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Abstract

We expose in full detail a constructive procedure to invert the so–called “finite
Markov moment problem”. The proofs rely on the general theory of Toeplitz ma-
trices together with the classical Newton’s relations.
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Résumé

Nous présentons en détail une procédure constructive pour inverser le “problème fini
des moments de Markov”. Les preuves reposent sur la théorie générale des matrices
de Toeplitz et les classiques relations de Newton.
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Version francaise abrégée

Afin d’inverser le systeme fini et mal conditionné (1), Koborov, Sklyar et Fardigola,
[9,13] ont proposé un algorithme recursif non-linéaire. Dans [7] nous avons prouvé un
lemme le réduisant a l’extraction de valeurs propres généralisées, voir (4). Cette Note
vise a expliquer en détail les raisons pour lesquelles cette procédure simplifiée résout
le problème des moments de Markov. Apres avoir rappelé quelques éléments de la
théorie des matrices de Toeplitz et les relations de Newton (Propositions 1 et 2), nous
reformulons cet algorithme simplifié afin d’établir facilement certains lemmes tech-
niques. Finalement, le Théorème 1 démontre le lien entre valeurs propres généralisées
(4) et l’inversion de (1).

1 Introduction

We aim at inverting a moment system often associated with the prestigious name of
Markov, as appearing in [2,3,6,11,12] in several fields of application; consult [5,10,14]
for general background on moment problems. The original problem is the following.
Given the moments mk for k = 1, . . . ,K, find a bounded measurable density function
f and a real value X > 0 such that

(1)
∫X

0
f(ξ)ξk−1dξ = mk, k = 1, . . . ,K,

(2) |f(ξ)| = 1 almost everywhere on ]0,X[,
(3) f has no more than K − 1 discontinuity points inside ]0,X[.

The solution is a piecewise constant function taking values in {−1, 1} a.e. on ]0,X[
and changing sign in at most K − 1 points, which we denote {uk}, ordered such that
0 ≤ u1 ≤ · · · ≤ uK = X. Finding {uk} from {mk} is an ill-conditioned problem
when the uk values come close to each other; its Jacobian is a Vandermonde matrix
and iterative numerical resolution routines require extremely good starting guesses.
For less than four moments, however, a direct method based on solving polynomial
equations was presented in [12]. Here we are concerned with an arbitrary number of
moments K ∈ N.

We consider a slightly modified version of the problem where f takes values in {1, 0}
instead of {−1, 1} and the moments are scaled as mk → kmk. This is the precise
setting for the applications in geometrical optics that we are interested in [7]. More-
over, to simplify the discussion we confine ourselves to the case when K is even,
setting K =: 2n. The resulting problem can then be written as an algebraic system
of nonlinear equations: Given mk find uk such that

mk =
n∑

j=1

uk
2j − uk

2j−1, k = 1, . . . ,K = 2n. (1)

An algorithm for solving this problem was presented by Koborov, Sklyar and Fardigola
in [9,13]. It requires solving a sequence of high degree polynomial equations, con-
structed through a rather complicated process with unclear stability properties. In [7]
we showed that the algorithm can be put in a more simple form that makes it much
more suitable for numerical implementation. The simplified algorithm reads
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(1) Construct the matrices A and B:

A =




1

−m1 2
...

. . .
. . .

−m2n−1 . . . −m1 2n


, B =




1

m1 2
...

. . .
. . .

m2n−1 . . . m1 2n


. (2)

(2) Let m = (m1,m2, . . . ,m2n)T and solve the lower triangular Toeplitz linear sys-
tems

Aa = m, Bb = −m, (3)
to get a and b.

(3) Construct the matrices A1, A2 from a = (a1, a2, . . . , a2n)T as

A1 =




a1 a2 . . . an

a2 a3 . . . an+1

...
...

. . .
...

an an+1 . . . a2n−1


, A2 =




a2 a3 . . . an+1

a3 a4 . . . an+2

...
...

. . .
...

an+1 an+2 . . . a2n


,

and the corresponding matrices B1, B2 from b.
(4) Compute the generalized eigenvalues of the problems

A2v = uA1v, B2v = uB1v. (4)

The generalized eigenvalues of the left problem are precisely the even uk-values,
{u2k}n

k=1, and the generalized eigenvalues of the right problem are the odd ones,
{u2k−1}n

k=1.

The forthcoming section is devoted to a complete justification of this algorithm. We
recall that these inversion routines have been shown to be numerically efficient in the
paper [7].

2 Analysis of the algorithm

We begin by stating two classical results of prime importance for the analysis.

Let L
n ⊂ R

n×n be the set of lower triangular n× n real Toeplitz matrices. We define
the diagonal scaling matrix and the mapping T : R

n → L
n as

Λ =




0

1
. . .

n− 1


; T (x) :=




x1

x2 x1

...
. . .

. . .

xn . . . x2 x1


, x =




x1

x2

...

xn


.

The mapping T has the following properties, see e.g. [1]:

Proposition 1 Lower triangular Toeplitz matrices commute and L
n is closed under

matrix multiplication and (when the inverse exists) inversion,

T (x)T (y) = T (y)T (x) ∈ L
n, T (x)−1 ∈ L

n. (5)
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Moreover, T is linear and

T (x)y = T (y)x, T (x)T (y) = T (T (x)y). (6)

The Λ matrix has the property

T (Λx) = ΛT (x) − T (x)Λ. (7)

Another result that we rely heavily upon is the classical Newton relations, see e.g. [8]:

Proposition 2 (Newton’s relations) Let P be the n-degree polynomial,

P (x) = c0 + c1x + · · · + cnx
n =: cn(x− x1) · · · (x− xn).

Set S0 = n and define Sk for k > 0 as the sum of the roots of P taken to the power
k, Sk =

∑n
j=1 x

k
j . Then, the n + 1 following relations hold:

ckS0 + ck+1S1 + · · · + cnSn−k = kck, k = 0, . . . , n. (8)

2.1 Reformulation of the simplified algorithm

We want to write the equation Aa = m using the mapping T : hence we augment the
m and a-vectors with a zero and one element, respectively, to get m̃ = (0, m)T and
ã = (1, a)T , both in R

K+1. We observe that the A-matrix in (2) is the lower right
K ×K block of Λ − T (m̃). Therefore,

(Λ − T (m̃))ã = −m̃ +

(
0

Aa

)
=

(
0

Aa − m

)
.

Thus the equation Aa = m in (3) is equivalent to

T (m̃)ã = Λã. (9)

By the same argument, Bb = −m in (3) is equivalent to

T (m̃)b̃ = −Λb̃. (10)

with b̃ = (1, b)T .

We can then directly also show that T (ã) and T (b̃) are in fact each other’s inverses.

Lemma 1 When ã are b̃ given by (9, 10) then T (ã)T (b̃) = I.

Proof: By Proposition 1 and (9, 10),

ΛT (ã)b̃ = T (Λã)b̃ + T (ã)Λb̃ = T (T (m̃)ã)b̃ + T (ã)Λb̃ = T (ã)
[
T (m̃)b̃ + Λb̃

]
= 0.

Thus T (ã)b̃ lies in the nullspace of Λ which is spanned by the vector 1 := (1, 0, ..., 0)T .
Moreover, (T (ã)b̃)1 = 1 since the first elements of ã and b̃ are both one and we must
in fact have T (ã)b̃ = 1. The lemma then follows from (6) and the definition of T . ✷
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2.2 What lies beneath the algorithm

To understand the workings of the algorithm we need to introduce some new quantities
and determine how they relate to ã, b̃ and m̃.

Let us start with some notation: we set xj = u2j and yj = u2j−1 for j = 1, ..., n.
Furthermore, we introduce the sums

Xk =
n∑

j=1

xk
j , Yk =

n∑
j=1

yk
j , k = 1, 2, . . . ,K = 2n, (11)

and define X0 = Y0 = K. In the even case, it then holds that

mk =
n∑

j=1

xk
j −

n∑
j=1

yk
j = Xk − Yk, k = 1, . . . ,K = 2n.

We also define the two polynomials

p(x) = (x− x1) · · · (x− xn) =: c0 + c1x + · · · + cn−1x
n−1 + cnx

n, (12)

and
q(x) = (x− y1) · · · (x− yn) =: d0 + d1x + · · · + dn−1x

n−1 + dnx
n. (13)

We note here that by construction cn = dn = 1.

By applying (8) to xnp(x) with k = 0, . . . ,K we get




X0

X1 X0

...
. . .

. . .

XK . . . X1 X0







cn

cn−1

...

c0

0
...

0




=




Kcn

(K − 1)cn−1

...

(K − n)c0
0
...

0




The analogous system of equations holds also for Yk and dk. We introduce now some
shorthand notation to write these equations in a concise form. First we set c̄ =
(cn, . . . , c0)T ∈ R

n+1 and d̄ = (dn, . . . , d0)T ∈ R
n+1. We then construct the larger

vectors, padded with zeros: c = (c̄, 0)T and d = (d̄, 0)T , both in R
K+1. Finally,

we let X = (X0, . . . , XK)T and Y = (Y0, . . . , YK)T . Using T and Λ we can state the
systems of equations above as follows:

T (X)c = (KI − Λ)c, T (Y )d = (KI − Λ)d. (14)

We also clearly have m̃ = X − Y .

Before we can relate c and d with ã we need the following lemma:

Lemma 2 Let f : R
n → R

n be defined by f(x) := T (x)−1Λx for x with a non-zero
first element. Then f(x1) = f(x2) implies that x1 = αx2 for some non-zero α ∈ R.
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Proof: Suppose f(x) = y. Then T (x)y = Λx and by Proposition 1, (T (y)−Λ)x = 0.
Hence f(x1) = f(x2) implies that x1 and x2 both lie in the nullspace of T (y) − Λ.
Since the top left element of Λ is zero, it follows that the first element of y is zero
and therefore the diagonal of T (y) is zero. Consequently, the nullspace of T (y) − Λ
has the same dimension as that of Λ, which is one. ✷

We can now merge together and express the general structure from (12, 13) and (9,
10) in the most concise way.

Lemma 3 Suppose c, d are defined by (12, 13) and ã, b̃ by (9, 10). Then

T (ã)c = d, T (b̃)d = c.

Proof: We only need to prove the left equality. The right one follows immediately
from Lemma 1. Let v = T (ã)c = T (c)ã. We want to show that v = d. We note first
that by (14)

T (X)c = (KI−Λ)c ⇒ T (c)X = (KI−Λ)c ⇒ X = KT (c)−1c−T (c)−1Λc,

where T (c) is invertible since cn = 1. Moreover, it is clear that T (y)1 = y for all y.
Hence, X = K1−T (c)−1Λc. In the same way we also obtain Y = K1−T (d)−1Λd.
Then,

T (m̃)ã = T (ã)m̃ = T (ã)(X − Y )
= −T (ã)T (c)−1Λc + T (ã)T (d)−1Λd.

We now note that by Proposition 1,

T (ã)T (c)−1Λc = T (c)−1T (ã)Λc = T (c)−1T (Λc)ã = T (c)−1ΛT (c)ã − Λã

= T (c)−1Λv − Λã.

Since also, T (c)T (ã) = T (v) we get

T (m̃)ã = −T (c)−1Λv + Λã + T (ã)T (d)−1Λd

= T (ã)
[
T (d)−1Λd − T (v)−1Λv

]
+ Λã.

Consequently, by (9), T (d)−1Λd = T (v)−1Λv and by Lemma 2, v = αd; for some
α ∈ R. But for the first element in v we then have v1 = cn = αdn and we get α = 1
since cn = dn = 1. ✷

Finally, we also establish the following lemma.

Lemma 4 Let V and W be the Vandermonde matrices corresponding to {xj}n
j=0 and

{yj}n
j=0 respectively, with x0 = y0 = 0. Then

V TRT (c̄)V = diag({p̃′(xk)}n
k=0), WTRT (d̄)W = diag({q̃′(xk)}n

k=0),

where p̃(x) := xp(x), q̃(x) := xq(x) and R = {δn+2−i−j} ∈ R
n+1×n+1 is the reversion

matrix.

Proof: We have

(V TRT (c̄)V )ij =
n∑

r=0

r∑
	=0

crx
	
i−1x

r−	
j−1 =

{
p̃(xi−1)−p̃(xj−1)

xi−1−xj−1
, i �= j,

p̃′(xi−1), i = j,
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showing the left equality since {xj}n
j=0 are the roots of p̃(x). The right equality follows

in the same way. ✷

2.3 Conclusion

We can now conclude and show that the unknown values uj in (1) are indeed the
generalized eigenvalues of (4).

Theorem 1 Suppose K = 2n; let a, b be defined by (3). If all values {xj}∪ {yj} are
distinct, then {xj}, {yj} are the generalized eigenvalues of (4).

Proof: Let ã, b̃ be defined by (9, 10), which is equivalent to (3). Also define c and d
as before by (12, 13). By Lemma 3 we have T (ã)c = d ∈ R

2n+1, i.e.




1

a1 1
...

. . .
. . .

an . . . a1 1

an+1 an . . . a1 1

an+2 an+1 . . . a2 a1 1
...

...
. . .

...
...

. . .
. . .

a2n a2n−1 . . . an an−1 . . . a1 1







c̄

0




=




d̄

0



. (15)

Clearly, the lower left block of the matrix multiplied by c̄ is zero, i.e.
∑n

i=0 ciai+k = 0
for k = 1, ..., n. Now, let vi be the coefficients of the polynomial v(x) := p(x)/(x−xj)
for some fixed j. Hence, by the special structure of (12),

c0 + c1x + ... + cnx
n =: (v1 + v2x + ... + vnx

n−1)(x− xj),

and, for i = 0, ..., n,

ci =




−xjvi+1, i = 0,

vi − xjvi+1, 1 ≤ i ≤ n− 1,

vi, i = n.

Thus we deduce,

0 = −xjv1ak +
n−1∑
i=1

(vi − xjvi+1)ai+k + vnan+k =
n∑

i=1

viai+k − xj

n∑
i=1

viai+k−1,

which is the componentwise statement of A2v = xjA1v. It remains to show that the
rightmost sum is non-zero for at least some k, so that xj is indeed a well-defined
generalized eigenvalue. Let ā = (1, a1, . . . , an)T and v̄ = (0, v1, . . . , vn)T . Then (15)
gives T (ā)c̄ = d̄ and, using Lemma 4 while taking k = 1 we have the sum

n∑
i=1

viai = āT v̄ = (T (c̄)−1d̄)T v̄ = (V TRd̄)T diag({p̃′(xk)−1})V T v̄ = q(xj),

since V TRd̄ = {q(xk)} and V T v̄ = {xkv(xk)} = {δk−j p̃
′(xk)}. Hence, the sum is

non-zero because xj �= yi for all i, j > 0. The same argument can be used for any j,
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which proves the theorem for {xj}. The proof for {yj} is identical upon exchanging
the roles of c, ã and d, b̃. This leads to (4). ✷
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cinétiques (French) [Moment equations and entropy conditions for kinetic
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