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SOME NEW RESULTS IN MULTIPHASE GEOMETRICAL OPTICS ∗

Olof Runborg
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Abstract. In order to accommodate solutions with multiple phases, corresponding to crossing rays,
we formulate geometrical optics for the scalar wave equation as a kinetic transport equation set in
phase space. If the maximum number of phases is finite and known a priori we can recover the exact
multiphase solution from an associated system of moment equations, closed by an assumption on the
form of the density function in the kinetic equation. We consider two different closure assumptions
based on delta and Heaviside functions and analyze the resulting equations. They form systems of
nonlinear conservation laws with source terms. In contrast to the classical eikonal equation, these
equations will incorporate a “finite” superposition principle in the sense that while the maximum
number of phases is not exceeded a sum of solutions is also a solution. We present numerical results
for a variety of homogeneous and inhomogeneous problems.

Résumé. Afin d’exhiber des solutions possédant des phases multiples, et dans l’objectif de traiter le
cas de rayons qui se croisent, nous formulons l’optique géométrique pour l’équation d’ondes scalaire
comme une équation cinétique de transport posée dans l’espace des phases. Si le nombre maximum
de phases est fini et connu a priori , nous reconstruisons la solution multivaluée exacte en résolvant
un système associé d’équations de moments. Nous fermons ce système en faisant deux hypothèses
différentes sur la forme particulière de la fonction densité dans l’équation cinétique, basée sur des
fonctions de Dirac et de Heaviside. Nous analysons les équations résultantes. Elles forment des systèmes
de lois de conservation non linéaires avec termes source. Contrairement à l’équation eikonale classique,
ces équations permettent d’obtenir un principe de superposition “fini”, dans le sens suivant : tant que le
nombre maximum de phases n’est pas excédé, une somme de solutions du système obtenu demeure une
solution. Nous présentons des résultats numériques pour un certain nombre de problèmes homogènes
et non homogènes.
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Université Paris VI, Paris, France, within the EU TMR network on Hyperbolic Systems of Conservation Laws, H.C.L. ERBFM-
RXCT960033.
1 Program in Applied and Computational Mathematics, Fine Hall, Princeton University, Princeton, NJ 08544, USA.
e-mail: orunborg@math.princeton.edu

c© EDP Sciences, SMAI 2000



1204 O. RUNBORG

Introduction

We consider the linear scalar wave equation,

utt − c(x)2∆u = 0, (t,x) ∈ R+ × Rd (1)

together with initial and/or boundary data that generate high-frequency solutions. The exact form of the data
will not be important, but a typical example would be u(t, x1, 0) = A(t, x1)eiω(t+x1) with the frequency ω � 1.
In the direct numerical simulation of (1) the accuracy of the solution is determined by the number of grid points
used per wavelength and dimension. The computational cost to maintain constant accuracy grows algebraically
with the frequency and for sufficiently high frequencies a direct approach is no longer feasible. Approximate
methods are needed.

In this paper we consider geometrical optics, which is the asymptotic approximation obtained when the
frequency tends to infinity. This approximation is widely used in applications such as computational elec-
tromagnetics, acoustics, optics and geophysics. Instead of the oscillating wave field u, the unknowns in the
geometrical optics equations are the phase φ and the amplitude A, which both vary on a much slower scale than
u. They should hence in principle be easier to compute numerically.

The derivation of the geometrical optics equations in the linear case is classical. See for instance the book
by Whitham [35]. Formally, they follow if we write u as a series expansion of the form

u(t,x) = eiωφ(t,x)
∞∑
k=0

Ak(t,x)(iω)−k. (2)

Entering this expression into (1) and summing terms of the same order in ω to zero, we obtain separate equations
for the unknown variables in (2). The phase function φ will satisfy the Hamilton-Jacobi type eikonal equation,

φt + c(x) |∇φ| = 0, (3)

and A0 solves the transport equation,

(A0)t + c
∇φ · ∇A0

|∇φ| +
c2∆φ− φtt

2c |∇φ| A0 = 0. (4)

For large ω we can discard the remaining terms in (2).
Some typical wave phenomena, such as diffraction and interference, are lost in the infinite frequency approx-

imation. Moreover, the approximation breaks down at caustics, where the amplitude, A0, blows up. For some
situations correction terms can be derived, such as those given by Keller [21], in the 1960s, with his pioneering
geometrical theory of diffraction (GTD), further developed by for instance Kouyoumjian and Pathak [22]. A
closer study of the solution’s asymptotic behavior close to caustics was done by Ludwig [27], and Kravtsov [23],
among others. We will however not treat these refined theories in this paper.

The traditional way to compute traveltimes of high-frequency waves is through ray tracing. The traveltime of
a wave is given directly by the phase function φ, and ray tracing corresponds to solving the eikonal equation (3)
through the method of characteristics, i.e. solving the system of ordinary differential equations (ODE),

dx
dt

= ∇pH(x,p),
dp
dt

= −∇xH(x,p), H(x,p) = c(x)|p|. (5)

There are also ODEs for the amplitude. Very many rays are often required to cover the full computational
domain, which can make ray tracing a rather inefficient method [33, 34]. Also for smoothly varying c(x) there
may be shadow zones where the field is hard to resolve. In addition, it is difficult to compute the amplitude
and to find the minimum traveltime in regions where rays cross.
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Recently several new methods based on partial differential equations (PDE) formulations have been proposed
to avoid some of the drawbacks of ray tracing. The interest has focused on solving the eikonal equation (3). One
problem with (3) is that it cannot produce solutions with multiple phases, corresponding to crossing rays. There
is no superposition principle. With extra conditions given in [11] there is, however, always a unique, generalized,
solution to (3), known as the viscosity solution. At points where the correct physical solution should have a
multivalued phase, the viscosity solution picks out the phase corresponding to the first arriving wave. Hence,
the eikonal equation gives the first arrival traveltime.

Upwind finite difference methods were used in [33, 34] to compute the viscosity solution of (3). High reso-
lution methods of ENO type for Hamilton-Jacobi equations were introduced in [28] and used for the eikonal
equation in [13]. In the latter a first attempt was also made to compute multivalued traveltimes. A second
phase, corresponding to the second arrival time was calculated using two separate eikonal equations. Boundary
conditions for the second phase was given at the discontinuity of the first phase or at a geometric reflecting
boundary. This boundary could be difficult to determine. Other interesting approaches to finding multivalued
traveltimes, also based on the eikonal equation, are the big ray tracing method of Benamou [1, 2], which uses
unstructured grids, and the slowness matching algorithm of Symes [31]. See also [3], where the multivalued
solutions are computed directly using an accompanying equation that detects where the the phase field becomes
multivalued.

Brenier and Corrias [8], proposed a different way of finding the multivalued solutions in the one-dimensional
homogeneous case, subsequently adapted for two-dimensional inhomogeneous problems by Engquist and
Runborg [14, 15]. Geometrical optics can be reformulated as a “kinetic” Liouville equation in phase space
and the method is based on a closure assumption for the equations representing the moments of this Liouville
equation. This is a classical way to approximate kinetic transport equations, the standard example being the
compressible Euler approximation of the Boltzmann equation. See for instance [18] and more recently [25]. In
the geometrical optics case, however, the closure assumption and the resulting equations are typically exact for
a large class of problems.

This paper is a continuation of the investigations in [14,15]. We give a theoretical motivation for the choice
of moments and some additional analysis of the resulting equations, both for the closure assumption based on
delta functions and for a new closure assumption based on Heaviside functions. We also include a numerical
study of some homogeneous and inhomogeneous problems. We restrict ourselves to the two-dimensional case
throughout the paper and for much of the analysis this restriction is crucial. It should be noted, however, that
the delta function closure has a direct three-dimensional equivalent. Our approach would have to be modified to
analyze its properties, though. The paper is organized as follows. We first derive the general moment equations
in Section 1. Next, in Sections 2 and 3 we discuss the two different closure assumptions and the equations they
result in. Finally, in Section 4 we show numerical results.

1. Moment equations for geometrical optics

The kinetic formulation of geometrical optics is based on the interpretation that rays are trajectories of
particles (photons) following the Hamiltonian dynamics in (5). We introduce η = 1/c, the index of refraction
and f(t,x,p) ≥ 0, the density of particles in phase space. We note that if we let f initially only be supported
where |p| = η, it will remain so for all times t > 0, since dH/dt = 0 in (5). Using the Liouville theorem and
the constraint |p| = η, we get a Liouville equation describing the evolution of f ,

ft +
1
η2

p · ∇xf +
1
η
∇xη · ∇pf = 0. (6)

This equation could also be derived directly from (1) using H-measures or Wigner measures, see [16, 26, 32].
The precise relationship between the stationary version of (6) and the high frequency limit of the Helmholtz
equation with a source term was recently studied in [4, 10].
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In order to solve the full equation (6) by direct numerical methods all independent variables (six in 3D) need
to be discretized. This would require unrealistic computational time. Instead, it was observed in [8], when f is
of a simple form in p, the transport equation (6) can be transformed into a finite system of moment equations
in the reduced space (t,x). In this paper we consider the two-dimensional case. Let us define the moments mij ,
with p = (p1, p2)T , as

mij(t,x) =
1

η(x)i+j

∫
R2
pi1p

j
2f(t,x,p)dp. (7)

Next, multiply (6) by η2−i−jpi1p
j
2 and integrate over R2 with respect to p. Assuming that η(x) is smooth, it

follows that the moments mij formally satisfy the infinite system of moment equations,

(η2mij)t + (ηmi+1,j)x + (ηmi,j+1)y = iηxmi−1,j + jηymi,j−1 − (i+ j)(ηxmi+1,j + ηymi,j+1), (8)

valid for all i, j ≥ 0. For uniformity in notation we have defined mi,−1 = m−1,i = 0, ∀i.
The system (8) is not closed. If truncated at finite i and j, there are more unknowns than equations. To

close the system we will make specific assumptions on the form of the density function f . First we will consider
the case when f is a weighted sum of delta functions in p and second, the case when f is a sum of Heaviside
functions. Both cases correspond to the assumption of a finite number of rays at each point in time and space.

2. Closure with delta functions

To close (8) we assume in this section that f can be written

f(t,x,p) =
N∑
k=1

gk · δ(p− pk), pk = η

(
cos θk
sin θk

)
. (9)

Hence, for fixed values of x and t, the particle density f is non-zero at a maximum of N points, and only when
|p| = η(x). The new variables that we have introduced here are gk = gk(t,x), which corresponds to the strength
(particle density) of ray k, and θk = θk(t,x) which is the direction of the same ray. Inserting (9) into (7) yields

mij =
N∑
k=1

gk cosi θk sinj θk. (10)

A system describing N phases, needs 2N equations, corresponding to the N ray strengths gk and their directions
θk. It is not immediately clear which equations to select among the candidates in (8). Given the equations
for a set of 2N moments one should be able to write the remaining moments in these equations in terms of
the leading ones. This is not always possible. For instance, with the choice of m20 and m02, for N = 1, the
quadrant of the angle θ cannot be recovered, and therefore in general not the sign of the moments. We choose
here the equations for the moments m2`−1,0 and m0,2`−1 with ` = 1, . . . , N ,

(η2m2`−1,0)t + (ηm2`,0)x + (ηm2`−1,1)y = (2`− 1)(ηxm2`−2,0 − ηxm2`,0 − ηym2`−1,1),

(η2m0,2`−1)t + (ηm1,2`−1)x + (ηm0,2`)y = (2`− 1)(ηym0,2`−2 − ηxm1,2`−1 − ηym0,2`),

and collect those moments in a vector,

m = (m10,m01,m30,m03, . . . ,m2N−1,0,m0,2N−1)T . (11)
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As we will show below in Section 2.1, this system of equations for m can be essentially closed, for all N . We
introduce new variables,

u = (u1, u2, . . . , u2N−1, u2N )T := (g1 cos θ1, g1 sin θ1, . . . , gN cos θN , gN sin θN )T , (12)

which have a physical interpretation; the vector (u2k−1, u2k) shows the direction and strength of ray k. The
new variables together with (10) define a function F0 through the equation

F0(u) = m. (13)

Similarly, they define the functions

F1(u) = (m20,m11, . . . ,m2N,0,m1,2N−1)T , F2(u) = (m11,m02, . . . ,m2N−1,1,m0,2N )T , (14)

K(u, ηx, ηy) =


ηxm00 − ηxm2,0 − ηym1,1

ηym00 − ηxm1,1 − ηym0,2

...
(2N − 1)(ηxm2N−2,0 − ηxm2N,0 − ηym2N−1,1)
(2N − 1)(ηym0,2N−2 − ηxm1,2N−1 − ηym0,2N )

 .

These functions permit us to write the equations as a system of nonlinear conservation laws with source terms,

F0(η2u)t + F1(ηu)x + F2(ηu)y = K(u, ηx, ηy). (15)

Equivalently, we can write (15) as

(η2m)t + F1 ◦ F−1
0 (ηm)x + F2 ◦ F−1

0 (ηm)y = K(F−1
0 (m), ηx, ηy).

The functions Fj and K are rather complicated nonlinear functions. In Appendix A.1 they are given for the
cases N = 1, 2. Since the angles θk remain unaffected when u is scaled by a constant, all Fj and K are
homogeneous of degree one, Fj(αu) = αFj(u), K(αu, ηx, ηy) = αK(u, ηx, ηy) for all α ∈ R. The source term
K always vanishes for constant η.

2.1. Properties of the flux functions

In this section we analyze the flux functions and source

F1 ◦ F−1
0 (m), F2 ◦ F−1

0 (m), K(F−1
0 (m), ηx, ηy).

In order for them to be well defined we must restrict their domain to the case when there are no rays meeting
head-on. With this restriction they are also continuous. We have

Theorem 2.1. Let F0 be the function in (13) and let F0|UN be its restriction to the domain

UN = {u ∈ R2N
∣∣ 1 + cos(θk − θ`) 6= 0, whenever gkgl > 0, ∀k, `},

and MN = F0(UN ). The composition m ◦ (F0|UN )−1 : MN 7→ R is well-defined and continuous for all maps of
the form

m : UN 7→ R, m(u) =
N∑
k=1

gkh (θk) , (16)

where h : S 7→ R is continuous.
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Since F1, F2 and K are all of the form (16) we have:

Corollary 2.2. Let Fj and K be the functions in (13, 14) and let F0|UN and MN be as in Theorem 2.1. Then
the functions

F1 ◦ (F0|UN )−1(m), F2 ◦ (F0|UN)−1(m), K((F0|UN )−1(m), ηx, ηy)

are well defined and depend continuously on m ∈MN .

Remark 2.3. If we do not restrict F0 to UN the result is false. Take for instance u = (−1 0 1 0)T and ũ = 2u
for N = 2 so that F0(u) = F0(ũ) = 0, but F1(ũ) = 2F1(u) 6= 0. Furthermore, with a different choice of moment
equations the result does not necessarily hold either. For instance, if instead of (11) we use the equations for

m = (m10,m01,m20,m02)T ,

when N = 2, the functions Fj change and in general there are two unrelated solutions to F0(u) = m which F1

does not map to the same point. For example, if u = (1 1 0 − 1)T and ũ = (1 − 1 0 1)T then F0(u) = F0(ũ),
but F1(u) = F1(ũ) + (0

√
2 0 0)T . The function F2 ◦ F−1

0 is ill defined in the same way.

Proof of Theorem 2.1

It will be convenient to work with complex versions of our variables and we start by introducing the isometry
A : R2N 7→ CN ,

A(x1, . . . , x2N )T = (x1 + ix2, . . . , x2N−1 + ix2N )T .

Set w = (w1, . . . , wN )T := Au and

zk := cos θk + i sin θk, zk :=
(
zk, z

−3
k , . . . , z

(2N−1)(−1)N+1

k

)T
, (17)

so that wk = gkzk. Furthermore, define the continuous mapping Q : CN 7→ CN ,

Q(w) =

 | | |
z1 z2 . . . zN
| | |


 g1

...
gN

 .

To relate w to m via this function, we use the trigonometric identity

zk = B

 cos θk + i sin θk
...

cos2N−1 θk + i sin2N−1 θk

 , (18)

where B = {bk`} ∈ RN×N is a lower triangular matrix with bk` equal to the (2`−1)th coefficient of the (2k−1)th
degree Chebyshev polynomial, for k ≤ `. The matrix is non-singular since bkk = 4k−1 > 0. From the definition
of Q and the identity (18) it then follows that

Q(w) = Q(Au) = BAm, (19)

where we also recall that F0(u) = m. Before continuing we show the following lemma.
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Lemma 2.4. Let {zk} be N ′ complex numbers such that |zk| = 1 and let {zk} be the corresponding vectors as
defined in (17). If N ′ ≤ 2N then zk ∈ CN are linearly independent over R if and only if

z2
k 6= z2

` , k 6= `. (20)

Proof. The necessity is obvious. To show that (20) is a sufficient condition, we only need to consider the case
N ′ = 2N , since we can always find 2N − N ′ additional zk such that (20) still holds if N ′ < 2N . Suppose
therefore that {zk}2Nk=1 are linearly dependent over R, and that (20) is true. Then the real matrix

A =
(
<(z1) <(z2) · · · <(z2N )
=(z1) =(z2) · · · =(z2N )

)
, A ∈ R2N×2N ,

is singular and we can find a vector β = (β1, . . . , β2N )T 6= 0 such that ATβ = 0. Using the fact that |zk| = 1
and z̄k = 1/zk, this implies

Pβ(z2
k) = 0, k = 1, . . . , 2N,

where

Pβ(z) =
1
2

N∑
`=1

β`(z`+N−1 + zN−`) +
1
2i

N∑
`=1

(−1)`+1β`+N (z`+N−1 − zN−`).

But since the degree of Pβ is at most 2N − 1, regardless of β, it cannot have 2N distinct zeros if β 6= 0.
Therefore, there must exist k, ` such that z2

k = z2
` , a contradiction.

Let m̄(w) := m(A−1w) and let Q̄ be the restriction of Q to AUN . We now want to prove that m̄ ◦ Q̄−1 is
well defined on Q̄(AUN ) and we do this by showing that Q̄ ◦ m̄−1 is injective on m̄(AUN ). Let w, w̃ ∈ AUN
be such that Q̄(w) = Q̄(w̃). We need to show that m̄(w) = m̄(w̃) and we use the variables introduced in (17).
A tilde indicates that a variable relates to w̃. Let N ′ and Ñ ′ respectively be the number of distinct zk and
z̃k with gk, g̃k > 0. Without loss of generality we order the variables such that z`j = . . . = z`j+1−1, with
1 = `1 < . . . < `N ′+1 = N + 1, and similar for {z̃k}. With this notation we get

Q̄(w) =
N ′∑
j=1

`j+1−1∑
k=`j

gk

 z`j =
Ñ ′∑
j=1

 ˜̀
j+1−1∑
k=˜̀

j

g̃k

 z̃˜̀
j

= Q̄(w̃).

The sets of numbers {z`j}N
′

j=1 and {z̃˜̀
j
}Ñ ′j=1 both satisfy (20), because w, w̃ ∈ AUN . Therefore, since N ′+ Ñ ′ ≤

2N , there must exist j and k such that z2
`j

= z̃2
˜̀
k

by Lemma 2.4. By induction it follows that N ′ = Ñ ′ and,
possibly after some reordering,

`j = ˜̀
j , z`j = sj z̃˜̀

j
,

`j+1−1∑
k=`j

gk = sj

˜̀
j+1−1∑
k=˜̀

j

g̃k, sj = ±1, ∀j.

But gk, g̃k are positive, and we can conclude that sj = 1 for all j. Thus, w and w̃ are identical up to permutations
and to the individual gk values. We now apply m̄ to them.

m̄(w) =
N ′∑
j=1

`j+1−1∑
k=`j

gkh(zk) =
N ′∑
j=1

h(z`j )
`j+1−1∑
k=`j

gk =
Ñ ′∑
j=1

h(z̃˜̀
j
)

˜̀
j+1−1∑
k=˜̀

j

g̃k =
Ñ ′∑
j=1

˜̀
j+1−1∑
k=˜̀

j

g̃kh(z̃k) = m̄(w̃).



1210 O. RUNBORG

Hence, m̄ ◦ Q̄−1 is well-defined on its domain of definition. Now, (19) and the fact that F0(u) = m show that
m◦ (F0|UN )−1(m) = m̄◦Q̄−1(BAm), which implies that m◦ (F0|UN )−1 is well defined on MN . The continuity
follows by approximating UN by compact sets, and using the following lemma from elementary analysis, which
we do not prove.

Lemma 2.5. Let U be a compact metric space and f, g two continuous functions on U . Suppose f : U 7→ X
and g : U 7→ Y where X,Y are metric spaces and X = f(U). If the composition f ◦ g−1 : g(U) 7→ X is injective
then g ◦ f−1 : X 7→ Y is continuous.

2.2. Analysis of the conservation laws

In [14, 15] it was shown that the general system (15) is nonstrictly hyperbolic for all states u and N . The
systems are thus not well-posed in the strong sense, and they are more sensitive to perturbations than strictly
hyperbolic systems. The Jacobian has a Jordan type degeneracy and there will never be more than N linearly
independent eigenvectors for the 2N × 2N system. For a general study of this type of degenerate systems of
conservation laws, see [36].

A distinguishing feature of the system (15) is that it typically has measure solutions of delta function type,
even for smooth and compactly supported initial data. These appear when the physically correct solution passes
outside the class of solutions that the system (15) describes. If initial data dictates a physical solution with
M phases for t > T , the system (15) with N < M phases will have a measure solution for t > T .

For smooth solutions, (15) with N phases is equivalent to N pairs of eikonal and transport equations (3, 4)
if the variables are identified as

gk = A2
0,k, (cos θk, sin θk)T =

∇φk
|∇φk|

, k = 1, . . . , N,

see [14]. The pair (3, 4) form a nonstrictly hyperbolic system, just like (15), with the same eigenvalue. Where
wave fields meet, the viscosity solution of (3) is in general discontinuous. Because of the term ∆φ in the source
term of (4), the first amplitude coefficient A0 has a concentration of mass at these points. Hence, the two
different formulations are similar also in this respect.

There is a close relationship between (15) with N = 1 and η ≡ 1,

ut + f(u)x + g(u)y = 0, f(u) = u1
u
|u| , g(u) = u2

u
|u| , (21)

and the equations of pressureless gases,

ρt + (ρu)x = 0, (22)
(ρu)t + (ρu2)x = 0.

In fact, the steady state version of (21) is precisely (22) if we identify ρ = g cos2 θ and u = tan θ. Moreover,
the one-dimensional version of (21) corresponds to (22) with relativistic effects added if we identify ρ = g sin θ
and u = cos θ. In the context of non-relativistic pressureless gases this problem was addressed by Bouchut [5]
and later Brenier and Grenier [9, 19], and E et al. [12], who independently proved global existence of measure
solutions to (22). The uniqueness question was settled in [7]. For linear transport equations related results
have been obtained by Bouchut and James [6] and Poupaud and Rascle [29]. The questions of existence and
uniqueness for (21) and its one-dimensional version are still open.
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Figure 1. The Riemann problem, with Hugoniot loci for the left and right states in phase
space and the two different types of discontinuities in (t,x) space.

2.2.1. The Riemann problem

Since standard numerical schemes are based on solving one-dimensional Riemann problems [24], we consider
this problem for (21),

ut + f(u)x = 0, f(u) = u1
u
|u| , u(0, x) =

{
u` x < 0,
ur x > 0.

(23)

At a discontinuity the conservation form gives the Rankine-Hugoniot jump condition,

f(u`)− f(ur) = s(u` − ur), (24)

where s represents the propagation speed of the discontinuity. Since f(u) = cos θu, the jump condition (24)
simplifies to

cos θ`u` − cos θrur = s(u` − ur).
The states to which a given non-zero state u` can connect with a discontinuity, i.e. its Hugoniot locus, is simply
αu` for α ∈ R, with speed of propagation s = cos θ` when α ≥ 0 and s = cos θ`(1 + α)/(1 − α) for α < 0. It
follows that, unless they are parallel, two non-zero states u` and ur can only be connected via the intermediate
state um = 0. There will be two types of discontinuities. If cos θ` < cos θr, the solution with um = 0, satisfies
the Lax entropy condition (the left discontinuity moves slower than the right one). The states’ Hugoniot loci
and the solution for this type of discontinuity is illustrated in Figure 1a. If cos θ` > cos θr, on the other hand,
we do not have a solution in the usual weak sense. This situation corresponds to two meeting wave fields.
Formally, however, um = tũmδ(x − st) is a weak solution to the conservation law with this initial data. The
conservation form gives a slightly modified jump condition,

cos θ`u` − cos θrur = cos θ̃m(u` − ur) + ũm,

with the propagation speed s = cos θ̃m. This construction, a delta function solution to the Riemann problem
leading to a modified Rankine-Hugoniot condition, is found also in [36] for more general equations.

It is easily verified that u itself is an eigenvector of the Jacobian of f and that the Jacobian has a double
eigenvalue equaling cos θ. Therefore, the Hugoniot locus will coincide with the integral curves of the system’s
characteristic fields and, since cos θ remains constant along the curves, the fields are linearly degenerate. From
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this we conclude that the first type of discontinuity is a linear, contact discontinuity; characteristics run parallel
to the discontinuity. The linear degeneracy also excludes the possibility of rarefaction wave solutions. The
second type of discontinuity will always have two characteristics incident to the discontinuity at each side,
because of the double eigenvalue. These discontinuities are thus of overcompressive shock type. The two
different discontinuities, plotted in (t,x)-space, are shown in Figures 1b and 1c.

2.2.2. Entropy

For the analysis of (21) it would be useful to find a strictly convex entropy pair for the one-dimensional
system. This is, however, not possible since the system is nonstrictly hyperbolic. There do however exist
nonstrictly convex entropy pairs, which can be characterized as follows.

Theorem 2.6. Let U ∈ C2 be convex. There exists a function F ∈ C2 such that U(u)t + F (u)x = 0 for all
smooth solutions u = g(cos θ, sin θ) to

ut + f(u)x = 0, f(u) = u1
u
|u| , (25)

if and only if U is of the form

U = gh(θ) + const , h ∈ C2(S), h+ h′′ ≥ 0.

Proof. We must show that there exists F ∈ C2 such that that ∇U df
du = ∇F , which is equivalent to the condition

∇×
(
∇U df

du

)
= cos θ

∂2U

∂g2
= 0.

Hence, F exists if and only if U = gh1(θ) + h2(θ) for some h1, h2 ∈ C2. The determinant of the Hessian matrix
of U then equals −h′2(θ)2/g4. Since U is convex, this must be nonnegative, showing that h2 = const . With this
restriction, we finally compute the eigenvalues of the Hessian, which turn out to be λ1 = 0 and

λ2 =
h1(θ) + h′′1(θ)

g
·

This proves the theorem.

2.2.3. Superposition

The multiple phase systems possess a finite superposition principle in the sense that a sum of N solutions
to the single phase system, is a solution to the N -phase system. This follows from a trivial computation if the
solutions are smooth. Physical solutions can, however, well have discontinuities in g. On the other hand, a
discontinuous θ would typically not be physical, generating a delta shock type solution, as seen in Section 2.2.1.
In fact, if we introduce weak solutions we can for instance show that a sufficient condition for the superposition
principle to hold is just that g is bounded and that θ is continuous and has locally bounded variation.

Theorem 2.7. Suppose {uk}Nk=1 are N weak solutions to the homogeneous single phase system (21) in the
sense that uk ∈ L∞((0,∞)× R2) and∫∫

t≥0

ukφt + f(uk)φx + g(uk)φy dt dx = 0, ∀φ ∈ C1
c((0,∞)× R2). (26)

Moreover, suppose that for each k and each point in (0,∞) × R2, there is an open neighborhood on which we
can define a continuous function θk(t,x) with locally bounded variation such that uk = |uk|(cos θk, sin θk)T on
that neighborhood. Then u = (u1, . . . ,uN )T is a weak solution to the homogeneous N -phase system (15) in the
same sense as (26).
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Proof. We start by showing that if v = (v1, v2)T is a weak solution to (21) in the sense of Theorem 2.7, then
mi,0 and m0,i, with i > 1, are weak solutions in the same sense to the corresponding moment equations, under
the given hypotheses. Take φ ∈ C1

c((0,∞)×R2) and assume without loss of generality that θ is continuous and
that v = g(cos θ, sin θ)T on supp φ. (We can always obtain such a θ after a partition of unity.) Let M ∈ C∞c (R3)
be a mollifier with

∫
M dt dx = 1 and set θε = θ ?Mε, where Mε = M(t/ε,x/ε)/ε3. Furthermore, set

ψεs = φ

(
cosi−1 θε −

d cosi−1 θε
dθε

sin θε cos θε

)
, ψεc = φ

d cosi−1 θε
dθε

cos2 θε. (27)

We observe that φt cosi θε = (ψεs)t cos θε + (ψεc)t sin θε, and similar for the partial derivatives with respect to x
and y. Also, mi,0 = g cosi θ on the support of φ. This shows that, for all ε,∫∫

t≥0

mi,0φt dt dx =
∫∫

t≥0

(mi,0 −mε
i,0)φt + (vε1 − v1)(ψεs)t + (vε2 − v2)(ψεc)t + v1(ψεs)t + v2(ψεc)t dt dx,

where a superscripted ε denotes that a function depends on θε instead of θ. The first term of the right-hand
side tends to zero by the dominated convergence theorem. Since θ ∈ BVloc the expression ||φ∂tθε||L1 is bounded
independently of ε, and therefore∫∫

t≥0

|vε1 − v1| |(ψεs)t|dt dx ≤ C sup
(t,x)∈supp φ

|vε1 − v1| ≤ C||v||L∞ sup
(t,x)∈supp φ

| cos θε − cos θ| → 0,

by the continuity of θ. Using the same argument for the remaining terms, we arrive at∫∫
t≥0

mi,0φt +mi+1,0φx +mi,1φy dx dt =
∫∫

t≥0

v1(ψεs)t +
v2

1

|v| (ψ
ε
s)x +

v1v2

|v| (ψεs)y dx dt (28)

+
∫∫

t≥0

v2(ψεc)t +
v2v1

|v| (ψεc)x +
v2

2

|v| (ψ
ε
c)y dx dt+Rε,

where Rε → 0. But ψεc, ψεs ∈ C1
c((0,∞) × R2) and v is a weak solution, so by letting ε → 0 we see that (28)

in fact equals zero. After replacing cosi−1 θ with sini−1 θ in (27) we get the same result for m0,i. We can now
conclude that with mk

i,j = gk cosi θk sinj θk,

N∑
k=1

∫∫
t≥0

mk
2`−1,0φt +mk

2`,0φx +mk
2`−1,1φy dx dt = 0, ` = 1, . . . , N.

The same is true for mk
0,2`−1. But these are just the componentwise statements of∫∫

t≥0

F0(u)φt + F1(u)φx + F2(u)φy = 0,

and ||u||L∞ is bounded by
∑N
k=1 ||uk||L∞ .

Of course some of the uk solutions in Theorem 2.7 can be identically zero, so that in particular a weak solution
of the single phase system is also a solution of the N -phase system, under the above assumptions.

3. Closure with Heaviside functions

We will now consider a different way to close (8). We discard the amplitude information carried by gk used
in Section 2 and only solve it for the θk. In this way we get fewer and less singular equations. The “correct”
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values of the unknowns θk are, however, not well defined when the physically motivated amplitude is zero.
In particular, this is the case at time t = 0 for the typical initial value problem with sources given through
boundary values (like the problems in Section 4). In order to reduce the initialization problem we will therefore
only consider steady state solutions to (8) where no rays go in the negative x-direction. The equations can then
be “time-stepped” in the positive x-direction and data only need to be given on the line x = 0. In other words,
we put an additional restriction on f that f(t,x,p) = 0 when p · ex ≤ 0 where ex is the unit vector in the
x-direction. We then consider density functions of the form

f(t,x,p) =

{
1
η δ(|p| − η)

∑N
k=1(−1)k+1H(θ − θk(t,x)), p · ex > 0,

0, otherwise,
p = |p|

(
cos θ
sin θ

)
, (29)

with the convention that −π/2 < θ1 ≤ . . . ≤ θN < π/2. For the time being we will assume that N is even. The
general formula for the moments follows directly from (29) together with (7)

mij(t,x) =
N∑
k=1

(−1)k+1

∫ π/2

θk(t,x)

cosi θ sinj θ dθ. (30)

For fixed (t,x), the density function f is supported by a set of intervals on the sphere {|p| = η}. The intervals
correspond to fans of rays whose edges are given by the unknown angles θk. The transport equation (6) governs
the propagation of all these rays, and in particular the rays at the edges, which will propagate just like ordinary
rays as long as f stays of the form (29). The values of the N angles θk will then coincide with those of a problem
with N rays crossing at each point, as long as the assumption (29) holds.

Among the equations in (8) we choose the ones for the moments {m0,`} with ` = 0, . . . , N − 1. This leads
to the steady state equations

(ηm1,`)x + (ηm0,`+1)y = `(ηym0,`−1 − ηxm1,` − ηym0,`+1), ` = 0, . . . , N − 1. (31)

Next, we introduce the new variables,

u = (u1, . . . , uN)T , uk = sin θk. (32)

By evaluating the integrals in (30) we then get

m1,` =
N∑
k=1

(−1)ku`+1
k

`+ 1
, m0,` =

N∑
k=1

(−1)kR`(uk), R` =


arcsin(u), ` = 0,
−
√

1− u2, ` = 1,
`−1
` R`−2 − 1

`u
`−1
√

1− u2, ` ≥ 2.
(33)

Although these expressions were derived for even N , we will in fact use them to define the moments also for odd
N . See below for a motivation of this. In the subsequent analysis it will be convenient to use an alternative,
equivalent, expression for the moments. We let

f̃ =
N∑
k=1

(−1)k+1H(u− uk).

Then, if |uk| ≤ L < 1, we can express the moments as

m1,` =

{
〈f̃ , u`〉, N even,
〈f̃ −H(u), u`〉, N odd,

m0,` =


〈
f̃ , u`√

1−u2

〉
, N even,〈

f̃ , u`√
1−u2

〉
−R`(L), N odd,

(34)
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where 〈·, ·〉 denotes the standard inner product on L2[−L,L].
Like in Section 2 we collect the moments in a vector, m = (m10, . . . ,m1,N−1)T . We define the function F1

by F1(u) = m together with (33) or (34), and similarly for F2 and K. We can then finally write (31) as

(ηF1(u))x + (ηF2(u))y = K(u, ηx, ηy), (35)

or, in terms of m,

(ηm)x + (ηF2 ◦ F−1
1 (m))y = K(F−1

1 (m), ηx, ηy).

The functions Fj and K are again rather complicated nonlinear functions. See Appendix A.2 for their precise
form when N = 1, 2, 3.

If uk < uk+1 for all k, we can compute the gradient of m0,`(m) explicitly,

∇mm0,` = V −1Θ`. (36)

Here V = {vk,`} ∈ RN×N is the Vandermonde matrix associated to the points u, i.e. vk,` = u`−1
k (nonsingular

by the assumption on u), and

Θ` =
{
u`k/
√

1− u2
k

}N
k=1

= {u`−1
k tan θk}Nk=1 ∈ RN .

By using (36) we get an expression for the Jacobian of F2 ◦ F−1
1 ,

d
dm

F2 ◦ F−1
1 = V T diag ({tan θk})V −T .

We see that this system is strictly hyperbolic as long as θk 6= θ` for all k, `. The theory for the system is
standard and we will not further discuss its structure. We just note that since tan θ → ∞ when |θ| → π/2 or
|u| → 1 the Jacobian will blow up at these points. This is expected by the assumption that the equation can
be time-stepped in the x-direction.

It remains to motivate the moment equations when N is odd. For this case, let (u1, . . . , uN+1)T be the
solution to the, well defined, equations with N + 1 phases. By making the change of variables u = φy

|∇φ| in (3)
when φ is smooth, we get the scalar conservation law

(ηu)x −
(
η
√

1− u2
)
y

= 0, (37)

for the steady state solution. Assume now that there is a solution u∗ to (37), such that u∗(x, y) > uN(x, y)
for all (x, y) and all solutions uN that we are interested in. For sufficiently smooth solutions (see Th. 3.1) the
superposition principle is valid and we can substitute the fixed u∗ for uN+1 and the N + 1 equations are still
satisfied. We can therefore reduce the N + 1 equations to only N equations with N unknowns. For example, in
the homogeneous case when η = const., we can take u∗ ≡ 1. In practice the reduction amounts to simply doing
what we mentioned above: use the expression of the moments in (33) also when N is odd.

We close this section by establishing the same superposition principle as for the delta equations in Section 2.

Theorem 3.1. Suppose {uk}Mk=1 are M weak solutions to (35) with N = 1 in the sense of Theorem 2.7, and
η ∈ C1. If uk are continuous functions with locally bounded variation, then u = (u1, . . . , uM)T is a weak
solution to (35) with N = M in the same sense.

The proof is essentially the same as for Theorem 2.7 and we leave it out.
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Remark 3.2. The kinetic version of (37) is

fx + avfy − ayfv = 0, f = f(x, y, v), a = a(x, y, v) = −
√
η2 − v2.

If we dictate that f = 0 whenever |v| > η(x) and treat this equation according to the method in [8], we arrive
at exactly the same moment equations as those in (31).

3.1. Properties of the flux function

We will here show that the functions

F2 ◦ F−1
1 (m) and K(F−1

1 (m), ηx, ηy) (38)

are well defined and regular on their domains of definition. The results will be given for a slightly more general
class of functions than those in (38). We start by introducing some notation. For a closed interval I ⊂ R, let
FN (I) ⊂ L1(I) be defined by

FN (I) =
{
f ∈ L1(I)

∣∣ f(u) =
N∑
k=1

(−1)k+1H(u− uk), u1 ≤ . . . ≤ uN , uk ∈ I
}
.

Note that these functions correspond to the function f̃ in Section 3. For simplicity we drop the tilde in this
section. Also introduce the (compact) set of attainable moments, MN ⊂ RN ,

MN (I) =
{
m(f)

∣∣ f ∈ FN (I)
}
, m(f) =

{
{〈f, uk−1〉}Nk=1, N even,
{〈f −H(u), uk−1〉}Nk=1, N odd,

where 〈· , ·〉 is the L2 inner product on I. In [8] it was shown that if I = [0,∞), the mapping m(f) is one-to-one
and functions of the type 〈m−1(m), ψ〉 are continuous on MN [0, L] ⊂MN (I) for each 0 < L <∞, when ψ has a
strictly positive and bounded Nth distributional derivative. This type of functions were identified as entropies
for the moment system in [8]. We consider the compact interval I = [−L,L], with also negative velocities, and
show a slightly more complete regularity result for a larger class of ψ, including the regularity of (38).

Let Pn be the space of polynomials of degree at most n and let C0,α be the set of Hölder continuous functions
of exponent α with 0 < α ≤ 1. In general Jψ is Hölder continuous, but not continuously differentiable, as
seen in:

Theorem 3.3. The mapping Jψ : MN(I) 7→ R given by

Jψ(m) = 〈ψ, f〉, m = m(f), (39)

is well defined. If ψ ∈ Lp(I), 1 ≤ p ≤ ∞ then Jψ ∈ C0, p−1
pN (MN(I)) (and C0 for p = 1 and C0,1/N for

p = ∞). If N = 1 and ψ ∈ CM(I) then Jψ ∈ CM+1(MN (I)). If N > 1 and ψ ∈ CM (I) with M < N ,
then Jψ ∈ C0, 1

N−M (MN(I)). If N > 1 and ψ ∈ C0(I), then ∇Jψ is continuous almost everywhere, but it is
discontinuous at m = 0, unless ψ ∈ PN−1(I). If ψ ∈ PN−1(I) then Jψ ∈ C∞(MN (I)).

When |uk| ≤ L < 1 it follows from (34) that, up to a constant, each element of the flux function is of the
form (39) with ψ = u`/

√
1− u2. The source function K is of a similar form. Hence, we have:

Corollary 3.4. The flux and source functions (38) are well defined and depend Lipschitz continuously on
m ∈MN [−L,L] when 0 < L < 1. They are not continuously differentiable.



SOME NEW RESULTS IN MULTIPHASE GEOMETRICAL OPTICS 1217

Proof of Theorem 3.3

Without loss of generality we prove the theorem for L = 1. In the proof we will use the coefficient mapping
C : Pn−1 7→ Cn,

C(c0 + c1x+ . . .+ cn−1x
n−1) = (c0, . . . , cn−1)T .

The cases N = 1 and ψ ∈ PN−1 are trivial. For the remaining cases we need the following two lemmas.

Lemma 3.5. Let h ≥ 0 belong to L∞[0, b]. For a ∈ [0, b] and integers m,n ≥ 0, we have the sharp estimate(∫ a

0

h(u)du
)m+n+1

≤ (m+ n+ 1)!
m! n!

||h||m+n
L∞

∫ a

0

h(u)um(a− u)n du. (40)

Proof. Denote the left and right-hand sides by fL(m,n, a) and fR(m,n, a) respectively. Assume h is continuous.
Then ∂afL and ∂afR exist everywhere in [0, b] and since fL(m,n, 0) = fR(m,n, 0) we can prove (40) by showing
that ∂afL ≤ ∂afR in [0, b]. Since h ≥ 0,

∂fL(m, 0, a)
∂a

= (m+ 1)h(a)
(∫ a

0

h(u)du
)m
≤ (m+ 1)h(a)am||h||mL∞ =

∂fR(m, 0, a)
∂a

,

proving (40) when n = 0. Assume now that (40) holds for 0 ≤ n < p. Then it holds also for n = p, because

∂fL(m, p, a)
∂a

= (m+p+ 1)h(a)fL(m, p−1, a) ≤ (m+ p+ 1)!
m! p!

||h||m+p
L∞

∫ a

0

h(u)ump(a−u)p−1du =
∂fR(m, p, a)

∂a
·

The general case (40) follows by induction, and by approximating h with continuous functions. The sharpness
of (40) is shown by taking h constant.

Lemma 3.6. For 1 ≤ n ≤ N let

Pn(u) =
n∏
k=2

(uk − u) ∈ Pn−1[−1, 1], P1 = 1. (41)

There is a constant C only depending on n and N such that

||(f1 − f2)Pn||L1 ≤ C|m(f1)−m(f2)|1/(N−n+1), ∀f1, f2 ∈ FN [−1, 1].

Proof. Let f1 be defined by the points {uk} and assume without loss of generality that f2(u) = 0 for u ≤ u1,
so that (f1 − f2)PN ≥ 0. For some increasing sequence of points {aj} and signs sj ∈ {−1, 1}, we can write

f1 − f2 =
2N∑
j=1

sjH(u− aj), {uk}Nk=1 ⊂ {aj}2Nj=1.

Therefore,

||(f1 − f2)Pn||N−n+1
L1 =

( N∑
j=1

∫ a2j

a2j−1

|Pn|du
)N−n+1

≤ C
N∑
j=1

(∫ a2j

a2j−1

s̃jPn du

)N−n+1

, (42)

with s̃j ∈ {−1, 1} and s̃jPn ≥ 0 in the interval. Let nj be the largest non-negative number such that unj+n ≤
a2j−1, or 0 if no such number exist. Since Pn is bounded in [−1, 1] independently of {uk} we can use Lemma 3.5
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and show that (42) is bounded by

≤ C
N∑
j=1

∫ a2j

a2j−1

s̃jPn(u)(u− a2j−1)nj (a2j − u)N−n−njdu ≤ C
N∑
j=1

∫ a2j

a2j−1

|PN (u)|du

= C〈f1 − f2, PN 〉 = C(m(f1)−m(f2))TCPN ≤ C|m(f1)−m(f2)|,

which proves the lemma.

Lemma 3.6 assures that m is one-to-one and, consequently, that Jψ is well defined on MN (I). When ψ ∈ L1,
let mn → m ∈ MN . By Lemma 3.6 the corresponding fn → f in L1 and hence a subsequence fnj → f a.e.
By the dominated convergence theorem Jψ(mnj ) → Jψ(m), which remains true for mn since |fn| ≤ 1. When
ψ ∈ Lp(I) and 1 < p ≤ ∞, let q = p/(p− 1) for p <∞ and q = 1 for p =∞. Then

|Jψ(m1)− Jψ(m2)| ≤ ||ψ||p ||f1 − f2||q = ||ψ||p ||f1 − f2||1/qL1 ≤ C|m1 −m2|1/qN , ∀m1,m2 ∈MN ,

by Hölder’s inequality and taking n = 1 in Lemma 3.6.
Next, assume that ψ ∈ CM(I) and 1 ≤ M < N . Take f1, f2 ∈ FN (I). Let f1 be defined by the points

{uk} and assume as above without loss of generality that f2(u) = 0 for u ≤ u1. Furthermore, let Q be the
unique polynomial in PM−1(I) which interpolates ψ at the points {uk}M+1

k=2 . (If n points coincide, the first n−1
derivatives of Q and ψ should also agree at this point.) Then from standard results in approximation theory
the error term in the interpolation has the form

ψ(u)−Q(u) = (−1)M
ψM (ξ)
M !

PM+1(u), ξ ∈ I,

with PM+1 as in (41). Moreover, |CQ| is bounded by the max norm of ψ and its first M − 1 derivatives. Using
also Lemma 3.6 and the boundedness of m, we get for m1 = m(f1) and m2 = m(f2),

|Jψ(m1)− Jψ(m2)| ≤ C sup
ξ∈I
|ψM (ξ)| · ||(f1 − f2)PM+1||L1 + |〈f1 − f2, Q〉|

≤ C|m1 −m2|1/(N−M) + |(m1 −m2)TCQ| ≤ C|m1 −m2|1/(N−M).

Finally, consider the compact set U ε =
{
u ∈ RN

∣∣ uk ≤ uk+1 − ε, uk ∈ I
}

for ε > 0. Let g be the natural map
from U ε to FN , so that FN = g(U0), and set M ε

N = m(g(U ε)). Since g is continuous and injective on g(U ε)
when ε > 0, the inverse map g−1 ◦m−1 : M ε

N 7→ U ε is well defined and continuous by Lemma 3.6. As in (36) the
gradient of Jψ on M ε

N is explicitly given by ∇mJψ(m) = V −1(u)Θ(u) for m = m(g(u)), with the same V as
in (36) and Θ = {ψ(uk)} ∈ RN . Both V −1 and Θ are continuous on U ε, when ψ is continuous. Since we can take
arbitrarily small ε, this shows the continuity of ∇Jψ(m) almost everywhere. It also implies ∇Jψ(m) = CP ∗,
where P ∗ is the unique polynomial in PN−1(I) that interpolates ψ at all the points u = {uk}Nk=1, given by

P ∗(u) = ψ(u1) +
N∑
`=2

ψ[u1, . . . , u`](u− u1) · · · (u− u`−1). (43)

Here [ · ] denotes divided differences. To show that ∇Jψ(m) is not continuous at m = 0 when N is even, let
un = {unk} be a sequence such that unk → a ∈ I for all k. Then fn := g(un) → 0 a.e. and consequently
mn := m(fn) → 0. From (43) we deduce that (∇mJψ(mn))N = ψ[un1 , . . . , unN ]. The limit of this as n → ∞
either does not exist, depends on the specific sequence or tends to ψ(N−1)(a)/(N−1)! by results in approximation
theory. If ψ 6∈ PN−1 its (N − 1)th derivative is not constant, and since a was arbitrary, ∇Jψ is discontinuous
at zero in all cases. When N is odd we use the same sequence {unk} except that we let unN → 0 so that mn → 0
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as before. One can then show that 0 = ∂aψ(0) = ∂a(limn→∞ P ∗(unN )) implies that limn→∞(∇mJψ(mn))N is
again independent of a only if ψ ∈ PN−1.

4. Numerical results

In this section we show results of applying the equations derived in Sections 2 and 3 to a number of different
test problems. We consider both homogeneous (η ≡ 1) and inhomogeneous (η = η(x)) media and use closures
corresponding to N = 1, 2, 3 crossing rays at each point. The equations closed with delta functions, (15), are
set in two-dimensional space while the Heaviside equations, (35), are reduced to a one-dimensional space by
treating x as a time-like variable. As a shorthand we will refer to the equations as the δ- and the H-equations.

As we remarked in Section 2.2 the δ-equations (15) are nonstrictly hyperbolic with linearly degenerate fields.
This is reflected in their sensitivity to numerical treatment. It was shown in [14, 15] that even for smooth
problems some standard numerical methods such as the Godunov scheme and the Nessyahu-Tadmor scheme
with dimensional splitting converge poorly in L1 and may fail to converge in L∞. In the Godunov case this
could be explained by the solution of the Riemann problem (23). In [20] it was shown that with a genuinely
two-dimensional version of Nessyahu-Tadmor the expected second order convergence rate is obtained for smooth
problems. This was confirmed in [30], where it was also demonstrated that a splitted version of Lax-Friedrichs
had bad convergence properties. It appears that the dimensional splitting aggravates the numerical errors,
although for the Godunov scheme, it was observed in [17], the same type of failure to converge in L∞ can also
occur in the much simpler case of a linear one-dimensional equation with variable coefficients.

Another difficulty for the δ-equations is to evaluate the flux functions F1 ◦F−1
0 and F2 ◦F−1

0 . In both cases
it is necessary to solve a nonlinear system of equations

F0(u) = m, (44)

for each time step, at each grid point. Solving (44) can be difficult. An iterative solver must be used when
N > 2, which is expensive and requires good initial values. In general, the Jacobian of F0 is singular at some
points in the computational domain. This happens when two rays are parallel. For iterative methods that use
the Jacobian, this is a problem. When N = 1, 2 we have found an analytical way to invert F0, see Appendix B.1.
Furthermore, (44) may not have a solution. Although, for the exact solution of the PDE, (44) should always be
satisfied, truncation errors in the numerical scheme may have perturbed the solution so that m is not in MN ,
the range of F0. We use the least squares solution of (44) when m 6∈MN .

The H-equations (35) are strictly hyperbolic and numerical schemes are not as sensitive as for the δ-equations.
The evaluation of the flux functions is also easier, since it can be reduced to solving polynomial equations of low
degree, see Appendix B.2. By accepting also complex roots of those polynomial equations, MN the domain of
definition of the flux function can be continuously extended, avoiding most problems when (44) does not have
a solution.

The difficulties with the H-equations are of a different type. When the number of physically relevant phases
is less than the number of phases supported by the system we must still give initial data for the nonexistent
phases. In the delta case a near zero value can be given. (It is practical though not to use exactly zero since
the flux functions have a weak singularity at zero.) Alternatively, the phase can be initialized to the same as
another, physically relevant, phase. In the Heaviside case this is not as easy. The fictitious phases can obviously
not be set to zero. Moreover, they cannot be set to the same as another phase. That would eliminate them from
the equations. For instance, suppose there is only one relevant phase and a system with an even N > 1 is solved.
If all fictitious phases were initialized at x = 0 to the same as the relevant phase, we would get mij(0, y) = 0
for all i, j and the system would hence only give the trivial solution. If N had been odd the system would have
been reduced to the N = 1 case. Instead, the non-physical phases must be initialized to some other values. The
solution can be sensitive to the right choice.

The main purpose of this section is to study the behavior of the exact solution to the PDEs, rather than
their numerical properties. Therefore, in order to avoid problems with numerical artifacts we have used the
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Table 1. Specifications of parameters used for the test problems. An asterisk indicates that
a convergence study was also made for this problem with different grid sizes.

Problem δ-equations H-equations
N Grid Size CFL Sample Time N Grid Size CFL

Three point sources 1 80× 160 0.65 1.0
2 160× 320 0.65 1.0
3 40× 80 0.65 1.0

Simple Caustic 1 256× 256 0.65 3.0 2 1024∗ 0.4
2 512× 512 0.65 3.0

Focus 1 80× 80 0.65 4.0
Interface 2 80× 80∗ 0.65 5.0 3 256∗ 1.0
Wedge 1 512× 512 0.65 4.0 2 1024 1.0

2 512× 512 0.65 5.0 3 2048 0.9
Convex Lens 1 512× 512 0.65 5.0 2 1024 1.0

2 512× 512 0.65 5.0 3 2048 0.6

Lax-Friedrichs method. Although only first order accurate, it has proved to be the most robust and predictable
method for these equations. For the numerical methods we will use the following notation. Space and time is
discretized uniformly with step sizes ∆x, ∆y and ∆t. The grid functions Un

j (1D) and Un
ij (2D) approximates

the exact solutions,

Un
ij ≈ u(n∆t, i∆x, j∆y), Un

j ≈ u(n∆x, j∆y),

where u are the variables introduced in (12) and (32) respectively. To measure the error of the computations
we use the discrete L1- and L∞-norms, defined as

||U||1 = ∆y
∑
i |Ui|, ||U||∞ = maxi |Ui|, (1D),

||U||1 = ∆x∆y
∑
i,j |Uij |, ||U||∞ = maxi,j |Uij |, (2D).

In the computations we typically apply the exact solution as a Dirichlet boundary condition on the line x = 0.
Where nothing else is said we use simple extrapolation, Un+1,j = Unj , etc. on the remaining boundaries. More
detailed specifications of parameters used is listed in Table 1. For a more complete numerical study, see [30].

4.1. Homogeneous problems

4.1.1. Three point sources

We begin with a problem with three point sources located at coordinates s1 = (−0.5, 0.5), s2 = (−0.5, 1.0).
and s3 = (−0.5, 1.5). The exact solutions are wk(t,x) = Ak(x − sk)H(t − rk)/r2

k, rk = ||x − sk||, k = 1, 2, 3
where A1 = 1.25, A2 = 0.75 and A3 = 1.0. The solution is computed in the rectangle [0, 1]× [0, 2]. Figure 2
shows the solution at t = 1.0 of the δ-equations with N = 1, 2, 3. For the N = 3 system, the exact solution was
given at x = 0. For the N = 2 system, the first two arriving waves were given at x = 0, i.e.

u1 = w2, u2 =

{
w1 r1 < r3,

w3 r1 ≥ r3.
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Table 2. Simple caustic. L1-norm of the errors in the sense of (45) at x = 0.2, x = 0.55 and
x = 1.0 for the H-system with N = 2. Here ∆y = 2/n.

L1 x = 0.2 x = 0.55 x = 1.0
n error order error order error order
128 1.61× 10−2 3.12× 10−2 8.08× 10−2

0.87 0.68 0.41
256 8.79× 10−3 1.95× 10−2 6.10× 10−2

0.89 0.75 0.45
512 4.75× 10−3 1.16× 10−2 4.45× 10−2

0.92 0.77 0.48
1024 2.52× 10−3 6.81× 10−3 3.18× 10−2

0.94 0.91 0.44
2048 1.31× 10−3 3.62× 10−3 2.34× 10−2

Finally, for the N = 1 system, the first arriving wave was given at x = 0,

u =


w1 r1 < r2, r1 < r3,

w2 r2 ≤ r1, r2 < r3,

w3 r3 ≤ r1, r3 ≤ r2.

As expected, the N = 3 system is the only one solving this problem correctly. Delta functions appear in the
solutions of the N = 1, 2 systems. Note that the N = 2 system, somewhat surprisingly, gives the waves of the
outer two sources (k = 1, 3) in the area along the line y = 1, cf. Figure 2e.

4.1.2. Simple caustic

In this problem we give data at x = 0 such that a caustic forms,

g(0, y) = 1, sin θ(0, y) =

{
− sin 2θ̃(y), y > 1,
0, y ≤ 1,

sin θ̃(y) =
y − 1√

(y − 1)2 + 4 cos2 π
5

·

The exact ray traced solution is shown in Figure 3c. Although the rays concentrate along the caustic, there are
at most two crossing rays at each spatial point.

The solution was computed in the square [0, 2]× [0, 2] for the δ-equations with N = 1, 2 and the H-equations
with N = 2. For the H-equations, initial data for θ1 was as above, and θ2(0, y) = θ1(0, 2). In Figure 3 the result
is shown. At this level of resolution the δ-equations with N = 2 does not manage to capture the second phase
just after the caustic. Away from the caustic, at x > 1.8 it gives a better solution, though. The H-equations
with N = 2, on the other hand, computes both phases accurately also close to the caustic.

For the H-equations we have made a convergence study. The solution is sampled before (x = 0.2), inside
(x = 0.55) and just after (x = 1.0) the caustic for different grid sizes. To measure the error against the exact
solution, which can be multivalued, we let (uex(x, s), y(x, s)) with s ∈ [0, 1] be the parameterized exact solution
at x = n∆x. The discrete L1-norm of the error, in the sense

||U||1 = ∆y
∑
i

∑
y(x,s)=i∆y

min(|uex(x, s) − (Un
i )1)|, |uex(x, s)− (Un

i )2)|), (45)

is tabulated in Table 2. We obtain full first order convergence rate before and inside the caustic. After the
caustic the solution of the conservation law has a discontinuity at y = 1, cf. Figure 3f, and the convergence rate
drops to one half, which is the expected rate for discontinuous solutions.
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(d) N = 1, sine of ray angle, vk = sin θk, (above), ray
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strength g1 + g2 (below).

Figure 2. Three point sources. Solution of the δ-equations with N = 1, 2, 3. Top pictures
show total ray strength, i.e. g, g1 + g2 and g1 + g2 + g3 respectively. Bottom pictures show
solution in a cut at x = 0.2, computed (solid) and exact (dotted, dashed, dashdotted).

4.1.3. Focus

We consider data at x = 0 that generates a clean focus at coordinates (1, 1),

tan θ(0, y) = 1− y, g(0, y) =
1

1 + 4y2
·
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(e) H-equations, N = 2.
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(f) H-equations, N = 2, at x = 0.55

and x = 1.0.

Figure 3. Simple caustic. Top left and middle figures show total ray strength, i.e. g and
g1 + g2 respectively, given by the δ-equations with N = 1, 2. Top right figure shows a ray
traced solution. Bottom left and middle figures contain quiver plots of ray angles for solution
to δ- and H-equations with N = 2. Bottom right figure shows sine of ray angles (solid) in
cuts at x = 0.55 (above) and x = 1.0 (below) together with the corresponding values for a ray
traced solution (dashed).
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(c) Ray traced solution.

Figure 4. Focus. Solution of the δ-equations with N = 1, together with a ray traced solution.

This is a difficult problem and none of the equations manages to solve it correctly. Although, almost everywhere,
there is only one phase in the exact solution, the focus point formally contains an infinite number of phases.

We show the solution in the square [0, 2]× [0, 2] for the δ-equations with N = 1 in Figure 4. The behavior
of these equations can be explained by their relationship to the pressureless gas equations (22) mentioned
in Section 2.2. On a discrete level (22) describes the so-called sticky particle dynamics. This signifies particles
that move with constant speed until they collide. Colliding particles stick together and form a new particle
with mass and velocity given by the conservation of mass and momentum. The focus point can be seen as a
point where an infinite number of particles collide. The result is that all particles stick together, yielding the
mass concentration, and move from the collision point along a line determined by their total momentum in
the y-direction. The total momentum is given by the amplitude distribution of the injected wave, at x = 0.
Incidentally, this shows that the conservation of mass and momentum produces a solution that in general does
not agree with the viscosity solution for the corresponding eikonal equation, in which the line of discontinuity
in the phase would have been y = 1 regardless of the amplitude.

4.2. Inhomogeneous problems

4.2.1. Interface

This test problem uses an index of refraction that models a slightly tilted interface,

η(x, y) =


1 t ≤ 0,
1 + 4t2(3− 4t) 0 < t ≤ 1

2 ,

2 1
2 < t,

t = (x− 0.8) cos
π

16
− y sin

π

16
·

A number of plane waves with different angles are injected at x = 0 by giving the exact solution on this
boundary. The solution is computed in the square [0, 2]× [0, 2].
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(a) δ-equations, N = 2, vector fields (u1, u2)

and (u3, u4).

(b) H-equations, N = 3, vector fields

(cos θ1, sin θ1), (cos θ2, sin θ2) and (cos θ3, sin θ3).

Figure 5. Interface. Result with two plane waves for the δ-equations with N = 2 and three
plane waves for the H-system with N = 3. Contour lines of the index of refraction η is
superimposed.

In the first test we used two waves with angles θ1 = π/4, θ2 = −π/6 and g1(0, y) = g2(0, y) = 1. The solution
of the δ-system with N = 2 is shown in Figure 5a. Next, we add a third wave with angle θ3 = π/8 and solve
the H-system with N = 3, see Figure 5b.

The exact solutions of these problems are given by Snell’s law,

η` sin θ` = ηr sin θr, η`g` cos θ` = ηrgr cos θr.

The indices indicates the value to the left (`) and right (r) of the interface. We study how the computed
solutions converge to this solution when we refine the mesh. In the delta case we sample the solution at time
t = 5.0 and x = 2. To avoid boundary effects we only look at the interval 1.5 ≤ y ≤ 2 for the first wave and
0 ≤ y ≤ 0.5 for the second. The errors in these intervals are given in Table 3. The tabulated errors are the
the sum of the discrete L1-norms of the errors in the components uk, and the total discrete L∞-norm of the
component errors. The Heaviside case was treated the same way, only that the solution was sampled at x = 1.75
and that we took the solution in the interval 0.5 ≤ y ≤ 1.5 for all three waves. The errors, computed as in the
delta case, are also shown in Table 3. In both cases we obtain the expected first order convergence rate.

4.2.2. Wedge

In this test problem a plane wave, injected at x = 0 with θ(0, y) = 0 and g(0, y) = 2, is refracted by a smooth
wedge, modeled by the index of refraction

η(x, y) = 1.5− 1
π

arctan(20((y − 1)2 − 0.3(x− 0.5))).

When it is refracted in the interface a second and third phase appear. A caustic develops around the point
(1, 1), fanning out to the right, see Figure 6c. We have computed the solution in the square [0, 2] × [0, 2]
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Table 3. Interface. The L1- and L∞-norm of the errors for the δ-system with N = 2 and
the H-system with N = 3. Error measured against the values predicted by Snell’s law. Here
∆y = 2/n and ∆x = ∆y in the delta case.

δ-equations, N = 2 H-equations, N = 3
L1 L∞ L1 L∞

n error order error order n error order error order
20 5.28× 10−2 5.07× 10−2 128 1.95× 10−2 9.66× 10−3

0.65 0.73 1.03 1.03
40 3.37× 10−2 3.05× 10−2 256 9.52× 10−3 4.72× 10−3

0.80 0.81 1.02 1.02
80 1.94× 10−2 1.73× 10−2 512 4.71× 10−3 2.33× 10−3

0.90 0.89 1.01 1.01
160 1.04× 10−2 9.38× 10−3 1024 2.34× 10−3 1.16× 10−3

0.94 0.94 1.00 1.00
320 5.40× 10−3 4.89× 10−3 2048 1.17× 10−3 5.78× 10−4
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(c) Ray traced solution.

Figure 6. Wedge. Amplitude results for δ-equations with N = 1, 2. Left and middle pictures
show total ray strength, i.e. g and g1 +g2 respectively. Right figure shows a ray traced solution
with contour lines of the index of refraction superimposed.

for the δ-equations with N = 1, 2 and the H-equations with N = 2, 3. In the Heaviside case, initial data
was θ3(0, y) = π

4H(y), θ1 = θ2 − π/4 and θ2 = 3
4 (θ1 + θ2). Different aspects of the solutions are shown

in Figure 6 and Figure 7. The δ-equations with N = 1 only captures one of the phases as expected. The
N = 2 system captures quite well both the second phase and the caustic. The existence of a third phase does
not have a markedly adverse effect on the solution, presumably because it carries little energy. In contrast,
the H-equations, which do not include the amplitude, cannot correctly capture the second phase when N = 2.
However, when N = 3 all three phases are captured.
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(f) H-equations, N = 2 (above) and
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Figure 7. Wedge. Left and middle figures show quiver plots of ray angles for δ- and H-
equations with different N . A contour plot of the index of refraction is overlayed on the
solution. Right figures show sine of ray angles (solid) in a cut at x = 1.75 together with the
corresponding values for a ray traced solution (dashed).

4.2.3. Convex lens

In this last test problem a plane wave is sent through a smooth convex lens, given by the index of refraction

η(x, y) =

1 d > 1,(
4

3−cos(πd)

)2

d ≤ 1,
d =

(
x− 0.5

0.2

)2

+
(
y − 1
0.8

)2

.
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Figure 8. Convex lens. Left and middle figures show quiver plots of ray angles for δ- and
H-equations with different N . A contour plot of the index of refraction is overlayed on the
solution. Right figures show sine of ray angles (solid) in a cut at x = 1.75 together with the
corresponding values for a ray traced solution (dashed).

This problem was taken from [13]. As in the previous problem the δ- and H-equations were solved in the square
[0, 2]× [0, 2]. The same initial data as in the Wedge problem above was used. Figure 8 shows various features of
the solutions. In this problem the exact solution develops up to five phases in the focus area around (1, 1) and
settles with three phases behind this point. None of the equations manages to capture fully all three phases,
although in general the higher N the better they perform.
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Appendix A. Form of the flux functions

A.1. Delta function case

In the most simple case, N = 1, the function F0 is the identity and

F1 =
u1

|u|

(
u1

u2

)
, F2 =

u2

|u|

(
u1

u2

)
, K =

ηxu2 − ηyu1

|u|

(
u2

−u1

)
.

For N = 2, let w = (w1, w2)T and

f0 =


w1

w2

w3
1/|w|

2

w3
2/|w|

2

 , f1 =
w1

|w| f0, f2 =
w2

|w| f0, k =
ηxw2 − ηyw1

|w|


w2

−w1

w2
1w2/ |w|2

−w1w
2
2/ |w|

2

 .

Then Fj = fj(u1, u2) + fj(u3, u4) for j = 0, 1, 2 and K = k(u1, u2) + k(u3, u4).

A.2. Heaviside function case

For N = 1, the functions are simple,

F1(u1) = −u1, F2(u1) =
√

1− u2
1, K = 0.

For N = 2, let

f1 =
(
w

1
2w

2

)
, f2 =

(
−
√

1− w2

1
2

(
arcsin(w)− w

√
1− w2

)) , k =
(

0
ηy
2

(
arcsin(w) + w

√
1− w2

)
− 1

2ηxw
2

)
.

Then Fj = −fj(u1) + fj(u2) for j = 1, 2 and K = −k(u1) + k(u2). Finally, for N = 3, let

f1 =

 w
1
2w

2

1
3w

3

 , f2 =

 −
√

1− w2

1
2

(
arcsin(w) − w

√
1− w2

)
− 1

3 (2 + w2)
√

1− w2

 , k =

 0
ηy
(
arcsin(w) + w

√
1− w2

)
− 1

2ηxw
2

− 2
3ηy(1− w2)

√
1− w2 − 2

3ηxw
3

 .

Then Fj = −fj(u1) + fj(u2)− fj(u3) for j = 1, 2 and K = −k(u1) + k(u2)− k(u3).

Appendix B. Evaluating the flux functions

B.1. Delta function case

We will here show how to solve the system of equations (44) analytically, when N = 2, for the choice of
moments in (11). The nonlinear system reads

u1 + u3 = m10,
u3

1

u2
1 + u2

2

+
u3

3

u2
3 + u2

4

= m30,

u2 + u4 = m01,
u3

2

u2
1 + u2

2

+
u3

4

u2
3 + u2

4

= m03.

(46)

We introduce the two new unknowns a = g1 + g2 and β = θ1 + θ2 and observe that

m30 = m10 cos2 α−R(a) cos(β + α)(1 + cos(β − 2α)),
m03 = m01 sin2 α+R(a) sin(β + α)(1 + cos(β − 2α)),

(47)
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where

R(a) =
b

2

(
1− b2

a2

)
, b =

√
m2

10 +m2
01, tanα =

m01

m10
·

From (47) we obtain β and a,

tan(β + α) = −m03 −m01 sin2 α

m30 −m10 cos2 α
,

R(a)2(1 + cos(β − 2α))2 = (m30 −m10 cos2 α)2 + (m03 −m01 sin2 α)2.

Next, we define the new unknown φ by g1 = (a+ b cosφ)/2 and use the relationship b2 = g2
1 + g2

2 + 2g1g2 cosβ,
obtained by squaring and summing the two leftmost equations in (46). After setting a2 = b2 + c2, we arrive at
an equation of the form[

(a2 + c2)(m2
10 −m2

01)
b2

− b2 cosβ
]

cos(2φ)− 4acm10m01

b2
sin(2φ) = m2

10 −m2
01 − (a2 + c2) cosβ,

which can be solved exactly to get φ. The solution is finally given by

u1 =
1
2
m10 +

1
2b

(am10 cosφ− cm01 sinφ), u3 = m10 − u1,

u2 =
1
2
m01 +

1
2b

(am01 cosφ+ cm10 sinφ), u4 = m01 − u2.

B.2. Heaviside function case

We show here how to solve the equation F1(u) = (m10, . . . ,m1,N−1)T analytically when N = 1, 2, 3. For
N = 1 it is trivial, u1 = −m10. For N = 2 the solution is

u1 =
m11

m10
− m10

2
, u2 =

m11

m10
+
m10

2
·

For N = 3, the solution is given as the roots of the polynomials

(6m10
2 + 12m11)u2 + (4m10

3 − 12m12)u+m10
4 + 12m11

2 − 12m12m10 = 0, (u1, u3)
3(m10

2 + 2m11)u−m10
3 − 6m12 − 6m10m11 = 0. (u2)

For N = 3, . . . , 6 the solutions are given by solving two polynomial equations of degree N/2, when N is even,
and of degree (N+1)/2 and (N−1)/2 when N is odd. The coefficients of the polynomials are rational functions
of the moments (m10, . . . ,m1,N−1). We conjecture this holds for all N .
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Math. 320 (1995) 1097–1102.

[7] F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Comm.
Partial Differential Equations 24 (1999) 2173–2189.

[8] Y. Brenier and L. Corrias, A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H.
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