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Abstract. Fast high order methods for the propagation of an interface in a
velocity field are constructed and analyzed. The methods are generalizations of
the fast interface tracking method proposed in [O. Runborg, Commun. Math.
Sci. 7(2):365–398, 2009]. They are based on high order subdivision to make
a multiresolution decomposition of the interface. Instead of tracking marker
points on the interface the related wavelet vectors are tracked. Like the markers
they satisfy ordinary differential equations (ODEs), but fine scale wavelets
can be tracked with longer timesteps than coarse scale wavelets. This leads
to methods with a computational cost of O(log N/∆t) rather than O(N/∆t)
for N markers and reference timestep ∆t. These methods are proved to still
have the same order of accuracy as the underlying direct ODE solver under
a stability condition in terms of the order of the subdivision, the order of the
ODE solver and the time step ratio between wavelet levels. In particular it is
shown that with a suitable high order subdivision scheme any explicit Runge–
Kutta method can be used. Numerical examples supporting the theory are
also presented.

Keywords: interface tracking, multiresolution analysis, fast algorithms, high
order methods

1. Introduction

In this paper we develop and analyze fast, high order methods for tracking a
front in a given velocity field. The interface is a manifold of co-dimension at least
one which moves according to a time-varying velocity field that does not depend
on the front itself, i.e. the velocity of a point on the front depends only on the
location of the point and the time. Applications include the tracking of wavefronts
in high frequency wave propagation problems [18], iso-distance curves on a surface
(front of geodesics) [4], fiber tract bundles in brain imaging [23] or the method
of characteristics for the solution graph of hyperbolic partial differential equations
(PDEs). We suppose that the front can be parameterized globally, so that for a
fixed time t, the interface is described by the function x(t, s) : R

+ × R
n → R

d,
with the parameterization s ∈ Ω ⊂ R

n and n ≤ d − 1. Then x(t, s) satisfies the
parameterized ordinary differential equation (ODE)

∂x(t, s)

∂t
= F (t, x(t, s)), x(0, s) = γ(s), s ∈ Ω,(1.1)

where F (t, x) : R
+ × R

d → R
d is a given function representing the velocity field

and γ(s) : R
n → R

d is the initial interface.
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Numerical methods for this problem include the Lagrangian front tracking method,
[12] which has been used extensively in e.g. multiphase flow [11, 24] and geophysics
[25, 18]. The level set method [19] is a Eulerian approach for front tracking, par-
ticularly suitable for interfaces with topological changes, such as the merging or
pinching off of interface parts. For flow problems we should also mention the
marker-and-cell (MAC) [27] and volume of fluid (VOF) [16] methods.

In [22] we constructed a new fast front tracking method for solving (1.1). In
standard front tracking, the interface is described by a set of marker points that
are connected in a known topology. In one dimension one would approximate
xj(t) ≈ x(t, sj) and use a numerical method for ODEs to solve

dxj(t)

dt
= F (t, xj(t)), xj(0) = γ(sj),(1.2)

where s0 < s1 < . . . < sN is a discretization of Ω. For surfaces in three dimen-
sions, the markers on the interface would typically be held together in a triangula-
tion. Propagating one marker numerically with a timestep ∆t to a fixed time cost
O(1/∆t) operations. Hence, if the interface is represented by N points the cost of
standard front tracking is O(N/∆t). In the new method in [22], wavelet vectors
were used to describe the interface, instead of point values. The wavelet vectors
correspond to the details of the interface on different scale levels. It was shown that
the time derivatives of the wavelet vectors, just as the wavelet vectors themselves,
decay exponentially with level of detail (cf. Theorem 5.5 below). The method ex-
ploits this fact by taking shorter timesteps for the coarse scales than for the fine
scales. In this way, the computational cost is reduced to only O(log N/∆t) or even
O(1/∆t), without affecting the overall order of accuracy. We should stress that
this is quite different from standard wavelet based adaptive schemes where shorter
timesteps are often used for the fine details, i.e. the opposite of this method. With
such a strategy the cost will be reduced, but it will just be the constant in the
complexity estimate that is improved; the complexity itself remains the same. The
reason is that there are comparatively few coarse scale wavelet vectors, where speed
gain is achieved, and many fine scale wavelet vectors, where there is little gain. An-
other interpretation is that the method approximates the solution on a sparse grid
[29, 2] in (t, s)-space to achieve efficiency.

In this paper we extend the methods in [22] to high order and give a thorough
analysis of the one-dimensional case n = 1. It was observed in [22] that high order
fast methods could not be achieved with the simple spatial averaging that was
used there. A barrier at order two was identified. We show here rigorously that
with higher order spatial averaging using general subdivision schemes, high order
accuracy can still be combined with low computational cost, as was also discussed
in [22]. In particular, it is possible to use high order Runge–Kutta schemes for the
time stepping, if they are matched with sufficiently high order subdivision schemes.
A more general stability relation is identified: that the factor m with which the
time step increases in each level must satisfy m < 2q/p where p and q are the orders
of the time and spatial approximations respectively.

In the proofs, new techniques for dealing with the high order subdivision schemes
have been introduced. The main new difficulty compared to [22] comes from the
fact that the norm of higher order subdivision operators is rarely bounded by one,
as it is for the low order schemes in [22]. This makes the stability of the method
harder to prove. Section 5.2 contains an all new part of the analysis dedicated
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to this issue. The more general stability consideration also has repercussions on
the nonlinear recursions that must be analyzed in the final proof. For these, the
next element in the recursion is bounded by a sum over all previous elements, not
just by the previous one as in [22], see Lemma 5.8 and Lemma 6.4. In addition,
the Lipschitz type condition (A2) that the numerical scheme must satisfy, is more
involved to prove for schemes with multiple stages, like high order Runge–Kutta
schemes.

This article is organized as follows. In Section 2 we introduce notation and
some basic results for sequences and subdivision operators used later on. Section 3
explains the multiresolution representation of the interface and presents the govern-
ing ODEs. The fast numerical methods used to solve those ODEs are subsequently
given in Section 4. The main part of the article is Section 5, where the precise
analysis of the methods is carried out, and Section 6, where it is shown that the
analysis is valid for a variety of Runge–Kutta time stepping schemes. Numerical
experiments are presented in Section 7.

2. Sequences and Subdivision Schemes

In this section we give some definitions and basic properties of sequences and
subdivision operators that will be used in the paper. Sequences will be written in
bold face, and elements of sequences in normal font, x := {xk}. We use the usual
sup-norm |x|∞ = supk |xk| for x ∈ ℓ∞ =: L∞(Z; R). Scalar functions are applied to
sequences component wise, so that f(x) = {f(xk)}. We use the special sequences
k = {k}, in which the k-th entry is k itself, and 0 (resp. 1), with all entries equal
to 0 (resp. 1). The difference operator ∆ is defined as

(∆x)k = xk+1 − xk.(2.1)

Often a sequence itself is indexed by the level of detail j; then we use the convention
that xj := {xj,k}.

Subdivision is a mechanism for iteratively creating smooth curves and surfaces,
[5, 6, 7, 10, 9]. A local, stationary subdivision scheme is characterized by a bounded
linear operator S : ℓ∞ 7→ ℓ∞, defined by a finite sequence a as follows:

(Sx)k =
∑

ℓ

ak−2ℓxℓ.

The width B of S is defined by B = 2 max{|k|; ak 6= 0}. Thus, the sum is finite: for
each k there are only terms with ℓ ∈ Ik = [⌈(k − B)/2)⌉ , ⌊(k + B)/2⌋]. The max
norm of S can be expressed as

|S|∞ = sup
|x|

∞
=1

|Sx|∞ = max

(

∑

k odd

|ak|,
∑

k even

|ak|

)

.

To build a smooth function we start from a sequence x0 and associate to it a
function f0(x) which is piecewise linear and interpolates x0,k on the integer grid,
f0(k) = x0,k. We can then apply the subdivision scheme S iteratively and define
xj for all j > 0 by

xj+1 = Sxj .
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Table 1. Masks for the Lagrange subdivision schemes of different
orders q.

q Mask

2
[

1
2 , 1

2

]

4
[

− 1
16 , 9

16 , 9
16 , − 1

16

]

6
[

3
256 , − 25

256 , 150
256 , 150

256 , − 25
256 , 3

256

]

8
[

− 5
2048 , 49

2048 , − 245
2048 , 1225

2048 , 1225
2048 , − 245

2048 , 49
2048 , − 5

2048

]

Sequences at level j > 0 similarly represent samples of piecewise linear functions
fj(x) on grids with the increasingly fine spacing 2−j . More precisely, xj is associ-
ated with the grid sj , where sj,k = k2−j, and xj,k = fj(sj,k). For a large class of
S the process converges, fj → f where f is a smooth function.

A subdivision scheme is interpolating if a2ℓ = δℓ,0, implying xj+1,2k = xj,k for all
j, k; in this case fj+1 thus interpolates fj on the coarser grid: fj+1(sj,k) = fj(sj,k)
since sj+1,2k = sj,k. Interpolating schemes are described by the mask used for
computing odd (in k) points, i.e. [a−B, a−B+2, . . . , aB]

The order of an interpolating subdivision scheme S is the largest q such that
SP (k) = P (k/2) for all polynomials P of degree p < q. We always assume that q
is at least one so that S1 = 1.

Since sequences often corresponds to smooth functions we also define the divided
difference operator Dj = 2j∆. The divided differences of a sequence xj then are

x
[r]
j = Dr

jxj r > 0.

For these sequences it frequently useful to consider the derived subdivision schemes,
defined as

S[0] = S, S[r] = 2∆S[r−1]∆−1, r > 0.

This is implies that if xj+1 = Sxj then x
[r]
j+1 = S[r]x

[r]
j . Note that S[r] is only

well-defined for r ≤ q.
A special example of a subdivision scheme is the midpoint interpolating scheme

S2 where (S2x)2k+1 = (xk + xk+1)/2. Hence the mask is [1/2, 1/2]. This scheme
has order q = 2 and yields piecewise linear limit functions. Examples of masks for
higher order interpolating subdivision schemes are given in Table 1. These Lagrange
subdivision schemes are used in the numerical examples in Section 7.

The generalization to higher dimensions is straightforward with sequences of sev-
eral components x = (x1, x2, . . . , xd) ∈ ℓd

∞ =: L∞(Z; Rd), i.e. xj ∈ ℓ∞. We can
equivalently view this as each sequence element belonging to R

d, so that x = {xk}
with xk = (x1

k, x2
k, . . . , xd

k)T ∈ R
d. For scalar functions f : R

d 7→ R applied to such
sequences we write f(x) = {f(x1

k, x2
k, . . . , xd

k)} = {f(xk)} and for vectorial func-
tions F = (f1, . . . , fr)

T : R
d 7→ R

r we write F (x) = (f1(x), . . . , fr(x))T . Operators
are always applied elementwise to the sequences, e.g. ∆x = (∆x1, . . . , ∆xd) and
Sx = (Sx1, . . . , Sxd). The sup norm is defined as

|x|∞ = max
j

∣

∣xj
∣

∣

∞
= sup

k
|xk|∞ .
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Sequences with several components are needed to approximate curves in R
d.

We end this section with some basic results on subdivision which will be used
later on. First we have a local error estimate for a subdivision scheme.

Proposition 1 (Proposition 3.1 in [8]). For a local subdivision scheme S of order
q ≥ 1 and x ∈ ℓ∞ we have the estimate

max
ℓ∈Ik

|xℓ − (Sx)k| ≤ C max
ℓ∈Ik

|(∆x)ℓ| ≤ C |∆x|∞ = C2−j |Djx|∞ .(2.2)

Furthermore, we have two results showing different versions of an approximate
commutation property between the subdivision operator and application of a func-
tion. Let the space Ck(Ω1; Ω2) denote all measurable functions from Ω1 to Ω2 with
continuous derivatives upto order k. We then define Ck

b (Ω1; Ω2) as the functions
f ∈ Ck(Ω1; Ω2) whose derivatives upto order k are all bounded.

Proposition 2. Suppose F ∈ C1
b (Rd; Rr). For a local subdivision scheme S of order

q ≥ 1, x ∈ ℓd
∞ and y ∈ ℓr

∞, we have the estimate
∣

∣F (Sx)T Sy − SF (x)T y
∣

∣

∞
≤ C |DF |∞ |∆x|∞ |y|∞ .(2.3)

Proof. Let z = F (Sx)T Sy − SF (x)T y. Then, since

zk =
∑

ℓ∈Ik

ak−2ℓ [F ((Sx)k) − F (xℓ)]
T

yℓ,

we can bound

|zk|∞ ≤ |DF |∞ max
ℓ∈Ik

|xℓ − (Sx)k|∞

∑

ℓ∈Ik

|ak−2ℓ| |yℓ|∞ ,

and the result follows from applying Proposition 1 componentwise to xℓ − (Sx)k ∈
R

d. �

Theorem 2.1 (Theorem 3.4 in [8]). Let S be a subdivision scheme of order q and
let {xj}, with xj ∈ ℓ∞, be generated by S. Suppose xj,k ∈ Ω for all j, k and that

f ∈ Cr+1
b (Ω) with r ∈ Z and 1 ≤ r < q; suppose also that

∣

∣

∣
x

[ℓ]
j

∣

∣

∣

∞
≤ C for 1 ≤ ℓ ≤ r

and for j > 0. Then

|f(Sxj) − Sf(xj)|∞ ≤ C sup
0≤ℓ≤k+1

∣

∣

∣f (ℓ)
∣

∣

∣

∞
2−j(r+1),

where C is independent of j and f .

This is a slightly modified version of the theorem in [8]. Here we have made the
dependence on f of the constant more precise. The result follows directly from the
corresponding proof in [8].

Remark 2.2. In the description above the subdivision operators act on infinite
sequences. In numerical computations one must restrict them to finite length se-
quences, which then corresponds to samples of functions on bounded intervals or
periodic functions. For the former case, the subdivision operators can be modified
near the boundaries, such that a different sequence a is used in (2) for those points.
For interpolatory schemes, a modification is necessary when the width B exceeds
two. By using an appropriate a, high order schemes can then still be constructed.
However, the formulation of Proposition 1, Proposition 2 and Theorem 2.1, as well
as the definition of derived schemes must be changed. To simplify we will therefore
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just consider periodic (closed) interfaces, corresponding to periodic sequences, in
the main analysis in Section 5.

3. Multiresolution description of the interface propagation

We consider the case of a one-dimensional interface (n = 1) in d-dimensional
space, where s ∈ Ω = [0, 1] or Ω = T, the one-periodic torus, and x(t, s) ∈ R

d. In
standard front tracking algorithms marker points are used to represent the interface.
We will instead consider a multiresolution representation, which is often a more
efficient way to describe curves and surfaces. In our case the curve x(t, s) will be
described as follows. We introduce the parameter indices sj,k = k2−j and define

xj,k(t) := x(t, sj,k), 0 ≤ k ≤ 2j.

Note that xj+1,2k = xj,k and that for a fixed j the markers {xj,k} will be a dis-
cretization of the interface with a level of detail that increases with the fixed j-value,
cf. Figure 1 (a) and (b). Also note that when the interface is closed, xj,0 = xj,2j .

We assume that we start from a given fine discretization with N = 2J points on

the interface, which thus corresponds to level J . We let xj(t) = {xj,k(t)}2j

k=0 and
next define the wavelet vectors

wj+1(t) = xj+1(t) − Sxj(t).(3.1)

This is done recursively and gives an alternative description of the interface in
terms of x0(t) together with wj(t) for j = 1, . . . , J . The wavelet sequences wj(t) =:

{wj,k(t)}2j

k=0 can be computed from the original discretization xJ(t) at a O(N) cost,
where N = 2J is the number of discretization points. Similarly, with an inverse
wavelet transform based on reversing the recursion in (3.1), the points xJ(t) can be
computed from {wj} and x0 at a O(N) cost. The process is visualized in Figure 1.
We can now insert (3.1) in (1.1) and get

dwj+1

dt
= F (t, xj+1(t)) − SF (t, xj(t)) = F (t, Sxj(t) + wj+1(t)) − SF (t, xj(t)).

Setting
G(t, x, w) = F (t, Sx + w) − SF (t, x),

we thus have the following alternative system of ODEs

dwj+1(t)

dt
= G(t, xj(t), wj+1(t)),

dx0(t)

dt
= F (t, x0(t)),(3.2)

which together with (3.1) describe the dynamics of the system. Note that, when
Ω = [0, 1] we assume here, and in what follows, that S has been appropriately
modified near boundaries.

The important property of the wavelet representation is the fast decay in j of
the wavelet vectors {wj} and their time derivatives. It can be shown that for
smooth x(t, s) they decay exponentially in j with a rate determined by the order
of the subdivision scheme S (see Theorem 5.5). This gives the representation good
compression properties and, as was shown in [22], it allows us to construct a fast
interface tracking algorithm. This is discussed in the next section.

Remark 3.1. In [22] a particular version of the above algorithm was used for the
initial data, where each wavelet vector wj+1,2k+1 was chosen to be exactly normal
to the line between its neighboring points on the previous level xj,k+1 − xj,k. This
gives a so-called normal mesh, [13, 8, 14, 21], which is a somewhat better starting
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x
j+1,2k−2

x
j+1,2k−1

x
j+1,2k

x
j+1,2k+1

x
j+1,2k+2

x
j+1,2k+3

x
j+1,2k+4

(a) Interface and elements of sequence xj+1.

x
j,k−1

x
j,k

x
j,k+1

x
j,k+2

(b) Interface and elements of sequence xj .

x
j,k−1

x
j,k

x
j,k+1

x
j,k+2

(Sx
j
)
2k+1

−1/16
−1/16

9/16 9/16

(c) Construction of Sxj from xj .

x
j+1,2k+1

(Sx
j
)
2k+1

w
j+1,2k+1

(d) Wavelet vector wj+1,2k+1.

Figure 1. Relationship between the markers xj+1 = {xj+1,k},
xj = {xj,k}, the subdivision sequence Sxj and the wavelet vectors
in wj+1. The weights indicated next to the arrows in c) corre-
spond to the Lagrange four-point scheme, for which (Sxj)2k+1 =
(−xj,k−1 + 9xj,k + 9xj,k+1 − xj,k+2)/16.

position but is not necessary for the convergence of the algorithm. On the other
hand, it makes the proofs more difficult since the parameterization induced by this
choice of wj+1,2k+1 has limited smoothness.

4. Numerical Methods

We construct high order methods based on the methods developed in [22]. The
main idea is to solve (3.2) instead of (1.2), starting from a multiresolution represen-
tation of γ(s). Since the time derivatives of wj decay rapidly with j by Theorem 5.5
we can take longer time steps for larger j and thereby get a more efficient method.
More precisely, we use the time step

∆tj := mj∆t,

on level j, where the integer ∆tj+1/∆tj = m ≥ 2 is the time step ratio, and ∆t is
a reference time step. A larger m means a smaller computational cost, but also a
less accurate solution. The numerical approximations are denoted

xn
j ≈ xj(tj,n), wn

j ≈ wj(tj,n), tj,n = n∆tj ,

where w0
j = {wj,k(0)} and x0

0 = {x0,k(0)} is a multiresolution decomposition of the

initial curve x(0, s) = γ(s). To solve (3.1) and (3.2) we first solve the zeroth level
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x0 directly with a high order explicit one-step ODE method φF with the reference
time step ∆t = ∆t0,

xn+1
0 = xn

0 + ∆tφF (xn
0 , ∆t).

For higher levels we use an explicit one-step (but in general multi-stage) method
φG, of the following form

wn+1
j = wn

j + ∆tjφG(tj,n+η1
, x

(n+η1)m
j−1 , · · · , tj,n+ηs

, x
(n+ηs)m
j−1 , wn

j , ∆tj),(4.1)

where 0 ≤ ηk ≤ 1 and ηkm ∈ Z for all k. To pass from level j to j + 1 we use the
definition of wj ,

xn
j = Sxnm

j−1 + wn
j .(4.2)

We note that

x
(n+ηs)m
j−1 ≈ xj−1(tj−1,(n+ηs)m) = xj−1((n + ηs)∆tj) = xj−1(tj,n+ηs

).

The form of φG is chosen such that it will include the explicit Runge–Kutta meth-
ods; φG could for instance be the classical fourth order Runge–Kutta method:

ξ1 = G
(

tj,n, xnm
j−1, w

n
j

)

,

ξ2 = G

(

tj,n+1/2, x
(n+1/2)m
j−1 , wn

j +
∆tj
2

ξ1

)

ξ3 = G

(

tj,n+1/2, x
(n+1/2)m
j−1 , wn

j +
∆tj
2

ξ2

)

ξ4 = G
(

tj,n+1, x
(n+1)m
j−1 , wn

j + ∆tjξ3

)

wn+1
j = wn

j +
∆tj
6

(ξ1 + 2ξ2 + 2ξ3 + ξ4).

In this case s = 4 and η1 = 0, η2 = η3 = 1/2 and η4 = 1. In Section 7 a number
of different Runge–Kutta methods, listed in Table 3, are used in the numerical
examples.

Since (3.1) and (3.2) can be solved level by level, starting from j = 0 we can
write down an expression for the computational cost as follows. We assume that S
can be applied fast so that the cost of computing Sx is proportional to the number
of elements of x. Then computing G(t, x, w) also has a cost proportional to the
number of elements of x (and w). This means that the cost of applying φG in (4.1)
and updating xj in (4.2) is proportional to the number of elements of wj , i.e. to
the number of points at level j, which is 2j . To propagate the solution at level j
to time T we need to take T/∆tj time steps, hence executing (4.1) and (4.2) each
T/∆tj times. Suppose the interface is described by N = 2J points. Then the total
cost for all levels would be proportional to

J
∑

j=0

T

∆tj
2j =

T

∆t

J
∑

j=0

(2/m)j ≤ C
T

∆t

{

log2 N, m = 2,

1, m > 2.

Hence, for m = 2 we have the complexity O(log2 N/∆t) while for m > 2 it is
O(1/∆t). This is of course significantly faster than the O(N/∆t) complexity for
the standard method. That the fast method is still accurate will be proved in the
next section. Note also here that in addition to the complexity of propagating the
wavelet vectors we normally also want to reconstruct the pointwise values of the
interface which is an additional O(N) cost.
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Remark 4.1. The assumption that S can be applied fast is obviously true for local
subdivision operator which has a finite size mask, like e.g. the Lagrange schemes
used in Section 7. However, we note that this can also be true for other S, such as
Fourier interpolation computed via FFT (at least upto a log factor). This is also
tested in Section 7.

5. Analysis of the Methods

In this section we analyze the errors in the methods proposed in Section 4 for
closed interfaces, where the time-evolution of {wj,k} and the node points {xj,k} are
approximated by a time stepping method φG and the spatial approximation is done
with a subdivision operator S. We then make the following precise assumptions
about the method for the given G:

(A1) p-th order accuracy in time.
Given an exact solution wj , the local truncation error τn

j of φG is defined
by the relation

wj(tj,n+1) = wj(tj,n) + ∆tjφG

(

tj,n+η1
, xj−1(tj,n+η1

), · · · ,

tj,n+ηs
, xj−1(tj,n+ηs

), wj(tn), ∆tj

)

+ τn
j .

When wj ∈ Cp+1([0, T ]; Rd) it satisfies

max
0≤tj,n≤T

∣

∣τn
j

∣

∣

∞
≤ C∆tp+1

j max
0≤t≤T

1≤ℓ≤p+1

∣

∣

∣

∣

dℓwj(t)

dtℓ

∣

∣

∣

∣

∞

,

where the constant C is independent of j, ∆tj and n.
(A2) The time stepping methods satisfies the following Lipschitz type bound

|φG(t1, x1, · · · , ts, xs, w, ∆t) − φG(t1, x̃1, · · · , ts, x̃s, w̃, ∆t)|∞

≤ C

(

|w|∞ + max
1≤j≤s

|∆xj |∞

)

max
1≤j≤s

|xj − x̃j |∞

+C

(

|w − w̃|∞ + max
1≤j≤s

|xj − x̃j |
2
∞

)

,

when ∆t ≤ 1.
(A3) q-th order accuracy in space.

The subdivision scheme S is of order q ≥ 1. It is local, stationary and
interpolating.

(A4) Regularity of S.
There is an integer r such that 1 ≤ r ≤ q and

∣

∣

∣S[r]
∣

∣

∣

∞
< 2r.

We can then prove the following theorem which shows that despite the low com-
plexity derived in Section 4 the method is accurate, thus justifying the designation
“fast.”

Theorem 5.1. Given a smooth initial closed curve γ ∈ CM (T; Rd), a finite final
time T < ∞, a smooth and bounded velocity field F ∈ CM

b ([0, T ]×R
d; Rd) and a time

step ratio m. The exact solution x(t, s) exists and belongs to CM ([0, T ] × T; Rd).
Suppose further that the assumptions (A1)–(A4) hold for the numerical method,
with p + q + 1 ≤ M . Let the reference time step ∆t and the positive integer J be
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Table 2. Max norms of the Lagrange subdivision schemes, S and
the derived schemes S[1], . . . , S[4].

q |S|∞

∣

∣S[1]
∣

∣

∞

∣

∣S[2]
∣

∣

∞

∣

∣S[3]
∣

∣

∞

∣

∣S[4]
∣

∣

∞

2 1.0000 1.0000 2.0000 n.a. n.a.
4 1.2500 1.2500 2.0000 2.0000 4.0000
6 1.3906 1.3906 2.0000 2.0000 4.0000
8 1.4883 1.4883 2.0000 2.0000 4.0000

chosen such that the total number of points N = 2J and the final time T = ∆tJ =
mJ∆t. If also the time step ratio satisfies the stability condition

m < 2q/p,(5.1)

then
∣

∣x1
J − xJ(T )

∣

∣

∞
≤ C∆tp.(5.2)

where C is independent of J and ∆t.

To prove this theorem we will first derive estimates of the exact solution in The-
orem 5.5. We next show Theorem 5.7, which proves that (A3) and (A4) imply
stability of the subdivision operator S. With these results in hand we can subse-
quently prove Theorem 5.1 in Section 5.3, where we also use a lemma on growth in
a nonlinear recursion proved in Appendix A.

Remark 5.2. We will show later in Section 6 that standard explicit Runge–Kutta
methods satisfy assumptions (A1) and (A2). Moreover, there are many subdivision
schemes satisfying (A3) and (A4), for instance the Lagrange schemes; see Table 2.

Remark 5.3. In [22] a “barrier” was observed which prevented a fast method for
time-stepping methods of order higher than two. The reason was that the method
was based on the two-point subdivision scheme, with q = 2. From (5.1) we then
have the condition m < 22/p, which says that m cannot be larger than one if
p > 2. By introducing high order subdivision schemes, with larger q, the barrier is
removed.

Remark 5.4. In [22] we showed that for the stability borderline case m = 2q/p one
obtains an additional log N factor multiplying the error estimate when m = p =
q = 2. We conjecture that the same thing will happen in the general case.

5.1. Estimates of the Exact Solution. Here we show that if the solution x(t, s)
is smooth then the wavelets and their time derivatives decay rapidly with the level
j.

Theorem 5.5. Suppose x(t, s) ∈ Cq+ℓ([0, T ] × T; Rd) and assumption (A3) holds
for S. Then

∣

∣

∣

∣

dℓwj(t)

dtℓ

∣

∣

∣

∣

∞

≤ Cℓ(T )2−jq, |∆xj(t)|∞ ≤ C(T )2−j, 0 ≤ t ≤ T.

Proof. Suppose xj = {xj,k} is defined by xj,k = V (sj,k) where sj,k = k2−j and
V = (v1, . . . , vd)

T is a function belonging to Cq(T; Rd). Let sj = {sj,k}. Since S is
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at least of order one, it reproduces linear functions. Hence, sj+1 = Ssj . Then the
corresponding wavelet coefficients wj = {wj,k} are given by

wj+1 = xj+1 − Sxj = V (sj+1) − SV (sj) = V (Ssj) − SV (sj),

We can therefore apply Theorem 2.1 componentwise to V and obtain

|wj+1|∞ ≤ C max
0≤r≤q

1≤m≤d

∣

∣

∣v(r)
m

∣

∣

∣

∞
2−jq = C max

0≤r≤q

∣

∣

∣V (r)
∣

∣

∣

∞
2−jq,

since

s
[r]
j =

{

1, r = 1,

0, r ≥ 2.

Letting

vj,k(t) = ∂ℓ
tx(t, sj,k)

we then have
∣

∣

∣

∣

dℓwj

dtℓ

∣

∣

∣

∣

∞

= |vj+1 − Svj |∞ ≤ C max
0≤r≤q

|∂r
sv(t, ·)|∞ 2−qj = C max

0≤r≤q

∣

∣∂ℓ
t∂

r
sx(t, ·)

∣

∣

∞
2−qj

≤ Cℓ(T )2−qj,

since x ∈ Cq+ℓ([0, T ]× T; Rd). Finally,

|∆xj |∞ = sup
k

|x(t, sj,k+1) − x(t, sj,k)| ≤ |∂sx(t, ·)|∞ 2−j .

This proves the theorem. �

Remark 5.6. By making the assumption that x(t, s) is smooth the proof of this
theorem is significantly simplified compared to the corresponding theorem in [22].
There the initial curve γ had a normal parameterization, which was only Lipschitz
continuous. Here we do not insist on a normal representation of γ. Therefore
x(t, s) will be smooth whenever the velocity field F is smooth and γ is smoothly
parameterized.

5.2. Subdivision Stability. In this section we show that the subdivision operator
S used for the spatial approximation is stable, that is, a small perturbation in the
subdivision construction process gives only a small change in the final result. This
will be necessary to be able to prove Theorem 5.1. Consider a sequence xj that is
approximately built using S, in the sense that in each step we have a bound

|xj+1 − Sxj |∞ ≤ dj , j ≥ 0,(5.3)

with dj being a small perturbation. If |S|∞ ≤ 1 we can easily estimate the size of
|xj |∞ from

|xj+1|∞ ≤ |xj |∞ + dj ≤ |x0|∞ +

j
∑

k=0

dk,

and one can see that the construction is stable as long as the sum of the pertur-
bations dj is bounded. This was the strategy used in [22]. In the present paper,
however, we cannot use the simple analysis above, because for almost all interesting
high order subdivision schemes |S|∞ > 1, for instance the Lagrange schemes; see
Table 2. What saves us are corresponding bounds on the derived operators of the
type in (A4), namely

∣

∣S[r]
∣

∣

∞
< 2r for some r ∈ Z and r ≤ q, where q is the order

of S. This holds for most reasonable schemes, including the Lagrange schemes, as
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seen in Table 2. From such a bound we can prove Theorem 5.7 below which is the
same kind of stability result for high order subdivision scheme as Theorem 4.2 in
[8]; the proof also uses the same technique. We should remark that in [8] and in
many other papers, e.g. [20, 28, 26], stability results of this type are used to show
smoothness of weakly nonlinear subdivision schemes. In that setting the nonlinear
scheme is seen as a perturbation of a linear scheme “in proximity,” and dk is then
the difference between the two when applied to xj .

Theorem 5.7. Let {xj} be approximately generated by the subdivision scheme S
such that

|xj+1 − Sxj |∞ ≤ dj , j ≥ 0.(5.4)

Suppose assumptions (A3) and (A4) hold for S. Then there is a constant C inde-
pendent of j, dj and x0 ∈ ℓ∞ such that

|xj |∞ ≤ C

(

|x0|∞ +

j−1
∑

k=0

dk

)

,(5.5)

for j > 0.

Proof. By (A3) and (A4) we can choose 0 < ε < 1 and a positive integer r ≤ q so
that

∣

∣

∣
S[r]
∣

∣

∣

∞
≤ 2r−ε.

We claim that the following result holds. Let ℓ ∈ Z satisfy 1 ≤ ℓ ≤ r. There is a

constant Cℓ, independent of j ≥ 0, dj and x
[ℓ]
0 , such that

∣

∣

∣
x

[ℓ]
j

∣

∣

∣

∞
≤ Cℓ2

j(ℓ−ε)
(∣

∣

∣
x

[ℓ]
0

∣

∣

∣

∞
+ vj−1(ε)

)

,(5.6)

where v−1(α) = 0 and

vj(α) :=

j
∑

k=0

2kαdk, j ≥ 0.(5.7)

We will prove this by induction and start by proving that it is true for ℓ = r. Let
us define the residual sequences

rj+1 := xj+1 − Sxj , j ≥ 0;

observe that
r

[r]
j+1 = x

[r]
j+1 − S[r]x

[r]
j .(5.8)

Thus, with µ = r − ε,
∣

∣

∣x
[r]
j+1

∣

∣

∣

∞
≤
∣

∣

∣S[r]
∣

∣

∣

∞

∣

∣

∣x
[r]
j

∣

∣

∣

∞
+
∣

∣

∣r
[r]
j+1

∣

∣

∣

∞
≤ 2µ

∣

∣

∣x
[r]
j

∣

∣

∣

∞
+
∣

∣

∣r
[r]
j+1

∣

∣

∣

∞
.

Applying this repeatedly we get

∣

∣

∣x
[r]
j+1

∣

∣

∣

∞
≤
∣

∣

∣r
[r]
j+1

∣

∣

∣

∞
+

j−1
∑

k=0

∣

∣

∣r
[r]
k+1

∣

∣

∣

∞
2µ(j−k) +

∣

∣

∣x
[r]
0

∣

∣

∣

∞
2µ(j+1).(5.9)

Moreover, by definition
∣

∣

∣r
[r]
j

∣

∣

∣

∞
= 2j

∣

∣

∣∆r
[r−1]
j

∣

∣

∣

∞
≤ 2j+1

∣

∣

∣r
[r−1]
j

∣

∣

∣

∞
.

By induction on this relationship and (5.4), we get
∣

∣

∣r
[r]
j

∣

∣

∣

∞
≤ 2(j+1)r |rj |∞ ≤ c2(j−1)rdj−1, ∀j ≥ 1,(5.10)
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with c = 4r. Together (5.10) and (5.9) give us for j ≥ 0,

∣

∣

∣x
[r]
j+1

∣

∣

∣

∞
≤ c

(

2jrdj +

j−1
∑

k=0

2kr2µ(j−k)dk

)

+
∣

∣

∣x
[r]
0

∣

∣

∣

∞
2µ(j+1)

= c2µjvj(r − µ) +
∣

∣

∣x
[r]
0

∣

∣

∣

∞
2µ(j+1).

This agrees with (5.6) when ℓ = r ≥ 1 and j ≥ 0 upon taking Cr = max(c, 2µ) = c.
Suppose now that (5.6) holds for some 2 ≤ ℓ ≤ r. Induction will then yield the
result if we can prove that this implies (5.6) is true also for ℓ−1 ≥ 1. To show this,

we first fix an index k =: kj+1, and construct a sequence of indices {ks}
j
s=0 such

that ks ∈ Iks+1
. Then

x
[ℓ−1]
j+1,k = x

[ℓ−1]
0,k0

+

j
∑

s=0

(

x
[ℓ−1]
s+1,ks+1

− x
[ℓ−1]
s,ks

)

and we can estimate

∣

∣

∣x
[ℓ−1]
j+1

∣

∣

∣

∞
≤
∣

∣

∣x
[ℓ−1]
0

∣

∣

∣

∞
+

j
∑

s=0

sup
k

max
i∈Ik

∣

∣

∣x
[ℓ−1]
s+1,k − x

[ℓ−1]
s,i

∣

∣

∣ .

Moreover, since ℓ − 1 < q the order of S[ℓ−1] is at least one, and we can use (2.2)
in Proposition 1. Together with (5.10) and the hypothesis that (5.6) is true for q,
we then get, with C′ being the constant in Proposition 1,

j
∑

s=0

sup
k

max
i∈Ik

∣

∣

∣x
[ℓ−1]
s+1,k − x

[ℓ−1]
s,i

∣

∣

∣

≤

j
∑

s=0

sup
k

max
i∈Ik

∣

∣

∣

(

S[ℓ−1]x[ℓ−1]
s

)

k
− x

[ℓ−1]
s,i

∣

∣

∣+

j
∑

s=0

∣

∣

∣r
[ℓ−1]
s+1

∣

∣

∣

∞

≤ C′

j
∑

s=0

2−s
∣

∣

∣x
[ℓ]
s

∣

∣

∣

∞
+ c

j
∑

s=0

2s(ℓ−1)ds

≤ CℓC
′

j
∑

s=0

2s(ℓ−1−ε)
(∣

∣

∣x
[ℓ]
0

∣

∣

∣

∞
+ vs−1(ε)

)

+ c

j
∑

s=0

2s(ℓ−1−ε)2sεds

≤ CℓC
′
(∣

∣

∣
x

[ℓ]
0

∣

∣

∣

∞
+ vj(ε)

)

j
∑

s=0

2s(ℓ−1−ε) + c2j(ℓ−1−ε)vj(ε)

≤ Cℓ−12
j(ℓ−1−ε)

(∣

∣

∣
x

[ℓ]
0

∣

∣

∣

∞
+ vj(ε)

)

,

with

Cℓ−1 = max

(

CℓC
′

∞
∑

s=0

2−s(ℓ−1−ε), c

)

= max

(

CℓC
′

1 − 2−(ℓ−1−ε)
, c

)

,
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which is finite since ℓ − 1 − ε > 0. This shows the claim (5.6). It remains to show
the final estimate for ℓ = 0. In the same way as above we obtain

|xj+1|∞ ≤ |x0|∞ +

j
∑

s=0

sup
k

max
i∈Ik

|xs+1,k − xs,i|

≤ |x0|∞ + C′

j
∑

s=0

2−s
∣

∣

∣x
[1]
s

∣

∣

∣

∞
+

j
∑

s=0

ds.

Applying (5.6) with ℓ = 1 now gives us

j
∑

s=0

2−s
∣

∣

∣x[1]
s

∣

∣

∣

∞
≤ C1

j
∑

s=0

2−sε
(∣

∣

∣x
[1]
0

∣

∣

∣

∞
+ vs−1(ε)

)

≤
2C1

1 − 2−ε
|x0|∞ + C1

j
∑

s=0

2−sεvs−1(ε),

where we used the fact that
∣

∣

∣x
[1]
0

∣

∣

∣

∞
≤ 2 |x0|∞. Moreover,

j
∑

s=0

2−sεvs−1(ε) =

j
∑

s=1

s−1
∑

k=0

2(k−s)εdk =

j−1
∑

k=0

dk

j−k
∑

s=1

2−sε ≤
2−ε

1 − 2−ε

j−1
∑

k=0

dk.

This concludes the proof of (5.5) with

C = max

(

1 + C′ 2C1

1 − 2−ε
, C′C1

2−ε

1 − 2−ε
+ 1

)

= 1 +
2C′C1

1 − 2−ε
.

�

5.3. Proof of Theorem 5.1. We now return to the proof of Theorem 5.1. The
existence of the solution x ∈ Cp+q+1([0, T ] × T) follows from standard theory for
ODEs. It means in particular that the local truncation error in (A1) is well-defined.
Together with (A3) it also means that we can use Theorem 5.5 for derivatives up
to order p + 1.

Let

εn
j = xn

j − xj(tj,n), εj = max
0≤tj,n≤T

∣

∣εn
j

∣

∣

∞
,

and

δn
j = wn

j − wj(tj,n), δj = max
0≤tj,n≤T

∣

∣δn
j

∣

∣

∞
.

We also let τ j = maxn |τn
j | be the biggest local truncation error on level j. More-

over, we define

φn
j := φG

(

tj,n+η1
, x

(n+η1)m
j−1 , · · · , tj,n+ηs

, x
(n+ηs)m
j−1 , wn

j , ∆tj

)

and

φj(tj,n) := φG (tj,n+η1
, xj−1(tj,n+η1

), · · · , tj,n+ηs
, xj−1(tj,n+ηs

), wj(tj,n), ∆tj) .

We first estimate δn
j . We have

δn+1
j = δn

j + ∆tj

[

φn
j − φj(tj,n)

]

− τn
j
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Denoting the constant in (A2) by C′ we get,

∣

∣

∣φj(tj,n) − φn
j

∣

∣

∣ ≤ C′

[(

|wj(tj,n)|∞ + max
1≤k≤s

|∆xj−1(tj,n+ηk
)|∞

)

max
1≤k≤s

∣

∣

∣ε
(n+ηk)m
j−1

∣

∣

∣

∞

+
∣

∣δn
j

∣

∣

∞
+ max

1≤k≤s

∣

∣

∣ε
(n+ηk)m
j−1

∣

∣

∣

2

∞

]

By Theorem 5.5 there is a constant C′′ such that |wj |∞ ≤ C′′2−jq and |∆xj−1|∞ ≤

C′′2−j for 0 ≤ t ≤ T . This gives,

∣

∣

∣φj(tj,n) − φn
j

∣

∣

∣ ≤ c0

(

2−j max
1≤k≤s

∣

∣

∣ε
(n+ηk)m
j−1

∣

∣

∣

∞
+
∣

∣δn
j

∣

∣

∞
+ max

1≤k≤s

∣

∣

∣ε
(n+ηk)m
j−1

∣

∣

∣

2

∞

)

,

where c0 = max(2C′C′′, C′). We obtain,

∣

∣δn+1
j

∣

∣

∞
≤
∣

∣δn
j

∣

∣

∞
+c0∆tj

(

2−jεj−1 +
∣

∣δn
j

∣

∣

∞
+ ε2

j−1

)

+τ j =: (1+c0∆tj)
∣

∣δn
j

∣

∣

∞
+Zj,

with

Zj = c0∆tj
(

2−jεj−1 + ε2
j−1

)

+ τ j .

By induction, and using the fact that δ0
j = 0,

∣

∣δn
j

∣

∣

∞
≤ Zj

n−1
∑

k=0

(1 + c0∆tj)
k.

Since

max
0≤tj,n≤T

(1 + c0∆tj)
n ≤ max

0≤tj,n≤T
ec0n∆tj = max

0≤tj,n≤T
ec0tj,n ≤ ec0T ,

we get

δj ≤ max
0≤tj,n≤T

Zj

n−1
∑

k=0

(1 + c0∆tj)
k = max

0≤tj,n≤T
Zj

(1 + c0∆tj)
n − 1

c0∆tj
≤ c1

Zj

∆tj
,

where c1 = (exp(c0T ) − 1)/c0. Next, we note that

εn
j+1 = Sεmn

j + δn
j+1.

By assumptions (A3) and (A4) we can use Theorem 5.7. We denote the constant
in (5.5) by C′′′, which gives

εj+1 = max
0≤tj+1,n≤T

∣

∣εn
j+1

∣

∣

∞
≤ max

0≤tj+1,n≤T
C′′′

(

∣

∣

∣εmj+1n
0

∣

∣

∣

∞
+

j
∑

k=0

∣

∣δn
k+1

∣

∣

∞

)

≤ C′′′

(

ε0 +

j
∑

k=0

δk+1

)

≤ C′′′

(

ε0 + c1

j
∑

k=0

Zk+1

∆tk+1

)

= C′′′

(

ε0 + c0c1

j
∑

k=0

(

2−k−1εk + ε2
k

)

+ c1

j
∑

k=0

τ k+1

∆tk+1

)

≤ c2

j
∑

k=0

(2−kεk + ε2
k) + c3

j+1
∑

k=1

τ k

∆tk
,(5.11)
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where c2 = C′′′ max(1 + c0c1/2, c0c1) and c3 = C′′′c1. Moreover, by assumption
(A1) and Theorem 5.5

τ j ≤ C′′′′∆tp+1
j max

0≤t≤T

1≤ℓ≤p+1

∣

∣

∣

∣

dℓwj(t)

dtℓ

∣

∣

∣

∣

∞

≤ C′′′′C′′∆tp+1
j 2−jq,

where C′′′′ is the constant in (A1). Therefore, with c4 = c3C
′′′′C′′,

c3

j+1
∑

k=1

τ k

∆tk
≤ c4

j+1
∑

k=1

∆tpk2−kq = c4∆tp
j+1
∑

k=1

mkp2−kq = c4∆tp
j+1
∑

k=1

(mp2−q)k ≤ c5∆tp,

where c5 = c4/(1 − mp2−q), which is finite because of the condition (5.1) that
m < 2q/p. We will now use the following lemma on growth in nonlinear recursions,
proved in Appendix A.

Lemma 5.8. Let α, {an} and b be positive real numbers. If

yn+1 ≤

n
∑

j=0

(ajyj + αy2
j ) + b, n ≥ 0,(5.12)

and
∞
∑

j=1

aj = A < ∞,

then there are constants C′ and C′′ independent of n, b and y0 such that

yn ≤ C′ max(b, y0) whenever 0 ≤ n ≤
C′′

max(b, y0)
.(5.13)

We apply the lemma to εj with aj = c22
−j, α = c2, b = c5∆tp, and since

A =
∑∞

k=1 ak = c2 we obtain

εj ≤ C′ max (ε0, c5∆tp) whenever 0 ≤ j ≤
C′′

max (ε0, c5∆tp)
.

Furthermore, on the zeroth leve we use a standard p-th order ODE solver with step-
size ∆t, so ε0 ≤ c6∆tp for some constant c6. Then max (ε0, c5∆tp) ≤ max(c5, c6)∆tp.
Since T is fixed, the time step ∆t and the max level J couple as ∆t = ∆t(J) =
Tm−J . This means that the condition on j becomes max(c5, c6)JT pm−Jp ≤ C′′.
As m ≥ 2 this will always be satisfied for J large enough, say J ≥ J0. On the other
hand, there are only a finite number of cases for which J < J0, so the maximum
error over these cases is bounded by some number D. The result (5.2) then follows
with

C = max

(

C′c5, C
′c6, D max

0≤J<J0

∆t(J)−p

)

= max(C′c5, C
′c6, DmJ0p/T p).

This proves the theorem.

6. Validity of the Assumptions for Runge–Kutta Schemes

Here we verify that the assumptions on accuracy (A1) and stability (A2) in
the main theorem are satisfied for standard Runge–Kutta schemes. Regarding the
accuracy, we note that there are many investigations of the local truncation errors
for Runge–Kutta methods, going back to Butcher [3] and Henrici [15] and more
recently work by Albrecht [1] and Hosea [17]. However, the focus has traditionally
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been on the form of the leading error term, rather than the whole truncation error,
and we have been unable to find a statement in the litterature similar to (A1),
which holds in our simplified setting where F and all its derivatives are bounded.
In Appendix B we therefore derive and prove the form of the truncation error for
standard Runge–Kutta schemes in this setting. From this result we can then deduce
(A1) under the regularity assumption that F ∈ Cp+1

b (R+ ×R
d; Rd) for a p-th order

method. We note that this is a weaker regularity requirement than what is used
in Theorem 5.1, which means that for these Runge–Kutta schemes, Theorem 5.1
holds whenever (A3) and (A4) hold.

We consider an explicit p-th order s-stage Runge–Kutta scheme. For the fast
method this means that φG(t1, x1, . . . , ts, xs, w, ∆t) is defined as follows. First,

ξ1 = G(t1, x1, w),(6.1)

and for k = 2, . . . , s,

ξk(t1, x1, . . . , tk, xk, w, ∆t) = G

(

tk, xk, w + ∆t
k−1
∑

ℓ=1

αk,ℓξℓ

)

.(6.2)

Finally,

φG =

s
∑

k=1

βkξk.(6.3)

We can then show the following theorem.

Theorem 6.1. Suppose the coefficients αk,ℓ, ηj , βk are chosen such that the Runge–
Kutta method defined by (6.1), (6.2) and (6.3) is p-th order accurate with p ≥ 1.

Then, if F ∈ Cp+1
b (R+ × R

d; Rd) the method satisfies the assumptions (A1) and
(A2) when applied to (3.2).

Proof. We divide the proof into two parts, one for the accuracy (A1) and one for
the stability (A2).
1) Accuracy. The assumption (A1) follows from Theorem B.1 in Appendix B if we
can prove that the first p + 1 derivatives in t and w of H(t, w) := G(t, x(t), w)
are bounded. We claim that all derivatives of H are of the same form: For any
multi-index α and positive integer n,

∂n
t ∂α

wH(t, w) = Gn,α(t, x(t), w),(6.4)

where Gn,α(t, x, w) ∈ C
p+1−n−|α|
b (R+ × R

d × R
d; Rd), i.e. all derivatives with

respect to t, x and w are bounded as long as n + |α| ≤ p + 1. Since

G(t, x, w) = F (t, Sx + w) − SF (t, x),

this is clearly true for n = α = 0. Moreover, if it holds for n and α, then

∂n
t ∂α+α′

w H(t, w) = ∂α′

w Gn,α(t, x(t), w) =: Gn,α+α′(t, x(t), w),

and

∂n+1
t ∂α

wH(t, w) = (∂t + x′(t) · ∂x)Gn,α(t, x(t), w)

= (∂t + F (t, x(t)) · ∂x)Gn,α(t, x(t), w) =: Gn+1,α(t, x(t), w).

Using (6.4) and the assumption on F the claim follows by induction. This proves
(A1).
2) Stability. Before proving this part of the theorem we derive a Lipschitz type
bound for the function G(t, x, w).
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Lemma 6.2. Suppose F ∈ C2
b (R+ × R

d; Rd). Then,

|G(t, x, w) − G(t, x̃, w̃)|∞

≤ C
(

(|w|∞ + |∆x|∞) |x − x̃|∞ + |w − w̃|∞ + |x − x̃|
2
∞

)

,

for some constant C independent of t, x, x̃, w and w̃.

Proof. We fix the time t in the proof and can therefore for simplicity drop it in the
notation. Let y(s) := x̃ + s(x − x̃). Then

G(x, w) − G(x̃, w) =

∫ 1

0

DF (Sy(s) + w) · S(x − x̃) − SDF (y(s)) · (x − x̃)ds

=

∫ 1

0

DF (Sy(s) + w) · S(x − x̃) − DF (Sy(s)) · S(x − x̃)ds

+

∫ 1

0

DF (Sy(s)) · S(x − x̃) − SDF (y(s)) · (x − x̃)ds.

Moreover, since F ∈ C2
b ,

|DF (x1 + w) · x2 − DF (x1) · x2|∞ =

∣

∣

∣

∣

∫ 1

0

D2F (x1 + sw)(x2, w)ds

∣

∣

∣

∣

∞

≤ C |x2|∞ · |w|∞ .

Let F = (f1, . . . , fd)
T . By Proposition 2

|DF (Sy) · S(x − x̃) − SDF (y) · (x − x̃)|∞

≤

d
∑

j=1

∣

∣∇fj(Sy)T S(x − x̃) − S∇fj(y)T (x − x̃)
∣

∣

∞

≤ C |∆y|∞ |x − x̃|∞ .

Thus, noting that ∆y = ∆x + (1 − s)∆(x − x̃),

|G(x, w) − G(x̃, w)|∞ ≤ C (|S(x − x̃)|∞ · |w|∞ + |x − x̃|∞ · [|∆x|∞ + |x − x̃|∞])

Moreover,

G(x̃, w) − G(x̃, w̃) =

∫ 1

0

DF (Sx̃ + w̃ + s(w − w̃)) · (w − w̃)ds ≤ C |w − w̃|∞ .

These last two equations give the desired estimate. Finally, since all constants
involved can be taken independent of t the result will not depend on t. �

By the regularity assumptions on F it is at least in C2
b , so this lemma shows that

(A2) holds for the simplest of Runge–Kutta schemes, namely the Forward Euler
method. To prove it is true for higher order schemes we also need the following
lemma, where again the required regularity of F follows from our assumptions.

Lemma 6.3. Suppose F ∈ C1
b (R+ × R

d; Rd). Then,

|G(t, x, w)|∞ ≤ C (|w|∞ + |∆x|∞) ,

for some constant C independent of t, x and w.
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Proof. Let F = (f1, . . . , fd)
T . We have

|G(t, x, w)|∞ ≤ |F (t, Sx + w) − F (t, Sx)|∞ + |F (t, Sx) − SF (t, x)|∞

≤ C |w|∞ + |F (t, Sx) − SF (t, x)|∞

≤ C |w|∞ +

d
∑

j=1

|fj(t, Sx) − Sfj(t, x)|∞ .

From Proposition 2 with y = 1 we furthermore get,

|fj(t, Sx) − Sfj(t, x)|∞ ≤ C |Dfj(t, ·)|∞ |∆x|∞ ≤ C |∆x|∞ ,

with C independent of t and x. This proves the lemma. �

For the recursion in the remainder of the proof we will use the following lemma,
which is proved in Appendix A.

Lemma 6.4. Let a and {bn} be positive real numbers. If

y1 ≤ b1, yn ≤ a
n−1
∑

j=1

yj + bn, n > 1,(6.5)

then, for n ≥ 1,

yn ≤ max(a, 1)e(n−1)a
n
∑

j=1

bj .(6.6)

We are now ready for the proof that the Runge–Kutta methods defined by (6.1),
(6.2) and (6.3) satisfy (A2). Let Gk := G(tk, xk, w). Then by Lemma 6.2,

|ξk|∞ =

∣

∣

∣

∣

∣

G

(

tk, xk, w + ∆t

k−1
∑

ℓ=1

αk,ℓξℓ

)∣

∣

∣

∣

∣

∞

≤ |Gk|∞ +

∣

∣

∣

∣

∣

G

(

tk, xk, w + ∆t

k−1
∑

ℓ=1

αk,ℓξℓ

)

− Gk

∣

∣

∣

∣

∣

∞

≤ |Gk|∞ + C′∆t

k−1
∑

ℓ=1

αk,ℓ |ξℓ|∞ ≤ |Gk|∞ + c0

k−1
∑

ℓ=1

|ξℓ|∞ .

where C′ is the constant in Lemma 6.2 and c0 = C′∆t maxk,ℓ |αk,ℓ|. Furthermore,
let C′′ be the constant in Lemma 6.3 and c1 = max(c0, 1) exp((s − 1)c0). By
Lemma 6.3 and Lemma 6.4 with a = c0 and bn = |Gn|∞,

|ξk|∞ ≤ c1

k
∑

ℓ=1

|Gℓ|∞ ≤ sc1C
′′

(

|w|∞ + max
1≤j≤s

|∆xj |∞

)

.(6.7)

Next, we have by Lemma 6.2,
∣

∣

∣ξ1 − ξ̃1

∣

∣

∣

∞
= |G(t1, x1, w) − G(t1, x̃1, w̃)|∞

≤ C′
(

(|w|∞ + |∆x1|∞) |x1 − x̃1|∞ + |w − w̃|∞ + |x1 − x̃1|
2
∞

)

.
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For k > 1, by Lemma 6.2 and (6.7),
∣

∣

∣ξk − ξ̃k

∣

∣

∣

∞
= |ξk(t1, x1, t2, x2, · · · , tk, xk, w, ∆t) − ξk(t1, x̃1, t2, x̃2, · · · , tk, x̃k, w̃, ∆t)|∞

=

∣

∣

∣

∣

∣

G

(

tk, xk, w + ∆t
k−1
∑

ℓ=1

αk,ℓξℓ

)

− G

(

tk, x̃k, w̃ + ∆t
k−1
∑

ℓ=1

αk,ℓξ̃ℓ

)∣

∣

∣

∣

∣

∞

≤ C′

[(∣

∣

∣

∣

∣

w + ∆t
k−1
∑

ℓ=1

αk,ℓξℓ

∣

∣

∣

∣

∣

∞

+ |∆xk|∞

)

|xk − x̃k|∞ + |w − w̃|∞

+∆t

k−1
∑

ℓ=1

αk,ℓ

∣

∣

∣ξℓ − ξ̃ℓ

∣

∣

∣

∞
+ |xk − x̃k|

2
∞

]

≤

(

C′(|w|∞ + |∆xk|∞) + c0

k−1
∑

ℓ=1

|ξℓ|

)

|xk − x̃k|∞ + C′ |w − w̃|∞

+ c0

k−1
∑

ℓ=1

∣

∣

∣ξℓ − ξ̃ℓ

∣

∣

∣

∞
+ C′ |xk − x̃k|

2
∞

≤ (C′ + s2c0c1C
′′)

(

|w|∞ + max
1≤j≤s

|∆xj |∞

)

|xk − x̃k|∞ + C′ |w − w̃|∞

+ c0

k−1
∑

ℓ=1

∣

∣

∣ξℓ − ξ̃ℓ

∣

∣

∣

∞
+ C′ |xk − x̃k|

2
∞ .

Again, by Lemma 6.4 applied to |ξk − ξ̃k|,

∣

∣

∣
ξk − ξ̃k

∣

∣

∣

∞
≤ c1

k
∑

ℓ=1

[

(C′ + s2c0c1C
′′)

(

|w|∞ + max
1≤j≤s

|∆xj |∞

)

|xℓ − x̃ℓ|∞

+ C′ |w − w̃|∞ + C′ |xℓ − x̃ℓ|
2
∞

]

≤ sc1

[

(C′ + s2c0c1C
′′)

(

|w|∞ + max
1≤j≤s

|∆xj |∞

)

max
1≤j≤s

|xj − x̃j |∞

+ C′ |w − w̃|∞ + max
1≤j≤s

C′ |xj − x̃j |
2
∞

]

.(6.8)

Moreover,

|φG(t1, x1, . . . , ts, xs, w, ∆t) − φG(t1, x̃1, . . . , ts, x̃s, w̃, ∆t)|∞ ≤ max
k

|βk|
s
∑

k=1

∣

∣

∣
ξk − ξ̃k

∣

∣

∣

∞
.

which together with (6.8) proves the validity of (A2) with the constant

C = sc1(C
′ + s2c0c1C

′′)s max
k

|βk|.

This concludes the proof. �

7. Numerical Examples

In this section we present results of using the fast interface tracking (FIT)
method, and verify numerically the theoretical results in Section 5. Errors are
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Figure 2. Solution example: curve plotted at t = 0 and t = 1.
Vector field F overlaid.

compared with those of standard interface tracking (SIT) based on (1.2). We con-
sider a test case where the velocity field is given by

F (x) =

(

x2 sin(x1) −
1
2

(x1 + 0.2) cos(x2) + 0.4

)

, x = (x1, x2).(7.1)

We let the initial curve be a circle |x| = 1 and run the problem until time t = 1.
The solution of this problem is shown in Figure 2, where the vector field (7.1) is
overlaid.

In the implementation of the fast method the coarsest level that we use contains
2j0 points, where j0 > 1, and ∆tj = ∆tmj−j0 . We employ this slight modification
of the method since it allows us to have reasonably large time steps on the coarsest
level while still being able to explore the errors when we go to very fine levels, i.e.
when taking J large; recall that ∆tJ = 1 implies that ∆t = mj0−J . With very short
time steps the local truncation errors in the highest order method, Runge–Kutta 4,
will be of the same order as the round-off errors in double precision, which makes
the results unreliable.

In the experiments we test Runge–Kutta methods of order p = 1, 2, 3 and 4,
with the first order method being the standard Forward Euler. The parameters
defining these schemes are given in Table 3.

We test spatial approximations of even orders: q = 2, 4, 6 and 8 given in Table 1.
We also test a global approximation using Fourier interpolation and indicate this
by q = ∞. Note that even though the corresponding subdivision operator S is non-
local it can still be applied fast in O(N log N) time leading to a similar complexity
as for the local subdivision operators considered in the analysis, cf. Remark 4.1.
However, the bound (5.5) is not true for this S so the result in Theorem 5.1 does not
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Table 3. Runge–Kutta tableaus for the schemes used. Standard
notation is employed: ηj in left column, αk,ℓ in top right matrix
and βj in bottom row.
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1

0
1 1

1
2

1
2

0
1
2

1
2

1 -1 2
1
6

2
3

1
6

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Forward Euler Runge–Kutta 2 Runge–Kutta 3 Runge–Kutta 4

Table 4. Errors with m = 2 and N = 2048 for various ODE-
methods and spatial approximation orders.

Method p q = 2 q = 4 q = 6 q = 8 q = ∞ SIT

Forward Euler 1 9.92e-03 8.50e-03 8.39e-03 8.38e-03 8.38e-03 8.46e-03
Runge–Kutta 2 2 1.13e-04 3.80e-05 3.41e-05 3.30e-05 3.07e-05 2.50e-05
Runge–Kutta 3 3 8.00e-06 1.68e-07 1.05e-07 9.12e-08 7.36e-08 6.20e-08
Runge–Kutta 4 4 2.09-e06 5.20e-09 1.12e-09 6.86e-10 4.22e-10 2.18e-10

apply, although in the experiments it performs very well. All errors are measured
in max norm and compared with a well resolved numerical simulation.

In the first test we take m = 2, which corresponds to doubling the time step
in each level. We use j0 = 4, J = 11 and ∆t = 1/128. The results are given
in Figure 3 and Table 4. The dashed lines and the SIT column give the error
when using standard interface tracking (1.2) with the same time step and number
of points. The error in the fast interface tracking is higher but decreases with
higher order spatial approximation q and remains well within a magnitude from
the standard method when the stability condition 2q/p > m = 2, i.e. p < q, holds;
it is in fact clear that when p > q the error grows with N , while it remains bounded
when p < q as Theorem 5.1 predicts. For the borderline case p = q the picture is
less clear.

The same results are seen also in the second test, where we take m = 4, which
corresponds to quadrupling the time step in each level. We use j0 = 5, J = 9 and
∆t = 1/256. The results are given in Figure 4 and Table 5. Here the stability
condition 2q/p > m implies p < q/2. Again, the error remains bounded when this
condition is satisfied.

We have tested very smooth and nice problems here to verify the asymptotic
properties of the numerical solutions. For more difficult problems (longer time) the
difference between SIT and FIT is bigger since the smoothness of the s-parameterization
in x(t, s) typically deteriorates, which affects FIT but not SIT. For real problems
one therefore also needs to add adaptivity. This is work in progress.
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Figure 3. Error with m = 2 as a function of N for different
ODE methods and spatial approximations (corresponding to q =
2, 4, 6, 8,∞). Arrow indicates ordering of lines. (In frame (a) all
lines but one are on top of each other.) The dashed line is the error
of standard interface tracking.

Table 5. Errors with m = 4 and N = 512 for various ODE-
methods and spatial approximation orders.

Method p q = 2 q = 4 q = 6 q = 8 q = ∞ SIT

Forward Euler 1 5.43e-03 4.27e-03 4.23e-03 4.22e-03 4.24e-03 4.24e-03
Runge–Kutta 2 2 2.30e-04 1.03e-05 7.19e-06 6.75e-06 6.26e-06 6.26e-06
Runge–Kutta 3 3 6.90e-05 3.58e-07 2.09e-08 1.09e-08 7.91e-09 7.76e-09
Runge–Kutta 4 4 2.80e-05 2.21e-07 5.50e-09 7.61e-10 2.93e-11 1.37e-11
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Figure 4. Error with m = 4 as a function of N for different
ODE methods and spatial approximations (corresponding to q =
2, 4, 6, 8,∞). Arrow indicates ordering of lines. (In frame (a) all
lines but one are on top of each other.) The dashed line is the error
of standard interface tracking.
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Appendix A. Growth Results

In this section we prove Lemma 5.8 and Lemma 6.4 which both give estimates
of the growth in certain recursions.

We start with Lemma 6.4 but consider a slightly more general case where the
assumption (6.5) is replaced by

yn+1 ≤

n
∑

j=0

ajyj + bn+1.

This more general case will be used in the proof of Lemma 5.8 below. We define
the partial sum

sn :=

n
∑

j=0

ajyj ,
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and get

sn+1 = sn + an+1yn+1 ≤ sn + an+1





n
∑

j=0

ajyj + bn+1



 = (1+ an+1)sn + an+1bn+1.

A simple induction argument then leads to (see e.g. [22, Lemma 4.8]), for n ≥ 1,

sn+1 ≤ an+1bn+1 +

n
∑

j=1

ajbj

n
∏

k=j

(1 + ak+1) + s0

n
∏

k=0

(1 + ak+1)

≤ an+1bn+1 +
n
∑

j=1

ajbj exp





n
∑

k=j

ak+1



+ s0 exp

(

n
∑

k=0

ak+1

)

,

where we also used the fact that 1 + x ≤ ex. Consequently, for n ≥ 1,

yn+1 ≤ sn + bn ≤ anbn +
n−1
∑

j=1

ajbje
Pn−1

k=j
ak+1 + a0y0e

Pn−1

k=0
ak+1 + bn+1

≤



a0y0 +
n
∑

j=1

ajbj + bn+1



 exp

(

n
∑

k=1

ak

)

,(A.1)

which also holds for n = 0, with the sums taken to be zero. When y0 = 0 and
aj = a this gives the result (6.6) and proves Lemma 6.4.

For Lemma 5.8 we start by defining a sequence {βj} that will be used to majorize
{yj} for a, large, initial part of the sequence. The constants Cj that we define below
are all chosen such that they only depend on α and aj , not on the sequence index
n or the parameter that will eventually be small, namely

ε := max(b, y0).

More precisely, we define β0 = y0, and for n ≥ 0,

βn+1 = eA+α



(a0 + αβ0)y0 + b

n
∑

j=1

(aj + αβj) + b



 =:

n
∑

j=0

βjcj + dn+1,(A.2)

where

cj = αeA+α

{

y0, j = 0,

b, j ≥ 1,
dn+1 = eA+α



b

n
∑

j=1

aj + a0y0 + b



 ,

with the sum being zero for n = 0. Then, with C0 := α exp(A + α) we can bound

cj ≤ εC0, dn+1 ≤ εeA+α





n
∑

j=1

aj + a0 + 1



 ≤ εeA+α[(A + 1) + a0] =: εC1,

and (A.1) gives

βn+1 ≤
(

εC0β0 + ε2nC0C1 + εC1

)

eεnC0 ≤ εC2 (1 + ε(n + 1)) eεnC0 ,(A.3)

where C2 = max(C0, C0C1, C2). We now let N(y) denote the largest index n for
which βn majorizes yn,

yn ≤ βn, 0 ≤ n ≤ N(y).
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Then,

yn+1 ≤
n
∑

j=0

(aj + αβj)yj + b, 0 ≤ n ≤ N(y),

and we can apply (A.1) with n = N(y),

yN(y)+1 ≤



(a0 + αβ0)y0 + b

N(y)
∑

j=1

(aj + αβj) + b



 exp





N(y)
∑

k=1

(ak + αβk)





= βN(y)+1 exp



−A − α +

N(y)
∑

k=1

(ak + αβk)



 ≤ βN(y)+1 exp



−α + α

N(y)
∑

k=1

βk



 .

Since by construction βN(y)+1 < yN(y)+1, this shows that

N(y)
∑

k=1

βk > 1.

We thus have

1 <

N(y)
∑

k=1

βk ≤ εC2

N(y)
∑

k=1

(1 + εn)eε(k−1)C0 ≤ εC2e
εN(y)C0

N(y)
∑

k=1

(1 + εn)

= C2e
εN(y)C0

(

εN(y) + ε2 1

2
N(y)[N(y) + 1]

)

≤ g(εN(y)),

with g(x) being the function

g(x) = C2(x + x2)exC0 .

Here we also used the fact that N(y) ≥ 1; that y1 ≤ β1 follows easily from (6.5) and
(A.2). We note that g(0) = 0 and g(x) is strictly increasing for x > 0. Therefore,
for positive x, g(x) > 1 implies x > x∗, where x∗ only depends on C0 and C2.
Hence,

εN(y) > x∗.

Thus, for n ≤ x∗/ε < N(y), by the estimate (A.3),

yn ≤ βn ≤ εC2(1 + εn)eε(n−1)C0 ≤ εC2(1 + x∗)ex∗C0 .

The final result (5.13) thus follows with C′ = C2(1 + x∗) exp(x∗C0) and C′′ = x∗,
proving Lemma 5.8.

Appendix B. Local Truncation Error for Runge–Kutta Schemes

We consider an explicit p-th order s-stage Runge–Kutta method for the problem

dy(t)

dt
= F (t, y), y ∈ R

d,

where F : R
+ × R

d → R
d. The method is defined by the parameters ηj , αk,ℓ and

βk through the following steps

ξ1 = F (tn, yn),

and for k = 2, . . . , s,

ξk = F

(

tn + ηjh, yn + h

k−1
∑

ℓ=1

αk,ℓξℓ

)

.
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Finally,

yn+1 = yn + h

s
∑

k=1

βkξk =: yn + hφF (h, tn, yn).

The local truncation error is defined as the residual when the exact solution is
entered into the scheme, hence

τ(t, h) = y(t + h) − y(t) − hφF (h, t, y(t)).(B.1)

For this method we can prove the following

Theorem B.1. Suppose F ∈ Cp+1
b (R+×R

d; Rd) and that the coefficients αk,ℓ, ηj , βk

are chosen such that the method above is p-th order accurate. Then, for 0 ≤ h ≤ h0

|τ(tn, h)| ≤ Chp+1 max
tn≤t≤tn+h

1≤j≤p+1

|y(j)(t)|,

where the constant C depends on h0 and F but is independent of h and tn.

The proof is based on two lemmas given below. For most of the steps F ∈ Cp
b is a

sufficient regularity condition, but in the last lemma F ∈ Cp+1
b is needed. In severe

places in the proof it is necessary that a solution y(t) exists and belongs to at least
Cp+1. This follows from standard ODE theory with the regularity assumption on
F .

We can Taylor expand y(tn + h) and φF (h, tn, y(tn)) in (B.1) around h = 0 to
order p + 1 and p respectively,

τ =

p
∑

k=0

hky(k)(tn)

k!
+

hp+1

(p + 1)!
Z1 − y(tn) − h

p−1
∑

k=0

hkφ
(k)
F (0, tn, y(tn))

k!
−

hp+1

p!
Z2,

and the remainder terms can be bounded by

|Z1| ≤ max
tn≤t≤tn+h

∣

∣

∣y(p+1)(t)
∣

∣

∣ , |Z2| ≤ max
0≤h̃≤h

∣

∣

∣φ
(p)
F (h̃, tn, y(tn))

∣

∣

∣ .

By the definition of a p-th order method all lower order terms in h must vanish and
we are left with

|τ | =
hp+1

(p + 1)!
|Z1 − (p + 1)Z2|

≤
hp+1

(p + 1)!
max

tn≤t≤tn+h

∣

∣

∣y(p+1)(t)
∣

∣

∣+
hp+1

p!
max

0≤h̃≤h

∣

∣

∣φ
(p)
F (h̃, tn, y(tn))

∣

∣

∣ .

To show the result in the theorem, we therefore need to prove that

max
0≤h̃≤h

∣

∣

∣φ
(p)
F (h̃, tn, y(tn))

∣

∣

∣ ≤ C max
tn≤t≤tn+h

1≤ℓ≤p+1

|y(ℓ)(t)|.

We start by introducing the functions

R0(tn) = F (tn, y(tn)), Rk(t, x1, . . . , xk; tn) = F

(

tn + ηkt, y(tn) +
k
∑

ℓ=1

αk,ℓxℓ

)

,

where Rk : R × R
d×k → R

d and tn is considered as a parameter. Then

ξk(h; tn) = Rk−1(h, hΞk−1(h); tn), Ξk(h; tn) = (ξ1(h; tn), . . . , ξk(h; tn))T .
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For most of the proof we consider a fixed tn and we will frequently drop the depen-
dence on tn in the notation for these functions. We now show the following lemma,
which gives the form of the derivatives of ξ with respect to h.

Lemma B.2. If F ∈ C p̄
b (R+ × R

d; Rd) then for 0 ≤ p ≤ p̄,

dpξk(h; tn)

dhp
=

k−1
∑

ℓ=0

p
∑

q=0

Sℓ,k−1,q,p(h, hΞk−1(h; tn); tn)∂q
t Rℓ(h, hΞℓ(h; tn); tn),(B.2)

for k = 2, . . . , s, where Sℓ,k,q,p(t, x; tn) : R × R
d×k → R

d×d are continuous and
bounded in x for every fixed t, uniformly in tn.

Proof. Since F ∈ C p̄
b (R+ × R

d; Rd) we have Rk ∈ C p̄
b (R × R

d×k; Rd), with bounds
uniform in tn. By construction (B.2) is true for p = 0 and k = 2, . . . , s with
Sℓ,k,0,0 = δℓ,k I. Moreover, for p = 1 we get

dξk(h)

dh
= ∂tRk−1(h, hΞk−1(h)) +

k−1
∑

ℓ=1

[∂xℓ
Rk−1(h, hΞk−1(h))](ξℓ(h) + hξ′ℓ(h))

= ∂tRk−1 +
k−1
∑

ℓ=1

[∂xℓ
Rk−1]Rℓ−1 + h

k−1
∑

ℓ=1

[∂xℓ
Rk−1]ξ

′
ℓ.

When k = 2 this reduces to ξ′2 = ∂tR1 + [∂x1
R1]R0 since ξ1 is independent of h.

The p = 1, k = 2 case is thus of the form (B.2). If this is true upto k ≥ 2, then

dξk+1(h)

dh
= ∂tRk +

k
∑

ℓ=1

[∂xℓ
Rk]Rℓ−1 +

k
∑

ℓ=1

ℓ−1
∑

r=0

1
∑

q=0

h[∂xℓ
Rk]Sr,ℓ−1,q,p∂

q
t Rr,

which shows, by induction, that (B.2) holds for p = 1 and k = 2, . . . , s. Moreover,
Sℓ,k,q,1 belongs to C p̄−1 and it is bounded in y (but not in t because of the h
multiplying the second sum), uniformly in tn. We claim that (B.2) holds with
Sℓ,k,q,p ∈ C p̄−p for all 0 ≤ p ≤ p̄. Indeed, if true upto some p ∈ [1, p̄− 1] and k ≥ 2,

dp+1ξk(h)

dhp+1
=

d

dh

k−1
∑

ℓ=0

p
∑

q=0

Sℓ,k−1,q,p(h, hΞℓ(h))∂q
t Rℓ(h, hΞℓ(h))

=

k−1
∑

ℓ=1

p
∑

q=0

Sℓ,k−1,q,p(h, hΞk−1(h))∂q+1
t Rℓ(h, hΞℓ(h))

+

k−1
∑

ℓ=1

p
∑

q=0

∂tSℓ,k,q,p(h, hΞk−1(h))∂q
t Rℓ(h, hΞℓ(h))

+ h

k−1
∑

ℓ=1

[∂xℓ
Dk−1,p(h, hΞk−1(h))]ξ′ℓ(h)

+

k−1
∑

ℓ=1

[∂xℓ
Dk−1,p(h, hΞk−1(h))]ξℓ(h)

=: E1 + E2 + E3 + E4,
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where

Dk,p(t, x; tn) =

k
∑

ℓ=0

p
∑

q=0

Sℓ,k,q,p(t, x; tn)∂q
t Rℓ(t, x; tn) ∈ C p̄−p.

The terms E1 and E2 are clearly of the same form as (B.2), with the stipulated
uniformity in tn. So is E4 since ξℓ(h) = Rℓ−1(h, hΞℓ−1(h)). For E3 we note that

h[∂xℓ
Dk−1,p(h, hΞk−1(h))]ξ′ℓ(h)

= h

ℓ−1
∑

r=0

1
∑

q=0

[∂xℓ
Dk−1,p(h, hΞk−1(h))]Sr,ℓ−1,q,1(h, hΞℓ−1(h))∂q

t Rr(h, hΞr(h)),

which is again of the form (B.2). Since one t-derivative is taken in the E2 term and
one x-derivative in the E3 and E4 terms, the new matrix functions Sℓ,k,q,p+1 will
at least belong to C p̄−p−1. This shows the lemma by induction. �

Using this lemma we can write down an expression for the h-derivatives of φF .
For p ≥ 1, as long as F ∈ Cp

b ,

φ
(p)
F (h, tn, y(tn)) =

s
∑

k=1

βk
dpξk(h; tn)

dhp

=

s
∑

k=2

k−1
∑

ℓ=0

p
∑

q=0

βkSℓ,k−1,q,p(h, hΞk−1(h))∂q
t Rℓ(h, hΞℓ(h)),

which shows that for 0 ≤ h ≤ h0,

∣

∣

∣φ
(p)
F (h, tn, y(tn))

∣

∣

∣ ≤ C max
1≤ℓ≤s

0≤q≤p

|∂q
t Rℓ(h, hΞℓ(h))|,

where the constant C depends on h0 but not on h and tn. The result then follows
from the following lemma.

Lemma B.3. If F ∈ Cp+1
b (R+ × R

d; Rd) then, for 0 ≤ q ≤ p and 0 ≤ h ≤ h0,

|∂q
t Rℓ(h, hΞℓ(h; tn); tn)| ≤ C max

tn≤t≤tn+h

1≤j≤q+1

|y(j)(t)|,

where C depends on h0 but is independent of h and tn.

Proof. We claim that there are functions Sℓ,q(t, x) ∈ Cp+1−q
b (R × R

d; Rd×d) such
that for 0 ≤ q ≤ p,

∂q
t F (t, y(t)) =

q
∑

ℓ=1

Sℓ,q(t, y(t))y(ℓ)(t) + y(q+1)(t).(B.3)
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This is clearly true for q = 0. Moreover, if it is true up to q, then

∂q+1
t F (t, y(t)) = −∂q

t Fy(t, y(t))y′(t) +
d

dt
∂q

t F (t, y(t))

= −∂q
t Fy(t, y(t))y′(t) +

d

dt

q
∑

ℓ=1

Sℓ,q(t, y(t))y(ℓ)(t) + y(q+2)(t)

= −∂q
t Fy(t, y(t))y′(t) +

q
∑

ℓ=1

Sℓ,q(t, y(t))y(ℓ+1)(t) + y(q+2)(t).

+

q
∑

ℓ=1

[

∂tSℓ,q(t, y(t))y(ℓ)(t) + ∂xSℓ,q(t, y(t))(y′(t), y(ℓ)(t))
]

,

where ∂xSℓ,q(t, y(t))(z1, z2) is a bilinear form acting on z1, z2 ∈ R
d. Hence, since

y′(t) = F (t, y), we can take

Sℓ,q+1 =











−∂q
t Fy + ∂tSℓ,q + ∂xSℓ,q(F, ·), ℓ = 1,

Sℓ−1,q + ∂tSℓ,q + ∂xSℓ,q(F, ·), 2 ≤ ℓ ≤ q,

Sq,q, ℓ = q + 1 > 1,

S0,q ≡ 0.

These are sums of functions or derivatives of functions belonging to Cp+1−q
b , so

Sℓ,q+1 ∈ Cp−q
b , which shows (B.3) by induction. Hence, |Sℓ,q| is bounded for ℓ ≤

q ≤ p by a number, say Mp, independent of t and x. Then when k ≥ 2 and q ≤ p,

since F ∈ Cp+1
b ,

|∂q
t Rk(h, hΞk(h))| =

∣

∣

∣

∣

∣

ηq
k∂q

t F

(

tn + ηkh, y(tn) + h

k
∑

ℓ=1

αk,ℓξℓ(h)

)∣

∣

∣

∣

∣

(B.4)

≤ |∂q
t F (tn + ηkh, y(tn + ηkh))|

+

∣

∣

∣

∣

∣

∂q
t F

(

tn + ηkh, y(tn) + h

k
∑

ℓ=1

αk,ℓξℓ(h)

)

− ∂q
t F (tn + ηkh, y(tn + ηkh))

∣

∣

∣

∣

∣

≤ |∂q
t F (tn + ηkh, y(tn + ηkh))|

+ |∂q
t ∂yF |∞

∣

∣

∣

∣

∣

y(tn + ηkh) − y(tn) − h

k
∑

ℓ=1

αk,ℓξℓ(h)

∣

∣

∣

∣

∣

≤ Mp

q+1
∑

ℓ=1

|y(ℓ)(tn + ηkh)|

+ Ch0 max
tn≤t≤tn+h

|y′(t)| + Ch0

k
∑

ℓ=1

|ξℓ(h)|

≤ C






max

tn≤t≤tn+h

1≤j≤q+1

|y(j)(t)| +

k
∑

ℓ=1

|ξℓ(h)|






,
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where C depends on h0 but not on t or y. Taking q = 0 in this inequality we have,
since Rk = ξk+1,

|ξk+1(h)| ≤ C

(

max
tn≤t≤tn+h

|y′(t)| +

k
∑

ℓ=1

|ξℓ(h)|

)

.

Since ξ1 = F (tn, y(tn)) = y′(tn), we can conclude by Lemma 5.8 that

max
1≤ℓ≤s

|ξℓ(h)| ≤ max(C, 1)e(s−1)CC
s
∑

j=1

max
tn≤t≤tn+h

|y′(t)| ≤ C′ max
tn≤t≤tn+h

|y′(t)|

Inserting this into (B.4) proves the lemma. �


