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Abstract. In this paper, we present a fast time adaptive numerical method for interface
tracking. The method uses an explicit multiresolution description of the interface, which is
represented by wavelet vectors that correspond to the details of the interface on different
scale levels. The complexity of standard numerical methods for interface tracking, where
the interface is described by N marker points, is O(N/∆t), when a time step ∆t is used.

The methods that we propose in this paper have O(tol−1/p log N +N log N) computational
cost, at least for uniformly smooth problems, where tol is some given tolerance and p is
the order of the time stepping method that is used for time advection of the interface. The
adaptive method is robust in the sense that it can handle problems with both smooth and
piecewise smooth interfaces (e.g. interfaces with corners) while keeping a low computational
cost. We show numerical examples that verify these properties.
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1. Introduction

Propagating interfaces occur in many applications. Some examples are wave propagation,
multiphase flow, crystal growth, melting, epitaxial growth or flame propagation. Therefore,
development of fast and accurate numerical methods for interface tracking is very important.
The interface can be a curve or a surface in R3 or a curve in R2 that moves with a given
propagation velocity F . It is represented either explicitly or implicitly, depending on the
numerical method that is used for its evolution. For instance, standard front tracking methods
are based on explicit representation of the interface. The interface is in this case described
by a set of marker points and their evolution represents the dynamics of the interface; see
for example [14, 15, 29, 30] for different applications. An implicit interface representation is
used for example in the level set method, [21]. The interface is then represented by the zero
level set of a continuous function and its time evolution is described by a partial differential
equation. We should also mention the segment projection method [28], which is a compromise
between the front tracking and level set methods, where the interface is divided into segments
chosen such that they can be given as functions of one variable.

In this paper we develop a fast method for a subclass of interface tracking problems,
in which the local velocity of the interface only depends on the location, not on the local
shape of the interface. Examples of such applications are found for instance in geophysics
where tracking of high frequency wave fronts is common, [30, 18]. The method uses an
explicit multiresolution representation of the interface. It is based on previous work in
[23, 24, 25]. See also [8]. The interface is represented by wavelet vectors that correspond to
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the details of the interface on different scale levels. It is well-known that, for a fixed smooth
curve or surface, the size of the wavelet vectors decays fast as the scale becomes finer, [7].
Moreover, the size of their time derivatives decays in the same way [25], which means that
the finer scales of the interface evolve more slowly than the coarse scales. Hence, it would
be computationally advantageous to use shorter time steps for coarse scales and longer time
steps for fine scales. This is the idea behind the fast interface tracking methods developed
in [24, 25]. The computational cost of these methods is significantly reduced, compared to
standard front tracking and level set methods.

We assume that the interface can be parameterized so that, for a fixed time t, it is described
by the function x(t, s) : R+ × Rq → Rd, with the parameterization s ∈ Ω ⊂ Rq and q < d.
We consider the case when the interface is moving in a time-varying velocity field that does
not depend on the front itself. Then x(t, s) satisfies the parameterized ordinary differential
equation (ODE)

(1)
∂x(t, s)
∂t

= F (t, x(t, s)), x(0, s) = γ(s), s ∈ Ω,

where F (t, x) : R+ × Rd → Rd is a given function representing the velocity field and γ(s) :
Rq → Rd is the initial interface. We will consider curves in two dimensions, d = 2, q = 1 and
surfaces in three dimensions, d = 3, q = 2.

Using standard front tracking methods in 1D, one would approximate xj(t) = x(t, sj) and
use a numerical method for ODEs to solve

(2)
dxj(t)
dt

= F (t, xj(t)), xj(0) = γ(sj),

where s0 < s1 < . . . < sN is a discretization of Ω. Then, assuming N marker points xj(t),
the cost of such a method would be O(N/∆t) where ∆t is the time step. As for the standard
level set method, the cost is O(N2/∆t) if the full domain is discretized in 2D with N points
in each coordinate direction. There are, however, several clever versions that localize the
computations around the interface, e.g. local level set methods [22], and tree methods [26, 27].
These bring down the complexity to O(N logN/∆t), or almost the same as front tracking.
As a comparison, the cost of the fast method described in [24, 25] is O(log(N)/∆t + N).
The O(logN/∆t) is the cost to propagate the interface. It is thus essentially the same as the
cost to propagate just one marker point. The O(N) part of the complexity comes from the
reconstruction of the interface from the wavelet vectors. The cost of the fast time adaptive
method that we propose in this paper is O(logN/tol1/p+N logN), where tol is some given
tolerance and p is the order of the numerical ODE method used for time propagation.

The idea behind the method presented in this paper is similar to the idea behind the
methods presented in [24, 25], i.e. to use longer time steps for finer scales and shorter time
steps for coarser scales. In [24, 25] a time step doubling technique was used for the interface
evolution; the time step was doubled at every scale level. In that way all wavelet vectors
within a level are moved using the same time step, but the time step varies for different
scale levels. We will refer to this version of the fast method as the basic method. The
technique assumes that the wavelet coefficients, within the same scale level, change with an
approximately uniform rate in time, which is not always the case in practice. For instance,
for problems in which the interface has corners, the wavelet vectors in a neighborhood of the
corner, and their time derivatives, decay much slower with scale level than in the smooth
regions. The basic method is not suitable for such problems and will fail to approximate the
front accurately. We have to use other methods. In this article we propose to build a fast
method on an adaptive ODE solver, instead of an ODE solver with a uniform time step that
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is precisely doubled at every scale level, as in the basic method. The adaptivity mechanism is
a standard one where the local truncation error is estimated and used to choose the time step,
for each wavelet vector individually. The main new difficulty is the need for an additional
interpolation step, which must be done recursively to maintain accuracy.

We emphasize the difference from the methods in [24, 25]: Instead of using a time step
that is simply predetermined by the asymptotic rate of change of the wavelet vectors, we
use a more precise choice of time step, that is determined automatically from the estimated
local truncation error. For smooth problems, the methods would give roughly the same time
steps. However, the adaptive method is robust in the sense that it can handle problems with
both smooth and non-smooth interfaces (i.e. interfaces with corners) while maintaining a
low computational cost. Thus, for practical applications adaptivity is essential. Indeed, in
the numerical examples presented in Section 6 the adaptive method clearly outperforms the
basic method for a variety of problems.

Since we have one time step per wavelet vector the method we propose falls into the
general category of multirate or multiadaptive ODE methods; see, for instance [19, 13, 4, 16].
Our method is tailored to the wavelet ODE system. It is a proof of concept that shows the
potential of using this kind of adaptive methods. More elaborate multirate and multiadaptive
methods for this problem can doubtlessly be developed.

One should finally note that although this method is fast, it is not as versatile as, for
instance, the level set method, which is much more suitable for handling topological changes
in the interface; like with other front tracking based algorithms, this would be difficult with
the proposed method.

The article is organized as follows. In Section 2 a brief description of subdivision schemes is
given. Section 3 presents the multiresolution representation of the interface and the governing
ODEs are derived. In Section 4 we introduce the notations and give a short overview of
the method described in [24]. Our adaptive method is subsequently described in detail in
Section 5. Numerical experiments are presented in Section 6. Section 7 concludes the paper
and discusses some open problems.

2. Subdivision Schemes

Subdivision is a procedure to iteratively create smooth curves and surfaces from an initial
mesh, [3, 5, 6, 11]. Let x = {xk} be a sequence. We consider here local, interpolatory,
stationary subdivision schemes. They are characterized by a mask, a finite sequence a = {a`},
which defines a bounded linear operator S : `∞ 7→ `∞ as follows

(3) (Sx)2k+1 =
∑
`

a`xk+`, (Sx)2k = xk.

The width B of S is defined by B = 2 max{|`|; a` 6= 0}. We assume henceforth that the
number of non-zero elements in a is even, so that a` is non-zero only for ` ∈ [−B/2+1, B/2].
To build a smooth function, we start from a sequence x0 = {x0,k} and associate to it a function
f0(x) which is piecewise linear and interpolates x0,k on the integer grid, f0(k) = x0,k. We
can then apply the subdivision scheme S iteratively and define xj for all j > 0 by

xj+1 = Sxj .

Sequences at level j > 0 similarly represent samples of piecewise linear functions fj(x) on
grids with the increasingly fine spacing 2−j . More precisely, xj = {xj,k} is associated with the
grid sj , where sj,k = k2−j , and xj,k = fj(sj,k). Note that fj+1 interpolates fj on the coarser
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grid: fj+1(sj,k) = fj(sj,k) since sj+1,2k = sj,k. For a large class of subdivision operators S,
the process converges, fj → f where f is a smooth function.

The order of the subdivision scheme S is the largest q such that SP (k) = P (k/2) for
all polynomials P of degree p < q, where k is the linear sequence {k} and P is applied
elementwise, P (k) = {P (k)}.

A special example of a subdivision scheme is the midpoint interpolating scheme S2 where
(S2x)2k+1 = (xk + xk+1)/2. Hence the mask is [1/2, 1/2]. This scheme has order q = 2 and
yields piecewise linear limit functions. Some examples of masks for higher order interpolating
subdivision schemes are:

• “4-point” subdivision scheme, order q = 4[
1
16
{−1, 9, 9,−1}

]
,

• “6-point” subdivision scheme, order q = 6[
1

256
{3,−25, 150, 150,−25, 3}

]
,

• “8-point” subdivision scheme, order q = 8[
1

2048
{−5, 49,−245, 1225, 1225,−245, 49,−5}

]
.

These are called the Lagrange subdivision schemes and have q = B. We will use Sq to denote
the Lagrange subdivision scheme of order q.

Remark 2.1. In the description above the subdivision operators act on infinite or periodic
sequences. In numerical computations one must often restrict them to finite length sequences,
corresponding to samples of functions on bounded intervals. The subdivision operators can
then be modified near the boundaries, such that a different sequence a is used in (3) for those
points. For interpolatory schemes, a modification is necessary when the width B exceeds two.
(Hence, S2 does not have to be modified.) By using an appropriate a, high order schemes
can then still be constructed. For instance, in the case of the 6-point scheme, the mask
above is replaced by the following skewed masks at k = 0 and k = 1,

(S6x)1 =
1

256
(63x0 + 315x1 − 210x2 + 126x3 − 45x4 + 7x5) ,(4)

(S6x)3 =
1

256
(−7x0 + 105x1 + 210x2 − 70x3 + 21x4 − 3x5) ,

and similar at the right boundary. An example with these masks is given in Figure 10.

3. Multiresolution Description of the Interface Propagation

In standard front tracking algorithms, marker points are used to represent the interface.
We will, instead, consider a multiresolution representation, which involves a hierarchy of
increasingly detailed meshes. Each new mesh level is computed from the previous one by
first predicting a new point using a subdivision schemes, and then correcting the predicted
point by a wavelet (or detail) vector. Only the wavelet vectors need to be stored and due to
the curve or surface smoothness most wavelet vectors will be small.

To be precise, we describe the curve x(t, s) where 0 ≤ s ≤ 1, as follows. In particular,
this can be a closed, 1-periodic, curve. We introduce the parameter indices sj,k and define

xj,k(t) := x(t, sj,k), 0 ≤ k ≤ 2j , sj,k = k2−j .
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Figure 1. The notation for a simple interface with J = 3 levels and midpoint
subdivision S = S2. Bold line is the interface. Wavelet vectors wj,k are
indicated by semibold red lines and point markers xj,k by filled circles.

Note that xj+1,2k = xj,k and that, for a fixed j, the markers {xj,k} will be a discretization of
the interface with a level of detail that increases with the fixed j-value. We assume that we
start from a given fine discretization with 2J points on the interface, which thus corresponds
to level J . We let xj(t) = {xj,k(t)}2

j

k=0 and for j ≤ J define the wavelet vectors

(5) wj+1(t) = xj+1(t)− Sxj(t),

where S is an interpolatory subdivision operator, for example the midpoint scheme. This
is done recursively and gives an alternative description of the interface in terms of x0(t)
together with wj(t) for j = 1, . . . , J . Note that wavelet vectors wj,k with even k are zero
since S is interpolatory. Moreover, marker points xj,k have in general several aliases, but
wavelet vectors with odd k have unique names. See Figure 1 for an example.

The wavelet sequences wj(t) =: {wj,k(t)}2
j−1
k=0 can be computed from the original discretiza-

tion xJ(t) at an O(N) cost, where N = 2J is the number of discretization points. Similarly,
with an inverse wavelet transform based on reversing the recursion in (5), the points xJ(t) can
be computed from {wj} and x0 at a O(N) cost. Moreover, for a smooth x(t, s) the wavelet
vectors decay in j as 2−jq where q is the order of the subdivision scheme S, see e.g. [25]. The
fast decay of the wavelet vectors gives the representation good compression properties.

For the dynamic case, we insert (5) in (1) to obtain

dwj+1(t)
dt

= F (t,xj+1(t))− SF (t,xj(t)) = F (t, Sxj(t) + wj+1(t))− SF (t,xj(t)).

Setting
G(t,x,w) = F (t, Sx + w)− SF (t,x),
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we thus have the following alternative system of ODEs

(6)
dwj+1(t)

dt
= G(t,xj(t),wj+1(t)),

dx0(t)
dt

= F (t,x0(t)),

which together with (5) describe the dynamics of the system.
In [25] it was shown that also the time derivatives of wj(t) decay fast with j, and faster

the higher the order of S. More precisely, if x(t, s) ∈ Cq+`([0, T ]× [0, 1]; Rd) and S is a linear,
stationary and interpolatory subdivision operator of order q then

(7)
∣∣∣∣d`wj(t)

dt`

∣∣∣∣ ≤ C`(T )2−jq, 0 ≤ t ≤ T.

Hence, both the wavelet vectors and their derivatives decay as 2−qj . That means that the
fine spatial scales change more slowly than the coarse spatial scales. Thus, it is possible to
use longer time steps for the fine scales. This is exactly the idea behind the method in [24, 25]
that will be described in the next section: use shorter time steps at lower levels and longer
time steps at higher levels. Note also that fine scales depend on coarser scales, but there is
no dependence in the other direction. This means that we can compute the different scale
levels sequentially from coarse to fine, one after the other. This is the same idea that is used
in the inverse wavelet transform.

4. Basic Fast Numerical Method

In this section, we give a short overview of the fast interface tracking method described
in [24, 25]. Henceforth, we shall refer to this method as the basic method. The interface is
described using the multiresolution representation described above. The ODE (6) together
with (5) is solved using a time-step doubling technique, i.e. the time step is doubled at every
level j such that we use longer time steps for larger j.

We start by writing down the equations for the wavelet vectors in component form. Letting
S being an interpolatory subdivision scheme with mask {a`} and width B we have

(8) (Sxj−1(t))2k+1 =
B/2∑

`=−B/2+1

a`xj−1,k+`(t), (Sxj−1(t))2k = xj−1,k(t),

and

xj,2k+1(t) = (Sxj−1(t))2k+1 + wj,2k+1(t),(9)

xj,2k(t) = xj−1,k(t).

Since (Sxj−1(t))2k+1 only depends xj−1,`(t) with ` ∈ [k−B/2+1, k+B/2] the componentwise
form of the ODEs (6) for the wavelet vectors can be written

dwj,2k+1(t)
dt

= G
(
t, xj−1,k−B/2+1(t), . . . , xj−1,k+B/2(t), wj,2k+1(t)

)
,(10)

dx0,k(t)
dt

= F (t, x0,k).(11)

Recall that the even wavelet vectors wj,2k(t) are identically zero since S is interpolatory.
For the numerical solution of these equations we must restrict ourselves to a bounded

interface, which is described by a finite number of unknowns; for each level j the k-index is
restricted to the set k ∈ Ij = 0, . . . , 2j , and the level j is bounded by a max level denoted
J . We assume that S is well-defined also for this case. Note that, if B > 2 we must then
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either modify S close to the end points of Ij , by using a different mask there, or to consider
periodic (closed) interfaces where xj,k+2j = xj,k.

To solve (10) and (11) we apply standard ODE methods, where we use time-steps, denoted
∆tj,k, which vary with j, the level, and in general also with k, the spatial position1. We
introduce the time levels

tnj,k = n∆tj,k,

and the numerical approximations of marker points and wavelets

xnj,k ≈ xj,k(tnj,k), wnj,k ≈ wj,k(tnj,k),

where j = 0, . . . , J and k ∈ Ij . Since we are interested in computing the solution up to
time T , we also define the integers Mj,k such that T = Mj,k∆tj,k = t

Mj,k

j,k . In the basic time
doubling strategy we let

∆tj,2k+1 = 2∆tj−1,k, ∆tj,2k = ∆tj−1,k, j = 1, . . . , J, k ∈ Ij−1,

and

∆t0,0 = ∆t1,1 = ∆t,

where ∆t is called the reference time step. Hence, the time step used for wavelets wj,2k+1 is
doubled in each level, but is constant for all such wavelets within the same level j. For each
new level, the marker points corresponding to this level is reconstructed from the marker
points on the previous level and the computed wavelets according to (9). Note that even
marker points are simply copied from the previous level, xnj,2k = xnj−1,k, and even wavelet
vectors are zero, wnj,2k = 0.

We will call tj,k = {tnj,k}
Mj,k

n=0 the time vector for point xj,k and wavelet wj,k. It contains
the time levels on which xj,k and wj,k are approximated. See Figure 2 for an example. Since
∆tj,2k = ∆tj−1,k we have tnj,2k = tnj−1,k and therefore tj,2k = tj−1,k. Note also that in the
time doubling case we have the relationship

(12) tnj,2k+1 = t2nj−1,k.

The overall scheme is thus built on a pairing of a subdivision scheme and a numerical
time-stepping scheme. In [25, Theorem 5.1] it was shown that the overall scheme is stable if
the order of the subdivision q is strictly larger than the order of the time-stepping p, in the
time doubling case. We now describe the scheme in more detail for two particular pairings:

Forward Euler with midpoint method (FE–S2). Here the first order Forward Euler method
(p = 1) is coupled with the second order midpoint method (q = 2). On the zeroth level, we
do

xn+1
0,k = xn0,k + ∆t0,kF (tn0,k, x

n
0,k), k ∈ {0, 1},

for n = 0, 1, . . . ,M0,k − 1, and at level j = 1, . . . , J ,

wn+1
j,2k+1 = wnj,2k+1 + ∆tj,2k+1G(tnj,2k+1, x

2n
j−1,k, x

2n
j−1,k+1, w

n
j,2k+1), k ∈ Ij−1,

1Eventhough the time step is constant in k for the basic method described here, we keep this notation for
easier comparison with the adaptive method below.
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Figure 2. Time vectors tj,k in time-doubling case. Time levels in tj,k are
indicated by horizontal lines in the figure, with t = 0 at the bottom, and
t = T at the top. For odd wavelet vectors on level j, approximated at time
levels in tj,2k+1 the surrounding points on level j − 1, are approximated at
matching time levels in tj−1,k.

for n = 0, 1, . . . ,Mj,2k+1 − 1. The point markers xnj,k are reconstructed from the wavelet
vectors and marker points on the previous level via

xnj,2k+1 =
x2n
j−1,k + x2n

j−1,k+1

2
+ wnj,2k+1,(13)

xnj,2k = x2n
j−1,k.

Runge–Kutta 4 with 6-point scheme (RK4-S6). Here the fourth order Runge–Kutta method
(p = 4) is coupled with the sixth order Lagrange subdivision scheme (q = 6). On the zeroth
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level, we do

ξ1 = F (tn0,k, x
n
0,k),

ξ2 = F (tn+1/2
0,k , xn0,k + ξ1∆t0,k/2),

ξ3 = F (tn+1/2
0,k , xn0,k + ξ2∆t0,k/2),

ξ4 = F (tn+1
0,k , x

n
0,k + ξ3∆t0,k),

xn+1
0,k = xn0,k +

∆t0,k
6

(ξ1 + 2ξ2 + 2ξ3 + ξ4),

for n = 0, 1, . . . ,M0,k − 1, k ∈ {0, 1}, and at level j = 1, . . . , J ,

ξ1 = G
(
tnj,2k+1, {x2n

j−1,`}k+3
`=k−2, w

n
j,2k+1

)
,

ξ2 = G
(
t
n+1/2
j,2k+1, {x

2n+1
j−1,`}

k+3
`=k−2, w

n
j,2k+1 + ξ1∆tj,2k+1/2

)
,

ξ3 = G
(
t
n+1/2
j,2k+1, {x

2n+1
j−1,`}

k+3
`=k−2, w

n
j,2k+1 + ξ2∆tj,2k+1/2

)
,

ξ4 = G
(
tn+1
j,2k+1, {x

2(n+1)
j−1,` }

k+3
`=k−2, w

n
j,2k+1 + ξ3∆tj,2k+1

)
,

wn+1
j,2k+1 = wnj,2k+1 +

∆tj,2k+1

6
(ξ1 + 2ξ2 + 2ξ3 + +ξ4),

for n = 0, 1, . . . ,Mj,2k+1 − 1, k ∈ Ij−1. The point markers xnj,k are reconstructed from the
wavelet vectors and marker points on the previous level via

xnj,2k+1 =
3∑

`=−2

a`x
2n
j−1,k+` + wnj,2k+1,(14)

xnj,2k = x2n
j−1,k,

where {a`} is the mask for S6 given in Section 2.
Note that in order to evaluate the reconstruction step (9) accurately, the point markers

xj−1,k−B/2+1(t), . . . , xj−1,k+B/2(t) and wj,2k+1(t) that appear in the right hand side, should
all be approximated on the same time level. When the time doubling strategy is used, this
is never a problem, since by (12) we have tj,2k+1 ⊂ tj−1,k. Approximations of xj−1,k(t)
are therefore always available on the same time levels as approximations of wj,2k+1(t), cf.
Figure 2. In fact, for Runge–Kutta 4, more is needed, since G is then evaluated also at half
time steps, tn+1/2

j,2k+1. But, still by (12), we have tn+1/2
j,2k+1 = t2n+1

j−1,k ∈ tj−1,k, and this is again not
a problem with the time doubling strategy. For the general adaptive case described below,
however, tj,2k+1 6⊂ tj−1,k and interpolation must instead be used, cf. Figure 4.

4.1. Cost and Accuracy. Let us now give the cost and the approximation error estimate
for the methods above. Suppose the total number of points is N = 2J where J is the number
of levels. The cost at each level is simply the number of wavelets {wj,2k+1} to compute
multiplied by the number of time steps per ODE, bT/∆tj,2k+1c. Noting that by construction
∆tj,2k+1 = 2j∆t, the total cost of propagating the interface is then the sum of the costs on
every level, i.e.

(15) cost ∼
J∑
j=0

2j∑
k=0

⌊
T

∆tj,2k+1

⌋
∼ T

J∑
j=0

2j

2j∆t
∼ O

(
log2N

∆t

)
.
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The cost of the method is the sum of the total propagation cost and the cost for reconstructing
the interface at the final time which is O(N). This gives the cost O(log2N/∆t+N). Hence,
this is significantly improved as compared to the standard methods where the corresponding
cost is O(N/∆t).

Let us now consider the approximation error for a p-th order method. We use the estimate
(7) that wavelet vectors and their derivatives decay as 2−qj , where q is the order of the
subdivision scheme used to compute predicted points and j is the level. Let τnj,k be the
local truncation error in time step n for wavelet coefficient k at level j, which we assume is
proportional to the p + 1-th derivative of the exact solution. Then, assuming stability, the
global error is formally estimated as

εJ ≤
J∑
j=0

[T/∆tj ]∑
n=0

max
k∈Ij
|τnj,2k+1| ≤

J∑
j=0

[T/∆tj,2k+1]∑
n=0

max
k∈Ij

∣∣∣∣∆tp+1
j

dp+1wj,2k+1

dtp+1

∣∣∣∣(16)

(7)

≤ CT∆tp
J∑
j=0

2(p−q)j ≤ C ′∆tp.

In the last step we assumed p < q, i.e. a stable pairing, so that the sum is convergent. The
estimate is then independent of the number of points N and the accuracy is O(∆tp), where
p = 1 for the FE–S2 method (q = 2) and p = 4 for the RK4–S6 method (q = 6). This result
is proved rigorously in [25, Theorem 5.1].

4.2. Surfaces in Three Dimensions. The method described above for curves in two di-
mensions can be generalized to the case where the interface is a surface in three dimensions.
We only give a brief account of this here and refer to [24] for more details.

The multiresolution description of a curve given in Section 3 is replaced by a multiresolution
of a triangulated surface, where we assume that finer triangulations are obtained precisely by
splitting each triangle on level j into four sub triangles on level j + 1. Hence, we assume for
simplicity that there are no interior extra-ordinary vertices on level j ≥ 1. The relationship
between triangles, marker points and wavelet vectors on level j and j + 1 are illustrated in
Figure 3 and given by the steps:

(1) Start from a triangulation on level j, with two adjacent triangles; see Figure 3a.
(2) On level j+1 new nodes appear roughly in between old nodes. Let the wavelet vectors

be the difference between new nodes on level j + 1 and the average of nodes on level
j; see Figure 3b.

(3) Connect the new points to form a refined triangulation on level j + 1; see Figure 3c.

This multiresolution scheme gives a ∼ 2−2j decay of the wavelet vectors and their time
derivatives as the level j increases. Multiresolution schemes can also be built on higher
order subdivision schemes for surfaces like Butterfly [12, 31], Loop [20] and Catmull–Clarke
[2], which would give faster decay. Once the multiresolution description is given, the fast
interface tracking method works in the same way as for curves. Formally, the error is still
controlled as in (16). However, the number of wavelet vectors increases faster with j for
surfaces than for curves: ∼ 22j (four sub triangles) instead of ∼ 2j (one intermediate point).
Therefore, the cost increases faster than in (15), although still slower than for standard
interface tracking. See [24] for a longer discussion of this.
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(a) Level j (b) Wavelet vectors and new nodes
on level j + 1

(c) Level j + 1

Figure 3. Multiresolution description of a surface; definition of the wavelet vectors.

5. Time Adaptive Method

In the basic method described above the time step was doubled at every level j. This
was motivated by the known asymptotic decay rate of the wavelet vectors and works well
when wavelets at the same level all change in time at approximately the same rate. However,
when this is not true, the method will be inefficient, since in order to maintain accuracy, the
reference time step has to be based on the fastest rate of change. Moreover, if the interface is
only piecewise smooth, then, in a neighborhood of the non-smooth points, the wavelets and
their time derivatives will decay slower than elsewhere. The error will then not be bounded
when N increases, as in (16), and the basic method will not work.

In this section we propose an adaptive time stepping scheme to tackle the problems of
the basic method. In the new numerical method there is no predetermined doubling of the
time step in each level. Instead, the method selects the best time step itself, based on the
local rate of change of the computed wavelet vector solution. In general, it will therefore pick
longer time steps for higher levels, but only if justified by the actual solution trajectory. In
principle, such an adaptive numerical method will perform approximately the same as the
basic method in smooth cases where the wavelets decay uniformly in space, but it would be
more robust and optimal in cases where the decay is heterogeneous. It will also be able to
handle piecewise smooth interfaces, including e.g. interfaces with corners.

5.1. Adaptive ODE Solver. We will use a rudimentary adaptive ODE solver as basis for
the time adaptive fast method. The method is taken from [17]. There are many more
advanced adaptive methods, such as embedded Runge-Kutta methods [9, 10] and duality
based adaptive methods [1]. For proof of concept, this simple method will, however, be
sufficient.

Consider the general initial value problem

(17) y′ = f(t, y), t ∈ [0, T ], y(0) = y0.

The numerical approximation is denoted

yn ≈ y(tn), tn =

{
0, n = 0,∑n−1

i=0 ∆ti, n ≥ 1,

where ∆ti is the i:th time step. The adaptivitiy is governed by an estimate of the local
truncation error τn; the goal is to have approximately the same contribution to the total



12 JELENA POPOVIC1 AND OLOF RUNBORG2

error in each step, meaning that the local truncation error scaled by the local time step,
should be approximately constant, equal to a prescribed tolerance tol,

τn

∆tn
≈ tol.

The adaptive method is built on an explicit one-step method Φ(∆t, t, y),

yn+1 = yn + ∆tnΦ(∆tn, tn, yn).

To estimate the local truncation error τn in step n we use a time step ∆t∗ which we initially
set to equal the current time step ∆tn. (The initial value of ∆t∗ at n = 0 must be provided
by the user.) We then start by taking one step with ∆t∗,

(18) y1 = yn + ∆t∗Φ(∆t∗, tn, yn).

Next, we make two steps with half the time step ∆t∗/2,

(19) ym = yn +
1
2

∆t∗Φ
(

1
2

∆t∗, tn, yn
)
, y2 = ym +

1
2

∆t∗Φ
(

1
2

∆t∗, tn +
1
2

∆t∗, ym

)
.

From these two values we estimate the local truncation error for y2 as

τ∗ ≈
y2 − y1

2p − 1
,

where p is the order of the method Φ. If |τ∗|/∆t∗ > tol the step is rejected. Let τ̃∗ be
the corresponding local truncation error with time step ∆t̃∗ instead of ∆t∗. Based on the
assumption that τ∗ ≈ C(∆t∗)p+1 for some C independent of ∆t∗, we get that

τ̃∗

∆t̃∗
≈ C(∆t̃∗)p ≈

τ∗(∆t̃∗)p

(∆t∗)p+1
≈ tol if (∆t̃∗)p =

(∆t∗)p+1tol

|τ∗|
.

We therefore reduce the time step by a factor β,

∆t∗ → β∆t∗, β =
(

0.9∆t∗tol

|τ∗|

)1/p

,

and repeat the calculations above of y1, y2 and τ∗. Eventually we get |τ∗|/∆t∗ < tol and
the step is accepted. We then finally set

yn+1 = y2 − τ∗, ∆tn+1 = β∆t∗, β =
(

∆t∗tol

|τ∗|

)1/p

.

In practical calculations we cap the rate of time step change in each iteration to five, by
modifying the β factors as β → max(min(β, 5), 1/5).

In this paper we will use two one-step methods: Forward Euler (p = 1) and Runge–Kutta
4 (p = 4). Note that in the adaptive method we only consider absolute errors, not relative
errors. This is important for the efficiency of the method since we exploit the fact that small
errors for small wavelet coefficients can be neglected.

5.2. Adaptive Method Applied to the Wavelet ODEs. In this section, we describe
how the time adaptive ODE solvers in Section 5.1 can be applied to (6) together with (5),
i.e. to the ODEs used in the basic fast interface tracking method. Both a Forward Euler and
a Runge-Kutta 4 version will be shown. Note that for these schemes the time step is chosen
by the methods themselves; it is not known in advance as in the basic method. We choose
only ∆t0 and in general tn 6= n∆t0.

To describe the methods, we use the same notation as for the basic method, with the
difference that the time steps are also indexed by n as in Section 5.1. Note that the time
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step will in general change in time (n), by level of detail (j) but also vary for different points
and vectors at the same level (k). We define

tnj,k =
n−1∑
i=0

∆tij,k, t
n+1/2
j,k = tnj,k +

1
2

∆tnj,k, T =
Mj,k−1∑
i=0

∆tij,k = t
Mj,k

j,nK ,

where ∆tij,k is the local time step and the integer Mj,k is the length of the time vector

tj,k = {tnj,k}
Mj,k

n=0 .
In the same way as for the basic method, we solve (6) level by level. We first calculate

the edge points x0(t) = {x0,0(t), x0,1(t)} by applying the adaptive method to the right ODE
in (6) in exactly the same way as in the previous section. Next, we compute wavelet vectors
w1(t), w2(t), etc. using the adaptive method applied to the left ODE in (6).

A major difficulty when solving for wj(t) compared to the basic method is the fact that
wavelet vectors are in general given at different time levels, see Figure 4. This makes the
reconstruction step more difficult. For example, in order to calculate {wnj,2k+1} with the
FE–S2 scheme we need to evaluate the function G at the time levels {tnj,2k+1} = tj,2k+1 and
at the neighboring points on the previous level, xj−1,k, . . . , xj−1,k+1. However, since wavelets
on the previous level were computed at time levels {tnj−1,k} = tj−1,k and as mentioned above
tj,2k+1 6⊂ tj−1,k (see Figure 4) we cannot find them by the simple reconstruction formula (13).
For RK4–S6 we need to evaluate G at all the points xj−1,k−2, . . . , xj−1,k+3 and also at half
time-steps tn+1/2

j,2k+1, which means (14) cannot be used.
The solution to the reconstruction problem is to use interpolation. It is, however, important

to only interpolate wavelets wj(t), not points xj(t), in order to avoid large errors. Indeed,
the size of the interpolation error for a p-th order scheme depends on the p-th derivative of
the interpolated function multiplied by the local time step to the power of p. Recall that
wj(t) and xj(t) are typically given on time levels separated by big time steps, when j is
large. Interpolation would therefore introduce large errors for xj(t). However, interpolating
wavelets wj(t) is safe since, by the method’s construction, the local time steps and the size
of the derivatives of the wavelet vectors are balanced such that their product is small.

Let us now describe the interpolation. We denote the piecewise cubic interpolation operator
by Π. Then we set

(20) x̄0,k(t) =
(∏
{{xn0,k}

M0,k

n=0 }
)

(t), w̄j,k(t) =
(∏
{{wnj,k}

Mj,k

n=0 }
)

(t),

and
x̄0(t) = {x̄0,k(t)}k∈I0 , w̄j(t) = {w̄j,k(t)}k∈Īj .

Since for the exact solution we have the reconstruction formula

xj(t) = wj(t) + Sxj−1(t) = wj(t) + S(wj−1(t) + Sxj−2(t))

= wj(t) +
j−1∑
i=1

Sj−iwi(t) + Sjx0(t).

we define the interpolated approximation x̄j(t) for j ≥ 1 as

(21) x̄j(t) = w̄j(t) +
j−1∑
i=1

Sj−iw̄i(t) + Sjx̄0(t), x̄j(t) = {x̄j,k(t)}k∈Ij .
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Figure 4. Time vectors tj,k in adaptive case. Time levels in tj,k are indicated
by horizontal lines in the figure, with t = 0 at the bottom, and t = T at the
top. In order to calculate wnj,2k+1 values of xj−1,k and xj−1,k+1 are needed at
time level tnj,2k+1. Since in general tj,2k+1 6⊂ tj−1,k these are not available from
earlier calculations, but need to be interpolated.

Hence, we only interpolate x0 and wavelets wj . To do this we use the full hierarchical
description to reconstruct points. We stress again that

x̄j,k(t) 6=
(∏
{{xnj,k}

Mj,k

n=0 }
)

(t), j ≥ 1.

Finally, we give the details of the implementation of the adaptive methods for our problem.

Adaptive Forward Euler with midpoint method (A–FE–S2). On the zeroth level, we apply the
described adaptive FE method to

(22)
dx0,k

dt
= F (t, x0,k), k ∈ {0, 1},

and at level j ≥ 1 to

(23)
dwj,2k+1

dt
= G(t, xj−1,k, xj−1,k+1, wj,2k+1), k ∈ Ij−1.



ADAPTIVE FAST INTERFACE TRACKING METHODS 15

When the function G is evaluated, {xj−1,l}k+1
l=k have to be interpolated in the way described

above. Hence, the main Forward Euler step (18) in the adaptive method is implemented as

∆t∗ = ∆tnj,2k+1, y1 = wnj,2k+1 + ∆t∗G(tnj,2k+1, {x̄nj−1,l}k+1
l=k , w

n
j,2k+1)

where n ≤ Mj,2k+1 − 1 and x̄nj−1,k = x̄j−1,k(tnj,2k+1). The steps (19) are implemented analo-
gously.

Adaptive Runge–Kutta 4 with 6-point scheme (A–RK4–S6). On the zeroth level, we apply
the described adaptive RK 4 method to (22) and at level j ≥ 1 to (23). Again {xj−1,l}k+3

l=k−2

have to be interpolated and the main adaptive step (18) reads

∆t∗ = ∆tnj,2k+1,

ξ1 = G(tnj,2k+1, {x̄nj−1,l}k+3
l=k−2, w

n
j,2k+1)

ξ2 = G(tn+1/2
j,2k+1, {x̄

n+1/2
j−1,l }

k+3
l=k−2, w

n
j,2k+1 + ξ1∆t/2)

ξ3 = G(tn+1/2
j,2k+1, {x̄

n+1/2
j−1,l }

k+3
l=k−2, w

n
j,2k+1 + ξ2∆t/2)

ξ4 = G(tn+1
j,2k+1, {x̄

n+1
j−1,l}

k+3
l=k−2, w

n
j,2k+1 + ξ3∆t)

y1 = wnj,2k+1 +
∆t∗

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4),

where n ≤ Mj,2k+1 − 1 and x̄nj−1,k = x̄j−1,k(tnj,2k+1). The steps (19) use interpolated values
for {xj−1,l}k+3

l=k−2 in the same way.
The implementation of the adaptive Forward Euler method for surfaces, when the interface

is represented by a triangulation as described in the last part of the previous section, do not
differ from the implementation of the adaptive Forward Euler method for curves when the
two point subdivision scheme is used to represent the interface. Higher order subdivision
schemes and the adaptive Runge-Kutta method for surfaces are not considered in this paper.

5.3. Cost and Accuracy. We will here make a simplified analysis of the cost and accuracy
for the adaptive method, when it is applied to an idealized uniformly smooth problem where

(24)
dpwj,k(t)
dtp

≈ c2−jq

is a good approximation for all t, j and k. For simplicity, we ignore the interpolation error
in the analysis.

For the cost, we first consider the cost of taking one step in the numerical method. This
cost is dominated by the new interpolation step (21). We note that for a subdivision scheme
S, the repeated application Sj is a local operation, and in its matrix representation each row
has at most a fixed number of non-zero entries, which is independent of j. For instance, if
S = S2 then, using (5) we obtain

x̄j,2k+1(t) = w̄j,2k+1(t) +
1
2

(x̄j−1,k(t) + x̄j−1,k+1(t))

= w̄j,2k+1(t) +
1
2

(w̄j−1,k(t)− Sx̄j−2(t) + w̄j−1,k+1(t)− Sx̄j−2(t))

=
j∑
`=0

2`∑
m=0

α`,m,j,kw̄`,m(t) + α0,0,j,kx̄0,0(t) + α0,1,j,kx̄0,1(t),
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where the number of non zero {α`,m,j,k} for fixed (`, j, k) is at most two. Consequently, the
cost to evaluate (21) for some xj,k(t) is directly proportional to the length j of the sum, which
is bounded by J = log2N . Hence, the interpolation cost and therefore the cost of taking one
step is of the order O(logN).

Furthermore, the adaptive method will strive to select a time-step ∆tnj,k such that the local
truncation error satisfies

(25)
τnj,k

∆tnj,k
≈ (∆tnj,k)

p
dp+1wj,k(tnj,k)

dtp+1
≈ tol.

From this relation and the assumption (24) we get the time step size used by the adaptive
method

(26) ∆tnj,k ∼ tol1/p2qj/p,

which is now (approximately) independent of k and n. In the same way as in (15), upon
including the logN -factor, we then get the following expression for the propagation cost

cost ∼
J∑
j=0

2j
⌊

T

∆tnj,k

⌋
logN = T logN

J∑
j=0

2j(1−q/p)tol−1/p ∼ tol−1/p logN,

as long as q > p, which is the same stability condition as in the basic method. In addition
to the propagation cost, there is also a reconstruction cost from interpolating all N points at
the final time. Since each interpolation cost O(logN), we obtain the total cost

O(tol−1/p logN +N logN).

Note that if the solution is sought at any additional intermediate time, only the reconstruction
part is needed and the complexity is O(N logN).

As for the accuracy, we use (25) and make the same formal error analysis as in (16). We
get the error estimate,

εJ ≤
J∑
j=0

max
k∈Ij

Mj,2k+1∑
n=0

|τnj,2k+1| ≤ c
J∑
j=0

max
k∈Ij

Mj,2k+1∑
n=0

tol∆tnj,2k+1 = cTJ tol ∼ tol logN.(27)

Hence, also for the adaptive method we should expect an error that is essentially (upto a
log-factor) bounded independently of N .

Remark 5.1. We could also use different tol at different levels of detail. For instance, if we
take

tolj = tol 2−αj , α > 0,

we get, in the same way as above, an estimate of the accuracy that is independent of N

εJ ≤ c
J∑
j=0

max
k∈Ij

Mj,2k+1∑
n=0

tolj∆tnj,2k+1 = cT tol

J∑
j=0

2−jα ≤ c′T tol,(28)

and, if α < q − p, a cost estimate with the same bound,

cost ∼ T logN
J∑
j=0

2j(1−q/p)tol
−1/p
j ∼ T tol logN

J∑
j=0

2j(1−q/p+α/p) ∼ tol−1/p logN.

In principal, we can hence remove the logN factor in the error estimate in this way if q > p.
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Figure 5. Example 1: The solution at times T = 0, 1, 2 for the velocity field
(29) (overlaid).

6. Numerical Examples

In this section, we compare the adaptive methods A–FE–S2 and A–RK4–S6 against the
corresponding basic methods FE–S2 and RK4–S6 for different velocity fields F . We plot the
error and the cost for different tolerances to verify the theoretical predictions in previous
sections. To make a fair comparison we select the tolerance in the adaptive method and the
reference time step in the basic method such that the resulting errors are of (roughly) the
same size. Our implementation of the adaptive method is to show a proof of concept, and it
is not optimized. Therefore, for the computational cost we simply plot the total lengths of all
time vectors, which we take as proxy for the actual computational time. We also plot time
vector lengths where we include the steps that were rejected in the adaptive solver, calling
this the cost with hidden steps.

6.1. Example 1. We begin with a problem where the velocity field is given by

(29) F (t,x) =
[

y sin(x)− 0.5
(x+ 0.2) cos(y) + 0.4

]
.

We let the initial curve be the unit circle. The solution at T = 0, 1, 2 and the vector field F
are shown in Figure 5. Since there are large differences in the velocity along the interface,
adaptivity will be important. In order to compare the adaptive and basic method, we will
have to choose a very small reference time step which makes the basic method more expensive.
Hence, we expect the adaptive method to behave much better.

We first solve (6) till T = 1 with F as in (29) using the adaptive Forward Euler method
(A–FE–S2). The decay of wavelet vectors is shown in Figure 6 (left). The decay is ∼ 2−2j

as expected. In Figure 7 we plot the error and the cost as functions of N for the adaptive
method and the corresponding basic method (FE–S2). As predicted by the theory, both



18 JELENA POPOVIC1 AND OLOF RUNBORG2

1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

level j

|
w
j
|

1 2 3 4 5 6 7 8
10

−15

10
−10

10
−5

10
0

j

|w
j
| at t = 0,0.25,...,1

Figure 6. Example 1: Decay of wavelet coefficients; maxk |wj,k(t)| plotted
at times t = 0, 0.25, . . . , 1 for the A–FE–S2 scheme (left) and the A–RK4–S6

scheme (right). The dashed line represents 2−2j (left) and 2−6j (right).
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Figure 7. Example 1: Cost and accuracy of the adaptive Forward Euler
method (A–FE–S2) for T = 1. Plots of the error as a function of N (left) and
the cost as a function of N (right) for A–FE–S2 and the corresponding basic
method (FE–S2) with reference time step ∆tref = 1.2 · 10−6.

errors and costs are bounded essentially independently of the number of points. The cost of
the adaptive method is clearly lower than the cost of the basic method.

We next solve the problem until T = 2 with the adaptive 4th order Runge-Kutta method
with the 6-point subdivision scheme (A–RK4–S6). The decay of the wavelets is ∼ 2−6j as
expected; see Figure 6 (right). In Figure 8, we plot the error and the cost of the adaptive
method and the basic version (RK4–S6) as a function of N . Again, the error and the cost of
our method behave as expected: the error is be bounded almost independently of the number
of points N , and the cost of the basic method is significantly higher.

Figure 9 shows how the time step size changes within and between levels. It is notable
that the size of the time step varies over several magnitudes within a level. The adaptive
solver detects the difference in the velocity of different points on the same level and adjusts
the time step according to that. The basic method, on the other hand, will use the same time
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Figure 8. Example 1: Cost and accuracy of the adaptive Runge–Kutta 4
method (A–RK4–S6) for T = 2. Plots of the error as a function of N (left)
and the cost as a function of N (right) for A–RK4–S6 and the corresponding
basic method (RK4–S6) with reference time step ∆tref = 10−4.
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Figure 9. Example 1: Time steps as a function of level j when we use the
adaptive Forward Euler method (left) the adaptive Runge–Kutta 4 method
(right). Circles show the distribution of time steps, and the solid line indicates
the average time step size. The dashed line is the theoretical time step for
smooth problems given by (26). The reference time steps and final times are
as in Figures 7 and 8 respectively.

step for all points within the same level. To ensure the same error level, this time step size
would be in the lower part of the time step variations in the adaptive method. Furthermore,
the average time step on each level roughly follows (26), the time step size that the adaptive
method would choose for uniformly smooth problems. Note also that the cap on the rate of
time step change means that there is a lower and upper bound for the time step employed
in a fixed time interval. This explains why the average time step curve flattens out for small
and high levels, respectively.

In Figure 10 we finally show an example of the propagation of an open interface, where the
initial interface is y = −x and x ∈ [−1, 1]. The high order adaptive Runge–Kutta 4 method
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Figure 10. Example 1: Open interface. Cost and accuracy of the adaptive
Runge–Kutta 4 method (A–RK4–S6). Plots of the solution at times T =
0, 1, 2, 3 (left); the cost and accuracy at T = 3 as a function of N (right).

A–RK4–S6 is used, with the modified masks in (4) employed at the interface edges. The cost
and accuracy curves follow the same pattern as for the closed interfaces.

6.2. Example 2. In this example we keep the initial curve as the unit circle but change the
velocity field to

(30) F (t,x) =
[

6y3

−x

]
.

The initial circle, the solution at T = 1, 2 and the vector field F are shown in Figure 11.
As in Example 1 we solve the problem using the adaptive Forward Euler method A–FE–S2

until T = 1 and the adaptive Runge-Kutta method A–RK4–S6 until T = 2. We then compare
with the corresponding basic methods FE–S2 and RK4–S6. The error and cost curves are
shown in Figures 12 and 13, respectively. As for Example 1, they show that the error in both
cases is essentially bounded independently of the number of points on the interface, and that
the adaptive versions are significantly faster than the basic versions.

In addition, we solve the same problem with standard front tracking method where we
represent the interface by marker points and solve (2) using the time adaptive Forward Euler
method. In Figure 14 (left) the cost is compared to the cost of the basic and adaptive
fast interface tracking methods (FE–S2 and A–FE–S2) where the same tolerance and final
time was used. The cost of the standard method grows linearly with N , and becomes more
expensive than both the fast methods, for large N .

The time vectors tj,k for the A–FE–S2 computation is shown in Figure 14 (right). Note
that the distribution of time instances is quite different from the time doubling strategy in
Figure 2. More points are used where the interface moves rapidly. The solid horizontal lines
are artifacts of the cap on the rate of time step change (max a factor five).

6.3. Example 3. We now consider the velocity field given by (29), but we choose an initial
interface with four sharp corners given by y = ±(1 − |x|1/2) for x ∈ [−1, 1]. This interface
is thus only piecewise smooth. The initial interface and the solution at T = 1 is shown in
Figure 15.
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Figure 11. Example 2: The solution at times T = 0, 1, 2 for the velocity
field (30) (overlaid).
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Figure 12. Example 2: Cost and accuracy of the adaptive Forward Euler
method (A–FE–S2) for T = 1. Plots of the error as a function of N (top left)
and the cost as a function of N (top right) for A–FE–S2 and the corresponding
basic method (FE–S2) with reference time step ∆tref = 2.5 · 10−5.

In this case the wavelet vectors near the corners decay with a slower rate than in the
smooth parts This implies that the time derivatives of those wavelets also decay slower,
which invalidates the theoretical foundation for the basic method. The adaptive method,
however, will recognize the slower decay and adjust time step sizes accordingly; for wavelet
vectors close to the corners shorter time steps will be used. Since the basic method has the
same time step for all wavelets within one level it will not be suitable for this problem.
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Figure 13. Example 2: Example 1: Cost and accuracy of the adaptive
Runge–Kutta 4 method (A–RK4–S6) for T = 2. Plots of the error as a
function of N (left) and the cost as a function of N (right) for A–RK4–S6 and
the corresponding basic method (RK4–S6) with reference time step ∆tref =
5 · 10−4.
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Figure 14. Example 2: Left: Cost of the direct, standard adaptive front
tracking method based on Forward Euler compared to FE–S2 and A–FE–S2.
Right: Time vectors tj,k of the edge points and wavelet vectors for A–FE–S2

with N = 2049. The time instances {tnj,k} plotted as dots, cf. Figure 2 and
Figure 4.

As in previous examples we solve the problem to T = 1 using the adaptive Forward Euler
method A–FE–S2 and the adaptive Runge-Kutta method A–RK4–S6. In Figure 16 we plot
the largest of the norms of the wavelet vectors at each level, as a function of j, for different
times. Since the largest vectors are the ones at the corners, the decay rate is not the expected
∼ 2−2j and 2−6j respectively, but 2−j/2 for both methods.

The error and cost curves for the methods are shown in Figures 17 and 18, respectively.
They are compared with the curves for the basic method. As in previous examples, the error
is bounded independently of N for the adaptive methods. However, for the basic methods
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Figure 15. Example 3: The solution at times T = 0, 1 for the velocity field
(29) (overlaid) with a non-smooth initial curve.
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Figure 16. Example 3: Decay of wavelet coefficients The max size
maxk |wj,k(t)| is plotted at times t = 0, 0.25, . . . , 1 for the adaptive Forward
Euler scheme A–FE–S2 (left) and the adaptive Runge–Kutta 4 scheme A–
RK4–S6 (right).

the error grows with N . Hence, adaptivity is necessary to maintain the fast character of the
methods for this non-smooth problem.
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Figure 17. Example 3: Cost and accuracy of the adaptive Forward Euler
method (A–FE–S2) for T = 1. Plots of the error as a function of N (left) and
the cost as a function of N (right) for A–FE–S2 and the corresponding basic
method (FE–S2) with reference time step ∆tref = 2 · 10−5.
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Figure 18. Example 3: Cost and accuracy of the adaptive Runge–Kutta 4
method (A–RK4–S6) for T = 1. Plots of the error as a function of N (left)
and the cost as a function of N (right) for A–RK4–S6 and the corresponding
basic method (RK4–S6) with reference time step ∆tref = 2 · 10−4.

6.4. Example 4. We now consider an example where the interface is a non-smooth surface
moving in three dimensional space. The velocity field is given by

(31) F (t,x) =

 y sin(x)− 0.5
(x+ 0.2) cos(y) + 0.4

cos(z + xy)

 .
We let the initial surface be the four-sided pyramid, |x| + |y| + |z| = 1, z ≥ 0. The initial
surface and the solution at T = 1 are shown in Figure 19.

We solve the problem to T = 1 with the surface version of the fast method based on
Forward Euler, using both the adaptive and basic version. The errors and costs are compared
in Figure 20. As in the case of curves, the adaptive version outperforms the basic version.
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Figure 19. Example 4: The solution at times T = 0 (pyramid) and T = 1
for the velocity field (31).

Figure 20. Example 4: Cost and accuracy of the adaptive Forward Euler
method (A–FE–S2) for T = 1. Plots of the error as a function of N (left) and
the cost as a function of N (right) for A–FE–S2 and the corresponding basic
method (FE–S2) with reference time step ∆tref = 2 · 10−4.

The computational cost to achieve the same error level is much smaller, and the relative
efficiency of adaptivity increases with N .
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7. Conclusions

We have presented a time adaptive front tracking method based on multiresolution repre-
sentation of the interface. The interface is described hierarchically by wavelet vectors which
are moved in time using an adaptive Forward Euler or Runge–Kutta 4 method. For uni-
formly smooth problem, the cost is shown to be O(logN/tol1/p + N logN) where p is the
order of the time adaptive method used and tol is the desired tolerance. We have applied
our methods to a number of test cases, including non-smooth problems and surfaces in three
dimensions, and compared against a non-adaptive method, that uses a simple time step dou-
bling strategy, [24, 25]. The adaptive method shows significantly better results in terms of
cost and accuracy for these cases, particularly for the non-smooth problems.

In the examples above, the length, or area, of the interface do not change significantly
during the evolution, something which often happens in practice, e.g. for problems with
expanding interfaces. Then the initial number of wavelet vectors would not be enough to
resolve the interface after some time. An adaptive method which adds and removes wavelet
vectors as the spatial resolution of the interface changes would then be desirable. Initial work
on such spatial adaptivity for fast interface tracking methods can be found in [8, 23].
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