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Abstract Multiscale wave propagation problems are computationally costly
to solve by traditional techniques because the smallest scales must be repre-
sented over a domain determined by the largest scales of the problem. We have
developed and analyzed new numerical methods for multiscale wave propaga-
tion in the framework of the heterogeneous multiscale method (HMM). The
numerical methods couple simulations on macro- and microscales for prob-
lems with rapidly oscillating coefficients. The complexity of the new method
is significantly lower than that of traditional techniques with a computational
cost that is essentially independent of the smallest scale, when computing so-
lutions at a fixed time and accuracy. We show numerical examples of the
HMM applied to long time integration of wave propagation problems in both
periodic and non-periodic medium. In both cases our HMM accurately cap-
tures the dispersive effects that occur. We also give a stability proof for the
HMM, when it is applied to long time wave propagation problems.

1 Introduction

We consider the initial boundary value problem for the scalar wave equation,
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uεtt −∇ ·Aε∇uε = 0, Ω × [0, T ],
uε(x, 0) = f(x), uεt (x, 0) = g(x), ∀x ∈ Ω,

(1)

on a smooth domain Ω ⊂ RN where Aε(x) is a symmetric, uniformly pos-
itive definite matrix. The expression ∇ · Aε∇uε should be interpreted as
∇ · (Aε∇uε). For simplicity we assume that Ω is a hypercube in RN with
periodic boundary conditions. We assume that Aε has oscillations on a scale
proportional to ε � 1. The solution of (1) will then be a sum of two parts:
one coarse scale (macroscale) part, which is independent of ε, and an oscil-
latory (microscale) part which is highly oscillating in both time and spatial
directions on the scale ε. These kinds of multiscale problems are typically
very computationally costly to solve by traditional numerical techniques. The
smallest scale must be well represented over a domain which is determined
by the largest scale of interest. However most often one is only interested in
the coarse scale part of the solution. The goal of our research here is to find
an efficient way to compute it.

Recently, new frameworks for numerical multiscale methods have been
proposed. These include the heterogeneous multiscale method (HMM) [5]
and the equation free approach [14]. They couple simulations on macro- and
microscales to compute the coarse scale solution efficiently. The HMM frame-
work has been applied to a number of multiscale problems, for example, ODEs
with multiple time scales [12], elliptic and parabolic equations with multiscale
coefficients [7, 17, 1], kinetic schemes [6] and large scale MD simulations of
gas dynamics [15]. In this paper we use HMM for the wave equation. Our
method builds on [10] where we described a HMM multiscale method which
captured the coarse scale behavior of (1) for finite time. See also [2]. The
main aim here is to show that the HMM methodology in [10] works also for
long time, where new macroscale phenomena occurs.

As an inspiration for designing our HMM we first consider the classical
homogenization theory, in which the coarse scale properties of partial dif-
ferential equations with rapidly oscillating coefficients, like (1), can be ana-
lyzed. For example, in the setting of composite materials consisting of two
or more mixed constituents (i.e., thin laminated layers that are ε-periodic),
homogenization theory gives the effective properties of the composite. It is
an interesting remark that the effective properties often are different than
the average of the individual constituents that makes up the composite [4].
The main homogenization result is that, under certain conditions, when the
period of the coefficients in the PDE goes to zero, the solution approaches the
solution to another PDE which has no oscillatory (microscale) part. This ho-
mogenized PDE is very useful from a numerical perspective. It gives a coarse
scale solution and the coefficients in the PDE have no ε-dependency. That
means that the homogenized PDE is inexpensive to solve with standard nu-
merical methods. At the same time the solution is a good approximation of
the coarse scale (macroscopic) part of the original equation. For our multi-
scale problem (1) with Aε(x) = A(x, x/ε) and where A(x, y) is periodic in y,
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the homogenized PDE is of the form,{
ūtt −∇ · Ā∇ū = 0, Ω × [0, T ],
ū(x, 0) = f(x), ūt(x, 0) = g(x), ∀x ∈ Ω,

(2)

where Ā(x) is the homogenized or effective coefficient. We refer to [3, 18, 4,
13, 16, 11] for more details about homogenization.

Homogenization gives the limit PDE as ε→ 0 for a constant T (indepen-
dent of ε). The use of classical homogenization is limited by the fact that it
does not describe the dispersive effects in (1) that occur when T becomes
very large. Santosa and Symes [20] developed effective medium equations for
wave propagation problems with T = O(ε−2). In the one-dimensional case,
when Aε(x) = A(x/ε) and A periodic, this equation will be of the form

ũtt − Āũxx − βε2ũxxxx = 0,

where Ā is the same coefficient as in (2) and β is a functional of A. The
effective medium solution ũ can be used as an approximation for longer time
than the homogenized solution ū with an error of the form O(ε) + O(ε3t).
See [20] for further details about this model.

We will now briefly describe the typical setting of HMM for multiscale
problems and how it can be applied to (1). We assume that there exists two
models, a micro model h(uε, dε) = 0 describing the full problem, where uε

is the quantity of interest and dε is the problem data (i.e. initial conditions,
boundary conditions, . . . ), and a coarse macro model H(u, d) = 0, with solu-
tion u and data d. The micro model is accurate but is expensive to compute
by traditional methods. In our case this model is (1). The macro model gives
a coarse scale solution u, assumed to be a good approximation of the mi-
croscale solution uε and is less expensive to compute. The model is however
incomplete in some sense and requires additional data. In our case we use

utt −∇ · F = 0,

with the flux F unknown. This is inspired by the form of the homogenized
equation (2). A key idea in the HMM is to provide the missing data in the
macro model using local solutions of the micro model. Here (1) is solved lo-
cally on a small domain with size proportional to ε and F is given as an
average of the resulting microscopic flux Aε∇uε. The initial data and bound-
ary conditions (dε) for this computation is constrained by the macroscale
solution u.

It should be noted that even if our numerical methods use ideas from
homogenization theory they do not solve any effective (e.g. homogenization
or effective medium) equation directly. The goal is to develop computational
techniques that can be used when there is no fully known macroscopic PDE.



4 B. Engquist, H. Holst, and O. Runborg

The article is organized as follows: In Sect. 2 we describe our HMM for
the wave equation for finite time. In Sect. 3 we describe the modifications
made to our HMM for the long time problem and in Sect. 3.4 we describe the
theory behind the long time problem. We also treat problems which do not
fit the theory. In Sect. 3.3 where we solve a non-periodic problem for long
time. We end this paper with our conclusions in the closing Sect. 4.

2 HMM for the Wave Equation and Finite Time

We continue here with the description of our HMM method for the wave
equation (1) over finite time. By finite time we mean that the final time T
is independent of ε. In the next section we will consider cases where T =
T (ε)→∞ as ε→ 0.

The HMM method we suggest here is described in three separate steps.
We follow the same strategy as in [1] for parabolic equations and in [19] for
the one-dimensional advection equation. See [8], [10] and [2] for additional
details and proofs. In step one we give the macroscopic PDE (i.e. the form
H(u, d) = 0) and a corresponding numerical discretization. In step two we
describe the microscale problem (microproblem). The initial data for the
microproblem is based on local macroscopic data. Finally, in step three we
describe how we approximate F from the computed microproblem by taking
a weighted average of its solution.

We will assume that the domain Ω = Y ⊂ Rd is a hypercube such that
our microscopic PDE is of the form,{

uεtt −∇ ·Aε∇uε = 0, Y × [0, T ],
uε(x, 0) = f(x), uεt (x, 0) = g(x), ∀x ∈ Y.

(3)

and uε(x, t) is Y -periodic in x.

Step 1: Macro model and discretization

We suppose there exists a macroscale PDE of the form,
utt −∇ · F (x, u,∇u, . . . ) = 0, Y × [0, T ],
u(x, 0) = f(x), ut(x, 0) = g(x), ∀x ∈ Y,
u is Y -periodic,

(4)

where F is a function of x, u and higher derivatives of u. We will use this
assumption throughout the whole paper. Another assumption is that u ≈
uε when ε is small. In the method we suppose that F = F (x,∇u). In the
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clean homogenization case we would have F = Ā∇u, but we will not assume
knowledge of a homogenized equation.

We discretize (4) using central differences with time step K and spatial
grid size H in all directions,

Un+1
m = 2Unm − Un−1

m +
K2

H

d∑
i=1

(
eTi F

n
m+ 1

2 ei
− eTi Fnm− 1

2 ei

)
,

Fnm− 1
2 ek

= F (xm− 1
2 ek

, Pnm− 1
2 ek

), k = 1, . . . , d,

(Note that Fnm− 1
2 ek

is a vector.)

(5)

where Fn
m− 1

2 ek
is F evaluated at point xm− 1

2 ek
. The quantity Pn

m− 1
2 ek

ap-
proximates ∇u in the point xm− 1

2 ek
.

Step 2: Micro problem

The evaluation of Fn
m− 1

2 ek
in each grid point is done by solving a micro

problem to evaluate the flux values in (5). Given the parameters xm− 1
2 ek

and
Pn
m− 1

2 ek
, we solve


uεtt −∇ ·Aε∇uε = 0, Y ε × [−τ, τ ],
uε(x, 0) = (Pnm− 1

2 ek
) · x, uεt (x, 0) = 0, ∀x ∈ Y ε,

uε − uε(x, 0) is Y ε-periodic,

(6)

where x − xm− 1
2 ek
7→ x and t − tn 7→ t. The initial data uε(x, 0) is a linear

polynomial approximating the macroscopic solution locally, modulo a con-
stant term; since we only consider the derivative of uε when computing F
below, the constant term does not affect the result.

We keep the sides of the micro box Y ε of order ε. We note that the solution
uε is an even function with respect to t (i.e. uε(x,−t) = uε(x, t)) due to the
initial condition uεt (x, 0) = 0.

Step 3: Reconstruction step

After we have solved for uε for all Y ε× [−τ, τ ] we approximate Fn
m− 1

2 ek
by a

weighted average of fε = Aε∇uε over [−η, η]d × [−τ, τ ] where [−η, η]d ⊂ Y ε.
We choose η, τ sufficiently small so that information will not propagate into
the region [−η, η]d from the boundary of the micro box Y ε in [−τ, τ ] time.
More precisely, we consider averaging kernels K described in [12]: We let
Kp,q denote the kernel space of functions K such that K ∈ Cqc (R) with
supp K = [−1, 1] and
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K(t)trdt =

{
1, r = 0;
0, 1 ≤ r ≤ p.

Furthermore we will denote Kη as a scaling Kη(x) := η−1K (x/η) with com-
pact support in [−η, η]. We then approximate

Fnm− 1
2 ek
≈ F̃ (xm− 1

2 ek
, Pnm− 1

2 ek
) =

∫∫
Kτ (t)Kη(x1) · · ·Kη(xd)fεk(x, t)dxdt,

(7)
where fε(x, t) = Aε(x+ xm− 1

2 ek
)∇uε(x, t).

We proved in [10] that if we apply the HMM to the problem (1) with
Aε(x) = A(x/ε) where A is a Y -periodic symmetric positive matrix the
HMM generates results close to a direct discretization of the homogenized
equation (2). In particular, we showed that

F̃ (x, y) = F (x, y) +O

((
ε

η

)q+2
)
.

The function F̃ and F are defined in (7) and (4) respectively and we note
that here F (x, y) = Āy. The integer q depends on the smoothness of the
kernel used to compute the weighted average of fε in (7).

Theorem 1. Let F̃ (x0, y) be defined by (7) where uε solves the micro problem
(6) exactly, Aε(x) = A(x/ε) and A is Y -periodic and C∞. Moreover suppose
K ∈ Kp,q, f and g are C∞ and τ = η. Then for y 6= 0 and any dimension,

1
‖y‖

∣∣∣F̃ (x0, y)− F (x0, y)
∣∣∣ ≤ C ( ε

η

)q+2

,

where C is independent of ε and η. Furthermore, for the numerical approxi-
mation given in (5) in one dimension, with H = nε for some integer n and
smooth initial data, we have the error estimate

|Unm − ū(xm, tn)| ≤ C(T )
(
H2 + (ε/η)q+2

)
, 0 ≤ tn ≤ T,

where ū is the homogenized solution to (2).

Remark 1. The weighted integrals above are computed numerically with a
simple trapezoidal rule in time and a midpoint rule in space.

Remark 2. In our implementation, the micro problem (6) is solved by the
same numerical scheme as the macro problem (5).

Remark 3. We assume that our scheme for the microproblem can have a con-
stant number of grid points per ε to maintain a fixed accuracy. This implies
that a direct solver for (3) on the full domain has a cost of order ε−(d+1). The
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total cost for on-the-fly HMM is of the form (cost of micro problem) ×Md

where
Md ∼

1
K
· 1
Hd

is the number of micro problems needed to be solved. The macro PDE can be
discretized independently of ε thereforeMd does not depend on ε. If we choose
η and τ proportional to ε the cost of a single micro problem (τ/ε)× (η/ε)d is
also independent of ε. In conclusion our HMM method has a computational
cost independent of ε.

Remark 4. We can to reduce the computational cost of the HMM process
even further if the function F̃ in (7) is linear in some of its arguments. We
can then apply the HMM process to a smaller number of micro problems and
form linear combinations of those for any given F̃ computation. If F̃ depends
on u or t it might not be beneficial to precompute F̃ this way. See [10] for
further details.

Remark 5. The macro scheme suggested here is embarrassingly parallel in
space. This fact has been exploited by the authors in a Fortran 90 code
with MPI parallelization. We think that it would be possible to implement
the same algorithm in a general purpose GPU environment and see a good
utilization of the hardware.

2.1 One Numerical Example

We consider the one-dimensional problem of the form (1),
uεtt − ∂xAεux = 0, [0, 1]× [0, 1],

uε(x, 0) = exp(−100x2) + exp(−100(1− x))), ut(x, 0) = 0, x ∈ [0, 1),
uε is 1-periodic,

(8)
for Aε(x) = A(x/ε) where A(y) = 1.1 + sin 2πy. The homogenized equation

will then have the form (2) with Ā =
(∫ 1

0
1

A(s)ds
)−1

=
√

0.21. Since we have
periodic boundary conditions, the solution to the homogenized equation will
be periodic in time with period 1/

√
Ā ≈ 1.47722. We show the solution

after one full period. The numerical parameters are H = 1.0 · 10−2,K =
1.0 · 10−3,η = τ = 0.05, h = 1.5 · 10−4 and k = 7.8 · 10−5. We take ε = 0.01.
See Fig. 1 for a plot of the result. We refer to [10] for further examples where
HMM is applied to other finite time problems.
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Fig. 1 Results from solving (8) with a finite difference method, DNS (direct numerical

simulation), and the corresponding homogenized equation with highly accurate spectral
method (circles), compared to our HMM method (crosses). The fast O(ε) oscillations are

visible as small fluctuations in the DNS computation.

3 HMM for the Wave Equation over Long Time

Classical homogenization deals with constant T (i.e. independent of ε) and
finds the limiting PDE as ε → 0. We demonstrated in the previous section
that our HMM captures the same solution as homogenization (when appli-
cable). In this section we will investigate how our HMM method, after some
minor changes, handles the case when T = O(ε−2). The microscopic varia-
tions in the medium introduces dispersive effects in the macroscopic behavior
of the solution, after long time. Our goal is to show that our HMM method
can capture the dispersion with less computational cost than just resolving
the full equation.

Let us illustrate the dispersive effects by a numerical example. We con-
sider the same one-dimensional example (8) as above, but solve it for a long
time T = O(ε−2). We compute the solutions after 1, 10 and 100 periods
(≈ 1.47722) of the homogenized equation. We see in Fig. 2 that after 100
periods there is an O(1) error between the true solution uε and the homog-
enized solution ū which thus fails to capture the dispersive behavior of the
solution after long time.

3.1 The HMM Algorithm for Long Time

We must make a few minor modifications to our original HMM algorithm
in Sect. 2 in order to capture the dispersive effects seen in Fig. 2. We will
now describe those changes. They can all be seen as modifications to increase
accuracy.
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Fig. 2 Finite difference computation of (8) at T = 1.47722, T = 14.7722 and T = 147.722
(1, 10 and 100 periods of the homogenized solution) and the corresponding homogenized

solution (circles). As we can see the homogenized solution does not capture the dispersive

effects that occur.

Step 1: Macro model and discretization

We assume the macroscopic PDE still is of the form utt − ∇ · F = 0 where
F depends on u and its derivatives but we will use a higher order scheme
instead of (5). The scheme below has better dispersive properties and hence
allow us to better avoid some of the numerical dispersion,

Un+1
m = 2Unm−Un−1

m +
K2

24H

(
−Fnm+3/2 + 27Fnm+1/2 − 27Fnm−1/2 + Fnm−3/2

)
,

where Fn
m− 1

2
is computed in the same fashion as before in step 2 and 3,

defined below.
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Step 2: Micro problem

The initial data for the micro problem for finite time (6) is modified to a
cubic polynomial Q(x),

uεtt − ∂xAεuεx = 0, Y ε × [−τ, τ ],
uε(x, 0) = Q(x), uεt (x, 0) = 0, ∀x ∈ Y ε,
uε is Y ε-periodic,

The state of the macroscopic solution is then more accurately represented by
the initial data. The cubic polynomial is chosen as follows when computing
the flux Fm+1/2. Let Q̃(x) interpolate the macroscopic solution in the four
grid points surrounding xm+1/2. Then use Q(x) = Q̃(x) − γε2Q̃′′(x). The
small correction is needed to get an initialization that is consistent with the
macroscopic data Q̃(x) to high order in ε. The factor γ can be determined
numerically, see Sect. 3.4.

Step 3: Reconstruction step

The average is computed as before but we need to use a sufficiently accurate
kernel K and take the average over a bit larger box, i.e. larger τ and η with
respect to ε such that τ, η ∼ ε1−α with α > 0. We will delay the discussion
about α until Sect. 3.4.

3.2 A Long Time Computation with HMM

We solved the problem (8) using the HMM algorithm, with the improvements
described above. As before we computed the solution after 1, 10 and 100 pe-
riods of the homogenized equation. In Fig. 3 we see that the HMM algorithm
is able to accurately approximate the solution also after long time, and thus
captures the correct dispersive effects.

The HMM solver uses H = 5.7 · 10−3, K = 5.7 · 10−4 and a kernel with
τ = η = 0.5 from K9,9 which is a 9 times continuously differentiable compact
function with support [−1, 1]. The micro solver and the DNS solver uses
h = 7.8 · 10−5 and k = 3.9 · 10−5. We take ε = 0.01. Note that since the
integration time T is very long we need to take H rather small to avoid
dispersion errors in the macroscopic integration.
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Fig. 3 A longtime DNS simulation (thin line) compared to an HMM solution (crosses)
at T = 1.47722, T = 14.7722 and T = 147.722 (1, 10 and 100 periods of the homoge-

nized solution) for the example in Sect. 3.2. As we can see, the HMM method gives good

agreement with the true solution also after long time.

3.3 Non-Periodic Material

We consider the problem (1) with a function Aε which is not periodic on the
microscale,

Aε(x) = A(rx/ε, x/ε), and A(y1, y2) = 1.1 +
1
2

(sin 2πy1 + sin 2πy2) ,

where r is an irrational number. We take r =
√

2. To be precise we take
r = 1.41 and ε = 0.01 to ensure Aε is periodic on the macroscopic scale.
There is no cell problem for this Aε but it is well known that there is a
homogenized equation of the form (2) with Ā = (

∫ 1

0
1

Aε(x)dx)−1 = 0.744157

and thus the period length is 1/
√
Ā = 1.15922. The initial data is u(x, 0) =

exp(−100x2) + exp(−100(1− x)2) and ut(x, 0) = 0.
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We compare our HMM-results with an accurate DNS computation after 10
and 100 periods. We use η = τ = 0.5 and a kernel K ∈ K9,9. The numerical
parameters are H = 5.7·10−3, K = 5.7·10−4, h = 7.8·10−5 and k = 3.9·10−5.
See Fig. 3.3.

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

T = 11.5922

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

T = 115.9225

Fig. 4 Numerical result from the example in Sect. 3.3. A longtime DNS simulation (thin

line) compared to an HMM solution (crosses) at T = 11.5922 and T = 115.922 (10 and

100 periods of the homogenized solution). The dispersion effects appearing after long time
is captured by our HMM method.

3.4 Theory

We will now give a motivation to why our HMM method works also for
long time. In classical homogenization theory the homogenized solution ū
satisfies a homogenized PDE. The solution u is a good approximation to the
true solution uε such that ||uε(t, ·) − ū(t, ·)||L2 = O(ε), upto a fixed time
T independent of ε. Santosa and Symes derived an equation for a similar
quantity ũ which approximates uε with an error of the form O(ε) + O(ε3t)
for T = O(ε−2). We will now describe some of the theory presented in [20].
The theory thus extends the effective model (2) with additional terms, from
T = O(1) up to time T = O(ε−2).

Let us first give some definitions. Let ω2
m and ψm be the eigenvalues and

eigenfunctions of the shifted cell (eigenvalue) problem [3, pp. 614],{
− (∂y + ik)A(y) (∂y + ik)ψ(y, k) = ω2(k)ψ(y, k), Y × Y,
ψ(y, k) is Y -periodic in y,

where Y = [0, 1]d and k ∈ Rd. Let vm(x, k) be the scaled Bloch-waves,

vm(x, k) = ψm(x/ε, εk) exp(ik · x),
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which satisfies
−∂x

(
a
(x
ε

)
∂xvm

)
=

1
ε2
ω2
m(εk)vm.

The functions Um and f̂m are defined as the projection of uε and f on vm,

Um(k, t) =
∫
uε(x, t)v∗m(x, k)dx, f̂m(k) =

∫
f(x)v∗m(x, k)dx.

Throughout this section we assume that the initial data f(x) is a bandlimited
function. The following theorem from [20] then states that if we expand the
solution to the wave equation in the basis given by {vm}, the terms with
m ≥ 1 are bounded by O(ε) uniformly in time.

Theorem 2. Suppose uε solves (1) with g = 0 and expand

uε(x, t) =
∫
Y/ε

U0(k, t)v0(x, k)dk +
∞∑
m=1

∫
Y/ε

Um(k, t)vm(x, k)dk. (9)

Then ∫
R3

∣∣∣∣∣
∞∑
m=1

∫
Y/ε

Um(k, t)vm(x, k)dk

∣∣∣∣∣
2

dx ≤ Cε2.

Here C is independent of ε and t but depends on the H2-norm of the initial
data f and the L∞-norm of a and ∇a.

See [20] for proof.
We denote the first term in (9) by u0 and note that f̂0(k) has compact

support if f(x) is band limited, see [20]. Then, for some fixed L,

u0(x, t) =
1
2

∫
Y/ε

f̂0(k)v0(x, k) exp(±iω0(εk)t/ε)dk

=
1
2

∫ L

−L
f̂0(k)ψ0(x/ε, εk) exp(ikx+ iω0(εk)t/ε)dk.

We now Taylor expand ψ0 in the second argument and use the fact that
ψ0(x, 0) ≡ 1. This gives

u0(x, t) =
1
2

∫ L

−L
f̂0(k)(ψ0(x/ε, 0) +O(εk)) exp(ikx+ iω0(εk)t/ε)dk

=
1
2

∫ L

−L
f̂0(k) exp(ikx+ iω0(εk)t/ε)dk +O(ε).

Next we Taylor expand ω0(εk) around k = 0,
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ω0(εk) = ω0(0) + εkω′0(0) +
ε2k2

2!
ω′′0 (0) +

ε3k3

3!
ω

(3)
0 (0) +O(ε4k4)

=: ω̃0(εk) +O(ε4k4),

and plug this expansion into the expression for u0,

u0(x, t) =
1
2

∫ L

−L
f̂0(k) exp(ikx+ i[ω̃0(εk) +O(ε4k4)]t/ε)dk +O(ε)

=
1
2

∫ L

−L
f̂0(k) exp(ikx+ iω̃0(εk)t/ε)dk +O(ε3t) +O(ε)

=: ũ0(x, t) +O(ε3t) +O(ε).

Let us now differentiate the leading term ũ0(x, t) twice with respect to t,

∂ttũ0(x, t) =
1
2

∫ L

−L
− 1
ε2

(ω̃0(εk))2 f̂0(k) exp(ikx+ iω̃0(εk)t/ε)dk

and upon expanding the square of ω̃0 under the integral we obtain

∂ttũ0(x, t) =− 1
2

∫ L

−L

[
ε−2ω0(0)22ε−1kω0(0)ω′0(0)

+
1
2
k2
(
2ω0(0)ω′′0 (0) + 2(ω′0(0))2

)
+

1
6
εk3

(
2ω0(0)ω(3)

0 (0) + 6ω′0(0)ω′′0 (0)
)

+
1
24
ε2k4

(
8ω′0(0)ω(3)

0 (0) + 6(ω′′0 (0))2
)

+
1
6
ε3k5

(
ω′′0 (0)ω(3)

0 (0)
)

+
1
36
ε4k6(ω(3)

0 (0))2
]
×

f̂0(k) exp(ikx+ iω̃0(εk)t/ε)dk.

We now use the facts that ω0(0) = 0 and that by symmetry all odd derivatives
of ω2

0(k) are zero when evaluated at k = 0. Then the expression for ∂ttũ0

simplifies to

∂ttũ0(x, t) =− 1
2!

∫ L

−L

[1
2
k2 ∂

2ω2
0(k)

∂k2

∣∣∣∣
k=0

+
1
4!
ε2k4 ∂

4ω2
0(k)

∂k4

∣∣∣∣
k=0

+ ε3k5R1 + ε4k6R2

]
f̂0(k) exp(ikx+ iω̃0(εk)t/ε)dk

=
1
2!
∂2ω2

0(k)
∂k2

∣∣∣∣
k=0

∂xxũ0(x, t)− ε2 1
4!
∂4ω2

0(k)
∂k4

∣∣∣∣
k=0

∂xxxxũ0(x, t)

− iε3R1∂xxxxxũ0(x, t)− ε4R2∂xxxxxxũ0(x, t), (10)
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where R1 and R2 are some real numbers. This is approximated in [20] with
the PDE

ũtt = Āũxx + βε2ũxxxx, (11)

where

Ā =
1
2!
∂2ω2

0

∂k2

∣∣∣∣
k=0

, β = − 1
4!
∂4ω2

0

∂k4

∣∣∣∣
k=0

.

The remaining m ≥ 1 terms in (9) are as we said uniformly bounded by O(ε)
in L2-norm, so that we can use ũ ≈ ũ0 as an O(ε) approximation up to the
time t = O(ε−2). We present a final comparison based on the example (8) in
Fig. 5
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Fig. 5 Numerical result from example in Sect. 3.2: a long time DNS computation (thin
line) compared to a direct discretization of the long time effective equation (11) with a
coarse grid (squares) and our HMM method (crosses).

We arrive at three conclusions from the analysis above:

1. The long time effective equation (11) is of the form

ũtt − ∂xF = 0, F = Āũx + βε2ũxxx.
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This fits into the assumed form of our macroscale PDE in (4) and we do
not need to change the HMM algorithm to reflect a different macro model.

2. The flux F contains a third derivative of the macroscopic solution. In order
to pass this information on to the micro simulation, the initial data must
be at least a third order polynomial. This explains why the linear initial
data used in the finite time HMM is not enough.

3. Since we need to accurately represent also the second term in the flux F ,
the error in the flux computation must be smaller than O(ε2). The error
term for F in Theorem 1 is of the form (ε/η)q+2. We thus need to chose
q and η such that (ε/η)q+2

< ε2, or η > ε1−α with α = 2
q+2 . Recalling

that in the finite time case we always take η ∼ ε, this hence explains why
we need to have more accurate kernels or bigger micro boxes in the long
time case. We note that in order to maintain a low computational cost we
should have α small, which can be obtained by taking a large q, i.e. a very
regular kernel.

We have left to discuss the correction to the initial data mentioned in Step
2 in Sect. 2. It is well established in HMM that initial data for the microscopic
simulation should be consistent with the macroscopic data, in the sense that
the reconstruction of the coarse variables from the microscopic simulation,
evaluated at its initial point, should agree with actual macroscopic data at
this point. In our setting we consider the macroscopic variables as the local
average of the microscopic solution,

ũ(t, x) ∼
∫∫

Kη(t′)Kη(x′)uε(t+ t′, x+ x′)dt′dx′.

The given macroscopic data is the polynomial Q̃(x), which interpolates the
macroscopic solution at the initial point. The initial data Q(x) for the micro-
scopic simulation is therefore consistent if it generates a microscopic solution
uε(t, x) such that

Q̃(x) =
∫∫

Kη(t′)Kη(x′)uε(t′, x+ x′)dt′dx′.

Using the tools from the Bloch wave analysis above one can show [9] that∫∫
Kη(t′)Kη(x′)uε(t′, x+ x′)dt′dx′ = Q(x) + ε2γQ′′(x) + h.o.t.

if a sufficiently high order kernel is used. The coefficient γ can be computed
analytically in some cases, but in general one needs to find it numerically by
probing the dynamics once with the initial data Qprobe(x) = x2 and taking

γ = 2(ũprobe(0, x)− x2)/ε2.
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For the finite time case it is sufficient to take Q(x) = Q̃(x), but in the long
time case the first correction term of size O(ε2) is important to include; recall
that the flux must be computed with an accuracy that is better than O(ε2).
Using Q̃− ε2γQ̃′′ rather than Q̃ gives a higher order consistency.

3.5 Stability Analysis of the Macro Scheme for the
Long Time Effective Equation

A complicating factor in Sect. 3.4 is the stability of the long time effective
equation (11). In fact, (11) is ill-posed since β > 0. Perturbations in ini-
tial data grow without bounds as wave numbers become large. Since our
HMM algorithm effectively discretizes (11) one must be concerned about the
method’s stability. In this section we show that as long as the macroscopic
discretization is coarse enough, it is indeed stable.

Even though (11) is ill-posed, it can be used as an effective equation after
regularization. Since we are interested in low frequency solutions it should
be possible to use a regularized version of (11) where high frequencies are
suppressed. The equation could for instance be regularized with a low-pass
filter Plow applied at the macro level,

ũtt = Plow

(
Āũxx + βε2ũxxxx

)
,

or by adding a small 6th order term,

ũtt = Āũxx + βε2ũxxxx + cε4ũxxxxxx,

cf. (10) above. Another regularization technique is to use large time and space
grid sizes, which can be seen as a type of low-pass filtering. This is what we do
in our HMM. We show here that this approach is stable when the coarse grid
size H satisfies a standard CFL condition and in addition H ≥ Cε, for some
constant C. This explains why our HMM is stable. Moreover, even with such
a coarse grid the macroscopic solution can be computed accurately; In Fig. 5
we show an example of a solution obtained through a direct discretization of
(11) on a coarse grid. The solution agrees very well with a direct numerical
simulation of the full wave equation.

We now apply standard von Neumann stability analysis [21] to show sta-
bility of the macro scheme for periodic solutions,un+1

m = 2unm − un−1
m +

K2

24H

(
−fnm+3/2 + 27fnm+1/2 − 27fnm−1/2 + fnm−3/2

)
,

fnm = (Ā∂x + βε2∂xxx)pnm(x)
∣∣
x=xm

,

(12)
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used in the HMM algorithm for the 1D problem and long time. Here we
denote unm as the numerical approximation of u(xm, tn) = u(mH,nK) and
K is the time step and H is the grid size. The scheme (12) is fourth order
accurate with respect to K and second order with respect to H. We define
the interpolation polynomial pnm−1/2 of degree three over four grid points
unm−2, u

n
m−1, u

n
m and unm+1. We assume a uniform grid and write down the

polynomial pm−1/2,

pnm−1/2(x) = c1 + c2(x− xm−2) + c3(x− xm−2)(x− xm−1)

+ c4(x− xm−2)(x− xm−1)(x− xm), (13)

where the coefficients ci are given by

c1 = unm−2,

c2 =
unm−1 − unm−2

H
,

c3 =
unm − 2unm−1 + unm−2

2H2
,

c4 =
unm+1 − 3unm + 3unm−1 − unm−2

6H3
.

(14)

A numerical scheme is said to be stable if∑
j

(unj )2 ≤ C(T )
∑
j

(u0
j )

2 n = 1, 2, . . . , N, Nk = T,

for some constant C(T ) independent of n. For the discretization (12) we can
show stability if the ratio H/ε is large enough.

Theorem 3. The finite difference scheme (12) applied on the effective equa-
tion (11) with 1-periodic boundary conditions, is stable for K and H satisfying

ε

H
≤

√
7Ā
24β

, (15)

and

K

H
≤ 24√

Ā

√
h

(
24ε2β
H2Ā

)
, (16)

where

h(x) =


1

784− 112x
, 0 ≤ x < 21

5
,

x2 − 2x+ 1
128

(
2(x2 − x+ 1)3/2 − 2x3 + 3x2 + 3x− 2

) , 21
5
≤ x ≤ 7.
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Proof. We plug in the value of interpolation polynomials (13) as replacements
for the numerical fluxes fnm−1/2 and fnm+1/2 which depend on unm−2, u

n
m−1, u

n
m

and unm+1. By doing so, we see that the finite difference scheme (12) will be
of the form

un+1
m = 2unm − un−1

m

+ c
(
unm+3 − 54unm+2 + 783unm+1 − 1460unm + 783unm−1 − 54unm−2 + unm−3

)
+ cd

(
−unm+3 + 30unm+2 − 111unm+1 + 164unm − 111unm−1 + 30unm−2 − unm−3

)
,

(17)

where c = K2Ā/(242H2) and d = 24ε2β/(H2Ā). We perform the standard
von Neumann stability analysis [21, Sect. 2.2] and replace unm = gn exp(imhξ)
in the scheme (17). After dividing with exp(imhξ), we get a recurrence rela-
tion for gn of the form,

gn+1 = (2 + cp(v))gn − gn−1, (18)

where p(v) = Av3 +Bv2 +Cv+D is a polynomial in v = cos θ (θ = hξ) and
where the coefficients A,B,C and D are affine functions in d,

A = −8d+ 8, B = 120d− 216, C = −216d+ 1560, D = 104d− 1352.

The difference equation (18) is stable if the roots r1, r2 of its characteristic
polynomial r2 − (2 + cp(v))r + 1 satisfy |rj | ≤ 1. It is well known that this
happens precisely when |2+cp(v)| ≤ 2. Hence, the scheme (17) is stable if and
only if −4 ≤ cp(v) ≤ 0. The domain of p(v) is [−1, 1] since v = cos θ. We now
continue the proof to find conditions on c and d such that −4 ≤ cp(v) ≤ 0 is
fulfilled for |v| ≤ 1. We start by observing that,

p(v) = 8(v − 1)(v − 13) (v(1− d)− 13 + d) ,

p′(v) = 24
[
(1− d)v2 + 2(5d− 9)v + 65− 9d

]
, p′′(v) = 48(v(1−d)+5d−9),

(19)
and first consider the condition p(v) ≤ 0 for |v| ≤ 1. Since p(1) = 0 and
p′(1) = 1352 > 0 independent of d, we just need to make sure that the root
(13 − d)/(1 − d) 6∈ [−1, 1]. This happens when 0 ≤ d ≤ 7, which gives (15).
Next, we need to check that p(v) ≥ −4/c for |v| ≤ 1. For this we use the
derivatives of p(v) in (19). We start with the interval 0 ≤ d ≤ 21/5. This is
chosen such that p′(−1) = 96(21−5d) ≥ 0. Moreover, p′′(−1) = 48(6d−10) ≥
0 for d ≥ 5/3 and p′′(1) = 48(4d− 8) ≤ 0 for d ≤ 2. Therefore, recalling that
p′(1) = 1352, the derivative p′(v) must be positive when |v| ≤ 1 for the d
values considered. A necessary and sufficient condition is then that

−4
c
≤ p(−1) = −448 (7− d) ⇒ c ≤ 1

112(7− d)
.
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This gives the 0 ≤ x < 21/5 part of (16). By the same argument there is a
point v∗ ∈ [−1, 1] where p′(v∗) = 0 when 21/5 ≤ d ≤ 7. By solving p′(v) = 0
we obtain

v∗ =
9− 5d
1− d

−

√(
9− 5d
1− d

)2

+
65− 9d
d− 1

. (20)

As we showed above p(v∗) < 0 = p(1). Therefore p(v∗) is a minimum and it
suffices to make sure that p(v∗) ≥ −4/c for d ∈ [21/5, 7]. Plugging (20) into
this inequality gives the 21/5 ≤ x ≤ 7 part of (16).

4 Conclusions

We have developed and analyzed numerical methods for multiscale wave
equations with oscillatory coefficients. The methods are based on the frame-
work of the heterogeneous multiscale method (HMM) and have substantially
lower computational complexity than standard discretization algorithms.
Convergence is proven in [10] for finite time approximation in the case of
periodic coefficients and for multiple dimensions. The effective equation for
long time is different from the finite time homogenized equation. After long
time, dispersive effects enter and the method has to capture additional effects
on the order of O(ε2) [20]. Numerical experiments show that the new tech-
niques accurately and efficiently captures the macroscopic behavior for both
finite and long time. It is emphasized that the HMM approach with just mi-
nor modifications accurately captures these dispersive phenomena. We prove
that our method is stable if the spatial grid in the macro solver is sufficiently
coarse.
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