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Abstract

In this paper, we present a finite difference Heterogeneous Multiscale
Method for the Landau-Lifshitz equation with a highly oscillatory dif-
fusion coefficient. The approach combines a higher order discretization
and artificial damping in the so-called micro problem to obtain an
efficient implementation. The influence of different parameters on the
resulting approximation error is discussed. Further important factors
that are taken into account are the choice of time integrator and
the initial data for the micro problem which has to be set appro-
priately to get a consistent scheme. Numerical examples in one and
two space dimensions and for both periodic as well as more general
coefficients are given to demonstrate the functionality of the approach.

Keywords: Heterogeneous Multiscale Methods, Micromagnetics, Finite
differences, Landau-Lifshitz

1 Introduction

The simulation of ferromagnetic composites can play an important role in the
development of magnetic materials. A typical approach to describing magneti-
zation dynamics of ferromagnetic materials is using the micromagnetic version
of the Landau-Lifshitz equation, which states

8 M® = —M® x H(M*) — aM? x [M® x H(M?)], (1)
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where M€ is the magnetization vector, H(IM¢) the effective field acting on the
magnetization and the material constant o describes the strength of damping.
While the effective field contains several important contributions, we here con-
sider a simplified model, only taking into account exchange interaction, and
introduce a coefficient a® describing the material variations in the composite.
The parameter € < 1 represents the scale of these variations. We then have

H(M?) := V- (a°VM®),

a model that was first described in [1]. Similar models have also recently been
used by for example [2] as well as [3] and [4].

For small values of ¢, it becomes computationally very expensive and at
some point infeasible to provide proper numerical resolution for a simulation
of eq. (1). Hence we aim to apply numerical homogenization based on the
approach of Heterogeneous Multiscale Methods (HMM) to the problem. In this
framework, one combines a coarse scale macro problem with a micro problem
resolving the relevant fast scales on a small domain in order to obtain an
approximation to the effective solution corresponding to the problem.

For a simplified Landau-Lifshitz problem with a highly oscillatory external
field and no spatial interaction, a possible HMM setup was introduced in [5]
and extended to a non-zero temperature scenario in [6].

For the problem we consider here, eq. (1), the homogenization error has
been analyzed in [7]. There it is also shown that M® exhibits fast oscillations
in both space and time, where the spatial variations are of order O(e) while
the temporal ones are of order O(g?) and get damped away exponentially with
time, depending on the given value of «. In [8] several ways to set up HMM
were discussed and the errors introduced in the numerical homogenization
process, the so-called upscaling errors, where analyzed. In this paper, we focus
on numerical aspects related to the implementation of HMM for eq. (1). In
Section 2, we first give an overview of the method and include relevant known
results from [7] and [8]. We then discuss some aspects of time integration of
the Landau-Lifshitz equation in Section 3 and suggest suitable methods for the
time stepping in the macro and micro problem, respectively. Section 4 focuses
on the HMM micro problem. We study how to choose initial data for the micro
problem that is appropriately coupled to the current macro scale solution in
Section 4.1, before using numerical example problems to investigate several
factors that influence the errors introduced in the HMM averaging process in
Section 4.3. In Section 5 we present numerical examples to show that the HMM
approach can also be applied to locally-periodic and quasi-periodic problems.

2 Heterogeneous Multiscale Methods

In this section, we introduce the concept of Heterogeneous Multiscale Methods,
discuss how we choose to set up a HMM model for the Landau-Lifshitz problem
eq. (1) and give relevant error estimates that were introduced in [7] and [8].
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2.1 Problem description

The specific multiscale problem we consider in this article is to find M¢ that
satisfies the nonlinear initial value problem

M = —M* x V- (¢°VM*) — aM* x [M® x V - (a°VM)],  (2a)
Me (SC, 0) = Minit (CC), (2b)

with periodic boundary conditions, on a fixed time interval [0, 7] and a spatial
domain Q = [0,L]? for some L € R and dimension d = 1,2,3. Here a° is
a material coefficient which oscillates with a frequency determined by . We
furthermore assume the following.

(A1) The material coefficient function a® is in C*°(2) and bounded by constants
Gmins Gmax > 05 1t holds that amin < a®(x) < amax for all x € Q.

(A2) The damping coefficient o and the oscillation period ¢ are small, 0 < a < 1
and 0 <e < 1.

(A3) The initial data Miyi; () is normalized such that |Miyit(x)| = 1 for all x € €,
which implies that |M¢(z,t)| =1 for all z € Q and ¢ € [0,T].

When the material coefficient is periodic, a® = a(x/c) where a(y) is a 1-
periodic function and € = L/{ for some ¢ € N, one can analytically derive a
homogenized problem corresponding to eq. (2), as shown in [7]. The solution
Mj to this homogenized problem satisfies

My = —My x V- (VMoA™) — aM, x My x [V - (VMoA")], (3a)
Mo (z,0) = Mipit, (3b)

where A is the same homogenized coefficient matrix as for standard elliptic
homogenization problems,

Af = / a(y) (I + (Vyx)T) dy . (4)
[0,1]4

Here x(y) € R? denotes the so-called cell solution, which satisfies

V- (a(y)Vx(y)) = —Vya(y) (5)

and is defined to have zero average. In [7], error bounds for the difference
between the solutions to eq. (2) and eq. (3) are proved under certain regularity
assumptions. In particular, we have the following result for periodic problems.

Theorem 1 Given a fized final time T, assume that M® € C([0,T]; H?(Q)) is
a classical solution to eq. (2) and that there is a constant K independent of € such
that ||[VME (-, t)||L~ < K for allt € [0,T)]. Suppose that My € C*°(0,T; H™(Q)) is
a classical solution to eq. (3) and that the assumptions (A1)-(A8) are satisfied. We
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then have for 0 <t < T,
[M®(-,¢) = Mo(+, t)| 2 < Ck, (6)
where the constant C' is independent of € and t but depends on K and T.

Note that it is easy to show that ||[VMe(-,t)||2 < K independent of ¢, as
is for example shown in [7, Appendix B|. Numerically one can check that the
same also holds for ||[VME®(-,t)|| =~ for typical example problems.

2.2 Heterogeneous Multiscale Methods for the
Landau-Lifshitz equation

Heterogeneous Multiscale Methods are a well-established framework for deal-
ing with multiscale problems with scale separation, that involve fast scale
oscillations which make it computationally infeasible to properly resolve the
problem throughout the whole domain. First introduced by E and Engquist
[9], they have since then been applied to problems from many different areas
[10, 11].

The general idea of HMM is to approximate the effective solution to the
given problem using a coarse scale macro model that is missing some data
and is thus incomplete. It is combined with an accurate micro model resolving
the fast oscillations in the problem, coupled to the macro solution via the
micro initial data. The micro problem is only solved on a small domain around
each discrete macro location to keep the computational cost low. The thereby
obtained solution is then averaged and provides the information necessary to
complete the macro model [9-11].

Since HMM approximates the effective solution to a multiscale problem
rather than resolving the fast scales, some error is introduced. In case of the
Landau-Lifshitz problem eq. (2) with a periodic material coefficient, the effec-
tive solution corresponding to M¢ is My satisfying eq. (3). It hence follows
from Theorem 1 that the L2-error between the HMM solution and M¢ in the
periodic case is always at least O(e).

There are several different HMM models one could choose for the problem
eq. (2). Three possibilities are discussed in [8], flux, field and torque model. All
three are based on the same micro model, the full Landau-Lifshitz equation
eq. (2) which is solved on a time interval [0, 7], where n ~ €2. In [7], it is shown
that this is the scale of the fast temporal oscillations in the problem. Hence,
the micro model is to find m®(z,t) for 0 < ¢ < such that

Om® = —m° X V- (a°Vm®) — am® x [m° x V- (a°*Vm°®)], (7a)
m®(z,0) = my,i(z) = IFM(-, t). (7b)
The initial data for the micro problem is based on an interpolation of the

current macro state M, here denoted by IT¥, which is explained in more detail
in Section 4.1. In [8], it is assumed that eq. (7) holds for = € Q with periodic
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boundary conditions to simplify the analysis. In practice, one must only solve
eq. (7) for x € [y, 4']¢ to keep down the computational cost. Here p’ ~ ¢,
since this is the scale of the fast spatial oscillations in m*. To do this, we have
to add artificial boundary conditions which introduce some error as discussed
in Sections 4.2 and 4.3.

The three different macro models considered in [8] have the general struc-
ture of egs. (2) and (3) but involve different unknown quantities which have to
be obtained by averaging the corresponding data from the micro model eq. (7).
In the field model, we have

OM = —M X Hayg(z,t; M) — oM x [M x Hyye(z, t; M)], (8a)
M(x, O) = Minit, (Sb)

where Hyyq(x,t; M) denotes the unknown quantity. In the periodic case, this
quantity approximates V - (VmA®).
In the flux model, eq. (8a) is replaced by

OM = -M x V - Fae(z,t; M) —aM x [M x V- Fay(z,t; M), (9)
and in the torque model, we instead have
OM = —Tg(x,t; M) — oM x Tyyg(x, t; M), (10)

where in the periodic case, F,y, and T,,s are approximations to VmAH and
m x V- (VmA®), respectively. As shown in [8], the error introduced when
approximating the respective quantities by an averaging procedure, the so-
called upscaling error, is bounded rather similarly for all three models, with
somewhat lower errors in the flux model. This does not give a strong incentive
to choose one of the models over the others. In this paper, we therefore focus
on the field model for the following reasons, not related to the upscaling error.

First, when choosing the flux model, the components of the flux should be
approximated at different grid locations to reduce the approximation error in
the divergence that has to be computed on the macro scale, which typically
has a rather coarse discretization. This implies that we need to run separate
micro problems for each component of the gradient. This is not necessary when
using the field model.

Second, it is seen as an important aspect of micromagnetic algorithms that
the norm preservation property of the continuous Landau-Lifshitz equation
is mimicked by time integrators for the discretized problem. This is usually
achieved by making use of the cross product structure in the equation. How-
ever, when choosing the torque model eq. (10), there is no cross product in
the first term of the macro model.

The chosen HMM macro model, eq. (8), is discretized on a coarse grid
in space with grid spacing AX and points z; = xg + iAX, where i is a d-
dimensional multi-index ranging from 0 to N in each coordinate direction. The
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corresponding semi-discrete magnetization values are M, () ~ M(z;,t), which
satisfy the semi-discrete equation

8tMi = _Mi X Havg(fﬂi,t; M) — CkMi X [Mz X Havg(ifi,t; M)} s (113)
M; (0) = Mipit (J?z), (llb)

where M denotes the vector containing all the M;, i € {0, ..., N}¢. The nota-
tion Hayg (24, t; M) represents the dependence of H.. at location z; on several
values of the discrete magnetization at time t. To discretize eq. (11) in time, we
introduce t; = to+jAt, for j =0, ..., M. The specific form of time discretization
of eq. (11) is discussed in Section 3.

2.3 Upscaling

To approximate the unknown quantity Hyye in eq. (11) in an efficient way and
to control how fast the approximation converges to the corresponding effective
quantity, we use averaging involving kernels as introduced in [12, 13].

Definition 1 ([8, 13]) A function K is in the space of smoothing kernels K¢ if

1. K € CY([~1,1]) and K(¢tY € BV(R) .
2. K has p vanishing moments,

1
1 =0
/ K(z)z"de =’ " ’
_1 0, 1<r<p.

If additionally K (z) =0 for « <0, then K € K},

We use the conventions that K, denotes a scaled version of the kernel K,
Ku(@) = 1/ (a/p),
and that in space dimensions with d > 1,
K(z) = K(z1) -+ K(zq).
For the given problem, we choose a kernel K € KP=% for the spatial and
K% € KE"* for the temporal averaging due to the fact that eq. (7) cannot be

solved backward in time. The particular upscaling procedure at time ¢; is then
given by

Huslonti M) = [ [ K@KOV @Vt (12)
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where Q,, := [—u,pu]? for a parameter p ~ € such that u < y/, the averaging
domain is a subset of the domain that the micro problem is solved on. The
micro solution m? is obtained solving eq. (7) on [—x/, ¢/]¢ x [0, 7], with initial
data mj,;; based on M at time t; and around the discrete location ;. A
second order central difference scheme in space is usually sufficient to obtain
an approximation to m*® with errors that are low compared to the averaging
errors at a relatively low computational cost.

Assuming instead that the micro problem is solved on Q x [0, 7], we have
the following estimate for the upscaling error for the case of a periodic material
coefficient that is proved in [8].

Theorem 2 Assume that (A1)-(A2) hold and that the micro initial data myn;g s

normalized such that it satisfies the condition (A3). Let e? < n < 32 and suppose
that for © € Q and 0 < t < n, the exact solution to the micro problem eq. (7) is
me(z,t) € C1([0,n]; H3(Q)) and that there is a constant ¢ independent of € such
that ||[Vm®(-,t)||p~ < c. The solution to the corresponding homogenized problem
is mg € C*(0,n, H®(R)). Moreover, consider averaging kernels K € KP= % qnd
K € KE" and let € < u < 1. Then

)Havg V. (Vminit(O)AH)‘ = B. + By + Ey,

where the e-dependent error Ee and the averaging-domain size dependent error terms
E,, and E; are bounded as

qzt2 2\ q¢+1
E-<Ce, E,<C (;ﬁ’x“ + (2) > and Ey < C (n’““ + i (%) ) .

(13)

In all cases, the constant C' is independent of €, i and n but might depend on K, K°
and o.

As discussed in [8], for periodic problems we in practice often observe E. =
O(e?) rather than the more pessimistic estimate in the theorem.

Two things are important to note here. First, Theorem 2 states that
Hayvo (i, t5; M) approximates the solution to the corresponding effective quan-
tity involving the micro scale initial data m;y;, not the exact macro solution

M. We therefore have to require that
8fminit (0) = 851\/[(%‘“ tj) (14)

for a multi-index S with |8] = 2 to get an estimate for the actual upscaling
error. Bearing in mind a somewhat more general scenario with non-periodic
material coefficient where A¥ no longer is constant, we subsequently require
eq. (14) to hold for |B| < 2.

Moreover, the quantity that H,y, in Theorem 2 approximates is indepen-
dent of . We can thus choose a different damping parameter in the micro
problem than in the macro one to optimize the constants in eq. (13). Typi-
cally, it is favorable to have higher damping in the micro problem eq. (7), as is
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discussed in the following sections. This can be seen as an introduction of arti-
ficial damping to improve numerical properties as is common in for example
hyperbolic problems.

2.4 Example problems

Throughout this article, we use three different periodic example problems
to illustrate the behavior of the different HMM components and numerical
methods under discussion, one 1D example and two 2D examples. Further,
non-periodic examples are discussed in Section 5.

(EX1) For the 1D example, the initial data is chosen to be

i i ) 0.5 + exp(—0.1 cos(2m(z — 0.32)))
Minie(2) = M(2)/[M(z)],  M(z) = | 05+ exp(—0.2cos(2ma))
0.5 + exp(—0.1cos(2m(z — 0.75)))

and the material coefficient we consider is a®(x) = a(z/e) where
a(z) =14 0.5sin(2wz).

The corresponding homogenized coefficient, which is not used in the HMM

-1
approach but as a reference solution, is A# = (fol 1/a(m)dx) ~ 0.866.

In Figure 1 the solution M¢(z,T) at T = 0.1 and the corresponding HMM
approximation M(z,T) computed on a grid with AX = 1/24 are shown.
Note that the HMM approximation agrees very well with IM¢.

T
L ‘ —— I-COmp. ——y-comp. —— 2z-comp. «HMM ‘

0.565

| | | | | | | | |
0o 01 02 03 04 05 06 07 08 09 1
z

Fig. 1: Solution m® and corresponding HMM approximation to eq. (1) with
setup (EX1) at time 7' = 0.1 when ¢ = 1/200.

(EX2) For the first 2D example the initial data is

minit(I) = m(x)/|m(x)\,
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0.6 + exp(—0.3(cos(2m(z1 — 0.25)) + cos(27(z2 — 0.12))))
m(z) = 0.5 + exp(—0.4(cos(2mz1) + cos(2m(zo — 0.4)))) ,
0.4 + exp(—0.2(cos(2m(z1 — 0.81)) + cos(27(z2 — 0.73))))

which is shown in Figure 2. The material coefficient is given by

a(x) = 0.5+ (0.5 + 0.25sin(2721))(0.5 + 0.25 sin(27z3))
+ 0.25(cos(2m(z1 — x2)) + sin(27xy)),

which corresponds to a homogenized coefficient with non-zero off-diagonal
elements,

AH ~ 0.617 0.026
~10.026 0.715]

For this example, A has to be computed numerically (with high precision).

Z-component y-component z-component

Fig. 2: Initial data Mjy;; for the 2D problems

(EX3) The second 2D example has the same initial data as (EX2) but a different
material coefficient,

a(z) = (1.1 + 0.5sin(27x1))(1.1 + 0.5sin(27z2)).

The corresponding homogenized matrix can be computed analytically [14]
and takes the value
AT =1.14/1.12 - 0.25L.

In all three cases, it holds that a®(z) = a(z/e).

3 Time stepping for Landau-Lifshitz problems

A variety of different methods for time integration of the Landau-Lifshitz
equation in a finite difference setting are available, as for example discussed
in the review articles [15-17]. Most of these methods can be characterized
as either projection methods or geometric integrators, typically based on the
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implicit midpoint method. In a projection method, the basic update proce-
dure does not preserve the length of the magnetization vector moments which
makes it necessary to project the intermediate result back to the unit sphere at
the end of each time step. Commonly used examples for this kind of methods
are projection versions of Runge-Kutta methods as well as the Gauss-Seidel
projection method [18, 19]. Furthermore, an implicit projection method based
on a linear update formula is proposed in [20].

The most common geometric integrator is the implicit midpoint method,
which is both norm preserving and in case of no damping, o = 0, also energy
conserving [21, 22]. However, since it is computationally rather expensive,
several semi-implicit variations have been proposed, in particular SIA and
SIB introduced in [23] as well as the midpoint extrapolation method, MPE,
[24]. Further geometric integrators are the Cayley transform based approaches
discussed in [25, 26].

While there are many methods available for time integration of the Landau-
Lifshitz equation, which have advantages in different scenarios, we here have
a strong focus on computational cost, especially when considering the micro
problem, where the subsequent averaging process reduces the importance of
conservation of physical properties. For the HMM macro model, the form of
the problem, eq. (8), prevents the rewriting of the equation as would be nec-
essary for some integrators, for example the method in [20]. In general, the
dependence of H,y, in eq. (8) on the micro solution makes the use of implicit
methods problematic, as is further discussed in Section 3.3.

In the following, we focus on several time integration methods that might
be suitable for the given setup and then motivate our choice for the macro and
micro problem, respectively.

3.1 Description of selected methods

The methods we focus on are two projection methods, HeunP and RK4P, as
well as the semi-implicit midpoint extrapolation method, MPE, introduced in
[24] and MPEA, an adaption of the latter method. We furthermore include
the implicit midpoint method in the considerations since it can be seen as a
reference method for time integration of the Landau-Lifshitz equation.

In this section, we suppose that we work with a discrete grid in space
with locations z; = zo + iAxz, where i € {0,..., N}¢, and consider time points
tj =to+ jAt, j =0,..., M. We denote by m] € R3 an approximation to the
magnetization at location z; and time ¢;, m! ~ m(z;,t;). When writing m’
we refer to a vector in R3W+D? that contains all mg . In the main part of this
section, we do not distinguish between macro and micro problem but focus on
the general behavior of the time stepping methods. Thus, m can denote both
a micro or macro solution.

We furthermore use the notation f;(m?) to denote the value of a function
f at location z; which might depend on the values of m’ at several space
locations. In particular, we write H;(m’) to denote a discrete approximation
to the effective field at z;. On the macro scale, it thus holds that H;(m7) ~
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H,.s(z;,t;; M) or, when considering the corresponding homogenized problem
in case of a periodic material coefficient,

H;(m?) =~ V- (Vm(z;,t;)A").
For the micro problem, we have
H;(m’) ~ V - (a(z;/e)Vm® (z;,t;)).

The particular form of H;(m’) does not have a major influence on the following
discussions if not explicitly stated otherwise.
HeunP and RK4P

HeunP and RK4P are the standard Runge Kutta 2 and Runge Kutta 4 meth-
ods with an additional projection back to the unit sphere at the end of every
time step. Let f(m?) be the 3(N + 1)%-vector such that

J

J % H,;(m’) — am! x [mg X Hi(mj)] . ie{0,.., N}

f;(m’) := —m
Then in the Runge-Kutta methods, one computes stage values
ki = f(m?), ko =f(m/ + 4ky), ks =f(m/ + §ks), k4 =f(m/ + Atks).
In HeunP (RK2P), the time step update then is given by
JHL = s o At
m) " =m;/|m,, where m =m’ + 5 (k; +ka), (15)
and for RK4P,
m! ™" =m,;/|m;|,  where m=m’+ 2 (ks +2ko +2k; +ky). (16)

HeunP is a second order method and RK4P is fourth order accurate.

Implicit midpoint

Using the implicit midpoint method, the Landau-Lifshitz equation is dis-
cretized as

m! Tt — m’ m? +m’ ™! m/ + mit!
Lo M, (R, a7

At 2 2

where
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J+1

%

it (10 ()] ) (1 ()] ) 09

where [h]

sponds to taking the cross products h; x mg for all i € {0, ..., N}4. The implicit
midpoint method is norm-conserving and results in a second order accurate
approximation.

However, when using Newton’s method to solve the non-linear system
eq. (19), one has to compute the Jacobian of the right-hand side with respect
to m’*1 a sparse, but not (block)-diagonal, 3(N + 1)¢ x 3(N + 1)% matrix
and then solve the corresponding linear system in each iteration, which has a
rather high computational cost. In case of the HMM macro model, the Jaco-
bian cannot be computed analytically since then H; in eq. (18) is replaced by
the averaged quantity Hayg(x;,t;; m), with a dependence on m that is very
complicated. A numerical approximation is highly expensive since it means
solving CN?¢ additional micro problems per time step.

Hence, the values for m are obtained by solving the nonlinear system

. is the matrix such that the matrix-vector product [h], m’ corre-

MPE and MPEA
As described in [24], the idea behind the midpoint extrapolation method is to

approximate h(m”‘fmﬁl) in eq. (17) using the explicit extrapolation formula

m/ + m/+! - , ; i
h (2) ~hiT/? .= Sh(m’) — Lh(m’™Y). (20)

The update for m; then becomes

J J Jj+1 )
N m; _ +2m'i x hi V2, (21)

i+1
mer—

The quantity hg /2 Yere is independent of m7*!, which means that the prob-
lem decouples into (N + 1)4 small 3 x 3 systems. Since the first term on the
right-hand side still contains m]/ H, this is considered a semi-implicit method.
Just as the implicit midpoint method, MPE is second order accurate. We
furthermore propose to use third-order accurate extrapolation,

; 23 . 16 ; 5 .
j+1/2 . 22 7y =2 j—1 - Jj—2
h : 12h( ) 12h(m )+12h(m ), (22)
in eq. (21), which gives MPEA, the adapted MPE method. As it is based on the
implicit midpoint method, MPEA is second order accurate just like MPE, but
has better stability properties for low damping, as shown in the next section.
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As MPE and MPEA are multi-step methods, values for m' (and m?)
are required for startup. These can be obtained using HeunP or RK4P, as
suggested in [24].

Comparison of methods

In Figure 3, the error with respect to a reference solution my,s is shown for all
the considered (semi-)explicit methods and two example problems, a 1D prob-
lem and a 2D problem. Both example problems are homogenized problems on
a rather coarse spatial discretization grid such as we might have in the HMM
macro problem. For the 1D problem, the implicit midpoint method is also
included for reference. For small time step sizes, one can observe the expected

homogenized (EX1), 1D homogenized (EX2), 2D
10! T Hmu T =] L e e e e Sl =]

—x—IMP
—— MPEA
—— MPE
—— RK4P
—o— HeunP
: c(at)?
- -C(At)?

1073 |- 10-3 1

107 st 107

[lmyer — m|
[myer — m][ 2

10—11 - 10—11 -

1078 ‘;mm | 107 bt \;Hm\ .

10-° 1074 1073 1075 10~ 1073
At At

Fig. 3: Comparison of L?-error in different time stepping methods when vary-

ing the time step size At given a fixed spatial discretization with Az = 1/50

and damping parameter a = 0.01. The dotted vertical line corresponds to

At = (Ax)? in each case.

convergence rates for HeunP, RK4P and MPE. For MPEA, we observe third
order convergence in the 1D problem, while in the 2D case, we have sec-
ond order convergence for small At. Overall, MPEA results in lower errors
compared to HeunP, MPE and the implicit midpoint method. RK4P is most
accurate.

3.2 Stability of the time stepping methods

It is well known that in explicit time stepping methods for the Landau-Lifshitz
equation, the choice of time step size At given Ax in space is severely con-
strained by numerical stability, see for example [17, 18]. Note that due to the
norm preservation property of the considered methods, the solutions cannot
grow arbitrarily as unstable solutions often do in other applications. However,
when taking too large time steps, explicit time integration will typically result
in solutions that oscillate rapidly and do not represent the intended solution
in any way. Following standard practice in the field, we refer to this behavior
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as instability in this section. This stability limit is seen clearly for all methods
expect IMP in Figure 3.

In numerical experiments, we observe that in order to obtain stable solu-
tions, the time step size At has to be chosen proportional to Axz? for all of
the considered methods, both explicit and semi-explicit. This is exemplified in
Figure 4 for (EX1) with o = 0.01. To get a better understanding of stability,

w2 T Iy

g 1| ——RK4P
3 107 E 3| ——MPEA
ﬁ 10741 ] —— HeunP
8 k {|—— MPE
3 107° ¢ E
% F
g 1070 ¢ E

I I Lol Lol

1072 107!
Az
Fig. 4: Empirically found maximum value of At that still results in a stable
solution for varying values of Az in (EX1), homogenized, with o = 0.01.

consider a semi-discrete form of the Landau-Lifshitz equation in one dimension
with a constant material coefficient, equal to one. This can be written as

Oym = f,(m), f,(m) = —mxDm—amx[m x Dm] = —B(m)Dm, (23)

where m € R3V contains the vectors {m;}, D is the discrete Laplacian and
B(m) is a block diagonal skew-symmetric matrix with eigenvalues {0, +i —
a, —i — a} that comes from the cross products. If {m;} samples a smooth
function, the Jacobian of f,(m) can be approximated as

Vimfa(m) = =V, B(m)Dm ~ —B(m)D.

Still assuming smoothness, one can subsequently deduce [27] that the eigen-
values of the Jacobian are approximately given as the eigenvalues w of —D
multiplied by the eigenvalues of B(m), namely

At = (1 — a)w, Al = (—i — a)w, Ao ~ 0.

The eigenvalues of —D, the negative discrete Laplacian, are real, positive and
bounded by O(Az~2). Consequently, the eigenvalues of the Jacobian V,f,, (m)
will lie along the lines s(#i — «) for real s € [0,0(Az~2)] in the complex
plane. This is illustrated in Figure 5a where we have plotted the eigenvalues of
Vmfa(m), scaled by Az?, for several values of a. One can observe that given
a = 0, the eigenvalues are purely imaginary. As « increases, the real parts of
the eigenvalues decrease correspondingly.



Springer Nature 2021 BTEX template

HMM for the Landau-Lifshitz equation 15

For the Landau-Lifshitz equation eq. (2) with a material coefficient as well
as the homogenized equation eq. (3), the eigenvalues of the corresponding
Jacobians get a different scaling based on the material coefficient but their
general behavior is not affected. We hence conjecture that it is necessary that

At
(ACL’)2 < Cstab,ou (24)

where Cgtab,o is a constant depending on the chosen integrator, the damping
parameter o and the material coefficient. Based on several numerical examples,
we observe for the latter dependence that

c (maxyey|a(y)|)~!, original problem,
stab,a 2 e (max; j|AZ]) 7, homogenized problem,

where C, denotes further dependence on « and the integrator.

Stability regions of related methods

In order to better understand the stability behavior of the considered time
integrators, it is beneficial to study the stability regions of some well-known,
related methods. For HeunP and RK4P, we regard the corresponding inte-
grators without projection. We observe a very similar stability behavior when
using Heun and RK4 to solve the problems considered in Figures 3 and 4.

To get some intuition about MPE and MPEA, we start by considering the
problem

Om = —n x Hm) — an x [m x H(m)] = —n x h(m), (25)

where n is a given vector function, constant in time, with |n| = 1. This corre-
sponds to replacing the first m in each term on the right-hand side in eq. (2)
by a constant approximation. For this problem, time stepping according to the
MPE update eq. (21) results in

m’

IIIJ»-Jrl - j+1/2 3 ; 1 .
t = —n; X hz = 75 (Ili X hl(mj)) +§ (ni X hi(mjfl)) . (26)

At

This is the same update scheme as one gets when applying the Adams-
Bashforth 2 (AB2) method to eq. (25). In the same way, MPEA and AB3 are
connected. Furthermore, note that the term that was replaced by n in eq. (2)
to obtain eq. (25) is the one that is treated implicitly in the semi-implicit
methods MPE and MPEA. We hence expect that studying the stability of
AB2 and ABS3 can give an indication of what to expect for MPE and MPEA.
This is backed up by the fact that the stability properties observed for MPE
and MPEA in Figures 3 and 4 are closely matched when using AB2 and AB3,
respectively, to solve the respective problems.
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When comparing the stability regions of RK4, Heun, AB2 and AB3 as
shown in Figure 5b, one clearly sees that the Runge-Kutta methods have larger
stability regions than the multi-step methods. RK4’s stability region is largest
and contains part of the imaginary axis, while the one for Heun is only close to
the imaginary axis in a shorter interval. AB2 and AB3 have stability regions

4t lea=0 —AB3
ca=0.01 ol AB2
=01 | | e Heun
2 a=1 1k RK4

-1t b :

—2+

7\ Il Il Il Il — Il Il Il 1 Il
-6 -4 =2 0 2 3—4 -3 -2 -1 0 1 2

R - (Az)? R(ALN)

(a) Eigenvalues of the Jacobian (b) Stability regions of RK2 (Heun),
Vfo(m) for several values of o RK4 as well as AB2 and AB3.

Fig. 5: Eigenvalues of Jacobian Vf,(m) and stability regions of methods
related to the considered time integrators.

with a similar extent in the imaginary direction, but while AB3’s contains part
of the imaginary axis, AB2’s does not. On the other hand, the stability region
of AB2 is wider in the real direction.

Consider now again the example problems shown in Figure 3 where o =
0.01, which implies that the eigenvalues of the corresponding Jacobian are
rather close to the imaginary axis. Based on Figure 5b we therefore expect
the methods with related stability areas which include parts of the imaginary
axis, RK4P and MPEA, to require fewer time steps than HeunP and MPE.
This matches with the observed stability behavior in Figure 3.

Influence of o

To further investigate the influence of a on Cgiap o, this factor is shown in
Figure 6 for varying «, both for the considered methods HeunP, RK4P, MPE
and MPEA and the discussed related methods, Heun, RK4, AB2 and AB3. The
behavior of Csap o is almost the same for the actual and the related methods.

As expected, we observe that Cgtapb, o for low a-values is constant for MPEA
and RK4P, with related stability regions that include the imaginary axis, while
for HeunP and MPE, lower « results in lower Cgtapb,o. When increasing «, the
eigenvalues of V. f, as defined in eq. (23) get larger real parts and the stability
regions’ extent in the real direction becomes more important. For RK4P and
MPEA, this means that for a 2 0.2, Cstab,o decreases as « increases. For
HeunP and MPE, the highest Csiap o is obtained at o ~ 0.5. For higher «, the
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required Cgtap, o decreases as a increases. Overall, MPEA requires the lowest
Cstab,o for high «, which agrees with the fact that the related stability region
is shortest in the real direction. The highest Cgiap o is still the one for RK4P,
in accordance with the stability region considerations.

Stability factor original Stability factor related
1 1
——MPE —— AB2
—— MPEA —— AB3
1/2 1 - | —e— HEUNP 1/2 - |—e—HEUN
—— RK4P ——RK4
5 /) : g 1 |
18} . 1/8} .
| | | | | |
1072 107! 10° 102 107! 10°
e a

Fig. 6: Dependence of Cgtap,o On a, for actual and related time integrators.
Based on the homogenized solution to (EX2).

However, HeunP is a two-stage method and each RK4P step consists of
four stages, while MPE and MPEA are multi-step methods that only require
computation of one new stage per time step. In general, each step of Heun-
P/RKA4P thus has roughly two/four times the computational cost as a MPE
or MPEA step. To take this into account, we compare the total number of
computations for each method by considering the factor s/Cgab,a, Where s
denotes the number of stages in the method. This is shown in Figure 7.

Scaling of computational cost

—— MPE

—— MPEA
201 | | —e— HeunP
—— RK4P

5/Cstan

L L il L il L L
102 10! 10°
o

Fig. 7: Left: Dependence of Cgap,o On o, based on the homogenized solution
to (EX2). Right: corresponding scaling of computational cost.

We hence draw the following conclusion.

¢ For o < 0.1, RK4 and MPEA result in approximately the same computa-
tional cost, independent of the specific value of a, while MPE and HeunP
require significantly more computations.
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e For high (artificial) damping, the situation changes and HeunP has the
lowest computational cost of the considered time integrators.

3.3 Macro time stepping

On the HMM macro scale, the given spatial discretization is in general rather
coarse, containing only relatively few grid points, and we are interested in
longer final times. Therefore, an implicit method such as IMP might seem
suitable here. However, the resulting computational cost is higher than with an
explicit method since we cannot compute the required Jacobian analytically
as discussed in Section 3.1.

When considering which (semi)-explicit method is most suitable, we have
to consider the value of the damping constant «. According to for example
[28, 29], the value of « is less than 0.1 or even 0.01 for typical metallic materials
such as Fe, Co and Ni, and could be one or two orders smaller for ferromag-
netic oxides or garnets. On the macro scale, we hence typically reckon with «
between 10~! and 10~%. This also matches with the a-values typically used
in the literature, see for instance [15, 18, 30] and [24]. For this range of «, we
conclude based on the discussion in Section 3.2 that RK4P and MPEA are
preferred for time integration on the macro scale. These are also the methods
which give the most accurate solutions as, for example, shown in Figure 3.

For the overall error on the macro scale in the periodic case, we expect that

M= — M|l < C (e + (At)F + (AX)" + ennim) (27)
<C (s + (AX)mi“(Qk’Z) + 6HMM> )

where the factor e follows from Theorem 1 and k is the order of accuracy of
the time integrator. Moreover, £ is the order of accuracy of the spatial approx-
imation to the effective field on the macro scale and egny is an additional
error due to the fact that we approximate this effective field by Haye in the
upscaling procedure.

Because of the time step restriction required for stability in explicit and
semi-explicit methods, eq. (24), it is desirable to have relatively large Az to
reduce computational cost. We therefore propose to use a higher order method
in space, ideally ¢ = 2k.

We hence have two possible choices. One can either use the fourth order
accurate RK4P in combination with an eighth order approximation in space
to get a macro scheme with very high order of accuracy regarding space and
time discretization. However, to get the full effect of this, H,., has to be
approximated very precisely such that also egn is low, see also Section 4.5,
which in turn can result in rather high computational cost. Alternatively, one
can apply the second order MPEA and a spatial approximation such that £ = 4
which results in fourth order accuracy of the space and time discretization.
Since MPEA also has the advantage that it is a geometric integrator and norm
preserving without projection, this is what we propose to use.
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3.4 Micro time stepping

When considering the micro problem, there are two important differences com-
pared to the macro problem. First, the fast oscillations in the solution m¢ are
on different scales in time and space. The time scale we are interested in is
O(g?) while the spatial scale is O(e). Therefore a time step size proportional
to (Ax)? is suitable to obtain a proper resolution of the fast oscillations in
time. Second, as discussed Section 2.3, we can choose the damping parameter
« for the micro problem to optimize convergence of the upscaling errors. As
shown in Section 4, it is typically advantageous to use artificial damping and
set a close to one, considerably higher than in the macro problem.

The order of accuracy of the time integrator is not an important factor,
since already for a second order accurate integrator, the time integration error
usually is significantly lower than the space discretization error due to the
given time step restriction. As the micro problem is posed on a relatively
short time interval and the solution then is averaged in the upscaling process,
inherent norm preservation that geometric integrators have is not an impor-
tant factor here either. The considerations in Section 3.2 thus imply that the
optimal strategy with respect to computational cost is to use HeunP for time
integration when o > 0.2 is chosen in the micro problem.

4 Micro problem setup

In this section, we investigate how different aspects of the micro problem influ-
ence the upscaling error as well as the overall macro solution. In particular, the
choice of initial data and the size of the computational and averaging domain
in space and time are important. Consider the periodic case, a®(z) = a(x/¢).
Then it holds for the error in the HMM approximation to the effective field
that

Eapprox = ’Havg -V. (VMO<xl7tj>AH)|
S |Havg - V : (lenlt(O)AH)|
+ |V - (Vmi (0AT) — V- (VM (24, t,) AT
= Eavg + Eaisc- (28)

The discretization error Fgis is determined by the choice of initial data myjy;;
to the micro problem and is analyzed in the next section, Section 4.1. Given
that we have initial data with |m;i,;| = 1 and an exact solution to the micro
problem on the whole domain, the averaging error F,,, can be bounded
using Theorem 2. When solving the micro problem numerically and only on a
subdomain [—/, 4/]%, additional errors are introduced. We can split F,y, as

Ewe=E.+E,+E,+E, + Equm, (29)
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where E,, F, and E, are as in Theorem 2. They depend on € and the parame-
ters p and n, which determine the size of the micro problem averaging domains
in space and time. Moreover, the choice of averaging kernels, K and K, influ-
ences these errors. How to specifically choose these parameters is discussed in
Section 4.3. The term F,,, comprises errors due to the micro problem boundary
conditions, as explained in Section 4.2, and Ey, errors due to the numerical
discretization of the micro problem, which is done using a standard second
order finite difference approximation to V - (a*Vm®) and HeunP for time
integration.

4.1 Initial data

We first consider how to choose the initial data mj,;; to a micro problem based
on the current macro state, obtained according to eq. (11). We here suppose
that the current given discrete magnetization values match with the (exact)
macro solution at time t = ¢;, M; = M(z,,t;). For the discretization of M, the
same setup as described in Section 2.2 for the HMM macro model is considered.

The initial data mjy;; for the micro problem should satisfy two conditions.

1. It should be normalized, |mjui(z)| = 1 for all z € [, u']¢, to satisfy the
conditions necessary for Theorem 2, which we use to bound Eyy,.

2. The initial data should be consistent with the current macro solution in the
sense that given a multi-index 8 with |8] <2,

|07 minic (0) — 07 M(z, t)| = O((AX)). (30)

Then the discretization error in eq. (28) is Egisc = O((AX)*). As described
in eq. (27) in Section 3.3, when using a kth order explicit time stepping
method, it is ideal in terms of order of accuracy to choose ¢ = 2k.

In order to get initial data satisfying the requirements, an approach based on
polynomial interpolation is applied. We use p[™ () to denote an interpolating

T
polynomial of order n, and let Py (z) = [p{", ", p"] ", a vector containing

an independent polynomial for each component in M, such that

When d > 1, we apply one-dimensional interpolation in one space dimension
after the other. For matters of simplicity, we regard a 1D problem in the
following analytical error estimates. Due to the tensor product extension, the
considerations generalize directly to higher dimensions.

Without loss of generality, we henceforth assume that we want to find initial
data for the micro problem associated with the macro grid point at location
xj, based on 2k-th order polynomial interpolation. This implies that the macro
grid points involved in the process are x;, j =0, ..., 2k.
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According to standard theory, it holds for the interpolation errors that
given 0 < i < 2k and M € CP*+1) ([, 191]),

sup [Pl () — MO (x, )] < C(AX )+, (31)

z€[x0,22k]

Furthermore, it is well known that given a 2k-th degree interpolating polyno-
mial, it holds that

Ploy (k) = DggM(2x, t5),  Plyg(ar) = DMz, t5),

where Dz, and D[22 K] denote the 2k-th order standard central finite difference

approximations to the first and second derivative, see for example [31]. As a
direct consequence, we have in the grid point x,

M (w4, £5) — Plogg ()| < CAX), M (24, £5) — Plyyg ()] < C(AX),
(32)

Note that this gives a better bound for the error in the second derivative in
the point z, than eq. (31), valid on the whole interval [z, z2x]. The bounds in
Equation (32) show that we have the required consistency, eq. (30), between
macro and micro derivatives when directly using Py (x) to obtain the initial
data for the micro problem. However, the disadvantage of this approach is that
the polynomial vector Py is not normalized. For the deviation of its length
from one, it holds by eq. (31) that

[Py — 1| = [P | — M| < [Py — M| < C(AX)?FFL

Consider instead a normalized function Y (z) for which [Y(z)| = 1. Then
the derivative Y’ is orthogonal to Y as it holds that

Y'(x) - Y(z) = %% Y(2)]> =0.

In particular, this shows that M’ - M = 0. However, in general,

M(zy,t;) - Digk)M(xk, t5) = Pagy (1) - Ploy (z1) # 0.

Hence there is no normalized interpolating function Y such that Y’'(zy)
becomes a standard linear 2k-th order central difference approximation, Djgz;.
In the following, we consider the normalized interpolating function Qi,)(x)
defined as

Qpy(2) =Py (2)/ [Py ()], (33)

and show that it satisfies the consistency requirement eq. (30).
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Lemma 1 In one space dimension, the normalized function Q[Qk] satisfies eq. (30)
with ¢ = 2k.

Proof As ‘P[Qk](xi)
lows directly that Q[Qk](xi) = M; for i = 0,...,2k, the normalized function still
interpolates the given points.

For the first derivative of Q[ay), it holds that

= |M;| = 1 in the grid points z;, where i = 0,..., 2k, it fol-

d T
Qo) = 7 (Ppi/IP i) = Plary/[Ppasg| — (Pl Plos) Prasy/Prasy
which, together with the fact that P (z;) = M; for i = 0, .., 2k, implies that

T
Qlog (21) = (1= MMT )Pl (). (34)
In particular, it holds due to orthogonality that

Qiopy (i) — M (27)

= ‘(I - M;MY) (szkz] (zi) — M/(l’i)) ’
< C[Plyy (i) — M (2;)] < C(AX)F,

hence Qf%] (z1) is a 2k-th order approximation to the derivative of M in zj,. For the
second derivative of Q[n], it holds in general that
1 ! ! ! 2 !/ 2 1
_ P Py PPy Py Pl) Pl (Ppyl” + Py - Prop) Py
Pyl Pl 1P I° P13 ’
(35)

"

Qin]

where we can rewrite
P>+ P Py = (Pl — M) - P + (Pl — M) - (M’ + P, + (P, —M") - M,
For a 2k-th order interpolating polynomial, we hence have in the grid point z that
‘ (lezk} (@x)[* + Plogy (zk) - Plagg (fff/c)) PQk(xk)‘
< ’(szk] (x1) = M'(z1)) - (M (z1,) + Play) (z1)) + (Plagy(wx) — M (z1)) - M(x)
< € (|(Plagg (o) = M (@g))| + [Plasgy () = M" ()]} < CAX),

where we used eq. (32) in the last step. Moreover, it holds due to orthogonality and
eq. (32) that

Pok) (@k) - Plogy ()] = My, - (Plagy () — M (1))
< [Plogy (k) — M (2)] < C(AX)?.
It therefore follows that
Qo (@1) — Plog (1))

2
<2 ‘(P[Zk] (1) - Plagg (1)) Pl (xk)‘ +3 ’ (P[2k] (zk) 'Pf2k](l’k)) Pop) (zk)

+ ‘(|P/[2k] (@r)* + Pl (@r) - Pagg (Ik)) sz(l‘k)‘ <cax)*,

which by eq. (32) implies that Qg(xk) is a 2k-th order approximation to M’ (but
not a standard linear central finite difference approximation). ]
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We can conclude that when using either Pg;; or Qg to obtain initial
data mjp;; for the HMM micro problem, then 0,,m;ni;(0) is a 2k-th order
approximation to 0y, M(zk,t;), where z is the grid point in the middle of
the interpolation stencil. Similarly, in two space dimensions, 0.,m;yui;(0) and
OyyMinit (0) are 2k-th order approximations to 0y M(xy, ;) and Oy, M(xzk,t;).
Thus, the discretization error, which corresponds to the interpolation error, is

Eiise = V - (Vmyi (0)AT) — V- (VM (g, t;)AT) = C(AX)?, (36)

Both Py and Qo) hence satisfy the consistency requirement eq. (30) for
the initial data. However, only Q[25) is normalized, therefore this is what we
choose subsequently. Typically, the difference between the approximations is
only rather small, though, as shown in the following numerical example.

Numerical example

As an example, consider the initial data for a micro problem on a 2D domain
of size 10e in each space dimension, obtained by interpolation from the macro
initial data of (EX2) and (EX3).

We first investigate the maximal deviation of the length of mj,;; from one
when using Ppg; and Py to obtain the initial data. In Figure 8, this error is
shown for varying AX and different values of ¢.

2nd order interpolation 4th order interpolation
-3
10 -®-c =1/200
. 1051 ||~ =1/400
= e g =1/800
. ——c = 1/1600
F 1077F C(AX)
El C(AX)®
g 1079} .
g
10—11 - 4
Ll L ol | L Lol L ol
1072 107! 1072 107!
AX AX

Fig. 8: Maximum norm deviation in polynomial interpolation initial data Py
(left) and Py (right) from one given a micro domain size of 10e, for several
values of €. 2D problem with macro initial data as in (EX3) and (EX2). Only
values where 2kAX > 10¢e are plotted to avoid extrapolation.

One can observe that the deviation decreases as the macro step size AX
decreases. Moreover, especially for high AX values, smaller € result in smaller
deviations. This is due to the fact that a smaller ¢ corresponds to a smaller
micro domain, around zp. The maximum possible norm deviation is only
attained further away from zp. In the limit, as ¢ — 0, the norm deviation
vanishes.
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Next, we examine the difference between Po;) and Q[2x) and the order of
accuracy of the resulting approximations to V - (VMAH). In the left subplot
in Figure 9, the error Fgjs. is shown for several values of AX and for second
and fourth order interpolation. The expected convergence rates of (AX)?* can
be observed for both approximations, based on Pg and Q[zy. In the right

107!

1073

é %__c‘g .....
10-° Qe 10 Qo
e Py -o- P,
. ——Qy . —+—Qy
10 -=-P, 10 -=-P,y ||
1072 1071 1072 107!

AX

AX

Fig. 9: Interpolation error Fgijsc with and without normalization, i.e. using
Q|2x) and P35, when varying macro grid spacing AX. 2nd and 4th order inter-
polation. Left: norm of the error between approximated and actual effective
field for (EX2). Right: z-component only.

subplot, only the difference between the z-components of V - (Vmy,;; A7) and
V - (VMA¥#) is considered to emphasize the fact that while Poy and Qo
result in approximations of the same order of accuracy, they do not give the
same approximation.

4.2 Boundary conditions

In this section, the issue of boundary conditions for the HMM micro problem
is discussed. In the case of a periodic material coefficient, as considered for
the estimate in Theorem 2, the micro problem would ideally be solved on the
whole domain Q with periodic boundary conditions, even though the resulting
solution is only averaged over a small domain [—pu, u]¢. This is not a reason-
able choice in practice, since the related computational cost is too high. We
therefore have to restrict the size of the computational domain for the micro
problem and complete it with boundary conditions. Every choice of boundary
conditions introduces some error inside the domain in comparison to the whole
domain solution since it is not possible to exactly match both “incoming” and
“outgoing” dynamics. In Figure 10, the effect of boundary conditions in com-
parison to the solution on a much larger domain is illustrated for one example
1D micro problem with the setup (EX1). The solution in the micro domain as
well as the errors due to two kinds of boundary conditions are plotted: assuming
periodicity of m® —mijy;; (middle) and homogeneous Dirichlet boundary condi-
tions for m® — my,;; (right). In both cases, one can observe errors propagating
into the domain from both boundaries as time increases, even though the
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Fig. 10: Example (EX1) with o = 0.01, comparison of Solutlon on micro
domain [—y/, ¢'], where i/ = 5¢ and & = 2:1073, to solution on a 10 times larger
domain. Left: x component of the expected solution, middle: error with peri-
odic boundary conditions for m® — mjy;¢, right: error with Dirichlet boundary
condition.

amplitude of the errors is influenced by the type of condition. Since we cannot
remove this problem even when considering more involved boundary condi-
tions, we choose to solve the micro problem on a domain [/, 1], for some
@' > p, with Dirichlet boundary conditions and only average over [—pu, u]9.
The size of the domain extension p’ — p together with the time parameter 7
determine how large the boundary error E,/ in eq. (29) becomes. For larger
values of 1, we expect a larger ;' — i to be required to obtain F,, below a given
threshold, since given a longer final time the errors can propagate further into
the domain. This is investigated in more detail in the next section.

4.3 Size of micro domain

Here, we investigate how to choose the size of the micro problem domain. There
are three important parameters that have to be set, u and 7 as in Theorem 2,
which determine the size of the averaging domain in space and time, as well
as the outer box size u’. Note that the optimal choice of all three parameters
is dependent on the given initial data and the material coefficient.

To determine the influence of the respective parameters, we consider the
example (EX2), with a periodic material coefficient, and investigate for one
micro problem the error E,., as given in eq. (29). Throughout this section, we
consider averaging kernels K, K° with p, = p; = 3 and ¢, = ¢, = 7, based on
the experiments in [8]. Typically, € = 1/400 is used, which results in a value of
E. that is relatively low compared to other contributions to Eay,. Moreover,
we assume that F, ., is small compared to the other error terms and can be
neglected. In practice, we here use at least 40 discretization points per € to
achieve this.

Averaging domain size, u

To begin with, we choose a large value for the computational domain ', so
that
Euwg =~ E. + E;, + E,,.
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We then vary the averaging parameter p, which affects the error contribution
E,,, that satisfies eq. (13), repeated here for convenience,

Gz t2
E,<C (uw“ + (;) ) . (37)

Based on the considerations in [8] and Theorem 2, we expect that p should be
chosen to be a multiple of €, which is the scale of the fast spatial oscillations in
the problem. With the given averaging kernel, the first term on the right-hand
side in eq. (37) then is small in comparison to the other error contributions
and the second term dominates E,,.

In Figure 11, the development of E,,; when increasing p for (EX2) is shown
for several values of n and «. One can observe that as p is increased, the
error decreases rapidly from high initial levels. This is due to the contribution

Qo +2
C (5) to E,. Once p becomes sufficiently large, in this example around
n

i =~ 3.5e, the error does not change significantly anymore but stays at a
constant level, depending on 7 and «. Here E, no longer dominates the error,
which will instead be determined by E, and E.. One can observe that longer
times 7 result in lower overall errors. Furthermore, the errors in the high
damping case, a« = 1, are considerably lower than with o« = 0.1 or a = 0.01.
However, note that the required value of p until the errors no longer decrease
is independent of both « and 7. In the subsequent investigations, we therefore
choose a fixed value of u which is slightly above this number, thus making sure
that E,, does not significantly influence the overall error observed there.

a=0.01
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Fig. 11: (EX2): Influence of spatial averaging size p on the overall error in one
micro problem for several values of 7 and o when e = 1/400. Kernel parameters
pe = p: = 3 and q, = ¢; = 7. The outer box size y' is chosen sufficiently large
to not significantly influence the results.
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Full domain size, p’

Next, we study the effect of the size of the computational domain, which is
determined by 4/, on the error E,.,. We here choose p large enough so that

Favg ~ B + Ey + Ey.

We consider the same choices of a and 7-values as in the previous example,
and vary g to investigate E,,. Note that in contrast to the other error terms,
we do not have a model for E,/. As shown in Figure 12, a value of 4/ that is
only slightly larger than p gives a high error, which decreases as ' is increased,
until the same error levels as in Figure 11, determined by E, and FE., are
reached. The longer the time interval n considered, the larger the domain has
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(W —p)/e (W —p)/e (W —m)/e

Fig. 12: (EX2): Influence of the extension of the computational domain,
[, 1']? beyond the averaging domain, [, ], on the overall averaging error
E.vg in one micro problem for several values of  and a. Here 1 = 3.9¢ and
e = 1/400.

to be chosen to reduce the boundary error £, such that it no longer dominates
E,vg. This is due to the fact that the boundary error propagates further into
the domain the longer time passes. We can furthermore observe that larger o
results in somewhat faster convergence of the error for higher values of 7.

Length of time interval n

Finally, we consider the influence of 77 and the corresponding error contribution
E, to the averaging error E,, as given in eq. (29). Based on Theorem 2, we

have
62 qi+1
E,<C, TIthrl + (77) ) (38)

repeated here for convenience. We consider n ~ ¢2. With the given choice of
averaging kernel, with p, = 3, the first term in eq. (38) is small compared to
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the second one. We choose the parameters p and g’ such that
Ewe~E. +E,

and vary 7. In Figure 13a, one can then observe that higher values of 7 result in
lower errors, since the second term on the right hand side in eq. (38) decreases
as 7 increases. This matches with the error behavior depicted in Figure 11 and
Figure 12. Figure 13a furthermore shows that the error eventually saturates
at a certain level, corresponding to E.. Comparing the errors for a = 1 with
e = 1/200 and e = 1/400, one finds that the respective E. differ by a factor
of approximately four, which indicates that E. < Ce? here, as was previously
observed in [8]. The different cases of « considered in Figure 13a have a similar
overall behavior of the error, but for high damping, o = 1, the development
happens for considerably lower values of 1 than in the other cases. Moreover,
in case of & = 0.01, we observe some oscillations as the error decreases.
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ng 7. below given thresholds when varying
Q.

Fig. 13: (EX2): Influence of the time averaging length 7 on the overall error
in one micro problem. Here p = 3.9¢ and ' is chosen sufficiently big to not
significantly change the results. Kernel parameters p, = 3 and ¢, = 7.

In Figure 13b, we further investigate the influence of the damping parame-
ter on the time 7 it takes for the averaging error F,,, to fall below certain given
thresholds. One can clearly observe that high damping reduces the required
time to reach all three considered error levels. This indicates that the introduc-
tion of artificial damping in the micro problem can help to significantly reduce
computational cost, since a shorter final time also implies a smaller compu-
tational domain as explained in the previous section. However, since o > 1
results in a seriously increased number of time steps necessary to get a sta-
ble solution, as discussed in Section 3.2, we conclude that choosing « around
one is most favorable. Note that as discussed in Section 2.3 in connection with
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Theorem 2, it is proved for periodic material coefficients that choosing a higher
value of o does not change the quantity H,,s which is approximated in the
upscaling process.

Example (EX3)

To support the considerations regarding the choice of micro parameters, we
furthermore study the Landau-Lifshitz problem eq. (2) with the setup (EX3).
In (EX3) the material coefficient has a higher average and higher maximum
value than in (EX2). This results in a higher “speed” of the dynamics. In
Figure 14, the influence of u, u', n and «, respectively, on the averaging error
E,e are shown for this example.
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Fig. 14: (EX3): Influence of micro domain parameters on error Fy,,. Param-
eters not explicitly given are chosen to not influence F,,, significantly.
Moreover, € = 1/400, and o = 1 in (a) - (c).
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Qualitatively, the results for (EX3) are the same as (EX2), but some details
differ. A notable difference between the examples (EX2) and (EX3) is that
the time 7 required for saturation of the errors is considerably shorter in
(EX3), as can be observed when comparing Figure 14c¢ to Figure 13a. An
explanation for this is that due to the faster dynamics in (EX3), comparable
effects are achieved at shorter times. The ratio between the times 7 it takes
in (EX2) and (EX3), respectively, to reach the level where the error no longer
changes matches approximately with the ratio of the maxima of the material
coefficients.

Moreover, a slightly larger p is required to reach the level where the errors
saturate in (EX3). The (EX3) saturation errors for a specific value of n are
lower, though, due to the fact that the error decreases faster with n as discussed
previously.

When it comes to the full size of the domain required for the boundary
error to not influence the overall error in a significant way, one can observe
somewhat larger required value of ¢’ in (EX3) when comparing Figure 14b to
Figure 12. This is partly due to the fact that the overall error for a given n
is lower in (EX3). Moreover, due to the faster dynamics, the errors at time
1 have propagated further into the domain. As a result, the computational
domain has to be chosen approximately the same size in (EX2) and (EX3) to
obtain a certain error level, even though the required 7 is smaller in (EX3).

4.4 Computational Cost

The computational cost per micro problem is a major factor for an efficient
HMM implementation. Given a spatial discretization with a certain number
of grid points, K, per wave length e, that is a micro grid spacing dz = ¢/K,
we have in total N¢ = (2K,u’/5)d micro grid points. The time step size for the
micro time integration has to be chosen as dt < Cstab’a&cz, hence the number
of time steps becomes M > C_ L, K27 /<2, Tt then holds for the computational

stab,a
cost per micro problem that

1 "\ ¢
micro cost ~ MNd ~ mg% (i) K2+d- (39)

It is important to note that due to the choice of parameters i/ ~ ¢ and n ~ €2,
the computational cost per micro problem is independent of . This makes it
possible to use HMM also for problems where the computational cost of other
approaches, resolving the fast oscillations, becomes tremendously high.

In general, choosing higher values for 1, ' or K results in higher computa-
tional cost per micro problem. We therefore aim to choose these values as low
as possible without negatively affecting the overall error. For the numerical
examples shown in Section 5, we find that selecting K =~ 10 gives a reason-
able compromise between accuracy and computational cost. The overall cost
is determined by the cost per micro problem and the choice of the macro
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discretization size AX,

1
cost ~ ———(AX)~ D micro cost.

stab,amacro

This shows the importance of choosing AX relatively large, wherefore it is
advantageous that the overall method proposed based on MPEA is fourth
order accurate, as discussed in Section 3.3. Since all the HMM micro problems
are independent of each other, it is moreover very simple to parallelize their
computations. This can be an effective way to reduce the overall run time of
the method.

4.5 Choice of overall setup

We now aim to give an overview of the overall choice of HMM setup, based
on the discussions in Section 3 and Sections 4.1 to 4.3. Furthermore, we study
the resulting errors.

To begin with, we discuss the overall setup for the micro problem.
According to eq. (28), the approximation error in Hyyg is

Eapprox = Eavg + Edisc,

where FEqisc is determined by the macro discretization size AX as given in
eq. (36). For a given AX, we therefore aim to choose the parameters u, p/ and
1 so that Fa,s matches Egjsc. Further reducing F,, only increases the com-
putational cost per micro problem without significantly improving the overall
error.

In Table 1, we hence suggest choices for 7 and p’ in the example setups
(EX2) and (EX3) with AX =1/(12-2%), i =0, 1,2, such that E,y, is slightly
below the corresponding values for Fgisc when using fourth order interpola-
tion. The averaging parameter p is fixed to a value such that F, does not
significantly increase E,ye but not much higher. This helps to reduce the num-
ber of parameters to vary. Moreover, choosing lower u results in a rather steep
increase of F,y, in comparison to how much the computational cost is reduced.

Note that the specific values of the discretization error depend on the given
macro solution and macro location. In this example, we consider the macro
initial data and the micro problem solved to obtain H,,s at macro location
(0,0). We furthermore choose = 1 here to make it simple to compare the
suggestions to the values shown in Figures 11, 12 and 13a as well as Figure 14.
The optimal choice for o would be slightly higher.

Based on the values in Table 1, one can conclude that the required sizes of
the computational domains are very similar between the considered examples.
When scaled by the maximum of the respective material coefficients, also the
suggested final times are comparable.

Next, we further test the influence of the micro domain setup and corre-
sponding F,ve on the overall error. For this purpose, we consider (EX2) on a
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(EX2) (EX3)
AX Eaise n/e* | amaxn/e® | (W —p)/e || n/€* | amaxn/e* | (' —p)/e
1/12 | 23-1072 || 07 1.09 4 0.4 1.02 3
1/24 | 1.6-1073 1 1.56 6 0.6 1.53 5
1/48 | 1-107% 1.4 2.18 8 0.8 2.05 7

Table 1: Example micro problem setups with o = 1, where u = 3.9¢ for (EX2)
and p = 4.2¢ for (EX3) .

unit square domain with periodic boundary condition, o = 0.01 in the original
problem and a final time 7" = 0.1. We use artificial damping and set o = 1.2
in the micro problem. As in the previous examples, we choose averaging ker-
nel parameters p, = p, = 3 and ¢, = ¢; = 7 and let £ = 1/400. We again fix
1 = 3.9¢, and use HeunP as the micro solver as proposed in Section 3. . We
then run HMM with MPEA for the macro time stepping to approximate the
homogenized reference solution My at time 7' for varying AX. Four different

=107 ) £ | n/e* | W | By

U — ., | s1|015| 4 [~3-10"

E 1072 & Z-] £ s2 | 045 | 5.5 | ~3-1072

| - '_;;“:i’g s3 | 07 |75 |~3-1073

&0 e N 10 | ~3-1074

= /’/ i :i 1 Micro problem setups for (EX2)

5 10*45 - ING (With.a =12 e?,nd po= 3.9) and
£ | | \ 9 resulting Eavg in micro problem
/25 1/16  1/10 1/6 at macro location zo = (0, 0).

AX

Fig. 15: L?2-norm of difference between HMM solution M and homogenized
reference solution My at time 7' = 0.1 for (EX2).

combinations of  and p’ are used for the micro problem, referred to as (s1)-
(s4). The resulting L2-norms of the errors My — M are shown in Figure 15,
together with the error one obtains when using the average a.y, of the material
coefficient a® to approximate A¥ when solving eq. (3). Using Gavg Can be seen
as a naive approach to dealing with the fast oscillations in the material coeffi-
cient. It does in general not result in good approximations. The corresponding
error is included here to give a baseline for the relevance of the HMM solutions.

We find that with the micro problem setup (s1), corresponding to a rather
high averaging error, HMM results in a solution that is only slightly better
than the one that is obtained using the average of the material coefficient.
However, when applying setups with lower averaging errors, lower overall errors
are achieved. In particular, with (s4), the setup with the lowest considered
averaging error, the overall error in Figure 15 is determined by the error Eyjgc,
proportional to (AX)* since fourth order interpolation is used to obtain the
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initial data for the micro problems. For the other two setups, (s2) and (s3),
the overall errors saturate at levels somewhat lower than the respective values
of Eayg, corresponding to epnm in eq. (27). Note that this saturation occurs
for relatively high values of AX.

For matters of completeness, in Figure 16, also the H'-norm of the error
in the HMM solution compared to the homogenized solution My is shown for
the same setups as in Figure 15. The observed errors behave very similar to
the L2-case. Note, though, that the H'-norm of the homogenization error,
[IM?® — Mp|| g1, is only known to be bounded [7], it is in general not small, in
contrast to |M® — M|z which is O(e).

100
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1/25 1/&6 1/10 1/6
AX
Fig. 16: H'-norm of difference between HMM solution M and homogenized
reference solution My at time 7' = 0.1 for (EX2).

5 Further numerical examples

To conclude this article, we consider several numerical examples with mate-
rial coefficients that are not fully periodic. Those cases are not covered by
the theorems in Section 2, however, the HMM approach still results in good
approximations. In the 2D examples, we again include the solution obtained
when using a (local) average of the material coefficient as an approximation
to the effective coefficient to stress the relevance of the HMM solutions. As for
the periodic examples, we use artificial damping in the micro problem.

Locally periodic 1D example
We first consider a one-dimensional example with material coefficient
af(z) = 1.1+ Lsin(2rz + 1.1) + § sin(27z/e). (40)

This coefficient is locally periodic. We consider eq. (2) with this coefficient and
e = 1/400, o = 0.01 on the unit interval with periodic boundary conditions.
A comparison between the solution M¢ at time 7" = 0.1, obtained using a
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direct numerical simulation resolving the e-scale, and corresponding HMM
approximation on a coarse grid with AX = 1/25 is shown in Figure 17. Here
the HMM parameters are chosen to be yu = 3.9¢, u’ = 8 and n = 0.9¢2.
Artificial damping with o = 1.2 is used for the micro problem. The averaging
kernel parameters are again p, = p; = 3 and g, = ¢ = 7. For the direct
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Fig. 17: HMM solution to eq. (2) with a® as in eq. (40) with ¢ = 1/400 and
corresponding M* obtained using direct simulation resolving ¢, at T' = 0.1.

simulation, we use Az = 1/6000, which corresponds to 15 grid points per &,
and MPEA for time integration.

One can clearly observe that the HMM solution is very close to the solution
obtained with a direct simulation resolving . The corresponding discrete L2
norm of the error is approximately |[Mo — Mpunn||z2 &~ 10~%. Moreover, note
that in this example the computation time for HMM is about 20 seconds’,
while the direct simulation takes almost two hours.

Quasi-periodic 2D example

Next, eq. (2) is solved in two space dimensions and with material coefficient

a®(z) = (14 0.25sin(27xy /e))(1 4+ 0.25sin(27zo /) + 0.25 sin(27rrx2/5)(),
41)

where r = 1.41 as an approximation to /2. This coefficient is periodic in z1-
direction but not in zs-direction. If we choose € = 0.01, though, it is periodic
also in z4 direction over the whole domain [0, 1]? but not on the micro domains.
The initial data is set as in (EX2).

To make direct numerical simulation feasible, we consider the case ¢ = 0.01
and set Az = 1/1500 in the direct simulation. For HMM, the micro problem
parameters are chosen to be u = 6.5¢, n = 0.7¢? and u' = 9.25¢. We use
again averaging kernels with p, = p; = 3 and ¢, = ¢ = 7 as well as artificial

Yon a computer with Intel i7-4770 CPU at 3.4 GHz
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damping with o = 1.2 in the micro problem. On the macro scale, AX = 1/16
and a = 0.01. The final time is set to 7' = 0.2.

In Figure 18a, the z-components of M*, obtained using a direct simulation
resolving € and a HMM solution to eq. (2) with material coefficient eq. (41)
are shown. Moreover, the solution obtained when simply using the average of
a®(x) as an approximation is included. One can observe that the HMM solution
captures the characteristics of the overall solution well, while the approach
with an averaged coefficient does not. To further stress this, cross sections of
the respective solutions at 1 = 0.5 and x5 = 0.5 are shown in Figure 18b.
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Fig. 18: Quasi-periodic example, with e = 0.01, T = 0.2 and « = 0.01.

Despite the choice of a rather high e-value, € = 0.01, the direct simulation
of this problem took about 5 days. In comparison, the computational time of
HMM was about 4 hours?, which is independent of &.

Locally periodic 2D example

Finally, we consider a locally periodic 2D example with material coefficient
a®(xz) = 0.25exp (— cos(2m(x1 + x2)/e) + sin(2wxy /e) cos(2maa)) . (42)

In this example, we set a = 0.1 and choose a final time 7" = 0.05.

2on a computer with Intel Xeon E5-2637 v3 CPU at 3.50GHz
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The HMM parameters are set to p = 5e, g/ = 9.75¢ and n = 1.6¢2.
Note that the average and maximum of this coefficient is lower than for the
previously considered ones, hence a longer time 7 is chosen. Again o = 1.2
in the micro problem. Initial data and averaging parameters are set as in
the previous example. Direct simulation solution M*®, HMM approximation
and a solution based on local averages of a® are shown in Figure 19. Also
for this problem HMM captures the characteristics of the solution well. The
discrete L? norm of the error with the chosen micro setup is approximately
5-1073. In contrast, the averaging based solution does not capture the correct
characteristics.

avg, r-component
00 0.78

0.71

0.64
0.57
0.50

0.43
0.36

=05

(b) Cross sections

Fig. 19: Locally periodic example, with € = 0.01, T = 0.05 and o = 0.1.

6 Conclusion and future work

In this paper, we presented a heterogeneous multiscale method for the Landau-
Lifshitz equation with highly oscillatory material coefficient in a periodic
setting. A simplified setup, only taking into account the so-called exchange
interaction was considered. We showed convergence of relevant errors for
periodic material coefficients and obtain solutions which capture the correct
characteristics for more general cases. To get a more physically realistic set-
ting, the model should be extended to also include anisotropy, external field
and demagnetization. Furthermore, additional boundary conditions should be
studied. In particular, in physics and materials science it is common to con-
sider homogeneous Neumann boundary conditions. A step in this direction
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is taken in [32], where a finite element method for a similar Landau-Lifshitz
problem in a somewhat more realistic setting is discussed.

Furthermore, in [33], a basis-representation technique which drastically
reduces the number of micro problems that have to be solved in HMM was
introduced for linear PDEs. It would be very interesting to investigate whether
those ideas can be extended to the non-linear problem considered here. This
would be very beneficial for the HMM scheme discussed in this paper.
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