boundary values. Put all nodes
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adjacent to Accepted, for which the characteristic1 at that node points back to the
boundary, in Considered. Each Considered node is then given a value by using a local
cell characteristic method.

1. Take the Considered node with the smallest arrival time Φijk as Accepted.

2. Find the octant toward which the characteristic going through that node points.

3. For each neighboring grid point in the octant which is not Accepted use the local cell
characteristic method to (possibly) compute new values for fijk and Φijk. In the case
we can compute new values for a Far node, put it in Considered.

4. Loop to step 1 until all points are Accepted.

Since in [9] the local cell characteristic method, used in steps 0 and 3 of the algorithm, is
not discussed, we will here describe a version of first and second order local cell-based ray
tracing methods using a local linear and parabolic ray tracing and the Taylor expansion of
the trajectory near the starting point.

Consider a grid cell in Ωp, and assume we want to compute the value of fijk at a corner
of this cell, knowing the correct values of f at some neighboring grid points. The output
of the local ray tracing would be either a new value for fijk or no new value, depending on
whether the neighboring points, to which the characteristic points back, are Accepted or not.
See Figure 3.

Let τ be the arc length parameterization along the characteristic γ(τ). We start at
γ(0) = (ui, vj, θk), where we want to compute a possibly new value, and trace backwards
along the characteristic to intersect a cell face at γ(τ ∗), τ ∗ < 0. We Taylor expand f near
the starting point,

f(γ(τ ∗)) = f(γ(0)) + τ ∗
d

dτ
f(γ(0)) +

τ ∗2

2

d2

dτ 2
f(γ(0)) + O(τ ∗3), (11)

with local truncation error O(τ ∗3) ≈ O(∆u3). Note that d
dτ

f(γ(0)) and d2

dτ2 f(γ(0)) in (11)
are given by:

d

dτ
f(γ(0)) = h(γ(0), f(γ(0))),

d2

dτ 2
f(γ(0)) =

d

dτ
h
(
γ(0), f(γ(0))

)

= g(γ(0)) · ∇γh
(
γ(0), f(γ(0))

)
+ hf

(
γ(0), f(γ(0))

)
h
(
γ(0), f(γ(0))

)
.

Therefore, to find f(γ(0)), with accuracy of O(τ ∗3), we need to know τ ∗ and f(γ(τ ∗)). Note
that for f = F and f = Φ, since d

dτ
F (γ(τ)) = 0 and d

dτ
Φ(γ(τ)) = 1, the expansion (11)

reduces to
F (γ(τ ∗)) = F (γ(0)), (12)

Φ(γ(τ ∗)) = Φ(γ(0)) + τ ∗. (13)

1We approximate the characteristic by a piecewise linear curve for a first order method and piecewise parabolic for a second
order method.
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3.2.1 First Order Method

We assume that characteristics are linear in each cell. Therefore, we can write

γ(τ) ≈ σ1 + σ2 τ, σ1 = γ(0), σ2 = γ̇(0) = g(γ(0)).

Note that σ1 and σ2 are known. There are six possible planes, u = ui±1, v = vj±1 and
θ = θk±1, which this line can intersect. We, therefore, get six crossing points τ1, . . . , τ6,
which are solutions of six linear equations. It is then clear that τ ∗ = maxτj<0 τj . Knowing
the crossing face and the crossing point γ(τ ∗), we continue as follows:

a. If all four points of the cell face are Accepted, use these points to interpolate a value of
f(γ(τ ∗)). Then use the first two terms of the Taylor expansion (11) to compute a new
value for fijk ≈ f(γ(0)). Note that we need to solve a (possibly) nonlinear algebraic
equation, when h depends on f ,

f(γ(0)) = f(γ(τ ∗)) − τ ∗ h(γ(0), f(γ(0))).

Put this node in Considered. Since the method is first order, a two dimensional bilinear
interpolation is used. See Figure 3.

b. If no points on the cell face are Accepted, do not update the value.

c. Else, continue tracing along the characteristic until either (a) or (b) occurs. Note
that each time the characteristic enters a new cell, the new starting point needs to be
updated.

A

B

u

v

θ

Considered

Accepted

Figure 3: A grid cell in Ωp. Point A is updated by tracing the characteristic back to point B and interpolating
from the accepted values. Here, points A and B correspond to γ(0) and γ(τ∗), respectively.

3.2.2 Second Order Method

We assume that characteristics are parabolic in each cell and write

γ(τ) ≈ σ1 + σ2 τ + σ3 τ 2, σ1 = γ(0), σ2 = γ̇(0), σ3 =
1

2
γ̈(0) =

1

2
Dγ γ̇(0) γ̇(0).

Note that σ1, σ2 and σ3 are known. In this case, there are nine possible cell faces which
can intersect this parabola; u = ui, v = vj , θ = θk and the six faces in the linear case. By
intersecting the parabola with the faces, we get nine crossing points τ1, . . . , τ9, which are
solutions of simple quadratic equations. We then get τ ∗ = maxτj<0 τj and continue in the
following way:
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a. Pick the crossing face and eight faces around it in the same plane, sharing sixteen grid
points in total. If all sixteen points are Accepted, use these points to interpolate a value
of f(γ(τ ∗)). Then use the first three terms of the Taylor expansion (11) to compute a
new value for fijk ≈ f(γ(0)). Note that, again, we need to solve a (possibly) nonlinear
algebraic equation, when h depends on f ,

f(γ(0)) = f(γ(τ ∗)) − τ ∗ h(γ(0), f(γ(0))) −
τ ∗2

2

d

dτ
h
(
γ(0), f(γ(0))

)
.

Put this node in Considered. Because the solution can be discontinuous, we use a
version of two dimensional essentially non-oscillatory (ENO) interpolation based on
Newton divided differences and the Newton formulation of the interpolation polynomial.
Among four points in each dimension, we pick up either the left three or the right three
points which have a smaller divided difference and use a second order polynomial. See
[33].

b. If no points on the cell face are Accepted, do not update the value.

c. Else, continue tracing along the characteristic until either (a) or (b) occurs. Note
that each time the characteristic enters a new cell, the new starting point needs to be
updated.

The algorithm is a one-pass algorithm and is of complexity O(N3 log N). Note that we
use heap sort algorithm for extracting the smallest arrival time Φijk of Considered nodes
and for inserting new updated values of Considered nodes. There is however no proof of
convergence for the method.

3.3 Post-Processing

Solutions of the escape PDEs (10) give the escape point, length and other information for
rays with all possible starting points in the phase space. These solutions need to be post-
processed to extract properties for a ray family.

As an example, suppose we want to compute the length of the ray between two points
u1 and u2 in the parameter space Ω. We first observe that F (γ1) = F (γ2), if and only if the
points γ1 and γ2 lie on the same ray. We can thus find θ1 and θ2, as the solution to

F (u1, θ1) = F (u2, θ2). (14)

The length is then given by |Φ(u1, θ1)−Φ(u2, θ2)|. Note that there may be multiple solutions
to (14), giving multiple lengths. If u2 ∈ ∂Ω, the expression simplifies to solving

(
U(u1, θ1), V (u1, θ1)

)
= u2, (15)

for θ1 to get the length Φ(u1, θ1).
To solve (14), we note that since F = (U, V, Θ) ∈ ∂Ωp is a point on the phase space

boundary, it can be reduced to a point (S, Θ) in R
2, where S represents the escape location

on the boundary ∂Ω. For example if Ω = [0, 1]2, we can choose S ∈ [0, 2 π] along ∂Ω such
that S = 0, S = π and S = 2π for (U, V ) = (0, 0), (U, V ) = (1, 1) and (U, V ) = (0, 0),
respectively. The left and right hand sides of (14) are then curves in R

2 parameterized by θ1

and θ2, and solving the algebraic equation (14) amounts to finding crossing points of these
curves.
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Having the discrete solutions at the points u1 and u2 for all N directions, we then need
to find crossing points of two complex lines of N straight line segments as the solutions
to (14). This can be done with a complexity of O(N); see e.g. [35]. We note that in
the case that a second order method for solving the escape equations is used, the linear
intersection algorithm will not affect second order accuracy of the method. In fact, the
intersection algorithm is performed only to find the intersection’s neighboring points. We
use a higher order interpolation to compute the initial angles θ1 and θ2 and the escape
functions corresponding to these angles. The complexity of finding the ray length between
one fixed source point and all other N2 points in Ω is then O(N3), and the total complexity,
including solving the escape PDEs, will therefore be O(N3 log N). This is expensive for
computing this so called travel-time field for only one source point. For example by using
wave front tracking or solvers based on the surface eikonal equation, the complexity is O(N2).
However, if the solutions are sought for many source points, the phase space method can be
more efficient. See Section 5 for such an example.

4 Multiple-Patch Phase Space Scheme

We now consider the more complicated and realistic case when the manifold M cannot be
represented by one regular parameterization. We let M be described by an atlas of charts
or multiple patches and want to compute the ray trajectories together with the information
transported along them on the manifold. First, the system of ODEs (6) and (7) in each
chart (patch) are formulated as time-independent Eulerian PDEs and solved numerically on
a fixed computational grid in phase space. The solutions to the PDEs in each chart are
then connected using suitable inter-patch boundary conditions. Information for a particular
family of rays are then extracted through a fast post-processing.

We describe the multiple-patch scheme and the key design choices in such a scheme,
including the number and shape of patches, the treatment of inter-patch boundaries and the
choice of escape boundary.

4.1 Multiple-Patch Construction

We first want to define a function F for the multiple patch case that corresponds to the single
patch solution F described in Section 3. Let R be some curve in M , representing an escape
boundary. We consider a ray starting at a point Γ ∈ UTM and define F(Γ) : UTM → UTM
as mapping the point Γ to another point in the space UTM where the projection of the ray
onto M first crosses R (assuming such a point exists).

If the compact manifold has a boundary (e.g. a finite cylinder), we let this be the escape
boundary, similar to the case of a single-patch manifold. Hence, R =

⋃

j S0j . However,

for a compact boundaryless manifold (e.g. a sphere or a torus), there is no obvious escape
boundary, as in the single patch case. In this case we will let

R =
⋃

(j,j′)⊂R

Sjj′ ⊂ S (16)

be the escape boundary, where R is some index set, to be determined (see below).
To compute F(Γ), we first recall that, by construction, for each point Γ = (x,q) ∈ UTM ,

there is a well-defined patch id number j = J (Γ) and a well-defined mapping Wj : UTMj →
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Ωp.
Now, suppose Fj(γ) are the solutions to the escape PDE (10), with f = F , in Ωp cor-

responding to each patch with j = 1, . . . , P . The function F(Γ) is then given recursively
by

Γ̃0 = Γ, (17)

and while x̃n 6∈ R, where Γ̃n = (x̃n, q̃n),

j = J (Γ̃n), Γn+1 = W−1
j Fj(Wj(Γ̃n)), j′ = J (Γn+1), Γ̃n+1 = Ljj′(Γn+1), (18)

where Ljj′ is the operator representing the inter-patch boundary conditions between patches
Mj and Mj′. Then F(Γ) = Γn∗ , where n∗ is the smallest index for which xn∗ ∈ R.

Remark 2. If the rays are continuous at the patch boundaries, Ljj′ will be the identity

function (Γ̃n+1 = Γn+1). From the above recursive formula, it is easy to see that, in order to
compute the function F for all points in UTM it is enough to know the escape PDE solutions
Fj in all patches and the patch transfer functions Tjj′ = Wj′W

−1
j at all sides connecting two

patches Mj and Mj′. Note that these transfer functions can be easily calculated from the
mappings Wj. As an example, in Section 5, we will discuss the computation of creeping rays
which are continuous at patch boundaries.

If the rays are not continuous at the patch boundaries, each time they pass a boundary,
the coordinates of Γn+1 may change (Γ̃n+1 6= Γn+1). It happens when, for example, the
rays change their direction as they enter another patch with different properties. The patch
transfer functions are then changed to Tjj′ = Wj′ Ljj′ W

−1
j . Here, transfer functions are

again easily calculated from the mappings Wj and the inter-patch boundary conditions. We
will consider such examples in Section 6, where the rays change direction according to Snell’s
law of refraction and the law of reflection.

Similar to F(Γ), we can define the functions Φ(Γ) and B(Γ) in UTM for the multiple
patch case corresponding to the single patch functions Φ and B described in Section 3.
Assuming Φj(γ) and Bj(γ) are the solutions to the escape PDE (10), with f = Φ and
f = B, respectively, in Ωp corresponding to each patch with j = 1, . . . , P , we can write

Φ(Γ) =
n∗−1∑

n=0

Φj(Wj(Γ̃n)),

with j and Γ̃n as in (17)-(18), and

B(Γ) =

n∗−1∑

n=0

Bj(Wj(Γ̃n)),

if B is, for example, the difference between β-values at Γn∗ and Γ0, and

B(Γ) =

n∗−1∏

n=0

Bj(Wj(Γ̃n)),

if B represents, for example, the ratio between β-values.
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4.2 Post-Processing

Suppose we want to compute the length of a ray connecting two points x1 ∈ Mj1 and
x2 ∈ Mj2 . In order to find this ray, if the manifold has a boundary, we let this be the escape
boundary, and the post-processing is similar to the single patch case with F replaced by
F. In the case of a boundaryless manifold, we choose the boundaries of Mj1 as the escape
boundary R. We then find F

(
W−1

j1
(wj1(x1), θ1)

)
for all directions θ1 ∈ S.

We now modify the function F(Γ) by Fn(Γ), where n is the number of times which the
ray starting at Γ hits the escape boundary. It is therefore obvious that F1(Γ) = F(Γ). In
the case where the rays at the patch boundaries are continuous, we have,

Fn(Γ) = F ◦ F · · · ◦ F
︸ ︷︷ ︸

n times

(Γ). (19)

In general, the boundary function Ljj′ must be applied in composition too. Analogously, we
can define functions Φn and Bn.

For all directions θ2 ∈ S we then find Fn

(
W−1

j2
(wj2(x2), θ2)

)
. Since we do not know how

many times the ray, which starts at x2 and passes through x1, hits R, we need to find Fn

for several values n = 1, 2, . . . . See Figure 4 for three different cases where n is 1, 2 and 3.

x2

x1

Mj

Mj′

(a) n = 1, (j1 = j2 = j)

x2

x1

Mj

Mj′

(b) n = 2, (j1 = j, j2 = j′)

x2

x1

Mj

Mj′

(c) n = 3, (j1 = j2 = j)

Figure 4: Two neighboring patches Mj and Mj′ . The ray (dashed curve) starting at x2 and passing through
x1, hits the escape boundary R (thick curves) n times. Here, three different cases are shown where n is 1, 2
and 3.

We then find θ1, θ2 and n as the solutions to the algebraic equations

F
(
W−1

j1
(wj1(x1), θ1)

)
= Fn

(
W−1

j2
(wj2(x2), θ2)

)
, (20)

analogous to (14) in the single-patch case. There will be at most four systems of equations
corresponding to four sides of patch Mj1 , for each value of n. The solutions to (20) can be
computed by finding intersections of four sets of possibly crossing curves.

The length is then given by
∣
∣Φ
(
W−1

j1
(γ1)

)
− Φn

(
W−1

j2
(γ2)

)∣
∣,

with γ1 = (wj1(x1), θ1) and γ2 = (wj2(x2), θ2).

4.3 Number and Shape of Patches and Parameterizations

One of the key design choices in such a multiple-patch scheme is the choice of patches and
parameterizations. The important things are:
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1. Patches should cover the physical domain with nonsingular parameterizations.

2. Parameterizations should have small coordinate distortions to make finite differencing
accurate.

3. The right hand side h(γ, f) in the escape PDEs should be well resolved by the patch
discretization.

Remark 3. Using overlapping patches, one can possibly reduce the number of patches. How-
ever, the objective in this work has not been optimizing the number of patches.

4.4 Choosing Escape Boundary

Another key design choice is the choice of escape boundary. Two things are important about
R, and R:

1. The projection of each ray, which is of interest, onto M should cross R at some point.
Otherwise F(Γ) is not well defined for all points. It is not obvious how to verify this
rigorously. Having nonzero coefficients, g(γ) 6= 0, everywhere is a necessary condition,
but it is still possible to have rays that never reaches a given boundary, see e.g. [23].

2. If the compact manifold has a boundary, we can choose this as the escape boundary,
similar to the single-patch manifold.

4.5 Limitations and Extra Problems

There are a couple of difficulties and problems:

1. In some cases, one cannot capture all rays of interest by only one choice of escape
boundary. Different choices of escape boundary might be needed. A good implemen-
tation of the algorithm will then be the one which considers different combinations of
patch boundaries as the escape boundary. Note that this is done in post-processing and
does not require recomputation of the fj solutions.

2. When a ray hits an inter-patch boundary, in order to find the escape solution at this
point, we need to interpolate the discrete solutions computed on a fixed grid. The
interpolation can be difficult if a ray is tangent to the inter-patch boundary. One possible
way to overcome such a problem is to use overlapping patches. Another possibility is
to choose another atlas of charts for the manifold.

5 Application to Creeping Ray Computations

Creeping rays are a type of diffracted rays which are generated at the shadow line2 of the
scatterer and propagate along geodesic paths on the scatterer surface. On a perfectly con-
ducting convex body, they attenuate along their propagation path by tangentially shedding
diffracted rays and losing energy. On a concave scatterer, they propagate on the surface and
importantly, in the absence of dissipation, experience no attenuation.

The study of creeping rays is important in many high frequency problems, such as design
of sophisticated and conformal antennas [19], antenna coupling problems [21], radar cross

2Shadow line or horizon is the locus of the points at which the incident rays are tangent to the scatterer surface.
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section (RCS) computations [3, 19, 32, 26] and control of scattering properties of metallic
structures coated with dielectric materials [28, 1, 22, 27].

In this section, we consider the application of the multiple-patch phase space method to
computing creeping rays. Here, the computational domain is a scatterer surface which is a
two-dimensional hypersurface embedded in R

3. We split the surface into multiple patches
represented by different parameterizations. The escape PDEs describing creeping rays are
solved in each patch, individually. The creeping rays on the scatterer are then computed by
connecting all individual solutions. The inter-patch boundaries are treated by the continuity
of characteristics.

We first consider the case when the scatterer surface has a regular explicit parameteri-
zation and write the governing equations for computing creeping rays. We then discuss the
multiple-patch scheme and give two numerical examples where the contribution of creeping
rays to mono-static RCS is computed.

5.1 Governing Equations

We consider a scatterer surface with a regular explicit parameterization, represented by
x = X̄(u), where x = (x, y, z) ∈ R

3, and the parameters u = (u, v) belong to a set Ω ⊂ R
2.

Let the scatterer be illuminated by incident rays in a direction denoted by a normalized
vector Î = [ı1, ı2, ı3]. We assume that the shadow line u0(s) is represented by a curve in
parameter space, with s being the arc length parameterization. The objective is to compute
the geodesic paths on the scatterer surface together with the phase and amplitude of the
wave field of creeping rays generated on the scatterer.

According to Keller and Lewis [17], the surface phase satisfies the surface eikonal equation,

|∇̃φ| = n, (21)

where n(u) is the index of refraction at the surface, and ∇̃ is the surface gradient, defined
as

∇̃φ := JG−1∇φ, G = J⊤J, J = [X̄u X̄v] ∈ R
3×2.

We can write (21) as a Hamilton-Jacobi equation H(u,∇φ) = 0, with the Hamiltonian

H(u,p) ≡
1

2
p⊤ G−1(u)p−

n2(u)

2
. (22)

Note that in the case n = constant, the rays associated with the surface eikonal equation
(21) are geodesics, or shortest paths between two points on the surface. Henceforth, we will
assume n ≡ 1.

We write (without derivation) the set of equations which are used in computing creeping
rays and are obtained by reducing the order of the Hamiltonian system corresponding to
(22) by one. For derivations see [26].

A geodesic on the surface is uniquely characterized by its location, (u, v), and direction,
θ. Letting γ := (u, v, θ), the geodesics satisfy the system of ODEs (4) with

g(γ) =





ρ(γ) cos θ
ρ(γ) sin θ
ρ(γ)V(γ)



 . (23)
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The parameter τ is the arc length along the geodesic in the physical space, and

ρ = ρ(u, v, θ) =
∣
∣X̄u cos θ + X̄v sin θ

∣
∣−1

,

V(γ) = (Γ1
11 cos2 θ + 2Γ1

12 cos θ sin θ + Γ1
22 sin2 θ) sin θ−

(Γ2
11 cos2 θ + 2Γ2

12 cos θ sin θ + Γ2
22 sin2 θ) cos θ,

where Γk
ij(u) are Christoffel symbols.

Moreover, we know that the phase φ is the length of the ray, given by (5) with β = φ and
α ≡ 1, and the amplitude a is computed by,

a(τ) = a0Q(s, τ)
−1
2 exp

(
−ω1/3β(τ)

)
, (24)

where a0 is the amplitude at the starting point on the shadow line, Q(s, τ) is the geometrical
spreading at distance τ from the starting point, and β(τ) is a function representing the
attenuation factor given by (5) with

α(γ) =
q0

ρg(γ)
exp

(

i
π

6

(
ρg(γ)

2

)1/3
)

, q0 ≈ 2.33811. (25)

Here ρg(γ) is the radius of curvature of the surface along the ray trajectory. We then let the
escape function B be the difference between the β-values at the escape and starting points.
All escape functions F , Φ and B satisfy equation (10), with the right hand side h being 0,
1 and α given by (25), respectively.

In order to compute the amplitude, in addition to β, we need also to compute geometrical
spreading. We set ũ(s, τ) := u(τ), with ũ(s, 0) = u0(s) and let X̃(s, τ) := X̄

(
ũ(s, τ)

)
be

a point on the geodesic at the distance τ from the starting point X̃0(s) = X̃(s, 0) on the
shadow line. The geometrical spreading of the creeping ray at X̃(s, τ) in the physical space
is given by, [26],

Q(s, τ) =
X̃⊥

τ · X̃s

X̃⊥
0τ · X̃0s

. (26)

We consider a fixed shadow line γ0(s) = (u0(s), v0(s), θ0(s)) and define γ̃(s, τ) := γ(τ), where
γ solves (4) with initial data γ0(s). Let L(γ0) = {γ̃(s, τ) : τ ≥ 0} be a sub-manifold of
phase space P on which the creeping rays generated at γ0(s) lie. The Eulerian version of the
geometrical spreading Q : L(γ0) → R, restricted to L(γ0) and defined as Q(γ̃(s, τ)) := Q(s, τ)
is then given by

Q(γ̃) =
[T̂ (γ̃) × N̂(ũ, ṽ)]⊤J(ũ, ṽ)z

[Î × N̂(u0(s))]⊤X̃0s(s)
, T̂ = Ju̇, (27)

where z = z(s, τ) is a solution to

DγF (γ̃)z =
d

ds
F (γ0(s)). (28)

For γ̃ on the boundary, i.e. γ̃ = F (γ0), the formula (27) can be simplified as,

Q(γ̃) =
[T̂ (γ̃) × N̂(ũ, ṽ)]⊤X̂s(s)

[Î × N̂(u0(s))]⊤X̃0s

, (29)
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where X̂ : R → R
3 is defined by X̂(s) := X(U(γ0(s)), V (γ0(s))).

Note that X̂s(s) in (29) and DγF (γ̃) and Fs(γ0(s)) in (28) can be computed by numerically
differentiating the solution to the PDEs in (10) with f = F , as was done in [26]. Instead,
one can also directly compute X̃s in (26) by adding other ODEs to the geodesic system (4)
as follows: First, we note that X̃s = Jũs. We then differentiate (4) with respect to s and
derive the following ODE system

˙̃γs = Dγg γ̃s, γ̃s(s, 0) = γ̃0s(s). (30)

By solving this ODE, ũs and therefore X̃s can be computed. One can also write the escape
PDE for (30) in the same way as before and post-process the phase space solution.

5.2 Multiple-Patch Scheme

We now split the scatterer surface M into several simpler surfaces with explicit regular
parameterizations. As before, let M be given by an atlas of charts (Mj , wj), where the
patches Mj ⊂ R

3 have the parametric equations x = X̄j(u) : [0, 1]2 → Mj and collectively
cover M . Moreover, the mappings wj = X̄−1

j : Mj → [0, 1]2 are bijective.

Since on a geodesic T̂ in (27) has unit length, we can consider the unit tangent bundle
UTM of M as the global space. Note that UTM is a three-dimensional manifold embedded
in R

6. By Lemma 1, there is therefore a bijective mapping Wj : UTMj → Ωp for each j,
defined by Wj(Γ) = γ, with γ and Γ as in (8).

Knowing the bijective mappings wj and Wj, and the solution to the escape PDEs in each
patch, Fj , Φj and Bj , we can compute the multiple-patch escape functions F, Φ and B as
described in Section 4.1.

5.3 Post-Processing

In order to compute phase and amplitude of a ray family, post-processing of the solutions to
the escape PDEs (10) is needed.

For a given illumination direction, assume that the shadow line is known and given by
Γ0(s) in the unit tangent bundle UTM . For each point x ∈ Mj covered by the surface
wave, there is at least one creeping ray which starts at the shadow line and passes through
that point. In order to find this ray, assuming the scatterer surface is boundaryless, we first
choose the escape boundary R as the boundaries of Mj . Note that in the case of a surface
with boundary, we choose its boundary as the escape boundary, and the post-processing will
be similar to the single-patch case discussed in [26]. We then find F

(
W−1

j (wj(x), θ)
)

for all
directions θ ∈ S. Moreover, for all points on the shadow line we find Fn (Γ0(s)), defined by
(19), with n = 1, 2, . . . . We then find s = s∗, θ = θ∗ and n = n∗ as the solutions to the
algebraic equations

F
(
W−1

j (wj(x), θ)
)

= Fn (Γ0(s)) , (31)

analogous to (14) in the single-patch case. There will be at most four systems of equations
corresponding to four sides of patch Mj , for each value of n. The solutions to (31) can be
computed by finding intersections of four sets of possibly crossing curves.

Now we can use (28) to compute z with γ0 = Wj0(Γ0(s
∗)) and γ̃ = (wj(x), θ∗) where

j0 = J (Γ0(s
∗)). Note that F (γ̃) and F (γ0) in the left and right hand sides of (28) are
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replaced by Wj

(
F(W−1

j (γ̃))
)

and Wj

(
Fn∗(Γ0(s

∗))
)
, respectively. The geometrical spreading

Q(γ̃) at point x will be therefore computed by (27), and phase and amplitude are given by

φ(wj(x)) = φ0 + Φ
(
W−1

j0
(γ0)

)
− Φ

(
W−1

j (γ̃)
)
,

A(γ̃) = A0 Q(γ̃)
−1
2 exp

(

− ω
1
3

(

B
(
W−1

j0
(γ0)

)
−B

(
W−1

j (γ̃)
))
)

,

where φ0 and A0 are the phase and amplitude at the point γ0, respectively.

5.4 Example 1 - A Scalene Ellipsoid

We consider the scatterer surfaces to be a scalene ellipsoid (an ellipsoid with different semi-
axes) and apply the multiple-patch phase space method to compute the contribution of
backscattered creeping rays to mono-static RCS, i.e., the rays that propagate on the surface
of the scatterer and return in the opposite direction of incident waves. We assume that
the incoming amplitudes are one at attachment points on the shadow line and compute the
backscattered amplitude at detachment points on the shadow line. We also compute the
length of the backscattered rays.

We consider an ellipsoid given by

x2

a2
+

y2

b2
+

z2

c2
= 1,

with a = 2, b = 1 and c = 0.5. Since there is no single non-singular parameterization for the
ellipsoid, we split it into six patches with non-singular parameterizations (see Figure 5) and
solve for f(γ) in each patch, as described in Section 3.2.

In order to find the backscattered creeping ray by post-processing, we first choose the
escape boundary consisting of six sides, as highlighted in Figure 6. We then continue as
follows,

0. Given a pair of incident angles (Ψ1, Ψ2) ∈ [0, 90]2, find the incident direction Î =
[sin Ψ1 cos Ψ2, cos Ψ1 cos Ψ2, sin Ψ2].

1. Find the shadow line γ0(s) = (u0(s), θ0(s)) in the phase space Ωp using the relations

N̂⊤ Î = 0 and T̂ (γ0(s)) = Î in patch j(s). Let the parameterization of the shadow line
be discretized in N grid points {sn} with n = 1, . . . , N .

2. For each point on the shadow line find F
(

W−1
j(sn)(γ0(sn))

)

as discussed in Section 4.1.

3. A backscattered ray starting at attachment point sa and ending at detachment point
sd on the shadow line should satisfy

F
(
W−1

ja
(γ0(sa))

)
= F

(
W−1

jd
(γ0(sd))

)
+ C,

where ja = j(sa) and jd = j(sd), and C is a constant accounting for the fact that the
directions of creeping rays starting at sa and sd differ by a π on the escape boundary.
The right and left hand sides of this equation can be represented as six sets of curves
in R

2 parameterized by s, corresponding to six sides of the escape boundary. To find
the backscattered ray we need to find crossing points of these curves, as is done in the
single patch case.
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Figure 5: Upper left figure shows an ellipsoid with a single patch parameterization which is singular at two
poles. Upper right figure shows the ellipsoid divided into 6 patches. Note that the singularities have been
removed using non-singular multiple parameterizations. Lower figure shows the structure of patches and
patch boundaries in parameter space. Patches j = 1, . . . , 6 correspond to left, front, up, right, back and
down patches, respectively. These 6 patches share 12 sides in total, shown with italic numbers.

4. For each crossing point, there is a pair of backscattered rays (two backscattered rays
lying on top of each other); one starting at point sa and ending at point sd, the other
starting at point sd and ending at point sa. Although these two rays have the same
lengths, they do not have the same geometrical spreading and therefore not the same
amplitude. Compute two geometrical spreadings as described in Section 5.3 with γ0 =
γ(sd) and γ̃ = γ(sa) for the first backscattered ray and γ0 = γ(sa) and γ̃ = γ(sd) for
the second one.

5. The length and amplitudes are then computed as,

φ = Φ(Γsa
) + Φ(Γsd

), Γsa
= W−1

ja
(γ(sa)), Γsd

= W−1
jd

(γ(sd)),

A1 = Q(γ(sa))
−1
2 exp

(

−ω
1
3

(

B(Γsa
) + B(Γsd

)
))

,

A2 = Q(γ(sd))
−1
2 exp

(

−ω
1
3

(

B(Γsa
) + B(Γsd

)
))

.
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Figure 6: The ellipsoid with its patch boundaries. Thick lines show the escape boundary.

Figure 7 shows the backscattered rays for two different incident angles. There are three
pairs of backscattered rays which can be detected by the algorithm. Every two rays of each
pair lie on top of each other.

Figure 7: Left figure shows the backscattered creeping rays (thick curves) for Ψ1 = 30 and Ψ2 = 0. Right
figure shows the backscattered creeping rays for Ψ1 = 30 and Ψ2 = 10. Thin curves represent the shadow
lines.

We notice that in [26], because of using a single patch and excising the singularity at
two poles, only the shortest backscattered ray could be captured. Figure 8 shows the length
and amplitudes of the shortest backscattered ray for different incident angles, with ω = 1.
The peaks in the amplitude correspond to caustic backscattered creeping rays which have
infinite amplitudes. Such rays are particularly important in near-field RCS computations.
However, in far-field RCS, due to the the geometrical spreading outside the scatterer, their
contribution may not be as important.

Figure 9 shows the convergence of length and amplitudes of the backscattered creeping
ray for a fixed vertical angle Ψ2 = 70 and different horizontal incident angles Ψ1 ∈ [−90, 90].
We use a second order Fast Marching algorithm on a coarse grid of the size 503 and a fine
grid of the size 1003. We compare them with a reference solution obtained by a high order
ray tracing method. The rate of convergence confirms the second order accuracy of the
algorithm. We note that comparing to the results in [26], where a first order algorithm was
used, the accuracy of amplitude has been improved dramatically. It shows that using a first
order accurate method for computing the phase and amplitude results in a worse relative
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Figure 8: Length and amplitudes (with ω = 1) of backscattered creeping rays for many illumination angles.
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error for the amplitude than for the phase. Therefore, higher order algorithms are required
to obtain low relative errors for the amplitude, as observed also in [30].

The complexity of using the fast phase space method proposed here consists of two parts.
First, the cost of solving the PDEs by the Fast Marching method is O(N3 log N). Second, the
cost of finding the backscattered rays for each shadow line is O(N). For all N2 shadow lines,
it is O(N3). Therefore the total complexity will be O(N3 log N). The total cost by using
other methods, like wave front tracking and solvers based on the surface eikonal equation,
will be O(N4), if the cost for each shadow line is O(N2). In this case, using the phase space
method will then be much faster.

Remark 4. A graph structure can be useful for a general computer implementation. The
topology of the surface can be described by a graph, in which each patch is a node and the
edges go between connected patches. Figure 10a shows the graph corresponding to the ellipsoid
divided into six patches which are connected through twelve sides (see Figure 5). The graph
therefore has six nodes and twelve edges.

We can also introduce another topology graph, in which the nodes are the sides of the
patches and the edges correspond to the patches themselves. Each node (side) is therefore
connected to six other nodes through two patches which are connected by that side. See
Figure 10b. This structure can be useful for imposing inter-patch boundary conditions and
computing F.

5.5 Example 2 - A balloon

We consider a balloon-shape surface consisting of a hemisphere in the positive side of the
z-axis, centered at the origin and with radius r, and the surface created by rotating the
parabola z2 = 2r(r−y) about the z-axis in its negative side. This is a simple smooth version
of the cone-hemisphere studied in [3] as a model for low-observable objects where creeping
rays are important for RCS. We divide this surface into six patches, as shown in Figure 11;
The hemisphere is split into five patches j = 1, . . . , 5, and the parabolic part is represented
by one patch j = 6. We excise the singularity at the vertex of the balloon by cutting it
off. The lower boundary of patch j = 6 will therefore be an excision boundary and is not
considered as a patch boundary. We also partition the upper boundary of patch j = 6 into
four boundaries connecting to lower boundaries of patches j = 1, . . . , 4. Note that the left
and right boundaries of patch j = 6 are in fact the same. Therefore, there are in total
thirteen sides connecting six patches. See Figure 11.

Since the surface is symmetric about the z-axis, we consider a fixed horizontal incident
angle Ψ1 = 90, and due to symmetry about the yz-plane, we consider the vertical angles
Ψ2 ∈ [−90, 90]. Figure 12 shows the backscattered rays for two different incident angles
Ψ2 = 40 and Ψ2 = −40. For positive vertical incident angles, there are four pairs of
backscattered rays which can be detected by the algorithm. Two of them are symmetric
and have the same length and amplitudes. For negative vertical incident angles, only one
backscattered ray can be captured. We notice that in the case Ψ2 = 90, there will be
infinitely many backscattered rays which results in high observability of the object in this
incident direction. On the other hand, for Ψ2 = −90, there will be no backscattered ray
because we have excised the vertex. In fact even if we did not excise it, all creeping rays
would go to the vertex and diffract in different directions.
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Figure 9: Length and amplitude (with ω = 1) of the backscattered creeping rays for different horizontal
incident angles and a fixed vertical angle Ψ2 = 70. By refining the grid, solutions of the second order phase
space algorithm converge to a reference solution obtained by a high order ray tracing method with a correct
rate. Right figures show zoomed views of left figures.
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Figure 10: Representation of an ellipsoid divided into 6 patches by two different graph structures. Left figure
shows the graph with 6 nodes and 12 edges. Here, the nodes 1 to 6 denotes the left, front, up, right, back
and down patches, respectively. Right figure shows the graph with 12 nodes and 72 edges.
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Figure 11: Left figure shows the balloon divided into 6 patches. Right figure shows the structure of patches
and patch boundaries in parameter space. Patches j = 1, . . . , 6 correspond to front, right, back, left, up and
down patches, respectively. These 6 patches share 13 sides in total, shown with italic numbers.

Figure 13 shows the length and amplitude of backscattered rays in a polar coordinate
system for all incident directions Ψ ∈ [0, 360]. The angles Ψ ∈ [0, 90] in the polar system
correspond to Ψ2 ∈ [0,−90], and the angles Ψ ∈ [270, 360] correspond to Ψ2 ∈ [90, 0]. The
values for Ψ ∈ [90, 270] are then calculated using the symmetry of the surface about the
yz-plane.
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Figure 12: Backscattered creeping rays (thick curves) for Ψ2 = 40 (left figure) and Ψ2 = −40 (right figure).
Thin curves represent the shadow lines.

6 Application to Seismic Wave Computations

The inhomogeneity of earth causes deflection and reflection of seismic waves. The numerical
study of seismic wave propagations, therefore, helps us to learn about the inhomogeneous
structure of earth, which is important in direct and inverse problems of seismology and
seismic exploration of oil.

In this section, we apply the multiple-patch phase space method to compute the travel-
time of seismic rays. We consider a two-dimensional multi-layered medium whose different
layers have different wave speeds. We split the medium into multiple patches corresponding
to different layers. The escape PDEs describing seismic waves are solved in each patch,
individually. The travel-time of the waves in the medium are then computed by connecting
all individual solutions. The inter-patch boundaries are treated by Snell’s law and the law
of reflection.

We first consider the case when the medium has a regular explicit parameterization and
derive the governing equations. We then discuss the multiple-patch scheme and give a
numerical example for computing the travel-times.

6.1 Governing Equations

Consider a two-dimensional medium M represented by parametric equations x = X̄(u),
where x = (x, y) ∈ M ⊂ R

2 and u = (u, v) ∈ Ω ⊂ R
2.

The phase φ of the wave satisfies the eikonal equation,

|∇φ| = n(x), (32)

which is a Hamilton-Jacobi equation. The Hamiltonian for the eikonal equation can be
written in the form

H(x,p) = c(x)|p| ≡ 1, (33)

where c(x) = 1/n(x) is the wave speed and p = ∇φ. Introducing the arc length parameter
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Figure 13: Length and amplitude (with ω = 1) of the backscattered creeping rays for all illumination
directions Ψ ∈ [0, 360]. Upper left and right figures show the length and amplitude of the backscattered
rays, respectively. There are four pairs of rays among which two (illustrated by ◦) are symmetric. Note
that at Ψ = 90 (Ψ2 = −90), there will be no backscattered ray because all creeping rays go to the vertex
and diffract in different directions. At Ψ = 270 (Ψ2 = 90), however, there are infinitely many backscattered
rays resulting in high observability of the object in this incident direction, and therefore the values are not
shown. Because of the excision, the longest backscattered ray (illustrated by ×) can be captured only for
Ψ ∈ [220, 320] (Ψ2 ≥ 40). Bottom figure shows the total amplitude, Atot =

√

A2
1 + A2

2 + A2
3 + A2

4, of all four
backscattered creeping rays.

τ , a ray trajectory (u(τ),p(τ)) in Ω × R
2 is given by the Hamiltonian system

ẋ = c(x)
p

|p|
= c2(x)p, (34a)

ṗ = −|p| ∇xc(x) = −
∇xc(x)

c(x)
, (34b)

28



where the dot denotes differentiation with respect τ .
Since ẋ = J(u) u̇ with the Jacobian J = [X̄u X̄v] ∈ R

2×2, we have

u̇ = J−1(u) ẋ = c2(X̄(u)) J−1(u)p. (35)

Moreover, inspired by |p| = 1
c(x)

, we set p = (p1, p2)
⊤ = 1

c(x)
(cos θ, sin θ)⊤. Differentiating p

with respect to τ , we get

ṗ =

(

∇x
1

c(x)
· ẋ cos θ − 1

c(x)
sin θ θ̇

∇x
1

c(x)
· ẋ sin θ + 1

c(x)
cos θ θ̇

)

. (36)

By (34) and (36), we get θ̇ = cx(x) sin θ−cy(x) cos θ. Therefore, setting γ := (u, v, θ) ∈ Ωp,
the function g(γ) in (4) will be

g(γ) =





c(X̄(u)) (g11 cos θ + g12 sin θ)
c(X̄(u)) (g21 cos θ + g22 sin θ)
cx(X̄(u)) sin θ − cy(X̄(u)) cos θ



 , (37)

where (gij) = J−1(u). Note that since ẋ ‖ p by (34), the angle θ represents the direction of
the ray trajectory at x in the physical space. Moreover, with our choice of Hamiltonian,

φ̇(x(τ)) = ∇φ(x(τ)) · ẋ(τ) = p · p
c(x(τ))

|p|
= |p| c(x(τ)) = 1,

implying that φ corresponds to travel-time.

6.2 Multiple-Patch Scheme

We assume that the physical domain, representing a medium, is a two-dimensional compact
manifold M ⊂ R

2 with boundary. Since the wave speed distribution in a multi-layered
inhomogeneous medium is not continuous, it is natural to split the medium to different
patches with continuous wave speed distributions. We now let M be described by an atlas
of charts (Mj , wj) as before. The three-dimensional unit tangent bundle UTM is embedded
in R

4. In this case, there is an easier way to represent UTM by simplifying the mapping
Wj : UTMj → Ωp to be Wj(Γ) = γ, where

Γ = (x,q), q = ŝ(θ) =

(
cos θ
sin θ

)

, γ = (wj(x), θ). (38)

In the same way as before, we can define and compute multiple-patch escape functions
F(Γ) and Φ(Γ). However, here the rays are not continuous at the patch-boundaries due to
the change of the wave speed at these points. When a ray passes the boundary between two
layers (two neighboring patches) with different wave speeds, part of the ray is reflected (by
the law of reflection), and part of it is refracted or transmitted into the second layer (by
Snell’s law of refraction). At each interface, therefore, the ray field splits into two new ray
families, one reflected and one transmitted.

Figure 14a shows the reflection and refraction of a ray at the interface between two media
of different wave speeds, with cL > cR. The law of reflection gives the relation between the
angles of incidence (θinc) and of reflection (θref) as

θinc = θref . (39)

29



The relation between the angles of incidence and of refraction (θtr) for a ray crossing a
boundary between different media is given by Snell’s law

sin θinc

sin θtr

=
cL

cR

. (40)

When a ray moves from a dense to a less dense medium (cL < cR), Snell’s law cannot
be used to calculate the refracted angle if sin θtr = sin θinc (cL/cR) > 1. At this point, the
ray is reflected in the incident medium, known as internal reflection. There is therefore
a critical angle (θcr) for which the ray travels directly along the surface between the two
refractive media. The critical angle is found by Snell’s law, putting in a transmitted angle
of 90 degrees. This gives:

θcr = arcsin
cL

cR

. (41)

For any angle of incidence larger than the critical angle (θinc > θcr), the ray is totally
reflected off the interface, obeying the law of reflection. This phenomena is called total
internal reflection. See Figure 14b.

θinc

θref

θtr

cL cR

(a)

θinc

θref

θtr

cL cR

θcr

(b)

Figure 14: Reflection and refraction of a ray at the interface between two media of different wave speeds.
Left figure shows the reflection and refraction when cL > cR. Right figure shows the internal reflection when
θinc ≥ θcr.

From (39)-(41), we can easily find the inter-patch boundary functions S̃ and R̃ discussed
in Section 2.2.1. Post-processing in this case is similar to that of the single-patch case,
because the escape boundary that we chose coincides with the external boundary of the
medium.

Note that the inter-patch boundary conditions above can be seen as a way to preserve the
Hamiltonian (33) for a ray across the patch boundary. In cases where the discontinuity in c(x)
is not aligned with the patch boundary, the solution of the escape equations is not unique.
Uniqueness can however be recovered by enforcing the extra condition that solutions should
be continuous along constant Hamiltonian paths also inside the patches. This is the idea of
so called Hamiltonian-preserving methods developed in [14, 15]. These methods capture the
effect of a discontinuous c(x) on uniform grids not aligned with the discontinuity.

6.3 Example 3 - A multi-layered medium

We consider a multi-layered medium M = [0, 6]2 consisting of three layers with different
wave speeds (see Figure 15):
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• Top layer: c1(x, y) = 1 + 0.05 (x − 3)2 + 0.25 y,

• Middle layer: c2(x, y) = 3

1+e−((x−3)2+(y−3)2)
,

• Bottom layer: c3(x, y) = 0.5 + 0.2 x + 0.5 y.

Figure 15: The medium consisting of three layers and grey scale plot of the wave speed field.

We want to compute multivalued travel-time of seismic rays in the medium from a given
source point x0 on the boundary. We split the medium into three patches corresponding to
the three layers, as shown in Figure 15. The escape equations for the escape point F and
the travel-time Φ are derived and solved in each patch.

In order to find the travel-time with a given source point by post-processing, we first
choose the four outermost boundaries of the entire physical domain as the escape boundary.
We then continue as follows:

0. The source point x0 on the boundary is first reduced to a point S0 ∈ R.

1. For each point x ∈ M , find F(Γ) = (U,V,Θ) with Γ = (x,q(θ)) for all θ ∈ S. Now
(U,V) can again be reduced to points S ∈ R, parameterized by θ.

2. Find θ = θ∗ such that S0 = S(θ).

3. Travel-time at x ∈ M will then be Φ(Γ∗) with Γ∗ = (x,q(θ∗)).

Figure 16 shows the distribution of transmitted seismic rays and equiarrival curves, i.e.,
the locus of all points in physical domain which have the same travel-time, from two different
source points, x0 = (3, 6) and x0 = (3.5, 6).

Note that we can track both reflected and transmitted ray families, but not at the same
time. In order to get all rays, one needs to follow all ray families. Figure 17 shows the
equiarrival curves of reflected rays from the top and bottom interfaces inside the top and
the middle layers, respectively, for a source point at x0 = (3, 6). If we repeat this procedure,
we can also capture multiple reflected rays from the two interfaces that get trapped inside
the middle layer and reverberate to infinity. Here, we do not consider reflections from the
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Figure 16: The equiarrival curves and the distribution of seismic rays for two different source points.
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Figure 17: The equiarrival curves of reflected seismic rays from the top (left figure) and bottom (right figure)
interfaces for a source point on the center of the top of the domain.

domain boundaries, as we have a truncated domain much smaller than the physical space in
which the waves propagate.
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7 Conclusion

We have modified the single-patch phase space method for computing creeping rays to a
multiple-patch method for computing trajectories on two-dimensional manifolds possibly
embedded in a higher-dimensional space. The dynamics of trajectories are given by systems
of first-order ODEs in a phase space. We split the manifold into multiple patches where
each patch has a well-defined regular parameterization. The escape equations, which are
hyperbolic PDEs in a three-dimensional phase space, are derived and solved in each patch,
individually, using a second-order version of the fast marching method. The solutions of
individual patches are then connected using suitable inter-patch boundary conditions. Prop-
erties for particular families of trajectories are obtained through a fast post-processing. For
some applications, the complexity of the method is attractive. Such applications include
mono-static and bi-static RCS computations, antenna coupling problems, and travel-time
computations of seismic waves when the solution is sought for many different sources.
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