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Abstract. In this paper, we analyze a multiscale method developed under the heterogeneous
multiscale methods (HMM) framework for numerical approximation of multiscale wave propagation
problems in periodic media. In particular, we are interested in the long time O(ε−2) wave propaga-
tion, where ε represents the size of the microscopic variations in the media. In large time scales, the
solutions of multiscale wave equations exhibit O(1) dispersive effects which are not observed in short
time scales. A typical HMM has two main components: a macro model and a micro model. The
macro model is incomplete and lacks a set of local data. In the setting of multiscale PDEs, one has
to solve for the full oscillatory problem over local microscopic domains of size η = O(ε) to upscale
the parameter values which are missing in the macroscopic model. In this paper, we prove that if
the micro problems are consistent with the macroscopic solutions, HMM approximates the unknown
parameter values in the macro model up to any desired order of accuracy in terms of ε/η.
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1. Introduction. A decade ago, E and Engquist, [9], proposed the heteroge-
neous multiscale methods (HMM) as a general framework for treating multiscale and
possibly multiphysics problems. HMM is often useful when we have the full micro-
scopic model which is not affordable to use throughout the entire domain. The basic
idea is that one starts with assuming a macro model in which some missing data are
upscaled from local microscopic simulations, where the micro model is forced to be
consistent with the coarse scale/macroscopic data. The HMM framework has been
successfully applied to many disciplines of sciences. To name a few applications here,
we refer the reader to [2, 10] for homogenization problems, to [13] for applications to
gas dynamics, and to [17] for complex fluids applications. For a more recent update
about the improvements in the HMM based approaches see e.g. [3].

Our main goal in this paper is to mathematically investigate the properties of
a HMM type multi-scale algorithm for approximating the solution of the following
initial boundary value problem modelling long time wave propagation

(1.1)
∂ttu

ε(t, x)−∇ · (A(x/ε)∇uε(t, x)) = 0, in [0, T ε]× Ω
uε(0, x) = q(x), ∂tu

ε(0, x) = z(x), on {t = 0} × Ω,

where A(y) ∈ Rd×d is a 1-periodic, symmetric and uniformly positive definite matrix,
Ω ⊂ Rd, with |Ω| = 1, ε � 1 represents the size of the periodic microstructures
in the media, and T ε ≈ O(ε−2). We assume that the above equation is equipped
with suitable boundary data. Since ε is small, the coefficients A(x/ε) varies rapidly,
and hence a direct numerical simulation of the problem (1.1) is infeasible due to the
need to resolve the small scale variations in the media. However, for small ε the
multiscale problem (1.1) can be replaced by an effective equation. For short time
scales T ε = T ≈ O(1) , the classical homogenization theory reveals the limiting
behavior of the multi-scale problem. As ε → 0, the solution of (1.1) with T ε = T
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tends to a solution u0 which has no dependence on the small scale parameter ε. In
this setting, the solution u0 satisfies

(1.2)
∂ttu

0(t, x)−∇ ·
(
Â∇u0(t, x)

)
= 0, in [0, T ]× Ω

u0(0, x) = q(x), ∂tu
0(0, x) = z(x), on {t = 0} × Ω,

where the homogenized coefficient Â is a constant matrix, the computation of which
involves solving another set of non-oscillatory periodic elliptic problems called cell
problems. For details regarding convergence rate of the homogenized solution u0(t, x)
to the multiscale solution uε(t, x) and other technical issues about homogenization we
refer the reader to the seminal book by Bensoussan, et. al. [8]. For heterogeneous
multiscale methods based on finite differences and finite elements which approximate
the solution of the short time equation (1.2) see [12] (FD-HMM) and [6] (FE-HMM).
For time scales T ε = O(ε−2), the solution uε(t, x) starts to exhibit O(1) dispersive
effects which are not present in the short time homogenized solution. In the long
time case, Symes and Santosa, [18], derived an effective equation for the multiscale
problem (1.1). In one dimension, the effective equation has the form

(1.3)
∂ttû(t, x)− ∂x

(
â∂xû(t, x) + ε2β∂xxxû(t, x)

)
= 0, in [0, T ε]× Ω

û(0, x) = q(x), ∂tû(0, x) = z(x), on {t = 0} × Ω,

where β is a complicated functional of A (formula (5.6) in this paper), and â is
the homogenized coefficient in one dimension. The solution û(t, x) of the long time
effective equation (1.3) will then approximate the multiscale solution uε(t, x) over large
timescales. Note that the problem (1.3) is ill-posed in the sense that high frequency
initial data will result in blow up in the solution.

From a numerical point of view, it is important to develop cheap numerical meth-
ods which approximate the effective solution û(t, x), and hence are able to capture
the long time dispersive effects which do not appear in the homogenized limit u0(t, x).
In 2011, Engquist et. al., [11], developed a method based on finite difference HMM
(FD-HMM). Their method approximated the solution û(t, x) of the effective equation
(1.3) in three steps:
Step 1: The macro model and macro solver : The HMM assumes the macro model:

(1.4) ∂ttu(t, x) = ∇ · F,

where the flux F is the unknown data in the model. In one dimension, for instance,
the macro model can be discretized with the following high order scheme

(1.5) un+1
i = 2uni − un−1

i +
4t2

244x

(
Fni− 3

2
− 27Fni− 1

2
+ 27Fni+ 1

2
− Fni+ 3

2

)
.

Step 2: Micro model : To find the flux Fn at a point x0, we solve the full oscillatory
problem

(1.6)
∂ttu

ε(t, x)−∇ · (A(x/ε)∇uε(t, x)) = 0, in [0, τ ]× Ωη,x0

uε(0, x) = ū(x), ∂tu
ε(0, x) = 0, on {t = 0} × Ωη,x0 ,

where ū(x) is a third order polynomial, Ωη,x0 = [x0−Lη, x0+Lη], Lη = η+ τ
√

|A|∞,
where η = O(ε) represents the size of the spatial domain and τ = O(ε) stands for
the microscopic final time. The initial data ū(x) has the following property: suppose
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that we interpolate the macroscopic data {unl } (the subscript l is used to indicate the
discrete macroscopic solutions located around x = x0) with a third order interpolant
û(x) around x = x0. Then the initial data ū(x) is such that the average of the micro
solution uε(t, x) over the subset [−η+x0, η+x0]×(0, τ ] of the micro box Ωη,x0 ×(0, τ ]
agrees with the interpolant û(x) up to high orders in ε. The consistent initial data
ū(x) for a given macroscopic state û(x) can be obtained numerically by an algorithm
presented in [14]. Mathematically speaking, we say that ū(x) is consistent with û(x)
up to O(εq) if

(1.7)

∫ τ

−τ

∫ η+x

−η+x
Kτ (t)Kη(x̃−x)uε(t, x̃)dtdx̃ = û(x)+O(εq), x ∈ [−η+x0, η+x0],

where Kτ (t) and Kη(x) are averaging kernels (in time and space respectively) with
compact supports of sizes τ and η. Further details about averaging kernels are dis-
cussed in Section 2.3.
Step 3. Upscaling : The last step of the HMM is to average the local microscopic
flux A(x/ε)∂xu

ε(t, x). Using the notation FHMM (x0) instead of Fn(x0), the HMM
flux is then computed by

(1.8) FHMM (x0) :=

∫ τ

−τ

∫ η+x0

−η+x0

Kτ (t)Kτ (x)A(x/ε)∂xu
ε(t, x)dtdx,

where the HMM flux FHMM (x0) approximates the macroscopic flux F̂ defined as

(1.9) F̂ (x0) = â∂xû(x0) + ε2β∂xxxû(x0).

We want to mention here that for a wellposed effective model for the long time wave
equation we refer the reader to [16]. Furthermore, for a FE-HMM approximating the
solution of the mentioned well-posed model we refer to [5]. In principle, the accuracy
of the HMM described above depends on the accuracy of the upscaling procedure.
This is because the macro model (1.4) has exactly the same form as the long time
effective equation (1.3), and if, in addition, the upscaling procedure gives the right
macrosopic flux then the HMM is equivalent to a finite dimensional approximation of
the long-time effective equation (1.3). For a preliminary incomplete analysis of the
upscaling error we refer the reader to [14].

In this paper, we give a theoretical foundation of the (FD-HMM) [11], by proving
that HMM indeed computes the correct flux for the long time multiscale wave problem
(1.1). With suitable macroscale discretization parameters, it will therefore capture
the O(1) dispersive effects in (1.3). More precisely, let FHMM be the flux computed
by HMM when the micro problem (1.6) is given initial data ū(x) consistent (up to
O ((ε/η)

q
)) with a third order polynomial û(x), then∣∣∣FHMM (x0)− F̂ (x0)

∣∣∣ ≤ C
(
(ε/η)

q
+ η (ε/η)

q−1
)
,

where q is a parameter associated with the smoothness of the averaging kernels, which
in principle can be chosen arbitrarily large. Moreover, as a part of our analysis, we
give a surprisingly simple expression for the parameter β which was known before to
equal a very complicated functional of A, [18]. We prove that it is simply

β = â‖χ‖2L2[0,1],
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where χ is the well-known periodic cell solution from homogenization theory. In our
proof we use two new ideas; the first idea is to look at the solutions of periodic
wave equations with a special form of data known as quasi polynomials, where the
polynomial coefficients are replaced by periodic functions. This is useful in unfolding
the spatial structure of the solution as well as expressing the locally periodic solutions
in terms of combination of much simpler purely periodic functions. Next, we look at
the local time averages of solutions of hyperbolic PDEs and provide general statements
which might potentially be applicable to much broader areas. With the help of these
two ideas we are able to fully understand the crucial role consistency plays in HMM
type algorithms. Finally we present numerical results to support our theoretical
statements.

This paper is organized as follows. In Section 2, we present quasi-polynomials
and we introduce the general purpose averaging kernels. In Section 3, we present an
energy estimate regarding coupled wave equations. In Section 4, we introduce the
local time averaging of oscillatory solutions of hyperbolic PDEs. Section 5 is devoted
to the analysis and contains the main statement. Finally we conclude our paper by
providing numerical examples to verify our theoretical claims.

2. Preliminaries.

2.1. Notation. In this section we introduce the notation that we use throughout
this paper. We write Y := [0, 1]d to denote the d-dimensional unit cube. The notation
f(t, ·) :=

∫
Y
f(t, y)dy stands for the spatial average of a function f over the unit cube

Y . If f is time independent, we will simply use f :=
∫
Y
f(y)dy. We write

(2.1) A ∈M(c1, c2,Ω),

to mean that A = {aij}di,j=1 ∈ (C∞(Ω))
d×d

is a smooth, uniformly positive definite,
symmetric and bounded matrix function on Ω s.t

c1|ζ|2 ≤ ζTA(x)ζ, |A(x)ζ| ≤ c2|ζ|, ∀ζ ∈ Rd, and ∀x ∈ Ω.

We will use the notation a instead of A for 1-dimension. We say that a function f
defined on Y is Y -periodic if f(y + ej) = f(y) for all y ∈ Y , where ej is the standard
canonical basis in jth direction. For simplicity we will say that a function is periodic
to mean that it is Y -periodic. We will also use the one-dimensional periodic operators:

(2.2) L[w] = ∂x (a∂xw) , M [w] = a∂xw + ∂x (aw) , N [w] = aw.

where a ∈ M(c1, c2, Y ) is periodic and w is a smooth, periodic function. The d-
dimensional version of the Y -periodic operator L is defined as L := ∇ ·A∇.

2.2. Quasi-polynomials. Given a macroscopic state û(x) = s0 + s1x+ s2x
2 +

s3x
3, the HMM solves the micro-problem (1.6). For the analysis, we assume that the

micro problem is posed over the entire R:

(2.3)
∂ttu

ε(t, x) = ∂x (a(x/ε)∂xu
ε(t, x)) ,

uε(0, x) = ū, ∂tu
ε(0, x) = 0,

with a polynomial ū consistent with û.
As equation (2.3) is equipped with a polynomial initial data, we use the notion

of quasi-polynomials from [7] to understand the structure of periodic wave equations
with polynomial initial data. In particular, using the theory from [7] we can prove
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that the solution of the periodic wave problem (2.3) has a special structure known as
quasi-polynomials.

Definition 2.1. A function P (x, y) : R × R −→ R belongs to the set Pn of
quasi-polynomials of degree n if

P (x, y) = p0(y) + p1(y)x+ p2(y)x
2 + · · ·+ pn(y)x

n,

where pi(y) are infinitely differentiable 1-periodic functions, named the coefficients
functions of P .

In [7], we proved that the solution of a periodic wave equation with quasi-
polynomial data belongs to the class of quasi-polynomials as well. We present the
one-dimensional version of the theorem from [7].

Theorem 2.1. Assume that Q,Z, P (t, ·, ·) ∈ Pn and that u(t, x) solves

(2.4)
utt = L[u] + P (t, x, x),
u(0, x) = Q(x, x), ut(0, x) = Z(x, x),

where the operator L is defined in (2.2). Then there is a family of quasi-polynomial
U(t, ·, ·) ∈ Pn such that the solution to (2.4) is given as u(t, x) = U(t, x, x). The
coefficient functions of U solve the forced wave equations

∂ttuj = L[uj ] + pj + fj ,
uj(0, x) = qj(x), ∂tuj(0, x) = zj(x),

where pj, qj, zj are the coefficient functions of P , Q, Z, and

fj(t, x) =


0 j = n,

nM [un] j = n− 1,

(j + 1)M [uj+1] + (j + 2)(j + 1)N [uj+2] j ≤ n− 2,

and the operators M and N are given in (2.2).

2.2.1. Splitting. In general uj does not have zero average in space. Here we

split the coefficient function uj into an average zero part ũj(t, x) := uj(t, x)−uj(t, ·),
where u(t, ·) =

∫ 1

0
u(t, y)dy, and a space independent part gj(t) := uj(t, ·) such that

uj(t, x) = ũj(t, x) + gj(t).

Then we can rewrite the solution u of (2.4) as

u(t, x) =
n∑
j=0

xjuj(t, x) =
n∑
j=0

xj ũj(t, x) +
n∑
j=0

xjgj(t).

Now the coefficient functions ũj and the space average gj satisfy

∂ttũj = L[ũj ] + pj(t, x)− pj(t, ·) + fj(t, x)− fj(t, ·),
ũj(0, x) = qj(x)− qj(·), ∂tũj(0, x) = zj(x),−zj(·),

and

g′′j (t) = pj(t, ·) + fj(t, ·),
gj(0) = qj(·), g′j(0) = zj(·),
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where

fj(t, x) =


0 j = n,

nM [ũn] + ngn(t)ax j = n− 1,

(j + 1) (M [ũj+1] + gj+1(t)ax) + (j + 2)(j + 1) (N [ũj+2] + gj+2(t)a) j ≤ n− 2.

fj(t, ·) =


0 j = n,

na∂xũn j = n− 1,

(j + 1)a∂xũj+1 + (j + 1)(j + 2)
(
aũj+2 + gj+2(t)ā

)
j ≤ n− 2.

Now we present a corollary which follows immediately from the above discussions.
The result will give the exact form of the equations for {ũj}nj=0 when a wave equation
is equipped with polynomial initial data and zero forcing.

Corollary 2.1. Suppose that v solves the one dimensional problem

(2.5)
∂ttv = L[v],
v(0, x) = r0 + r1x+ · · ·+ rnx

n, ∂tv(0, x) = 0.

where ri are constant numbers and 0 ≤ n ≤ 3, then

v(t, x) = ṽ0(t, x) + xṽ1(t, x) + · · ·+ xnṽn(t, x) + g0(t) + xg1(t) + · · ·+ xngn(t).

where ṽj(t, x)s are 1-periodic with zero spatial average ṽj(t, ·) = 0 and satisfy

∂ttṽn−i = L[ṽn−i] + Pn−i − Pn−i(t, ·) + fn−i(t, x)− fn−i(t, ·),
ṽn−i(0, x) = ∂tṽn−i(0, x) = 0

g′′n−i(t) = Pn−i(t, ·) + fn−i(t, ·), gn−i(0) = rn−i, g′n−i(0) = 0, i = 0, 1, · · · , n,

with

Pn−i =


0 i = 0

nM [ṽn] i = 1, n ≥ 1,

(n− 1)M [ṽn−1] + n(n− 1)aṽn i = 2, n ≥ 2,

(n− 2)M [ṽn−2] + (n− 1)(n− 2)aṽn−1 i = 3, n = 3

fn−i =


0 i = 0

ngn(t)ax i = 1, n ≥ 1,

(n− 1)gn−1(t)ax + n(n− 1)gn(t)a i = 2, n ≥ 2,

(n− 2)gn−2(t)ax + (n− 1)(n− 2)gn−1(t)a i = 3, n = 3.

2.3. Averaging kernels. The upscaling procedure in HMM requires solving a
multi-scale problem with a fixed ε and averaging out the small scale fluctuations to
obtain effective data which are then used in the macroscopic model. Indeed, the ac-
curacy of the HMM is associated with how fast these local averaging converges to the
effective macroscopic data. At this point it is vital to have high-order convergence
rates, in terms of the small scale parameter ε, for averages of the oscillatory data in-
volved in the computations. In principle, it is possible to improve the convergence rate
to an arbitrary order using the idea of averaging kernels. We start with introducing
the space of smoothing kernels Kp,q.

Definition 2.2. A normalized function K is in the space Kp,q if
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• K(q+1) ∈ BV (R) and K has compact support in [−1, 1]
• K has p vanishing moments:∫ 1

−1

K(t)trdt =

{
1 r = 0

0 0 < r ≤ p.

Example 2.1. Two examples of kernels K ∈ Kp,q are χ[−1,1] ∈ K1,−1, and
3
4χ[−1,1](1− t2) ∈ K1,0. In the former, the kernel itself has bounded variation while in
the latter the derivative of the kernel has bounded variation. In HMM, we average
out oscillatory functions in localized domains, sizes of which should be such that the
kernels capture at least a few oscillations of the integrand. The size of these localized
domains are represented by η which in practice is O(ε). Therefore, for averaging over
these domains, we use the η-scaled version of K(t):

Kη(t) =
1

η
K(

t

η
).

Our aim in this section is to apply these scaled kernels to functions of the form f(t, s) =
trb(s), where f is multiplicatively seperable in terms of fast and slow variations. We
consider only symmetric kernels and define the convolution as

(K ∗ f) (t) =
∫
R
K(t− s)f(s)ds =

∫
R
K(s− t)f(s)ds.

An immediate consequence of the above definition is the following Lemma.
Lemma 2.1. Suppose f(t) = tr with r ∈ Z+ and K ∈ Kp,q with p ≥ r > 0, then

(Kη ∗ f) (t) = tr.

We also have that
Lemma 2.2. Suppose that H ∈ BV (R) with suppH ⊂ [−1, 1]. Let g be a contin-

uous 1-periodic function with g = 0. Then, with 0 < α < 1 we have

(2.6)

∣∣∣∣∫ 1

−1

g(t/α)H(t)dt

∣∣∣∣ ≤ 3α|g|∞V ar(H),

where V ar(H) is the total variation of H.
Proof. Let 1/α = N + γ where N stands for the integer part and γ stands for the

fractional part of 1/α. Then∫ 1

−1
g(t/α)H(t)dt = α

∫ 1/α

−1/α
g(t)H(αt)dt

= α
({∫ −N

−N−γ +
∫ N+γ

N
+
∫ N
−N

}
g(t)H(αt)dt

)
= α (R1 +R2 +R3) .

Since H has compact support it follows that |H|∞ ≤ V ar(H). Hence

|R1| :=

∣∣∣∣∣
∫ −N

−N−γ
g(t)H(αt)dt

∣∣∣∣∣ ≤ |g|∞|H|∞ ≤ |g|∞V ar(H).

Similarly |R2| ≤ |g|∞V ar(H). It remains to bound |R3|. Since g is periodic and g = 0

|R3| =
∣∣∣∑N−1

j=−N
∫ 1

0
g(t)H (α (j + t)) dt

∣∣∣
=
∣∣∣∑N−1

j=−N
∫ 1

0
g(t) [H (α (j + t))−H(αj)] dt

∣∣∣ ≤ |g|∞V ar(H).
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This shows (2.6).
We consider now functions of the form g(t, s) = trf(s), for a periodic function f

and prove the following Lemma.
Lemma 2.3. Let f be a 1-periodic continuous function and K ∈ Kp,q. Then, with

α = ε/η, and f̄ =
∫ 1

0
f(s)ds∣∣∣∣∫

R
Kη(t)f(t/ε)dt− f̄

∣∣∣∣ ≤ C|f |∞αq+2,

and when r ∈ Z+∣∣∣∣∫ Kη(t)t
rf(t/ε)dt

∣∣∣∣ ≤ C

{
|f |∞αq+2ηr 1 ≤ r ≤ p

|f |∞αq+2ηr + |f̄ |ηr r > p,

where the constant C does not depend on ε, η, f or s but may depend on K, p, q, r.
Proof. Let F [0](t) = f(t)− f̄ and

F [n+1](t) =

∫ t

0

F [n](s)−
∫ 1

0

∫ s

0

F [n](τ)dτds.

Then F [n](t) is 1-periodic and has zero average for all n. Moreover,

dn

dtn
F [n](t) = f(t)− f̄ .

Also |F [n]|∞ ≤ 2n|f |∞. Hence with α = ε/η,∫
Kη(t)t

rf(t/ε)dt = ηr
∫ 1

−1
K(t)trf(t/α)dt

= αq+1ηr
∫ 1

−1
K(t)tr

dq+1

dtq+1
F [q+1](t/α)dt+ ηrf̄

∫
K(t)trdt

= (−1)q+1αq+1ηr
∫ 1

−1
F [q+1](t/α)

dq+1

dtq+1
(K(t)tr) dt+ ηrf̄

∫
K(t)trdt.

Since K(q+1) ∈ BV (R) and K has compact support we have that K(s) ∈ BV (R) for

all 0 ≤ s ≤ q. From here it follows that
dq+1

dtq+1
(K(t)tr) ∈ BV (R). Furthermore, by

the fact that Fn is 1-periodic and has zero average, an application of Lemma 2.2 gives∣∣∣∣∫ 1

−1

F [q+1](t/α)
dq+1

dtq+1
(K(t)tr) dt

∣∣∣∣ ≤ 3α|F [q+1]|∞V ar((Ktr)q+1) ≤ CK,q,rα|f |∞.

On the other hand

∫ 1

−1

K(t)trdt =


1 r = 0

0 1 ≤ r ≤ p

Cr r > p.

This completes the proof of the Lemma.
Finally, we present a lemma showing that when we applyK to a quasi-polynomial,

the result is again a quasi-polynomial. This will be used later in Theorem 5.1.
Lemma 2.4. Suppose that b ∈ Pn such that b(x) =

∑n
j=0 x

jbj(x) ∈ Pn, and

K ∈ Kp,q−2 with p ≥ n, and q ≥ 2. Then

εn (Kη ∗ b(·/ε)) (x) = Qε(x, x/ε),
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where Qε(x, y) =
∑n
j=0 x

jQεj(x) ∈ Pn. Moreover, if p ≥ n and bj = 0 then

|Qεk(x)| ≤ Cαq
n∑
r=k

εn−r |br|∞

where C depends only on K, p, q and n.
Proof. We have with cr,j = (−1)j−r

(
j
r

)
εn (Kη ∗ b(·/ε)) (x) = εn

∫
Kη(x− s)b(s/ε)ds = εn

∑n
j=0

∫
Kη(x− s) s

j

εj bj(
s
ε )ds

= εn
∑n
j=0

∑j
r=0 cr,jε

−jxr
∫
Kη(s)s

j−rbj(
x− s

ε
)ds︸ ︷︷ ︸

:=ψr,j(x/ε)

= εn
∑n
j=0

∑j
r=0 cr,jε

−jxrψr,j(x/ε)

=
∑n
k=0 x

k

n∑
r=k

ck,rε
n−rψk,r(x/ε)︸ ︷︷ ︸
Qε

k(x/ε)

.

Note that ψk,r(y) is 1-periodic since br(y) is 1-periodic. Therefore, Qk(y) is also 1-
periodic. This proves the first part of the Lemma. For proving the second claim, first
using Lemma 2.3 we estimate |ψk,r(y)|

|ψk,r(y)| =
∣∣∣∣∫ Kη(s)s

r−kbr(y − s/ε)ds

∣∣∣∣ ≤ Cαq |br|∞

since p ≥ n ≥ r − k and bj = 0. Next we have the desired estimate as follows

|Qεk(y)| ≤ C
n∑
r=k

εn−r |ψk,r(y)| ≤ Cαq
n∑
r=k

εn−r |br|∞ .

3. Energy estimates for solutions of coupled wave equations. The main
result of this section is Theorem 3.2 which shows the polynomial time growth of
solutions of coupled wave equations. The equations are coupled in the sense that
starting with a hyperbolic PDE with a smooth forcing term, the solution of this initial
PDE enters as the forcing term in the next equations and new equations are forced
with all other preceding solutions. This coupling introduces a resonance effect leading
to polynomial growth in the solution. We emphasize that some of the results in this
section hold under weaker assumptions on data. However, we assume smoothness to
make the exposition simpler. We start with some intermediate lemmas.

Lemma 3.1. Let f ∈ Hk(Y ), f = 0 and A ∈M(c1, c2, Y ) be Y -periodic. Then
there exists a unique Y -periodic function u ∈ Hk+2n satisfying

(−1)nLn[u] = f, u = 0,

for any positive integer n. In addition, the following stability estimate holds

‖u‖Hk+2n(Y ) ≤ C‖f‖Hk(Y ),

where C depends only on k, the domain Y and the coefficient A.
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Proof. For n = 1 the result is classical. Now suppose that n > 1, then with
u1 = u we write

−Lu1 = u2, −Lu2 = u3, · · · ,−Lun−1 = un, −Lun = f.

Furthermore, note that ujs are Y -periodic and uj = 0, j = 1, · · · , n. This follows from
the fact that u1 is an average zero Y -periodic function and that Lu1 is 1-periodic with
zero average. Then we obtain the final result by induction. Now we present a well-
known Theorem which we use later in the analysis.

Theorem 3.1. Let f ∈ C∞([0, T ]× Y ), f(t, y) be periodic in y, and f(t, ·) = 0.
Moreover, let g, h ∈ C∞(Y ) be 1-periodic functions with g = h = 0. Then there is a
unique solution u ∈ C∞([0, T ]× Y ), with u(t, ·) = 0, solving

∂ttu = L[u] + f(t, y),
u(0, y) = g, ∂tu(0, y) = h.

Moreover, there exists a constant C independent of t such that

(3.1) ‖u(t, ·)‖H1(Y ) ≤ CE1/2
u (0) + C

{∫ t
0
‖f(s, ·)‖L2(Y )ds, f is time dependent

‖f‖L2(Y ) f is time independent.

where the energy Eu(t) is defined as

Eu(t) :=
1

2

∫
Y

|ut(t, ·)|2 +A∇u(t, ·) · ∇u(t, ·)dy.

Proof. The existence and uniqueness is classical. The proof of the estimate (3.1)
when f is time dependent follows from the standard energy estimate

E1/2
u (t) ≤ E1/2

u (0) +

∫ t

0

‖f(s, ·)‖L2(Y )ds,

and the Poincaré inequality. The proof of the estimate for time independent f is
obtained by considering v = u+ ψ, where L[ψ] = f .

Now we are ready to state the main result of this section.
Theorem 3.2. Suppose {uj}nj=0 solve the one-dimensional periodic wave equa-

tions

∂ttuj = L[uj ] + Pj(uj+1, uj+2, · · · , un) + fj(t, x),
uj(0, x) = ∂tuj(0, x) = 0.

Here

Pj(uj+1, · · · , un) =
n∑

i=j+1

αj,i

(
M [ui]−M [ui]

)
+ βj,i

(
N [ui]−N [ui]

)
,

where L,M,N are defined in (2.2). αj,i, βj,i are real bounded constants, and fj ∈
C∞([0, T ]× Y ) with fj(t, ·) = 0. Then

‖u0(t, ·)‖H1(Y ) ≤ C

n∑
j=0

(
1 + tj+1

)
max
0≤s≤t

‖fj(s, ·)‖L2(Y ),
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where C is independent of t but may depend on Y and a.
Proof. Let {uj,i}n+1

i=j+1 be the solution of the wave equation with the forcing terms

Fj,i =

{
αj,i

(
M [ui]−M [ui]

)
+ βj,i

(
N [ui]−N [ui]

)
, j + 1 ≤ i < n+ 1

fj , i = n+ 1,

and zero initial data, then

uj(t, y) =
n+1∑
i=j+1

uj,i(t, y).

Note that by triangle inequality we have

‖uj‖H1(Y ) ≤
n+1∑
i=j+1

‖uj,i‖H1(Y ).

In addition, since Fj,i = 0 we have also that uj,i(t, ·) = 0. We can then employ
Theorem 3.1 and the fact

‖M [u]−M [u]‖L2(Y ) ≤ C‖u‖H1(Y )

and

‖N [u]−N [u]‖L2(Y ) ≤ C‖u‖L2(Y )

to see that

‖uj,i‖H1(Y ) ≤ Ct max
0≤s≤t

{
‖ui(s, ·)‖H1(Y ) if j + 1 ≤ i ≤ n

‖fj(s, ·)‖L2(Y ), if i = n+ 1.

Therefore for j = 0, · · · , n we have

‖uj‖H1(Y ) ≤ Ct

 n∑
i=j+1

max
0≤s≤t

‖ui(s, ·)‖H1(Y )

+ max
0≤s≤t

‖fj(s, ·)‖L2(Y )

 .

From here a simple induction leads to the desired result.

4. Time averaging of wave equations. The HMM flux is computed by aver-
aging the microscopic flux A(x/ε)∇uε in time and space in a domain of size η = O(ε).
We introduce the time averaged solution

dε(x) := (Kτ ∗ uε(·, x)) (0).

Then the HMM fllux FHMM can be rewritten as

FHMM (x0) = (Kτ ∗ (Kη ∗ a(·/ε)∂xuε(·, ·)) (x0)) (0)
= (Kη ∗ a(·/ε)∂x (Kτ ∗ uε(·, ·)) (0)) (x0)
= (Kη ∗ a(·/ε)∂xdε(·)) (x0).

With the above motivation, we present a theorem which gives an explicit equation for
the time averages of solutions of wave equations.
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Before stating the result we introduce eigenfunction expansions which will be used
in the proof. Let {λ2j , ϕj(y)}∞j=0 be the eigenvalue eigenfunction pair corresponding

to the operator −L. Then, except for the zero eigenvalue λ20 = 0, all other eigenvalues
are strictly positive such that, [15],

0 = λ20 < λ21 ≤ λ22 ≤ · · · .

The eigenfunctions ϕj ∈ C∞ are periodic with zero average ϕj(·) = 0 except for
ϕ0 = 1 and they form an orthonormal basis for the space of periodic and L2(Y )
integrable functions such that every periodic function f ∈ L2(Y ) can be written as

f(y) =

∞∑
j=0

fjϕj(y).

Theorem 4.1. Suppose α = ε
τ where 0 < ε ≤ τ . Let f ∈ C∞([0, α−1], Y ) be a

Y -periodic function with f(t, ·) = 0, and K ∈ Kp,q with an even q. Furthermore, let
w be the solution of the problem

(4.1)
∂ttw = L[w] + f(t, x),
w(0, x) = ∂tw(0, x) = 0.

Then the local time average Kτ ∗ ∂2kt w(·/ε, x)(0) satisfies

Kτ ∗ ∂2kt w(·/ε, x)(0) =
q/2−1∑
`=k

Lkψ` + αqRk(x), k = 0, 1, · · · , q/2− 1,

where ψ` is the zero average solution of the problem

L`+1ψ` = −Kτ ∗ ∂2`t f(·/ε, x)(0).

Moreover Rk is Y -periodic with zero average (Rk = 0) and

‖Rk‖H1(Y ) ≤ Cp,q max
−1≤s≤1

‖w(s/α, ·)‖L2(Y ), L[Rk−1] = Rk, k = 1, 2, · · · , q/2− 1.

Remark 4.1. Later in the main Theorem we will write down equations for the
time averages of solutions of wave equations. To ease the readability later, we note
that the time average d(x) := Kτ ∗ w(·/ε, x)(0) satisfies

L[d](x) = −
q/2−1∑
`=0

L−`Kτ ∗ ∂2`t f(·/ε, x)(0) + αqR1(x).

Moreover, later in the analysis the right hand side functions f will be even functions
of t. This implies that the solution w is extended evenly for t < 0. Therefore, we
equivalently write

max
−1≤s≤1

‖w(s/α, ·)‖L2(Y ) = max
0≤s≤1

‖w(s/α, ·)‖L2(Y ).

Proof. Since f(t, ·) = 0, by Theorem 3.1 w(t, ·) = 0, and we write

w(t, x) =

∞∑
j=1

wj(t)ϕj(x).

12



Now we replace f(t, x) =
∑∞
j=1 fj(t)ϕj(x) in the equation (4.1) and exploit the or-

thogonality of the eigenfunctions to see that wj(t) satisfies

w′′
j (t) + λ2jwj(t) = fj(t), j > 0.

Setting α = ε
τ , and then using the above ODE we obtain:

wj(t) =
(−1)q/2

λq
w

(q)
j (t) +

1

λ2j

q/2−1∑
m=0

(−1)m

λ2mj
f
(2m)
j (t).

Therefore

Kτ ∗ wj(·/ε)(0) =
∫ τ
−τ Kτ (s)wj(s/ε)ds =

∫ 1

−1
K(s)wj(s/α)ds

= (−1)q/2

λq
j

∫ 1

−1
K(s)w

(q)
j (s/α)ds+ 1

λ2
j

∑q/2−1
m=0

(−1)m

λ2m
j

∫ 1

−1
K(s)f

(2m)
j (s/α)ds

= αq(−1)q/2

λq
j

∫ 1

−1
K(q)(s)wj(s/α)ds+

1
λ2
j

∑q/2−1
m=0

(−1)m

λ2m
j

Kτ ∗ f (2m)
j (·/ε)(0).

But

Kτ ∗ w(·/ε, x) :=
∑∞
j=1Kτ ∗ wj(·/ε)(0)ϕj(x) =

∑∞
j=1

αq(−1)q

λq
j

∫ 1

−1
K(q)(s)wj(s/α)dsϕj(x)

+
∑∞
j=1

1
λ2
j

∑q/2−1
m=0

(−1)m

λ2m
j

Kτ ∗ f (2m)
j (·/ε)(0)ϕj(x).

Now let us define ψm by

(4.2) ψm := −
∞∑
j=1

(−1)m+1

λ
2(m+1)
j

Kτ ∗ f (2m)
j (·/ε)(0)ϕj(x),

and v by

(4.3) v(t, x) =
∞∑
j=1

(−1)q

λqj
wj(t)ϕj(x).

Then

Kτ ∗ w(·/ε, x) =
q/2−1∑
m=0

ψm + αq
∫ 1

−1

K(q)(s)v(s/α, x)ds.

Note that v(t, x) in (4.3) is 1-periodic with respect to x, and is an average zero
v(t, ·) = 0 solution of the problem

Lq/2v(t, x) = (−1)q/2
∞∑
j=1

wj(t)ϕj(x) = (−1)q/2w(t, x).

By Lemma 3.1 we have

‖v(t, ·)‖H1(Y ) ≤ C‖w(t, ·)‖L2(Y ).

Therefore we obtain

‖Kτ ∗ w(·/ε, x)(0)−
q/2−1∑
`=0

ψ`‖H1(Y ) ≤ CK,p,qα
q max
−1≤s≤1

‖w(s/α, ·)‖L2(Y ).

13



Furthermore from (4.2) we have

Lm+1ψm = −
∞∑
j=1

Kτ ∗ f (2m)
j (·/ε)(0)ϕj(x) = −Kτ ∗ ∂2mt f(·/ε, x)(0).

This proves the Theorem for k = 0. To prove the remaining part (k > 0) we first
introduce

R0(x) := K(q) ∗ v(·/α, x)(0)
Rk(x) := Lk[R0], k = 0, 1, · · · , q/2− 1.

Again by precisely the same arguments as above we have

(4.4) ‖Rk‖H1(Y ) ≤ CK,p,q max
−1≤s≤1

‖w(s/α, ·)‖L2(Y ).

Now applying the operator Kτ to (4.1) and using the result of the Theorem for k = 0,
and the fact that L[ψ0] = −Kτ ∗ f(·/ε, x)(0) we obtain

Kτ ∗ ∂2tw(·/ε, x)(0) = L[Kτ ∗ w(·/ε, x)(0)] +Kτ ∗ f(·/ε, x)(0)
= L[

∑q/2−1
`=0 ψ` + αqR0] +Kτ ∗ f(·/ε, x)(0)

=
∑q/2−1
`=0 L[ψ`] + αqR1(x) +Kτ ∗ f(·/ε, x)(0)

=
∑q/2−1
`=1 L[ψ`] + αqR1(x).

Now assume that the result holds for k = j. We take the 2j-th derivative of equa-
tion (4.1) and apply the kernel and use the fact that Lj+1[ψj ] = −Kτ ∗∂2jt f(·/ε, x)(0)
to see

Kτ ∗ ∂2(j+1)
t w(·/ε, x)(0) = L[Kτ ∗ ∂2jt w(·/ε, x)(0)] +Kτ ∗ ∂2jt f(·/ε, x)(0)

= L[
∑q/2+1
`=j Lj [ψ`] + αqRj(x)] +Kτ ∗ ∂2jt f(·/ε, x)(0)

=
∑q/2+1
`=j Lj+1[ψ`] + αqRj+1(x) +Kτ ∗ ∂2jt f(·/ε, x)(0)

=
∑q/2+1
`=j+1 L

j+1[ψ`] + αqRj+1(x).

Finally Rj+1 satisfies (4.4). This finishes the proof of the Theorem.

5. Main statements. In HMM, the upscaled quantity is the flux FHMM (x0). It
is computed by solving the oscillatory wave equation (1.6) in the microscopic domain
Ωη,x0 × [0, τ ], where Ωη,x0 := [−Lη+x0, Lη+x0] and Lη = η+τ

√
|A|∞. One also has

to make the micro-problem consistent with the current macroscopic quantity. This
is done by choosing an appropriate initial data ū(x) based on the coarse data and a
suitable boundary condition (ex: uε − ū is 1-periodic) for the micro-problem. In the
context of long time wave propagation one needs to use a third-order interpolant of
the coarse data to capture the O(1) dispersive behaviors appearing in the long time.
From now on we restrict ourselves to one dimension. We represent the interpolant of
the coarse scale solutions by

(5.1) û(x) = s0 + s1(x− x0) + s2(x− x0)
2 + s3(x− x0)

3.

Furthermore, let ū(x) be a third degree polynomial such that when used as an initial
data for the micro-problem

(5.2)
∂ttu

ε(t, x)− ∂x (a(x/ε)∂xu
ε(t, x)) = 0, in [0, τ ]× Ωη,x0

uε(0, x) = ū(x), ∂tu
ε(0, x) = 0, on {t = 0} × Ωη,x0 ,
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the time and space average of the oscillatory solution uε is equal to û(x) up to high
orders in α := ε/η (assume here η = τ)

(5.3) (Kτ,η ∗ uε) (0, x) = û(x) +O (αq) , x ∈ Ωη,x0 ,

where the averaging operator K is defined as follows:

(Kτ,η ∗ f) (t, x) :=
∫ τ+t

−τ+t

∫ η+x

−η+x
Kτ (t̃− t)Kη(x̃− x)f(t̃, x̃)dx̃dt̃.

We say that ū is consistent with û up to O(αq) if (5.3) holds. Finding such an appro-
priate ū has already been observed to be essential in approximating the homogenized
flux [11].

The final step of the HMM is to compute the flux by

FHMM (x0) = (Kτ,η ∗ a(x/ε)∂xuε(t, x)) (0, x0).(5.4)

The aim in this section is to estimate the error between the HMM flux (5.4) and the
effective macroscopic flux

(5.5) F̂ (x0) = â∂xû(x0) + ε2β∂xxxû(x0),

when the coefficient a is periodic. The coefficient â is the homogenized coefficient
in one dimension and β is the same coefficient appearing in the formula (1.3). An
explicit representation for β was given by Santosa and Symes [18]:
(5.6)

β =
â

12
− â2

∫ 1

0

∫ y

0

∫ s

0

a−1(s)drdsdy − â3
∫ 1

0

∫ y

0

∫ s

0

a−1(y)a−1(r)drdsdy

+â2
∫ 1

0

∫ y

0

a−1(r)drdy − â3
(∫ 1

0

∫ y

0

a−1(r)drdy

)2

.

Now suppose that we are given the microscopic problem with an initial data

ū(x) = r0(ε) + r1(ε)(x− x0) + r2(ε)(x− x0)
2 + r3(ε)(x− x0)

3

consistent (up to O(αq)) with the macro state û(x) in (5.1). Note that to achieve
this, the coefficients of the polynomial ū depend on ε. Then the micro-problem reads

(5.7)
∂ttu

ε(t, x) = ∂x (a(x/ε)∂xu
ε) ,

uε(0, x) = ū(x), ∂tu
ε(0, x) = 0.

We decompose the solution uε into four parts:

uε(t, x) = s0u
ε
0(t, x) + s1u

ε
1(t, x) + s2u

ε
2(t, x) + s3u

ε
3(t, x),

where uεn will be chosen such that the initial data of uεn is consistent with xn up to
O(αq). Then, by linearity the consistent initial data of the microscopic solution uε

will be given by combining the initial data of these solutions. Furthermore, let us
denote the flux contribution of the term uεn(t, x) by

(5.8) F εn,HMM (x0) := (Kτ,η ∗ a(x/ε)∂xuεn) (0, x0).
15



Then the HMM flux (5.4) can be written as

(5.9) FHMM (x0) =

n∑
j=0

sjF
ε
j,HMM (x0).

Our main result is Theorem 5.1 showing that given the third order macro state (5.1),
the HMM flux (5.4) approximates the macroscopic flux (5.5) up to high orders in α.

Theorem 5.1. Suppose that {uεn(t, x)}3n=0 solve the one dimensional periodic
wave equation

(5.10)
∂ttu

ε
n(t, x) = ∂x (a(x/ε)∂xu

ε
n(t, x)) ,

uεn(0, x) = ūn(x), ∂tu
ε
n(0, x) = 0, n = 0, 1, 2, 3,

where the initial data ūn(x) is an n-th order polynomial. Then (Kτ,η ∗ uεn) (0, x) ∈ Pn
is a quasi-polynomial and we assume that

(5.11) (Kτ,η ∗ uεn) (0, x) = xn + αqEε(x, x/ε),

where Eε(x, y) ∈ Pn is a quasi-polynomial with coefficients Eεk uniformly bounded in
ε. Suppose that α = ε

η and K ∈ Kp,q−2 with p, q > 3 and τ = η. Furthermore, let

F̂ (x0) and FHMM (x0) be given by (5.5) and (5.9) respectively. Then

(5.12)
∣∣∣FHMM (x0)− F̂ (x0)

∣∣∣ ≤ Cmax
j

|sj |
(
αq + ηαq−1

)
,

where C is independent of x0, ε, and η but may depend on a, p, q, and n.
To prove Theorem 5.1 we first prove below in Theorem 5.2 that β = â‖χ‖2L2(Y ),

where χ solves

(5.13)
L[χ] = −∂xa(x),
χ is 1-periodic, χ = 0.

Then we prove (5.12) by showing that∣∣∣FHMM (x0)− â∂xû(x0)− ε2â‖χ‖2L2(Y )∂xxxû(x0)
∣∣∣ ≤ Cmax

j
|sj |

(
αq + ηαq−1

)
.

Replacing β = â‖χ‖2L2(Y ) in (5.5), one can see that this inequality is the same as

(5.12). Throughout the analysis we will use the fact that in the one-dimensional case
the homogenized coefficient â is explicitely given by

â =

(∫ 1

0

a−1(y)dy

)−1

=

∫ 1

0

a(y) + a(y)χ′(y)dy.

5.1. Equivalence with Santosa and Symes’s formula. In 1991 Santosa and
Symes, [18], derived a rather complicated formula (see (5.6)) for the coefficient β in
the effective flux (5.5). We prove that this can be expressed simply as β = â‖χ‖2L2(Y ).

Theorem 5.2. Let β be given as in (5.6), and χ be the zero average cell solution
solving (5.13). Then

β = â‖χ‖2L2(Y ),

where Y = [0, 1], and â is the homogenized coefficient in 1-dimension.
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Proof. To simplify the proof we define,

b(y) =

∫ y

0

â

a(s)
ds− y,

∫
Y

b(y)dy = b̄.

Then b(y) is periodic with b(0) = b(1) = 0 and

χ(y) = b(y)− b̄.

We consider first ‖χ‖2L2(Y ),

‖χ‖2L2(Y ) =

∫
Y

b(y)2 − 2b(y)b̄+ b̄2dy =

∫
Y

b(y)2 − b̄2dy.

For the integrals in the expression for β we get

â

∫
Y

∫ y

0

1

a(r)
drdy =

∫
Y

∫ y

0

[b′(r) + 1]drdy =

∫
Y

[b(y) + y]dy = b̄+
1

2
,

and

â

∫
Y

∫ y

0

∫ s

0

1

a(s)
drdsdy + â2

∫
Y

∫ y

0

∫ s

0

1

a(y)a(r)
drdsdy

=

∫
Y

∫ y

0

∫ s

0

b′(s) + 1 + (b′(y) + 1)(b′(r) + 1)drdsdy

=

∫
Y

∫ y

0

s(b′(s) + 1) + (b′(y) + 1)(b(s) + s)dsdy

=

∫
Y

∫ y

0

[(sb(s))′ + 2s]ds+ b′(y)

∫ y

0

[b(s) + s]dsdy

=

∫
Y

yb(y) + y2 − b(y)(b(y) + y)dy

=
1

3
−
∫
Y

b(y)2dy.

Hence, from (5.6),

β

â
=

1

12
− 1

3
+

∫
Y

b(y)2dy + b̄+
1

2
−
(
b̄+

1

2

)2

=

∫
Y

b(y)2dy − b̄2 = ‖χ‖2L2(Y ).

5.2. Proof of Theorem 5.1. Without loss of generality we will assume that
x0 = 0. For x0 6= 0, we can replace a(x/ε) with a((x0+x)/ε) and use the same initial
data as we used for x0 = 0. The analysis will be the same and the constant C will be
independent of x0 since a is periodic. We prove this Theorem in five steps:

1. Rescale the solution and write it as a quasi-polynomial.

2. Reformulate the consistency condition (5.11) in terms of the rescaled variable.

3. Find the energy of the coefficient functions of the solution.

4. Write down equations for time averages of the coefficient functions.

5. Find the fluxes for every 0 ≤ n ≤ 3.
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Step 1. The solution uεn oscillates at a wavelength O(ε). To bring these oscilla-
tions back to O(1) we introduce the scaled solution εnv(t/ε, x/ε) = uεn(t, x). Then v
satisfies

∂ttv(t, x) = ∂x (a (x) ∂xv (t, x)) ,
v(0, x) = g0(0) + g1(0)x+ · · ·+ gn(0)x

n, ∂tv(0, x) = 0.

The choice of the notation gj for initial data is due to the fact that by theory of
quasi-polynomials we can write

v(t, x) = v0(t, x) + xv1(t, x) + · · ·+ xnvn(t, x)
= ṽ0(t, x) + g0(t) + x (ṽ1(t, x) + g1(t)) + · · ·+ xn (ṽn(t, x) + gn(t)) ,

where {ṽj}s are enforced with zero initial data and are 1-periodic with zero average
in space. We note here that the functions v, ṽj , gj also depend on n. We consider a
fixed n and drop it in the notation to improve the readability. By Corollary 2.1, the
coefficient functions {ṽn−i(t, x)}ni=0 are 1-periodic with zero spatial average and they
satisfy

(5.14)
∂ttṽn−i(t, x) = L[ṽn−i] + P̃n−i + f̃n−i,
ṽn−i(0, x) = ∂tṽn−i(0, x) = 0,

where

f̃n−i =


0, i = 0

ngn(t)ax, i = 1, n ≥ 1,

(n− 1)gn−1(t)ax + n(n− 1)gn(t)(a− ā), i = 2, n ≥ 2,

(n− 2)gn−2(t)ax + (n− 1)(n− 2)gn−1(t)(a− ā), i = 3, n = 3.

and

P̃n−i = Pn−i − Pn−i.

where

Pn−i =


0, i = 0

nM [ṽn], i = 1, n ≥ 1,

(n− 1)M [ṽn−1] + n(n− 1)aṽn, i = 2, n ≥ 2,

(n− 2)M [ṽn−2] + (n− 1)(n− 2)aṽn−1, i = 3, n = 3.

Furthermore, the functions {gn−i}ni=0 solve

g′′n−i(t) =


0, i = 0

na∂xṽn, i = 1, n ≥ 1

(n− 1)a∂xṽn−1 + n(n− 1)
(
aṽn + gn(t)ā

)
, i = 2, n ≥ 2

(n− 2)a∂xṽn−2 + (n− 1)(n− 2)
(
aṽn−1 + gn−1(t)ā

)
, i = 3, n = 3,

together with some initial data gn−i(0) = rn−i, and g′n−i(0) = 0. In the above
equations, the operators L,M are defined in (2.2). We will later choose the initial
data rj of gj such that the consistency condition (5.11) is satisfied.

Before proceeding with the remaining steps we simplify the above hierarchy of
equations. Throughout the analysis we refer the reader to the simplified equations
given below.
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Simplifications:
• ṽn = 0 since P̃n = f̃n = 0, and that ṽn has zero initial data.
• gn(t) = rn is constant since g′′n(t) = 0, gn(0) = rn, and g

′
n(0) = 0.

• gn−1(t) = rn−1 is constant since g′′n(t) = nṽn = 0, gn−1(0) = rn−1, and
g′(0) = 0.

Employing these simplifications the above equations can be rewritten as

f̃n−i =


0, i = 0

nrnax, i = 1, n ≥ 1,

(n− 1)rn−1ax + n(n− 1)rn(a− ā), i = 2, n ≥ 2,

(n− 2)gn−2(t)ax + (n− 1)(n− 2)rn−1(a− ā), i = 3, n = 3.

and

Pn−i =


0, i = 0

0, i = 1, n ≥ 1,

(n− 1)M [ṽn−1], i = 2, n ≥ 2,

(n− 2)M [ṽn−2] + (n− 1)(n− 2)aṽn−1, i = 3, n = 3.

Moreover,
(5.15)

g′′n−i(t) =


0, i = 0

0, i = 1, n ≥ 1

(n− 1)M [ṽn−1] + n(n− 1)rnā, i = 2, n ≥ 2

(n− 2)M [ṽn−2] + (n− 1)(n− 2)
(
aṽn−1 + rn−1ā

)
, i = 3, n = 3,

Step 2. In this step we show how the consistency condition (5.11) gives an estimate
of Kτ ∗ gk(·/ε). For k = n and k = n − 1 we will use the fact that gn(t) = rn and
gn−1(t) = rn−1 are constants by the simplifications made in step 1. In this step, we
will prove that
(5.16)
|rn − 1| ≤ Cαq

|rn−1| ≤ Cε−1αq
(
1 + ε max

0≤s≤1
‖ṽn−1(s/α, ·)‖H1(Y )

)
, 1 ≤ n.

|Kτ ∗ gn−k (·/ε) (0)| ≤ Cε−kαq

(
1 +

n−1∑
r=n−k

εn−r max
0≤s≤1

‖ṽr(s/α, ·)‖H1(Y )

)
, 2 ≤ k ≤ n.

Expanding v as in the previous step, and using the fact that ṽn = 0, the consistency
condition (5.11) can be rewritten as

εn

Kη,τ ∗
n−1∑
j=0

xj

εj
ṽj(t/ε, x/ε)

 (0, x)+εn

Kη,τ ∗
n∑
j=0

xj

εj
gj(t/ε)

 (0, x) = xn+αqEε(x, x/ε).

Furthermore, putting q(x) =
∑n−1
j=0 x

jKτ ∗ ṽj(·/ε, x)(0), and using Lemma 2.1 since
p ≥ n, we can rewrite the above equation as

(5.17) εn (Kη ∗ q(·/ε)) (x) + εn

 n∑
j=0

xj

εj
Kτ ∗ gj(·/ε)(0)

 = xn + αqEε(x, x/ε).
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By Lemma 2.4 we know that εn (Kη ∗ q(·/ε)) (x) = Qε(x, x/ε), where Qε ∈ Pn−1 is a
quasi-polynomial with

(5.18) |Qεk| ≤ Cαq
n−1∑
r=k

εn−r |qr|∞ ≤ Cαq
n−1∑
r=k

εn−r max
0≤s≤1

‖ṽr(s/α, ·)‖H1(Y ),

since qr(y) = Kτ ∗ ṽr(·/ε, y)(0) = K ∗ ṽr(·/α, y)(0).
Next to prove (5.16) we equate the equal powers of xn−k in equation (5.17). First

equating the coefficients in front of xn and using gn(t) = rn we have

Kτ ∗ rn = 1 + αqEεn(x/ε).

Furthermore, by the boundedness of Eεn and since rn is constant we have

|rn − 1| = |Kτ ∗ rn − 1| ≤ Cαq.

Next we equate the coefficients of xn−k in (5.17) and obtain

Qεn−k(x/ε) + ε−kKτ ∗ gn−k(·/ε)(0) = αqEεn−k(x/ε).

By estimate (5.18) we know that
∣∣Qεn−k∣∣ ≤ Cαq

n−1∑
r=n−k

εn−r max
0≤s≤1

‖ṽr(s/α, ·)‖H1(Y ).

Hence, from the boundedness of Eεn−k and by the fact that gn−1(t) = rn−1 the last
two estimates in (5.16) follows.

Step 3. In the inequalities (5.16), we need to estimate ‖ṽn−i‖H1(Y ) in order to
give an upperbound in terms of ε and η only. By Theorem 3.2, we can get this estimate
by bounding ‖f̃n−i‖L2(Y ). In this step, we prove the following precise statement

Lemma 5.1. Suppose α =
ε

η
< 1 and that the assumptions of Theorem 5.1 hold,

then
(5.19)

max
0≤s≤1

‖ṽn−i(s/α, ·)‖H1(Y ) ≤ C


1, i = 1, n ≥ 1,

α−2 + ε−1αq−1 i = 2, n ≥ 2,

α−3 + ε−2αq−1 + ε−1αq−2, i = 3, n = 3,

where C is independent of ε, η and α but may depend on p, q,K, and a. Moreover we
have

(5.20) |rn−1| ≤ Cαqε−1, n ≥ 1,

and

(5.21) |Kτ ∗ gn−i(·/ε)(0)| ≤ C

{
αqε−2, i = 2, n ≥ 2

αqε−3, i = 3, n = 3.

1. i = 1, n ≥ 1: We know that f̃n−1 = nrnax. Moreover, using the first
estimate in (5.16) it follows that

‖f̃n−1(t, ·)‖L2(Y ) ≤ C (1 + αq) ≤ C.
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Next since P̃n−1 = 0, and f̃n−1 is time independent, Theorem 3.1 gives that

‖ṽn−1(t, ·)‖H1(Y ) ≤ C‖f̃n−1(t, ·)‖L2(Y ) ≤ C.(5.22)

This shows (5.19) for i = 1. Using the second estimate in (5.16) and the inequality
(5.22) we have

|rn−1| ≤ Cε−1αq
(
1 + ε max

0≤s≤1
‖ṽn−1(s/α, ·)‖H1(Y )

)
≤ Cαqε−1.

This proves (5.20).
2. i = 2, n ≥ 2: We know that

f̃n−2(t, x) = (n− 1)rn−1ax + n(n− 1)rn (a− ā) .

Therefore, f̃n−2 is time independent. Moreover, using the first inequality in (5.16),
and (5.20) we can bound the L2 norm of f̃n−2(t, x).

‖f̃n−2(t, ·)‖L2(Y ) ≤ C
(
1 + ε−1αq

)
.

Next by Theorem 3.2 we have

‖ṽn−2(t, ·)‖H1(Y ) ≤ C

(
(1 + t) max

0≤s≤t
‖f̃n−2(s, ·)‖L2(Y ) +

(
1 + t2

)
max
0≤s≤t

‖f̃n−1(s, ·)‖L2(Y )

)
≤ C

(
(1 + t)

(
1 + ε−1αq

)
+
(
1 + t2

)
(1 + αq)

)
.

Then putting t = 1/α we obtain

max
0≤s≤1

‖ṽn−2(s/α, ·)‖H1(Y ) ≤ C
(
α−2 + ε−1αq−1

)
.(5.23)

This proves (5.19) for i = 2. The estimates (5.16), (5.23), (5.22) gives
(5.24)

|Kτ ∗ gn−2(·/ε)(0)| ≤ Cε−2αq

(
1 +

n−1∑
r=n−2

εn−r max
0≤s≤1

‖ṽr(s/α, ·)‖H1(Y )

)
≤ Cε−2αq.

Now we want to bound the term |gn−2(t)| since we will need this in the upcoming
case. In (5.15), we are given that

g′′n−2(t) = (n− 1)M [ṽn−1] + n(n− 1)rnā.

Using the initial data g′n−2(0) = 0 and (5.22) we can write∣∣g′n−2(t)
∣∣ ≤

∫ t
0

∣∣g′′n−2(s)
∣∣ ds ≤ C

(∫ t
0

∣∣∣M [ṽn−1(s, ·)]
∣∣∣ ds+ t

)
≤ C

(∫ t
0
‖ṽn−1(s, ·)‖H1(Y )ds+ t

)
≤ Ct

Next we integrate again to have an estimate for |gn−2(t)| as follows:

|gn−2(t)| ≤ |gn−2(0)|+
∫ t

0

∣∣g′n−2(s)
∣∣ ds ≤ |rn−2|+ Ct2,
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since gn−2(0) = rn−2. It remains to bound |rn−2|. To do this, we write the exact
formula for gn−2(t)

gn−2(t) = rn−2 + (n− 1)

∫ t

0

∫ ζ

0

∫ 1

0

a(x)∂xṽn−1(s, x)dxdsdζ +
n(n− 1)

2
t2ārn.

The term rn−2 can then be obtained from inequality (5.24)). For this we apply the
averaging kernel Kτ with p ≥ 2 in the last equation and see that

rn−2 =

[
−(n− 1)Kτ ∗

∫ t/ε

0

∫ ζ

0

∫ 1

0

a(x)∂xṽn−1(s, x)dxdsdζ +Kτ ∗ gn−2(·/ε)

]
(0).

From (5.22) we get
∣∣∣∫ ζ0 ∫ 1

0
a(x)∂xṽn−1(s, x)dxds

∣∣∣ ≤ Cζ, and

|rn−2| ≤ C
∫ τ
−τ |Kτ (t)|

∫ t/ε
0

ζdζdt+ Cε−2αq

= C
∫ 1

−1
|K(t)|

∫ t/α
0

ζdζdt+ Cε−2αq ≤ C
(
α−2 + ε−2αq

)
.

Hence,

|gn−2(t)| ≤ |rn−2|+ Ct2 ≤ C
(
α−2 + ε−2αq + t2

)
.

3. i = 3, n = 3: We have f̃n−3 = (n−2)gn−2(t)ax+(n−1)(n−2)rn−1(a− ā).
Therefore,

‖f̃n−3(t)‖L2(Y ) ≤ C
(
|gn−2(t)|+ ε−1αq

)
≤ C

(
α−2 + ε−2αq + t2

)
.

Next employing Theorem 3.2 we bound the norm ‖ṽn−3(t)‖H1(Y ) as follows

‖ṽn−3(t, ·)‖H1(Y ) ≤ C
∑2
j=0

(
1 + tj+1

)
max0≤s≤t ‖f̃n−3+j(s, ·)‖L2(Y )

≤ C
(
(1 + t)

(
α−2 + ε−2αq + t2

)
+
(
1 + t2

) (
1 + ε−1αq

)
+
(
1 + t3

))
.

Putting t = 1/α, we complete the proof of (5.19) for i = 3. Finally the proof of (5.21)
for i = 3, n = 3 follows readily from (5.16) and the last estimate in (5.19).

Step 4. In this step we derive equations for the time averages of the coefficient
functions ṽn−i. We denote the time averages by

d̃k(x) := Kτ ∗ ṽk(·/ε, x)(0).

Clearly {d̃k}3k=0 have zero average since ṽk(t, ·) = 0. Furthermore, let us define the
operator

(5.25) M̃ [u] =M [u]−M [u].

In this step we will show that {d̃n−i}3i=0 satisfy

(5.26) L[d̃n−i] = φn−i + αqZn−i

where

φn−i(x) =


0 i = 0

−nax i = 1, n ≥ 1

−(n− 1)
(
M̃ [d̃n−1] + n (a− ā)

)
i = 2, n ≥ 2

−(n− 2)
(
M̃ [d̃n−2] + (n− 1)

(
ad̃n−1 − ad̃n−1

))
+ n(n− 1)âχ(x) i = 3, n = 3
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and {Zk}3k=0 are 1-periodic functions with Zk = 0 such that Zn = 0 and

‖Zn−1‖H1(Y ) ≤ C, ‖Zn−2‖H1(Y ) ≤ C
(
ε−1 + α−2

)
, ‖Zn−3‖H1(Y ) ≤ C

(
ε−2 + α−3

)
.

To simplify the notation we introduce

h
{k}
j (x) := Kτ ∗ ∂kt

(
P̃j + f̃j

)
(·/ε, x)(0), d̃

{k}
j (x) := Kτ ∗ ∂kt ṽj(·/ε, x)(0).

Note that d̃
{0}
j is equal to d̃j . Then by Theorem 4.1 we have

(5.27) L[d̃j ] = −
q/2−1∑
`=0

L−`h
{2`}
j + αqRj,1,

and

(5.28) d̃
{2m}
j (x) = −

q/2−1∑
`=m

L−`−1+mh
{2`}
j (x) + αqRj,m(x),

where {Rj,m}q/2−1
m=0 are 1-periodic and have zero average. Moreover, they satisfy the

relation Lm[Rj,0] = Rj,m and all are bounded as follows
(5.29)

‖Rn−j,m‖H1(Y ) ≤ C max
0≤s≤1

‖ṽn−j(s/α, ·)‖L2(Y ) ≤ C


0 j = 0

1 j = 1, n ≥ 1

α−2 + ε−1αq−1 j = 2, n ≥ 2,

α−3 + ε−2αq−1 + ε−1αq−2, j = 3, n = 3,

where we used (5.19) for the second inequality. In order to deal with O(1) quantities
we will also use the first estimate in (5.16) and the estimate (5.20) and write

(5.30) rn = 1 + αqδn, rn−1 = ε−1αqδn−1, where |δn| ≤ C, |δn−1| ≤ C.

1. i = 0: Clearly d̃n = 0 since ṽn = 0. Hence L[d̃n] = 0.
2. i = 1, n ≥ 1: It follows from (5.30) that P̃n−1 + f̃n−1 = nrnax = nax +

αqδnnax. Since Fn−1 is time independent we have

h
{2m}
n−1 (x) =

{
nax + αqδnnax, m = 0

0, m ≥ 1.

Then by (5.27)

(5.31) L[d̃n−1](x) = −nax − αqδnnax + αqRn−1,1(x) =: −nax + αqZn−1(x),

where Zn−1 := −δnnax+Rn−1,1. The boundedness of Zn−1 follows from (5.29). The

proof of (5.26) for d̃n−1 is completed. We finish this step by giving an expression for
the time averages of the derivatives of the coefficient function ṽn−1. This result will
be used in the upcoming case and follows from (5.28).

(5.32) d̃
{2m}
n−1 (x) = αqRn−1,m(x), m ≥ 1.
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3. i = 2, n ≥ 2: The right hand side reads

P̃n−2 + f̃n−2 = (n− 1)
(
M [ṽn−1]−M [ṽn−1]

)
+ n(n− 1)rn (a− ā) + (n− 1)rn−1ax

=: (n− 1)
(
M̃ [ṽn−1] + n (a− ā)

)
+ αqε−1δn−2(x).

Here we define δn−2(x) by

δn−2(x) := (n− 1) (εnδn(a− ā) + δn−1ax) .

Clearly δn−2 = 0. Furthermore,

(5.33) ‖δn−2‖H1(Y ) ≤ C.

Now applying the time averaging kernel to P̃n−2 + f̃n−2 and using (5.32) we obtain

h
{2m}
n−2 (x) =

{
(n− 1)

(
M̃ [d̃n−1] + n (a− ā)

)
+ αqε−1δn−2(x), m = 0

αq(n− 1)M̃ [Rn−1,m], 1 ≤ m ≤ q/2− 1.

Then by (5.27) we get

L[d̃n−2](x) = −h{0}n−2(x)−
∑q/2−1
`=1 L−`h

{2`}
n−2(x) + αqRn−2,1(x)

=: −(n− 1)
(
M̃ [d̃n−1] + n (a− ā)

)
+ αqε−1δn−2(x) + αqL[R̃n−2,0]

=: −(n− 1)
(
M̃ [d̃n−1] + n (a− ā)

)
+ αqZn−2(x),

where we used the fact that L[Rn−2,0] = Rn−2,1 and defined R̃n−2,0(x) as

R̃n−2,0(x) = (n− 1)

q/2−1∑
`=1

L−`−1M̃ [Rn−1,l] +Rn−2,0(x).

Zn−2(x) is also defined as

Zn−2(x) = ε−1δn−2(x) + L[R̃n−2,0].

Clearly Zn−2 is 1-periodic and has zero average. Before proceeding further, we present
an expression for the time averages of the higher order derivatives of ṽn−2. The
following result will be employed in the next case and is a consequence of (5.28): for
m ≥ 1

(5.34)
d̃
{2m}
n−2 (x) = −αq(n− 1)

∑q/2−1
`=m Lm−1L−`M̃ [Rn−1,`] + αqRn−2,m(x)

=: αqR̃n−2,m(x).

It remains to estimate Zn−2. To do this estimation first we note that {Rn−2,m}q/2−1
m=0

are 1-periodic and have zero average. Then we use the inequality (5.33), elliptic
regularity Lemma 3.1, and the estimate (5.29) to see that
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‖Zn−2‖H1(Y ) ≤ ε−1‖δn−2‖H1(Y ) + ‖L[R̃n−2,0]‖H1(Y )

≤ ε−1C + C

q/2−1∑
`=1

‖L−`M̃ [Rn−1,`]‖H1(Y ) + ‖Rn−2,1‖H1(Y )

≤ C

ε−1 +

q/2−1∑
`=1

‖M̃ [Rn−1,`]‖L2(Y ) + α−2 + ε−1αq−1


≤ C

ε−1 +

q/2−1∑
`=1

‖Rn−1,`‖H1(Y ) + α−2 + ε−1αq−1


≤ C

(
ε−1 + 1 + α−2 + ε−1αq−1

)
≤ C

(
ε−1 + α−2

)
.

This proves the statement for i = 2, n ≥ 2. Before continuing with the last case
we give an estimate for the remainder term R̃n−2,m, for m = 0, · · · , q/2 which we

will need in the next case. First we note that R̃n−2,m = 0. Next using the elliptic
regularity Lemma 3.1, and the estimate (5.29) we readily obtain:

(5.35) ‖R̃n−2,m‖H1(Y ) ≤ C
(
α−2 + ε−1αq−1

)
, m = 0, 1, · · · , q/2− 1.

4. i = 3, n = 3: Using (5.30) we have

P̃0 + f̃0 = M̃ [ṽ1] + 2
(
aṽ2 − aṽ2

)
+ g1(t)ax + r22 (a− ā)

= M̃ [ṽ1] + 2
(
aṽ2 − aṽ2

)
+ g1(t)ax + ε−1αqδ22 (a− ā) ,

where |δ2| ≤ C. To simplify the exposition we introduce

G{m} := Kτ ∗ ∂mt g1(·/ε)(0).

Then from (5.21) we have that G{0} = αqε−2δ1 where |δ1| ≤ 1.
Now we apply the averaging kernel to P̃0 + f̃0 and the higher derivatives of it, and
use (5.32) and (5.34) to see that

h
{2m}
0 (x) =

{
M̃ [d̃1] + 2

(
ad̃2 − ad̃2

)
+ αqε−2δ1ax + αqε−1δ22 (a− ā) , m = 0

G{2m}ax + αqM̃ [R̃1,m] + αq2
(
aR2,m − aR2,m

)
, m ≥ 1.

Now first we note from (5.31) that d̃2(x) = 3χ(x) + αqs(x), where L[s] = Z2. This is
because

L[d̃2] = 3L[χ] + αqL[s] = −3ax + αqZ2(x).

Furthermore, ‖s‖H1(Y ) ≤ ‖Z2‖L2(Y ) ≤ C. Then we use (5.30) and get

G{2} = 2a∂xd̃2 + 6ā+ αqδ36ā = 6â+ αqC1,

where C1 is a constant independent of ε and η. Furthermore, for the higher derivatives
we use (5.32) and obtain

G{2m} = 2a∂xd̃
{2(m−1)}
2 = αq2a∂xR2,m−1, 2 ≤ m ≤ q/2− 1.
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Then by (5.27) and since χ(x) = −L−1ax we have

L[d̃0] = −h{0}0 (x)− L−1h
{2}
0 (x)−

∑q/2−1
`=2 L−`h2`0 (x) + αqR0,1(x)

= −M̃ [d̃1]− 2
(
ad̃2 − ad̃2

)
+ 6âχ(x) + αqZ0(x),

where

Z0(x) = −ε−2δ1ax − ε−1δ22(a− ā)− L−1
(
M̃ [R̃1,1] + 2

(
aR2,1 − aR2,1

))
+C1χ−

∑q/2−1
`=2 L−`

(
2a∂xR2,`−1ax +

(
M̃ [R̃1,`] + 2

(
aR2,` − aR2,`

)))
+R0,1.

Note that R0,1 is 1-periodic and have zero average. From this it follows that Z0 is also
1-periodic with zero average. The boundedness of ‖Z0‖ follows by using the elliptic
regularity Lemma 3.1, and the estimates(5.29) and (5.35):

‖Z0‖H1(Y ) ≤ C

ε−2 + ε−1 + 1 +

q/2−1∑
`=1

‖R̃1,`‖H1(Y ) + ‖R2,`‖H1(Y ) + ‖R0,1‖H1(Y )


≤ C

(
ε−2 +

(
α−2 + ε−1αq−1

)
+ 1 +

(
α−3 + ε−2αq−1 + ε−1αq−2

))
≤ C

(
ε−2 + α−3

)
.

This finishes the proof of the case i = 3, n = 3, and that of the statement of step 4.
Step 5. In this step we will prove our main estimate (5.12). Remember that by
(5.9), the HMM flux can be written as

FHMM (0) =
3∑

n=0

snF
ε
n,HMM (0)

where F εn,HMM is the flux corresponding to the initial data ūn consistent with the

macro state xn. Moreover, F̂ is as given in (5.5) and by Theorem 5.2 it can be
redefined as

F̂ (0) = â∂xû(0) + ε2â‖χ‖2L2(Y )∂xxxû(0),

where û is given in (5.1). To prove the main estimate (5.12) we will equivalently show
that
(5.36)

F ε0,HMM (0) = 0, |F ε1,HMM (0)− â| ≤ Cαq, |F ε2,HMM (0)| ≤ C
(
αq + εαq−2

)
,

|F ε3,HMM (0)− 6ε2â‖χ‖2L2(Y )| ≤ C
(
αq + ε2αq−3

)
.

These estimates imply the main estimate (5.12) since ∂xû(0) = s1, ∂xxxû(0) = 6s3,
and εαq−2 = ηαq−1.

Remember that since ṽn = 0

v(t, x) =
n−1∑
j=0

xj ṽj(t, x) +
n∑
j=0

xjgj(t).

Moreover, let us introduce

d(x) := Kτ ∗ v(·/ε, x)(0), Gj := Kτ ∗ gj(·/ε)(0).
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Then by the fact that gn(t) = rn and gn−1(t) = rn−1, the equality (5.30) and the
estimate (5.21), there exist constants {δj}nj=0 uniformly bounded in ε and η such that

(5.37) d(x) =
n−1∑
j=0

xj d̃j(x) +
n∑
j=0

xjGj =
n−1∑
j=0

xj d̃j(x) + xn + αq
n∑
j=0

xjεj−nδj .

We furthermore note that F εn,HMM can be written in terms of d as follows

F εn,HMM (0) := εn (Kη ∗ a(·/ε)∂xd(·/ε)) (0).

Before proceeding with the flux calculation we present two utility lemmas.
Lemma 5.2. Let

(5.38) d(x) = xn+

n−1∑
j=0

xjdj(x)+α
q

n∑
j=0

xjεj−nδj , F ε = εnKη∗a(·/ε)∂xd(·/ε)(0),

where {dj}n−1
j=0 are smooth, 1-periodic with zero average such that dj(·) = 0, Kη ∈

Kp,q−2 with p, q ≥ n − 1, and a is a 1-periodic smooth function. Then, with α = ε
η ,

we have

F ε = 0, if n = 0,

|F ε − a (1 + d′0)| ≤ Cαq, if n = 1,

|F ε − εn−1a (d′0 + d1)| ≤ Cαq if n > 1.

Proof of Lemma 5.2 is given at the end of section 5.
Lemma 5.3. Suppose that a is a 1-periodic smooth, bounded and positive function.

Let χ(x) be the solution of the cell problem (5.13), then for any smooth and 1-periodic
function u we have ∫ 1

0

χ(x)∂x (au) (x)dx =

∫ 1

0

audx− âū,

where â is the homogenized coefficient.
Proof. The cell solution satisfies ∂xχ = −1+ âa−1(x). Putting this into the given

L2 inner product and integrating by part we obtain the desired equality.
We note first that by (5.37) the time average d(x) will have the form in (5.38),

and we can therefore use Lemma 5.2 for all n with dj = d̃j .
1. n = 0: From (5.37) we have d(x) = 1+αqδ0 and therefore, F ε0,HMM = 0 by

Lemma 5.2.
2. n = 1: By step 4, d̃0 satisfies

(5.39) L[d̃0] = −ax + αqZ0(x), ‖Z0(·)‖H1(Y ) ≤ C,

and Z0(x) is 1-periodic and has zero average. Furthermore, by Lemma 5.2 we know
that

(5.40)

∣∣∣∣F ε1,HMM − a
(
1 + ∂xd̃0

)∣∣∣∣ ≤ Cαq.
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Moreover, since by (5.39) we have ∂x

(
a∂xd̃0 + a

)
= αqZ0, an application of Lemma

5.3 gives∣∣∣〈χ, ∂x (a∂xd̃0 + a
)
〉
∣∣∣ = ∣∣∣∣a(∂xd̃0 + 1

)
− â

∣∣∣∣ = αq |〈χ,Z0〉| ≤ αq‖Z0‖L2(Y )‖χ‖L2(Y ) ≤ Cαq.

Hence using the last inequality and the estimate (5.40) we get the desired result∣∣F ε1,HMM − â
∣∣ ≤ ∣∣∣∣F ε1,HMM − a

(
∂xd̃0 + 1

)∣∣∣∣+ ∣∣∣∣a(∂xd̃0 + 1
)
− â

∣∣∣∣ ≤ Cαq.

3. n = 2: From step 4, d̃0 and d̃1 satisfy

L[d̃1] = −2ax + αqZ1(x)(5.41)

L[d̃0] = −
((
M [d̃1]−M [d̃1]

)
+ 2 (a− ā)

)
+ αqZ0(x),(5.42)

where

‖Z1‖H1(Y ) ≤ C, ‖Z0‖H1(Y ) ≤ C
(
ε−1 + α−2

)
.

By Lemma 5.2 we know that

(5.43) |F ε2,HMM (0)− εa
(
∂xd̃0 + d̃1

)
| ≤ Cαq.

Furthermore, taking the derivative of equation (5.42) and exploiting the relation (5.41)
we obtain

(5.44) ∂2x

(
a∂xd̃0(x) + ad̃1(x)

)
= αq (∂xZ0(x) + Z1(x)) ,

Now we define h(x) :=
∫ x
0
χ(s)ds (which is periodic since χ̄ = 0), and take the

innerproduct of the left hand side with h and apply Lemma 5.3 to see that∣∣∣〈h, ∂2x (a∂xd̃0 + ad̃1

)
〉
∣∣∣ = ∣∣∣−〈χ, ∂x

(
a∂xd̃0 + ad̃1

)
〉
∣∣∣ = ∣∣∣∣a(∂xd̃0 + d̃1

)∣∣∣∣
= αq |〈Z1 + ∂xZ0, h〉| ≤ αq‖Z1 + ∂xZ0‖L2(Y )‖h‖L2(Y ) ≤ C

(
ε−1αq + αq−2

)
.

Using the last inequality and the estimate (5.43) we obtain∣∣F ε2,HMM (0)
∣∣ ≤

∣∣∣∣F ε2,HMM − εa
(
∂xd̃0 + d̃1

)∣∣∣∣+ ε

∣∣∣∣a(∂xd̃0 + d̃1

)∣∣∣∣
≤ Cαq + Cε

(
ε−1αq + αq−2

)
≤ C

(
αq + εαq−2

)
4. n = 3: By step 4, d̃0, d̃1, and d̃2 satisfy

L[d̃2] = −3ax + αqZ2(x)(5.45)

L[d̃1] = −
(
2
(
M [d̃2]−M [d̃2]

)
+ 6 (a− ā)

)
+ αqZ1(x)(5.46)

L[d̃0] = −
((
M [d̃1]−M [d̃1]

)
+ 2

(
ad̃2 − ad̃2

))
+ 6âχ(x) + αqZ0(x),(5.47)

where

‖Z2‖H1(Y ) ≤ C, ‖Z1‖H1(Y ) ≤ C
(
ε−1 + α−2

)
‖Z0‖H1(Y ) ≤ C

(
ε−2 + α−3

)
.
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First by Lemma 5.2 we know that

(5.48) |F ε3,HMM (0)− ε2a
(
∂xd̃0 + d̃1

)
| ≤ Cαq.

Taking the derivative of equation (5.47) we obtain

∂2x

(
a∂xd̃0 + ad̃1

)
= 6â∂xχ(x)− ∂x

(
a∂xd̃1 + 2ad̃2

)
+ αq∂xZ0.(5.49)

Furthermore, taking the derivative of (5.46) and exploiting the relation (5.45) we have

∂2x

(
a∂xd̃1 + 2ad̃2

)
= αq (Z2 + ∂xZ1). Moreover, by Poincaré inequality

‖∂x
(
a∂xd̃1 + 2ad̃2

)
‖L2(Y ) ≤ C‖∂2x

(
a∂xd̃1 + 2ad̃2

)
‖L2(Y )

= Cαq‖Z2 + ∂xZ1‖L2(Y ) ≤ Cαq
(
ε−1 + α−2

)
.(5.50)

Now we define h(x) :=
∫ x
0
χ(s)ds as before and take the innerproduct of the left hand

side of (5.49) with h and apply Lemma 5.3 to see that

〈h, ∂2x
(
a∂xd̃0 + ad̃1

)
〉 = −〈χ, ∂x

(
a∂xd̃0 + ad̃1

)
〉 = −a

(
∂xd̃0 + d̃1

)
.

But from equation (5.49) we have

a
(
∂xd̃0 + d̃1

)
= −〈h, ∂2x

(
a∂xd̃0 + ad̃1

)
〉

= −6â〈h, ∂xχ〉+ 〈∂x
(
a∂xd̃1 + 2ad̃2

)
, h〉 − αq〈∂xZ0, h〉

= 6â‖χ‖2L2(Y ) + 〈∂x
(
a∂xd̃1 + 2ad̃2

)
, h〉 − αq〈∂xZ0, h〉.

Hence using (5.50) and (5.47) we get∣∣∣∣a(∂xd̃0 + d̃1

)
− 6â‖χ‖2L2(Y )

∣∣∣∣ ≤ ‖h‖L2(Y )

(
‖∂x

(
a∂xd̃1 + 2ad̃1

)
‖L2(Y ) + αq‖∂xZ0‖L2(Y )

)
≤ Cαq

((
ε−1 + α−2

)
+
(
ε−2 + α−3

))
≤ C

(
ε−2αq + αq−3

)
.

Moreover, using the last inequality and the estimate (5.48) we get∣∣∣F ε3,HMM − ε26â‖χ‖2L2(Y )

∣∣∣ ≤
∣∣∣∣F ε3,HMM − ε2a

(
∂xd̃0 + d̃1

)∣∣∣∣+ ∣∣∣∣ε2a(∂xd̃0 + d̃1

)
− ε26â‖χ‖2L2(Y )

∣∣∣∣
≤ Cαq + C

(
αq + ε2αq−3

)
≤ C

(
αq + ε2αq−3

)
.

This completes the proof of Theorem 5.1.

5.3. Proof of Lemma 5.2. First let n = 0, then we have d(x) = 1 + αqδ0, and
since d is constant we get

F ε = Kη ∗ a(·/ε)∂xd(·/ε)(0) = 0.

Now assume that n ≥ 1 then d(x) = xn +
∑n−1
j=0 x

jdj(x) + αq
∑n
j=0 x

jεj−nδj . To
simplify the notation let us introduce dn(x) = 1, and for 1 ≤ j ≤ n− 1

F0(y) = a(y) (d′0(y) + d1(y)) , Fj(x, y) = xja(y)
(
d′j(y) + (j + 1)dj+1(y)

)
.
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From this we can write

a(y)∂yd(y) = F0(y) +

n−1∑
j=1

Fj(y, y) + αq
n∑
j=1

yj−1εj−nδj .

Then

F ε := εnKη ∗ a(x/ε)∂xd(x/ε) = εn−1Kη ∗ F0(·/ε)(0) + εn−1
∑n−1
j=1 ε

−jKη ∗ Fj(·, ·/ε)(0)
+αq

∑n
j=1 jδjKη ∗ xj−1a(x/ε)(0).

By Lemma 2.3 we get ∣∣Kη ∗ F0(·/ε)(0)− F0

∣∣ ≤ Cαq.

Moreover, for the remaining terms we again employ Lemma 2.3 with p ≥ n to obtain

|Kη ∗ Fj(·, ·/ε)(0)| ≤ Cαq,
∣∣Kη ∗ xja(x/ε)(0)

∣∣ ≤ Cαq, j ≥ 1.

This gives then∣∣F ε − εn−1F0

∣∣ ≤ εn−1
∣∣Kη ∗ F0(·/ε)− F0

∣∣+ εn−1
∑n−1
j=1 ε

−j |Kη ∗ Fj(·, ·/ε)|
+Cαq

∑n
j=1

∣∣Kη ∗ xj−1a(x/ε)(0)
∣∣ ≤ C

(
εn−1αq + αq + α2q

)
≤ Cαq.

6. Numerical results.
(i) Convergence of the HMM flux: In this section we present some numer-

ical results to validate our theoretical arguments. We test the theoretical argument
made in Theorem 5.1. We solve the periodic wave equation (1.6) over the microscopic
domain Ωη,0, with A(y) = 1.1+ sin(2πy+2). We use consistent initial data obtained
via the algorithm in [14]. We are interested in the difference between the HMM flux
FHMM (x0) given in (5.4) and the macroscopic flux F̂ (x0) given in (5.5) at x0 = 0.
We let our macro state û be as

û(x) = x+ x3.

Then with K ∈ Kp,q−2 where p = 3 and q = 9, the left plot in Figure 1 shows O(αq)
convergence rate for the HMM flux as predicted by Theorem 5.1. In the right plot we
illustrate the consistency error (Kτ ∗ uε) (0, x)−û(x). The consistency error decreases
to zero with the same rate,i. e., O(αq).

(ii) Correction terms in the consistent initial data: We want to under-
stand the problem: if we are given a macro state û(x) = x3 what would be exact
scaling of the coefficients of the consistent initial data ū(x)? For this we use the
algorithm from [14] to find a consistent initial data ū of the form

ū(x) = r0(ε) + r1(ε)x+ r2(ε)x
2 + r3(ε)x

3 + x3.

Then again with K ∈ Kp,q−2 where p = 3 and q = 9, Figure 2 shows that r0 =
r2 = r3 = O(αq), and r1 = O(ε2). Therefore, the consistent initial data for x3 is
x3 + ε2x. This result illustrates the fact that, in general, the consistent initial data is
not the same as the macroscopic state, and that one needs to add a correction term
of order O(ε2) to the macroscopic state in order to obtain an initial data with which
the microscopic problem captures the correct homogenized quantities.
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Remark 6.1. The total error E in the full HMM approximation is

E = Emacro + Emicro + EHMM ,

where Emacro and Emicro are the discretization errors in micro and macro levels, and
EHMM is the upscaling error. Assuming that the computational cost of solving a wave
equation in d-dimensions is proportional to the number of degrees of freedom, and that
we have s1 and s2 orders of accuracy in micro and macro levels, the micro and the
macro stepsizes h and H should be refined simultaneously as

H = (ε/η)
q/s1 , h = (ε/η)

q/s2

to reach a total accuracy of O ((ε/η)
q
) over a fixed time interval. Moreover, with

τ = η, and assuming that the micro problems are solved only once, the computational
cost to achieve this accuracy becomes

Computational Cost = O

((η
ε

) qd
s1

+
q(d+1)

s2
ηd+1 +

(η
ε

) q(d+1)
s1

)
.

The overall cost can be substantially reduced by using high order methods in macro
and the micro levels. See [4], for an example of using a pseudo-spectral method for
an elliptic micro problem to obtain an almost linear computational complexity in the
number of degrees of freedom of macro discretization. We refer also the reader to [1]
for an example of efficient high-order discretization of the macro problem.

7. Conclusion. In this paper, we have analyzed a multiscale method based
on the HMM methodology for approximation of effective solutions of long time wave
propagation problems in periodic media. In [12], it was shown that the HMM captures
the homogenized/macroscopic fluxes in short time wave propagation problems. Here,
we have proved that the HMM also captures the long time dispersive behaviors of the
waves if the microscopic simulations are provided with appropriate initial data. The
ideas used in the analysis are new and general in terms of dimension, although the
final result is one-dimensional. To the best knowledge of the authors, this is the first
paper which deals with the complete analysis of the upscaling error of an HMM based
method for long time wave propagation problems. We believe that the ideas here will
be useful also in understanding the behavior of the HMM based numerical methods
for time dependent problems in locally periodic media where the media has fast and
slow variations at the same time.

We want to emphasize that since the homogenized equation (1.3) is ill-posed, it
does not make sense to carry out a convergence study of the full HMM solution uHMM

to the homogenized solution û. The convergence analysis of the solution requires a
regularized homogenized equation. It is, however, known that if H/ε is sufficiently
large then the HMM gives a stable solution, see theoretical arguments and numerical
evidences in [11]. Another problem, even with a regularized equation, is the possible
accumulation of the upscaling error over large time scales. This error should grow
at most polynomially in time in order to maintain high order approximation of the
homogenized quantities. This is the topic of current interest which will be addressed
in upcoming papers.
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Fig. 1. The error between the HMM flux and the homogenized flux (left plot), the consistency
error between the time filtered microscopic solution and the macroscopic state û(x) = x+ x3 (right
plot). In this simulation we have chosen A(y) = 1.1 + sin(2πy + 2) and K ∈ Kp,q−2 with p = 3 and
q = 9. We clearly observe O(αq) convergence rate for the flux and the filtered solution.
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Fig. 2. This result shows that the macro state û(x) = x3 gives a consistent initial data of the
form ū(x) = x3 + ε2x. We let ū = r0(ε) + r1(ε)x + r2(ε)x2 + r3(ε)x3 + x3, then with a kernel
K ∈ Kp,q−2 where p = 3 and q = 9, the plots illustrate the rate at which the coefficients decrease to
zero as ε −→ 0.

REFERENCES

[1] A. Abdulle, and Y. Bai, Reduced Basis Finite Element Heterogeneous Multiscale Method for
High-Order Discretizations of Elliptic Homogenization Problems, J. Comput. Phys. 231
(21):70147036, 2012.

[2] A. Abdulle, and W. E, Finite Difference Heterogeneous Multiscale Method for Homogeniza-
tion Problems, in Journal of Computational Physics, 191 (1):18-39, 2003.

[3] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden, The Heterogeneous Multiscale
Method, in Acta Numerica, 21:1-87, 2012.

32



[4] A. Abdulle, and B. Engquist, Finite Element Heterogeneous Multiscale Methods with Near
Optimal Computational Complexity, SIAM, Multiscale Model. Simul. 6 (4):10591084, 2007.

[5] A. Abdulle, M. Grote, and C. Stohrer, FE Heterogeneous Multiscale Method for Long
Time Wave Propagation , MATHICSE Technical Report, 2013.

[6] A. Abdulle, and M. J. Grote, Finite Element Heterogeneous Multiscale Method for the Wave
Equation, SIAM J. Multiscale Model. and Simul., 9(2):766-792, 2011.

[7] D. Arjmand, Analysis and Applications of the Heterogeneous Multiscale Methods for Elliptic
and Hyperbolic PDEs, Licentiate thesis, 2013.

[8] A. Bensoussan, J.L. Lions, and G.C. Papanicolaou, Asymptotic Analysis for Periodic Struc-
tures, North-holland , Amsterdam, 1978.

[9] W. E, and B. Engquist, The Heterogeneous Multiscale Methods, Comm. Math. Sci., 1 (1):87-
133, 2003.

[10] W. E, and B. Engquist, The Heterogeneous Multiscale Method for Homogenization Prob-
lems, Multi-scale Methods in Sci. and Eng., 44:89-110, Lect. Notes in Comput. Sci. Eng.,
Springer, Berlin, 2005.

[11] B. Engquist, H. Holst, and O. Runborg, Multiscale Methods for Wave Propagation in
Heterogeneous Media Over Long Time, in Lect. Notes Comput. Sci. Eng., Springer Verlag,
82:167-186, 2011.

[12] B. Engquist, H. Holst, and O. Runborg, Multiscale methods for Wave Propagation in
Heterogeneous Media, Commun. Math. Sci., 9(1):33-56, 2011.

[13] W. E, and X. T. Li, Analysis of the Heterogeneous Multiscale Method for Gas Dynamics,
Methods Appl. Anal., 11 (4): 557-572, 2004.

[14] H. Holst, Multiscale Methods for Wave Propagation Problems, Doctoral Thesis, 2011.
[15] M. G. Krein, and M. A. Ruthman, Linear operators that leave invariant a cone in a Banach

space, Usp. Mat. Nauk., 1948.
[16] A. Lamacz, Dispersive Effective Models for Waves in Heterogeneous Media, 21 (9):1871-1899,

2011.
[17] W. Ren, and W. E, Heterogeneous Multiscale Method for the Modeling of Complex Fluids and

Micro-Fluidics, J. Comput. Phys., 204 (1):1-26, 2005.
[18] F. Santosa, and W. W. Symes, A Dispersive Effective Medium For Wave Propagation in

Periodic Composites, Siam J. Appl. Math., 51 (4):984-1005, 1991.

33


