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Abstract
We present a family of high-order trapezoidal rule-based quadratures for a class of
singular integrals, where the integrand has a point singularity. The singular part of the
integrand is expanded in a Taylor series involving terms of increasing smoothness.
The quadratures are based on the trapezoidal rule, with the quadrature weights for
Cartesian nodes close to the singularity judiciously corrected based on the expansion.
High-order accuracy can be achieved by utilizing a sufficient number of correction
nodes around the singularity to approximate the terms in the series expansion. The
derived quadratures are applied to the implicit boundary integral formulation of surface
integrals involving the Laplace layer kernels.

Keywords Singular integrals · Trapezoidal rules · Level set methods · Closest point
projection · Boundary integral formulations

MSC Classification 65D32 · 65R20

1 Introduction

The trapezoidal rule is a simple and robust algorithm for approximating integrals.
In general, it has second order accuracy, but when applied to compactly supported
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smooth functions, the accuracy is much higher. However, as the integrand becomes
less smooth, the accuracy deteriorates, whichmakes themethod unsuitable for singular
integrals such as those found in boundary integral equations. This paper develops
a systematic approach to derive high-order corrected trapezoidal rules for integrals
involving a class of integrands that are singular at one point.

Let f : R
n \ {0} �→ R be a compactly supported function with an integrable

singularity at 0. A crude way to approximate its integral is with the “punctured”
trapezoidal rule T 0

h , where h denotes the discretization parameter. It equals the standard
trapezoidal rule, but sets f ≡ 0 in a in a small h-dependent region Nh surrounding
the singular point

T 0
h [ f ] := hn

∑

y∈hZn\Nh

f (y).

This gives a low order accurate approximation. With Rh[ f ] denoting the error in
the quadrature rule, we write

∫
f (x)dx = T 0

h [ f ] + Rh[ f ]. (1)

One direction to improve the accuracy is to add back the function values at the excluded
points inNh with judiciously chosen weights, such that they well approximateRh[ f ].
This can be seen as a correction of the standard trapezoidal rule, locally around the
singularity. The overall simplicity of themethod is thereforemaintained. The approach
has been used, for example, in [1–4] for the trapezoidal rule and in [5, 6] for other
quadrature methods.

In this article, we consider two-dimensional singular integrands f = s v, where
v ∈ C∞

c (R2) and s is of the following form:

s(x) = 1

|x|�
(

|x|, x
|x|

)
, (2)

for some smooth function � : R × S
1 → R. Nevertheless, � (|x|, x/|x|) is not neces-

sarily a smooth function of x in 0 if �(0,u) is non-constant in u. Singular functions of
the type (2) are found in many applications. For instance, if g : R2 → R

3 has a simple
zero at the origin, then s(x) = 1/|g(x)| is of this type, as proven in Lemma 3.3. They
also characterize the singular behavior of the kernels found in the boundary integral
equations for elliptic problems. In three dimensions, the kernel is a function of two
spatial variables, x̄, ȳ, but the integral typically involves the product of the kernel and
a smooth function over a smooth and compact surface. In this setup, the singularity
in the integrand depends on 1/|x̄ − ȳ| and also on “the angle of approach,” which
corresponds to the way ȳ approaches x̄ along a two dimensional surface. See Fig. 1
for an illustration of the singular behavior of boundary integrals layer kernels. Note
that we limit ourselves to compactly supported integrands. These can also be seen as
the restrictions of periodic functions which are smooth away from the point singular-
ity. If the integrand is not zero at the boundary of the integration domain, additional
boundary corrections must also be introduced; see discussions in [1, 7].
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Fig. 1 Singular behavior of a layer kernel. Two plots related to the double-layer kernel ∂G
∂ny

(x̄, ȳ) =
∂G
∂ny

(v(0, 0), v(θ, φ)) from boundary integral formulations, where v(θ, φ) is a surface parametrization

centered around x̄ = v(0, 0). The kernel is in the form (2) using (θ, φ) near its singular point. On the left,
we plot the kernel ∂G

∂ny
(v(0, 0), v(θ, φ)) on a uniform grid around (0, 0). On the right, we plot �(|w|,w/|w|),

w := (θ, φ), obtained by multiplying the same kernel by |w|. We can clearly see that �(0, u) is not constant
in u

In [8], we derived a second order accurate method. In this paper, we generalize our
approach systematically to derive higher order methods. Our approach is to Taylor
expand the function � in its first argument and recognize that the smoothness of the
remainder term increases with order and can eventually be integrated accurately with
the standard trapezoidal rule. We therefore only need to derive corrections for the
leading Taylor terms, which are all of the form |x| jφ(x/|x|), for some j and φ : S1 →
R. The details are presented in Sect. 2.

One of the main motivations for the proposed approach is to provide the implicit
boundary integral methods (IBIMs, see [9]) with high-order convergent quadratures.
IBIMs are volumetric integral formulations of classical boundary integrals and do not
rely on explicit parameterization of surfaces (the “boundary” in the boundary inte-
grals). The IBIM approach gives a way to compute accurate surface integrals, integral
equations, and variational problems on surfaces for other non-parametric methods,
including the level set methods, e.g., [10–13], and the closest point methods, e.g., [14,
15].

In Sect. 3, we apply our new high-order corrected trapezoidal rules to the singular
integrals derived from IBIMs. In that formulation, the integrand is singular along a
line, and for each fixed plane, it has a point singularity. To compute the volumet-
ric integrals from IBIMs, our quadrature rules for integration in two dimensions are
therefore applied plane by plane; see Sect. 3.1.We show in Theorem 3.1 that the result-
ing singularity on each plane is of the type in (2) and derive explicit expressions for
the required terms in the expansion. Some efforts are needed to extract the needed
geometrical information of the surface. Specifically, intrinsic information about the
surface (principal directions and curvatures and third derivatives of its local represen-
tation) together with extrinsic information (signed distance function to the surface)
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are needed to apply the quadrature rule in addition to the information needed for the
IBIM formulation.

Finally, numerical simulations for selected problems in two and three dimensions
are presented in Sect. 4.

2 The corrected trapezoidal rules

The standard trapezoidal rule has a low order accuracy when applied to singular
integrals. In this section,we showhowone can raise the order of accuracy for integrands
that are singular at a point, by correcting the computations at a few grid points close
to the singularity. This type of corrections have been applied successfully in a few
settings earlier. See, for example, [1–4].

We begin by defining the trapezoidal rules that we will work with. Let f be an
integrable, compactly supported, function on Rn . We are interested in approximating
the integral

∫
Rn f (x)dx by summation of the values of f on the uniform grid hZn .

Since f is supported in a compact set, the standard trapezoidal rule becomes the
following simple Riemann sum:

Th[ f ] := hn
∑

y∈hZn

f (y). (3)

In this case, the order of accuracy of the approximation is only limited by the
regularity of f . If f ∈ C p

c (Rn), the error is at worst O(h p). See, e.g., the discussion
and proofs in [16]. In particular, the trapezoidal rule enjoys spectral accuracy if f ∈
C∞
c (Rn). Here, C p

c (Rn) denotes the space of compactly supported functions on R
n

whose partial derivatives up to order p are continuous (of all orders, if p = ∞).
If f is smooth in R

n \ {x0}, singular at x0, and
∫
Rn f (x)dx exists as a Cauchy

principal value, it is natural to modify the trapezoidal rule by excluding the summation
over some grid nodes close to x0.We define the punctured trapezoidal rulewith respect
to Nh as

T 0
h,Nh

[ f ] := hn
∑

y∈hZn\Nh(x0)

f (y), (4)

whereNh(x0) defines a small neighborhood around x0, the region being “punctured”
from R

n . When x0 lies on a grid node, one typically sets Nh(x0) = {x0}, i.e., only
the singularity point is removed from the standard trapezoidal rule. If x0 does not lie
on a grid node, one option is to remove the grid node xh that is closest to it. In this
case,Nh(x0) = {xh}. In general,Nh(x0)may contain several grid nodes, although the
number is typically finite and independent of h. We will write Nh,m to indicate that
the set contains m nodes.

Here, we consider an integrand that is the product of a smooth factor v and a singular
factor s, which takes the form (2) near the origin. The punctured trapezoidal rule
converges for such singular functions, albeit with a lower rate. In the case Nh(x0) =
{xh}, we have the following theorem.
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Theorem 2.1 Suppose v ∈ C∞
c (Rn) and s( · − x0) v(·) ∈ C∞

c (Rn \ {x0}) for any
x0 ∈ R

n. Assume furthermore that for some r0 > 0 there exist j ∈ Z and � ∈
C∞((−r0, r0) × S

n−1) such that

s(x) = |x| j�
(

|x|, x
|x|

)
, x ∈ Br0(0).

Then, for j ≥ 1 − n,

∣∣∣∣
∫

Rn
s(x − x0)v(x)dx − T 0

h,Nh
[s( · − x0) v(·)]

∣∣∣∣ ≤ Ch j+n,

where the constant C is independent of h, but depends on j , � and v.

The proof is given in the Appendix, where without loss of generality, we consider
x0 = 0 and Nh(0) = {0}.

We now give a brief summary of the steps that we shall take in Sections 2.1–2.5
to correct the trapezoidal rule for the two-dimensional case n = 2 and j = −1 in
Theorem 2.1.

In Sect. 2.1, we expand � in its first argument to derive a series of the form

s(x) ≡ 1

|x|�
(

|x|, x
|x|

)
=

q∑

k=0

sk(x) + 	qs(x),

for some functions sk and 	qs. Theorem 2.1 states that the error Rh , as defined in
(1), in applying T 0

h,Nh
to integrate sk is bounded above by hk+1. More precisely,

Rh[sk( · − x0) v( · )] ∼ O(hk+1).
In Sect. 2.2, we derive a weight ω for approximating the errorRh[sk( ·−x0) v( · )].

Multiplication of the weight by any smooth function v should yield

Rh[sk( · − x0) v( · )] = hk+1ω v(xh) + O(hk+2),

where xh is the grid node in hZ2 closest to x0. In addition, the weight depends on sk
but not on h and v. With this weight, we define

Q1
h[sk( · − x0) v( · )] := T 0

h,Nh,1
[sk( · − x0) v( · )] + hk+1ω v(xh).

Consequently,

∫

R2
sk(x − x0)v(x)dx = Q1

h[sk( · − x0) v( · )] + O(hk+2).
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We then generalize this approach systematically in Sects. 2.3 and 2.4. Eventually,
we obtain quadratures

Qp
h [sk( · − x0) v( · )] := T 0

h,Nh, p̃
[sk( · − x0) v( · )] + hk+1

p̃∑

i=1

ωi v(xh,i ),

such that
∫

R2
sk(x − x0)v(x)dx = Qp

h [sk( · − x0) v( · )] + O(hk+1+p),

formally for any k ≥ 0. Here, p̃ ≥ p is a constant and xh,i are grid points near x0.
These will be described more carefully later.

Remark 1 The quadrature rule Qp
h [sk] depends on the value of k in the subscript of

sk , in addition to the function sk , but for simplicity of notation, we will not make this
distinction.

Finally, in Sect. 2.5, we combine the quadratures Qp
h for sk v to define a quadra-

ture U p
h of order p ≥ 2 for the function s v (recall that s is expanded into a sum

of sk for k = 0, 1, · · · , q, and 	qs). The order p specifies how many expansions
terms are needed (q = p − 2) and which quadratures derived from correcting the
punctured trapezoidal rules are needed for each term (Qp−1−k

h for sk , and T 0
h,Nh,1

for
	qs = 	p−2s):

∫

R2
s(x − x0)v(x)dx = U p

h [s( · − x0)v( · )] + O(h p)

=
p−2∑

k=0

Qp−k−1
h [sk( · − x0) v( · )]

+ T 0
h,Nh,1

[	p−2s( · − x0) v( · )] + O(h p).

2.1 Expansion of the singular function

To integrate the function s(x) = |x|−1�(|x|, x/|x|) in (2) with high-order accuracy, we
use a divide et impera strategy. For any u ∈ S

1, we expand �(r ,u) with respect to the
first variable, and approach each of the expansion components separately: � becomes

�(r ,u) = �(0,u) + r ∂r�(0,u) + 1

2
r2∂2r �(0,u) + · · · ,

and we write s formally as the series

s(x) = s0(x) + s1(x) + s2(x) + · · ·
= 1

|x| φ0

(
x
|x|

)
+ φ1

(
x
|x|

)
+ |x| φ2

(
x
|x|

)
+ · · ·
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where sk(x) := |x|k−1φk

(
x
|x|

)
, and φk

(
x
|x|

)
:= 1

k!∂
k
r �

(
0,

x
|x|

)
. (5)

If we use q terms in this expansion, we expect that these terms sk strip away the
singularity in s at x = 0 so that what is left behind from the expansion, i.e., the
remainder term

	qs(x) := s(x) − (s0(x) + s1(x) + · · · + sq(x)) (6)

can be approximated directly with the (unmodified) trapezoidal rule and achieve the
order of accuracy desired without needing special quadrature.

This property is expressed in the following lemma.

Lemma 2.2 Let s be of the kind (2). Let r0 > 0 be such that � ∈ C∞((−r0, r0) × S
1).

For any integer q ≥ 0, there exist σ : R×S
1 → R such that σ ∈ C∞((−r0, r0)×S

1)

and
	qs(x) = |x|qσ(|x|, x/|x|). (7)

The proof of this lemma can be found in the Appendix. From this result and the
previous Theorem 2.1, we can express the following lemma.

Lemma 2.3 The term 	qs in (6) is integrated by the punctured trapezoidal rule (4)
with order q + 2:

∣∣∣∣
∫

R2
	qs(x − x0)v(x)dx − T 0

h,Nh
[	qs(· − x0)v( · )]

∣∣∣∣ ≤ Chq+2.

Hence, to get high order, it is sufficient to derive corrected trapezoidal rules for the
expansion terms

sk(x) = |x|k−1 φk

(
x
|x|

)
, k = 0, 1, 2, 3, . . . . (8)

We start fromfirst order correction for sk in Sect. 2.2 and endwith a general description
for an arbitrarily high-order method for s in Sect. 2.5.

2.2 First order correction

Our goal in this section is to derive a first order in h correction for the punctured
trapezoidal rule applied to ∫

R2
sk(x − x0)v(x)dx, (9)

for sk of the form (8). We assume φk ∈ C∞(S1), k ≥ 0, and v ∈ C∞
c (R2). This

correction will yield an error with its largest part proportional to hk+2.
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2.2.1 The singular point rests on a grid node

Without loss of generality, we assume that x0 = 0 and lies on a grid node. For such
cases, the setNh typically contains only the grid node where the singularity is. In our
case, Nh(0) = {0}. The smoothness of sk in (8) increases with k. Theorem 2.1 tells
us that for a function of this kind (two-dimensional, j = k − 1) the error behaves as
follows: ∣∣∣∣

∫

R2
sk(x)v(x)dx − Th,Nh [sk v]

∣∣∣∣ ≤ Chk+1.

Following [2], one can show that the error has the form

∫

R2
sk(x)v(x)dx = T 0

h,Nh
[sk v] + hk+1 ω[sk]v(0) + O(hk+2),

whereω[sk] is a constant independent of v and h. In [2] this is proven for s0(x) = 1/|x|
(k = 0 and φ0 ≡ 1).

Hence, we define the first order correction Q1
h to the punctured trapezoidal rule as

Q1
h[sk v] := T 0

h,Nh
[sk v] + hk+1 ω [sk] v(0). (10)

This quadrature rule thus corrects the trapezoidal rule in one node, the origin. It will
then have an error of size O(hk+2).

Remark 2 In the special case when φk ≡ 1, due to symmetry with respect to the grid
node at 0, the O(hk+2) terms cancel out, and Q1

h achieves an accuracy of O(hk+3).

To find the weight ω[sk] we exploit the fact that it is independent of the smooth
part, v, of the integrand. Therefore, onemay judiciously pick a smooth test function, g,
which facilitates the computation of theweight.We choose a test function g ∈ C∞

c (R2)

which is radially symmetric and g(0) = 1. We construct a family of weights {ωh}h
such that the corrected rule with grid size h integrates exactly our test function g:

∫

R2
sk(x)g(x)dx = T 0

h,Nh
[sk g] + hk+1 ωh[sk]g(0)

�⇒ ωh[sk] := 1

hk+1

[∫

R2
sk(x)g(x)dx − T 0

h,Nh
[sk g]

]
.

We define ω[sk] by the limit

ω[sk] := lim
h→0+ ωh[sk] = lim

h→0+
1

hk+1

[∫

R2
sk(x)g(x)dx − T 0

h,Nh
[sk g]

]
.

Note that since g is chosen to have compact support, T 0
h,Nh

[sk g] is a summation
of a finite number of terms. By choosing g radially symmetric, g(x) = g(|x|), the
two-dimensional Cauchy integral

∫
R2 sk(x)g(x)dx can be efficiently approximated to
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machine precision, e.g., using a Gaussian quadrature, by passing to polar coordinates
x = r(cos θ, sin θ)

∫

R2
sk(x)g(x)dx =

∫ ∞

0
rkg(r)dr

∫ 2π

0
φk(cos θ, sin θ)dθ.

2.2.2 The case of singular points lying off the grid

In most existing works, see [1–3, 7], one assumes that the singularity lies in the origin
x0 = 0, or equivalently falls in one of the grid nodes. However, for integrals arising
from the IBIM, one must consider the more general case

∫

R2
sk(x − x0)v(x)dx, (11)

with sk as in (8) and x0 /∈ hZ2. We let xh be the grid node closest to x0, satisfying

xh = xh(x0) = arg min
x∈hZ2

|x − x0| , x0 = xh + (αh, βh), α, β ∈
[
−1

2
,
1

2

)
,

as shown in the left plot of Fig. 2. Correspondingly, we define Nh,1(x0) = {xh}, and
the punctured trapezoidal rule becomes

T 0
h,Nh,1

[ f ] = h2
∑

x∈hZ2\Nh,1(x0)

f (x).

}

}

}
hx0

x  h
βh

αh

}}} hx
x

0

h,1

βh

αh

xh,2 xh,3 xh=

xh,4

Fig. 2 Singularity unaligned to the grid. The parameters α, β are used to characterize the position of the
singularity point x0 (red circle) relative to the grid in two different settings. Left plot (first order correction):
position of the singularity point relative to the closest grid node xh (yellow square). Right plot (second order
correction): position of the singularity point relative to the four surrounding grid nodes xh,i , i = 1, 2, 3, 4
(red squares except xh,3 = xh which is yellow)
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One can observe from numerical simulations that

∫

R2
sk(x − x0)v(x)dx = T 0

h,Nh,1
[sk(· − x0)v( · )]

+ hk+1ω[sk;α, β]v(xh) + O(hk+2).

(12)

Hence, the weight ω is still independent of v and h, but now depends on the relative
position of the singularity with respect to the grid, (α, β). Moreover, the function v

is evaluated in xh rather than in the singular point x0. Following this observation, we
define the first order correction Q1

h to the punctured trapezoidal rule when x0 does
not fall on the grid as

Q1
h[sk( · − x0)v( · )] := T 0

h,Nh,1
[sk( · − x0)v( · )] + hk+1 ω[sk;α, β]v(xh). (13)

Again, this gives an overall error of size O(hk+2).
The weight only depends on the relative position of the singularity with respect to

the grid. We therefore set x0 = 0 and, fixed h and (α, β), shift the grid by (α, β)h.
Hence, the weight is defined as the limit of the sequence:

ω[sk;α, β] := lim
h→0+ ωh[sk;α, β] , (14)

where

ωh[sk;α, β] := 1

hk+1

∫
R2 sk(x)g(x)dx − T 0

h,Nh,1

[
sk( · − (α, β)h)g( · − (α, β)h)

]

g(−(α, β)h)
.

The test function g is chosen as in the previous case. The advantages of this choice
are going to be the same, e.g., the integral

∫
R2 sk(x)g(x)dx = ∫

R2 sk(x−(α, β)h)g(x−
(α, β)h)dx can be computed fast and accurately by passing to polar coordinates.

2.3 Second order correction

The goal now is to build a quadrature rule with error O(hk+3) for the integrand
sk(x−x0)v(x) by approximating the quadrature errorRh of the punctured trapezoidal
rule T 0

h,Nh,1
to higher order. We have

∫

R2
sk(x − x0)v(x)dx = T 0

h,Nh,1
[sk(· − x0)v( · )] + Rh[sk(· − x0)v( · )]. (15)

Since both the singular integral and the punctured trapezoidal rule are linear in sk v,
we generalize the ansatz forRh in (12) to achieve higher order accuracy by expanding
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v at a grid node x̃h close to x0:

Rh[sk(· − x0)v( · )] =hk+1ω[sk;α, β]v(x̃h)

+ hk+2
(
ux [sk;α;β]
uy[sk;α;β]

)T

∇v(x̃h) + O(hk+3).

This ansatz requires three weightsω[sk;α, β]∈R and (ux [sk;α, β], uy[sk;α, β])T
∈ R

2. We further replace the partial derivatives of v at x̃h by finite differences of v on
{xh,i } p̃i=1, xh,1 = x̃h :

∇v(xh,1) = h−1

(∑ p̃
i=1 μx,i v(xh,i )∑ p̃
i=1 μy,i v(xh,i )

)
+ O(h),

where {μx,i } p̃i=1 are the finite difference weights for the derivative ∂
∂x v(xh,1). Here,

the finite differences involve four grid nodes ( p̃ = 4) closest to to the singular point
x0. They are shown in Fig. 2 and given by

Nh,4(x0) := {xh,i }4i=1 = {x̃h, x̃h + (0, h), x̃h + (h, h), x̃h + (h, 0)}, (16)

where x̃h ∈ hZ2 is the node such that

(α, β) = x0 − x̃h
h

, for some α, β ∈ [0, 1).

We remark that α, β are different from the ones for first order correction.
Based on the ansatz above, we define the second order correction Q2

h to the punc-
tured trapezoidal rule by

Q2
h[sk( · − x0) v( · )] =T 0

h,Nh,4
[sk( · − x0) v( · )]

+ hk+1
4∑

i=1

ωi [sk;α, β]v(xh,i ),
(17)

where

ωi [sk;α, β] :=
{
ux [sk;α, β]μx,i + uy[sk;α, β]μy,i + ω[sk;α, β], if i = 1,

ux [sk;α, β]μx,i + uy[sk;α, β]μy,i , if i > 1.

We note that as long as the finite differences are first order accurate, using them
will not change the formal accuracy of the quadrature rule.
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The next task is to find a suitable set of weights {ωi [sk;α, β]}4i=1 for the given sk
and (α, β) so that

Rh[sk( · − x0) v( · )] = hk+1
4∑

i=1

ωi [sk;α, β]v(xh,i ) + O(hk+3). (18)

As before, the weight only depends on the relative position of the singularity with
respect to the grid. We therefore set x0 = 0 and, fixed h and (α, β), shift the grid by
(α, β)h. The four closest nodes are then

{xh,i }4i=1 = {
h(−α,−β), h(−α, 1 − β), h(1 − α, 1 − β), h(1 − α,−β)

}
.

Formula (18) suggests that we can set up four equations, involving four suitable
functions {g j }4j=1: for j = 1, 2, 3, 4

4∑

i=1

g j (xh,i ) ωi,h[sk;α, β]

= h−k−1
(∫

R2
sk(x)g j (x)dx − T 0

h,Nh,4
[sk( · − (α, β)h) g j ( · − (α, β)h)]

)
.

Fixed h and (α, β), this corresponds to imposing that the rule (17) integrates exactly
the functions sk(x − x0)g j (x − x0), j = 1, 2, 3, 4. Then, the weights are found as

ωi [sk;α, β] := lim
h→0

ωi,h[sk;α, β], i = 1, 2, 3, 4.

We choose the test function g1 = g ∈ C∞
c (R2), radially symmetric, such that

g(0) = 1 and ∇g(0) = 0. This function behaves like the constant function one near
0 and decays to zero smoothly so that the integrand is compactly supported. These
properties facilitate efficient and highly accurate numerical approximation of

∫
sk g j .

We then use

g2(x, y) = x g(x, y), g3(x, y) = y g(x, y), g4(x, y) = xy g(x, y), (x, y) = x.

Out of the four conditions, the first three translate to theweights correctly integrating
any function of the type sk q, q ∈ P1, i.e., q two-dimensional polynomial of degree
at most one. Three is also the minimum number of points needed in a stencil to have
first order accurate ∇v; the fourth node (and consequently the fourth condition) is
unnecessary to reach the desired order. It is however useful for it allows us to consider
the square four-point stencil (16) instead of four different three-point stencils necessary
to describe the nodes closest to x0.
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Computing the right-hand side of the linear system involves evaluating with high
accuracy integrals with singular integrands

∫

R2
sk(x)g(x) xi y jdxdy =

∫

R2
|x|k−1φk(x/|x|)g(x) xi y jdxdy , k, i, j ≥ 0.

By choosing g(x) = g(|x|) radially symmetric, we can write the integral in polar
coordinates x = r(cos θ, sin θ):

∫

R2
|x|k−1φk(x/|x|)g(x) xi y jdxdy

=
∫ ∞

0
rk+i+ j g(r)dr

∫ 2π

0
φk(θ) cosi θ sin j θ dθ.

We compute the two factors with high accuracy using Gaussian quadrature. We
also reuse the computed values for different parameters (α, β).

2.4 Higher order corrections

We now generalize the approach to construct higher order corrections to the punctured
trapezoidal rule for (9). We expand the ansatz (18) used in the previous section to
achieve higher order accuracy:

Rh[sk( · − x0) v( · )] = hk+1
∑

|ν|≤p−1

h|ν|uν[sk;α, β] ∂ν

∂xν
v(xh,1) + O(hk+p+1),

where ν ∈ N
2
0 and the weights uν ∈ R are independent of h and v. This ansatz

requires p(p + 1)/2 =: pmin weights. We replace the partial derivatives of v at xh,1
by sufficiently high-order finite differences. Given p̃ ≥ pmin, let

Nh, p̃(x0) := {xh,i } p̃i=1

be a stencil of p̃ nodes close to x0, where xh,1 is such that

(α, β) = x0 − xh,1

h
, for some α, β ∈ [0, 1).

We approximate the derivatives of v using this stencil:

∂ν

∂xν
v(xh,1) = h−|ν|

p̃∑

i=1

v(xh,i )μν,i + O(h p−|ν|),
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where {μν,i } p̃i=1 are the finite difference weights for the derivative ∂ν

∂xν v(xh,1). We
finally define the p-th order correction Qp

h to the punctured trapezoidal rule as

Qp
h [sk(· −x0)v( · )] := T 0

h,Nh, p̃
[sk( ·−x0)v( · )]+hk+1

p̃∑

i=1

ωi [sk;α, β]v(xh,i ), (19)

where
ωi [sk;α, β] :=

∑

|ν|≤p−1

μν,i uν[sk;α, β], i = 1, . . . , p̃ .

As long as the finite differences for ∂ν

∂xν v(xh,1) have error ∼ O(h p−|ν|) they will not
affect the formal accuracy of the quadrature rule.

We now have to find a suitable set of weights {ωi [sk;α, β]} p̃i=1 for the given sk and
(α, β) so that for any smooth function v

Rh[sk( · − x0) v( · )] = hk+1
p̃∑

i=1

ωi [sk;α, β]v(xh,i ) + O(hk+1+p). (20)

Analogously to Sect. 2.3, the weights only depend on the relative position of the
singularity with respect to the grid. We therefore set x0 = 0 and, fixed h and (α, β),
shift the grid by (α, β)h.
Formula (20) suggests that we may set up p̃ equations, involving p̃ suitable test func-
tions {g j } p̃j=1, to uniquely define the weights {ωi } p̃i=1. We proceed as in the previous

Section and define the family of weights {ωi,h} p̃i=1 solution to

p̃∑

i=1

g j (xh,i ) ωi,h[sk;α, β]

= h−k−1
(∫

R2
sk(x)g j (x)dx − T 0

h,Nh, p̃
[sk( · − (α, β)h) g j ( · − (α, β)h]

)
, (21)

for j = 1, . . . , p̃. Fixed h and (α, β), this corresponds to imposing that the rule (19)
integrates exactly the functions sk(x−x0)g j (x−x0), j = 1, . . . , p̃. Then, the weights
are found as

ωi [sk;α, β] := lim
h→0

ωi,h[sk;α, β] , i = 1, . . . , p̃. (22)

We use the function g similar to the one considered in Sect. 2.3, with the additional
conditions that ∂ν

∂xν g(0) = 0 for all |ν| ≤ p − 1. This ensures that g is similar enough
to the constant function g ≡ 1 near 0.

By choosing the pmin functions {g j }pmin
j=1 equal to g multiplied by the pmin monomi-

als of degree at most p−1 (xi y j , i, j ∈ N0, i+ j ≤ p−1), we impose that the method
(19) integrates exactly all integrands of the type sk q, q ∈ Pp−1, i.e., two-dimensional
polynomials of degree at most p−1. The additional p̃− pmin functions can be chosen
for example as g multiplied by two-dimensional monomials of degree higher than p.
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We use p̃ ≥ pmin because pmin may not fit well with standard stencils. Thus it is
possible to use more nodes than pmin and impose additional conditions. For example,
in our implementations for first, second, third, and fourth order corrections, we used
p̃ ≥ pmin as shown in Table 1. A visualization of these stencils can be seen in Fig. 3.

2.5 High-order quadratures

In the previous sections we have shown how to deal with integrands of the kind (8)

sk(x − x0)v(x) = |x − x0|k−1φk((x − x0/|x − x0|)v(x), k = 0, 1, 2, . . . ,

wherever the singularity point x0 may lie, which means we can correct the trapezoidal
rule for all terms in the expansion (5)

s(x − x0) = 1

|x − x0|φ0

(
x − x0
|x − x0|

)
+ φ1

(
x − x0
|x − x0|

)

+ |x − x0| φ2

(
x − x0
|x − x0|

)
+ · · ·

of the singular function (2). If we know these terms explicitlywe can build a high-order
corrected trapezoidal rule for the integral

∫

R2
s(x − x0)v(x)dx.

We demonstrate the idea of successive corrections by deriving a second and then a
third order accurate quadrature rule.

We first write

s(x − x0)v(x) =s0(x − x0)v(x) + (s(x − x0) − s0(x − x0)) v(x)

=s0(x − x0)v(x) + 	0s(x − x0)v(x).

Lemma 2.3 states that the punctured trapezoidal rule is second order accurate for
integrating	0s. If we apply the first order correction (13) to the punctured trapezoidal

Table 1 Correction order and corresponding correction nodes. To increase the order of accuracy by p,
the minimum number of nodes to correct is pmin = p(p + 1)/2 but more nodes can be used. p̃ ≥ pmin is
the number of nodes we used in our tests, corresponding to the stencils showed in Fig. 3

p pmin p̃

1 1 1

2 3 4

3 6 6

4 10 12
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}hx0

xh,1

xh,2 xh,3

xh,4

xh=

xh,5

xh,6

xh,7

xh,8xh,9

xh,10

xh,11

xh,12

Fig. 3 Example of correction stencils. The stencils we tested for corrections p = 1 ( p̃ = 1 node: yellow
square), p = 2 ( p̃ = 4 nodes: yellow and red squares), p = 3 ( p̃ = 6 nodes: yellow and red squares,
and green circles), and p = 4 ( p̃ = 12 nodes: yellow and red squares, green circles, and cyan stars). The

singularity node is x0 (red circle). The nodes are {xh,i }12i=1, andNh, p̃ = {xh,i } p̃i=1 except forNh,1 = {xh}

rule for the first term, we get a second order approximation. The explicit formula, with
Nh,1 = {xh} as in Sect. 2.2.2 and relative grid shifts (α1, β1), is:

U2
h [s( · − x0)v( · )] := Q1

h [s0( · − x0)v( · )] + T 0
h,Nh,1

[�0( · − x0)v( · )]
= h2

∑

x∈hZ2\Nh,1(x0)

s(x − x0)v(x) + h ω[s0;α1, β1] v(xh).

This was the approach used in [8], although there (13) was used also on the second
term instead of the punctured trapezoidal rule.

To achieve third order, we expand s further:

s(x − x0)v(x) = s0(x − x0)v(x) + s1(x − x0)v(x)

+ [s(x − x0) − s0(x − x0) − s1(x − x0)] v(x)

= s0(x − x0)v(x) + s1(x − x0)v(x) + 	1s(x − x0)v(x).

(23)

We then use the second order correction (17) for integrating the first term, first order
correction (13) for integrating the second, and the (uncorrected) punctured trapezoidal
rule for 	1s; by Lemma 2.3 it is third order accurate for 	1s.
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We use the set of correction nodesNh,4(x0) = {xh,i }4i=1 and define the correspond-
ing relative grid shift (α2, β2). Then, the third order accurate rule U3

h is

U3
h [s(· − x0)v( · )] := Q2

h [s0( · − x0)v( · )] + Q1
h [s1( · − x0)v( · )]

+ T 0
h,Nh,1

[	1s( · − x0)v( · )]

= h2
∑

x∈hZ2\Nh,4(x0)

s(x − x0)v(x) + h
4∑

i=1

ωi [s0;α2, β2]v(xh,i )

+ h2 ω[s1;α1, β1] v(xh)

+ h2
∑

x∈Nh,4(x0)\Nh,1(x0)

{
s(x − x0) − s0(x − x0)

}
v(x).

(24)
In general, given the singular function s(x−x0)v(x), in order to build a quadrature

rule U p
h of order p ≥ 2, we need explicitly the first p − 1 (k = 0, . . . , p − 2) terms

of the expansion (5)

s(x) =
p−2∑

k=0

sk(x) + 	p−2s(x) =
p−2∑

k=0

|x|k−1φk

(
x
|x|

)
+ 	p−2s(x),

and apply to the term sk(x) the (p−k−1)-th order correction Qp−k−1
h to the trapezoidal

rule. The punctured trapezoidal rule is used for 	p−2s.

U p
h [s( · − x0)v( · )] :=

p−2∑

k=0

Qp−1−k
h [sk( · − x0)v( · )]+ T 0

h,Nh,1
[	p−2s( · − x0)v( · )].

(25)
We can find an explicit expression for the quadrature rule U p

h by specifying the
stencils we use for the correction nodes. We denote by Nn, p̃(p) the stencil of p̃(p)
correction nodes to increase the order by p. We assume that the stencils are increasing:
Nn, p̃(p) ⊂ Nn, p̃(p+1). For example in our tests, we took p̃(1) = 1, p̃(2) = 4,
p̃(3) = 6, p̃(4) = 12, and Nh,1(x0) := {xh} = {xh,3}, Nh,4(x0) = {xh,i }4i=1,
Nh,6(x0) = {xh,i }6i=1, Nh,12(x0) = {xh,i }12i=1, so that Nh,1 ⊂ Nh,4 ⊂ Nh,6 ⊂ Nh,12.
This is shown in Table 1 and Fig. 3. We call αp, βp the parameters describing the shift
with respect to x0 of the stencil of p̃(p) nodes:

U p
h [s( · − x0)v( · )] = h2

∑

x∈hZ2\Nh, p̃(p−1)

s(x − x0)v(x)

+h2
p−3∑

k=1

∑

x∈Nh, p̃(p−1)\N p̃(p−k−1)

sk(x − x0)v(x)

+h p−1 ω[sp−2; α1, β1]v(xh)
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+
p−3∑

k=0

hk+1
p̃(p−k−1)∑

i=1

ωi [sk; αp−k−1, βp−k−1]v(xh,i )

+h2
∑

x∈Nh, p̃(p−1)\Nh, p̃(1)

⎧
⎨

⎩s(x − x0) −
p−3∑

k=0

sk(x − x0)

⎫
⎬

⎭ v(x). (26)

In Sect. 4.1, we show tests for the quadrature method (26) by combining first,
second, third, and fourth order corrections.

2.6 Approximation and tabulation of the weights

Given functions of the kind (8), sk(x) = |x|k−1φk(x/|x|), we want to compute the
weights {ωi [sk;α, β]} p̃i=1, defined by (21) and (22).

Fixed k ≥ 0 and (α, β), we write the function sk (specifically its factor φk) using
its Fourier series:

x = |x|( cos(ψ(x)), sin(ψ(x))
)
,

sk(x) = |x|k−1φk(x/|x|) = |x|k−1φk(ψ(x))

= |x|k−1

⎛

⎝a0 +
∞∑

j=1

(
a j cos( jψ(x)) + b j sin( jψ(x))

)
⎞

⎠ ,

where {a j }∞j=0 and {b j }∞j=1 are the Fourier coefficients of φk . Then, by linearity of the
weights with respect to sk , we can write them as

ωi [sk;α, β] = a0 ωi

[
|x|k−1;α, β

]

+
∞∑

j=1

(
a j ωi

[
|x|k−1 cos( jψ(x));α, β

]

+ b j ωi

[
|x|k−1 sin( jψ(x));α, β

] )
,

with i = 1, . . . , p̃. We can then approximate and tabulate the weights ωi [sk;α, β]
in the following way. We fix a stencil of parameters {(αm, βn)}m,n around (α, β) and
basis functions {cm,n(α, β)}m,n such that we can approximate a function f : R2 → R

in (α, β) as
f (α, β) ≈

∑

m,n

cm,n(α, β) f (αm, βn).

We let N be the number of Fourier modes used to approximate the weights. Then,
given φk , we first find the 2N +1 coefficients a0, {a j , b j }Nj=1 by using the Fast Fourier
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Transform. Then,

ωi [sk;αm, βn] ≈ a0 ωi

[
|x|k−1;αm, βn

]

+
N∑

j=1

(
a j ωi

[
|x|k−1 cos( jψ(x));αm, βn

]

+ b j ωi

[
|x|k−1 sin( jψ(x));αm, βn

] )
,

and we can approximate the weight for (α, β) via

ωi [sk;α, β] ≈
∑

m,n

cm,n(α, β) ωi [sk;αm, βn], i = 1, . . . , p̃.

So, for all expansion terms k = 0, 1, . . . , p − 2 used in (25), and the corresponding
corrections Qp−1−k

h , we need to compute and store the weights for the following
constant and trigonometric functions,

ωi
[|x|k−1;αm, βn

]

ωi
[|x|k−1 cos( jψ(x));αm, βn

]

ωi
[|x|k−1 sin( jψ(x));αm, βn

]

⎫
⎬

⎭

j = 1, . . . , N ,

i = 1, . . . , p̃(p − 1 − k),
and all m, n in the stencil for (α, β).

Remark 3 The weights ωi [sk;αm, βn] are formally the limits of ωi,h[sk;αm, βn]
defined in (21). We approximate the limit by ωi,h∗ , where

h∗ := 2−M , M := arg min
j=1,2,3,...

{|ωi,2− j − ωi,2− j−1 | ≤ Tol
}
.

In the simulations presented in Sect. 4, to compute {ωi } p̃(p)i=1 , we use Tol = 10−8 for
p = 1, 2, 3, and Tol = 10−4 for p = 4.

3 Evaluating layer potentials in the implicit boundary integral
formulation

We apply the high-order quadrature methods from Sect. 2 to layer potentials used in
Implicit Boundary Integral Methods (IBIM). To make the exposition clear we adopt
the following convention.

Notation We distinguish between variables in R2 and R3 by using boldface variables
for vectors in R

2 and boldface variables with a bar for vectors in R
3. For example,

x ∈ R
2 and x̄ ∈ R

3.
Moreover, for a vector y = (y1, y2) ∈ R

2 and scalar y3 ∈ R, we frequently write
ȳ = (y, y3) to mean the vector (y1, y2, y3) ∈ R

3. For example, when f : R3 → R
m ,

we use the notations f (ȳ) ≡ f (y, y3) ≡ f (y1, y2, y3).
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We consider the general form of a layer potential on a smooth, closed and bounded
surface � ⊂ R

3, ∫

�

K (x̄∗, ȳ)ρ(ȳ)dσȳ, x̄∗ ∈ �, (27)

with K defined by one of the following kernels:

(single-layer, SL) : G0(x̄∗, ȳ) = 1

4π

1

|x̄∗ − ȳ| ,

(double-layer, DL) : ∂G0

∂n̄y
(x̄∗, ȳ) = 1

4π

(x̄∗ − ȳ)T n̄y

|x̄∗ − ȳ|3 ,

(double-layer conjugate, DLC) : ∂G0

∂n̄x
(x̄∗, ȳ) = − 1

4π

(x̄∗ − ȳ)T n̄x
|x̄∗ − ȳ|3 .

(28)

In (28), the vector n̄x is the normal vector to � at x̄∗, pointing into the unbounded
region R

3 \ �, where � is the bounded region enclosed by �. Analogously n̄y is the
normal vector to � at ȳ. In preparation for the formulation of the implicit boundary
integral methods, we first define d� : R3 �→ R to be the signed distance to the surface
such that d� is negative inside �. Moreover, we let P� : R3 → � be the closest point
mapping that takes ȳ to a closest point on �:

P�(ȳ) ∈ argmin
z̄∈�

|ȳ − z̄|2.

Let C� ⊂ R
3 be the set containing the all the points that have non-unique closest

points on �. The reach τ� of � is defined as

τ� := inf
x̄∈�, ȳ∈C�

|x̄ − ȳ|.

It depends on the local geometry (the curvatures) and the global structure of � (the
Euclidean and geodesic distances between any two points on �). The reach is positive
τ� > 0 if � is C1,α for some α > 0. The closest point mapping P� is invertible in the
tubular neighborhood

Tε := {x̄ ∈ R
3 : |d�(x̄)| ≤ ε} ⊂ R

3, ε < τ�.

In this paper, we will assume that � is a closed bounded C2 surface so that the
mean and Gaussian curvatures are defined everywhere on the surface. Consequently,
when ȳ lies within the reach of �, we have the explicit formula

P�(ȳ) = ȳ − d�(ȳ)∇d�(ȳ).

The surface integral (27) can thenbe reformulated into an equivalent volume integral
using the Implicit Boundary Integral Methods [9, 17],

Iε[ρ](x̄) =
∫

Tε

K (x̄, P�(ȳ))ρ(P�(ȳ))δ�,ε(ȳ)dȳ. (29)

123



Page 21 of 47    60 

The “delta” function is defined as δ�,ε(ȳ) := δε(d�(ȳ))Jd�(ȳ)(ȳ), where

Jη(ȳ) = 1 + 2ηH(ȳ) + η2G(ȳ),

with H(ȳ) andG(ȳ) denoting respectively the mean and Gaussian curvatures of�η :=
{x̄ ∈ R

3 : d�(x̄) = η} (see, e.g., [17]). For |η| < τ� , Jη is bounded away from zero.
Moreover,

δε(η) = 1

ε
δ
(η

ε

)

is smooth compactly supported in (−ε, ε) with unit mass. This is achieved by using
δ ∈ C∞

c (R) compactly supported in (−1, 1) with
∫
R

δ(η)dη = 1.
It turns out that for any positive ε, smaller than the reach of �, the IBIM is equal

to the original layer potential for all x̄ ∈ R
3,

Iε[ρ](x̄) ≡
∫

�

K (x̄, ȳ)ρ(ȳ)dσy, x̄ ∈ R
3. (30)

If the surface � is smooth, the closest point mapping is also smooth ([18], Ch. 7,
§8, Thm 8.4). As a consequence, if ρ is a smooth function on � and � is smooth, then
ρ(P�(ȳ))δ�,ε(ȳ) is a smooth function R

3, compactly supported in Tε.

3.1 Singular integrand in three dimensions and correction plane by plane

In this section, we will construct high-order quadratures for Iε[ρ](x̄∗) in (29) from the
two-dimensional corrected trapezoidal rules (24). The three dimensional quadrature
rules will be defined as the sum of integration over different coordinate planes, where
the two dimensional corrected trapezoidal rule from the previous Section is applied to
approximate the integration over each plane. The particular selection of the coordinate
planes depends on the normal vector of �.

Without loss of generality, we consider a target point, x̄∗ = (x∗, y∗, z∗) ∈ �, at
which the surface normal is n̄ = (n1, n2, 1). The way to treat other cases are explained
in Sect. 3.1.1. We denote the integrand in (29) by f ,

f (ȳ) := K (x̄∗, P�(ȳ))ρ(P�(ȳ))δ�,ε(ȳ), ȳ = (x, y, z). (31)

To approximate (29) the standard trapezoidal rule is first applied in the z-direction.
With the grid points zk = kh, we get

Iε[ρ](x̄∗) =
∫

R3
f (x, y, z)dxdydz ≈ h

∑

k

∫

R2
f (x, y, zk)dxdy, (32)

where we used the fact that f is compactly supported in Tε. We note that f is singular
along the line

ȳ0(z) = x̄∗ + (z − z∗)n̄, z ∈ R, (33)
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since P�(ȳ0(z)) = x̄∗ for all z. Therefore, f (·, ·, z) is singular at one point for each
fixed z, by the assumption on n̄. Below, we will derive the form of this singularity,
and we will show that it is of the same type (2) as considered in Sect. 2. See Fig. 4 for
an illustration of the line singularity, and an example of the singular behavior. Hence,
we can use the corrected trapezoidal rules to approximate each integral in the sum in
(32).

To connect back to the notation in Sect. 2, we write ȳ = (y, z) and ȳ0(z) =
(y0(z), z). Then, we factorize f , for a fixed z, as

f (y, z) = s(y − y0(z); z)v(y, z). (34)

where

s(y; z) = K (x̄∗, P�(y + y0(z), z)), v(y, z) = ρ(P�(y, z))δ�,ε(y, z). (35)

Note that the type of singularity for s depends on the properties of � at the target
point (such as principal curvatures, principal directions, normal). Moreover, s depends
smoothly on z.

We then use the corrected trapezoidal rule U3
h [ f ] (24) to compute the integrals on

each plane,

∫

R2
f (y, zk)dy =

∫

R2
s(y − y0(zk); zk)v(y, zk)dy ≈ U3

h [s( · − y0(zk); zk)v( · , zk)].

We denote by y�(z) and (α1(z), β1(z)) the closest grid node to y0(z) and the relative
grid shift parameters respectively, as defined in Sect. 2.2.2, and define N z

h,1(y0) :=
{y�(z)}. We also denote by {y�,i (z)}4i=1 and (α2(z), β2(z)) the four grid nodes
surrounding y0(z) and the relative grid shift parameters respectively, as defined in
Sect. 2.3, and define N z

h,4(y0) := {y�,i (z)}4i=1.

x*P y

y

Γ

_

__

Fig. 4 IBIM kernel singular behavior. The kernel K (x̄∗, P�(ȳ)), for fixed x̄∗ ∈ � and ȳ ∈ Tε , is singular
along the normal n̄ to x̄∗. The left figure illustrates how the kernel becomes singular for ȳ approaching any
point of the line passing through x̄∗ with direction n̄. The center plot shows the double-layer conjugate
kernel K = ∂G

∂nx
plotted on a plane with fixed z, ȳ ∈ {(x, y, z) : x, y ∈ R}. The function will then have a

point singularity in y0(z), and we plot the kernel for (x, y) close to y0(z). The right most plot shows the
same kernel, multiplied by |y − y0(z)|
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From the definition in (35), we can compute the expansion (5) with q = 1 and find

s(y; z) = s0(y; z) + s1(y; z) + O(|y|), (36)

with sk(y; z) = |y|k−1φk(y/|y|; z), k = 0, 1. The expressions for sk are given in
Theorem 3.1 below. We can then apply the additive splitting (23):

U3
h [ f (·, ·, z)] = h2

∑

y∈hZ2\N z
h,4(y0)

f (y, z)

+ h
4∑

i=1

ωi [s0( · ; z);α2(z), β2(z)]v(y�,i (z), z)

+ h2 ω[s1( · ; z);α1(z), β1(z)] v(y�(z), z) ,

+ h
∑

y∈N z
h,4(y0)\N z

h,1(y0)

{s(y − y0(z); z) − s0(y − y0(z); z)} v(y, z).

Then, the three-dimensional third order method V3,z
h , obtained by applying U3

h plane-
by-plane along the z-direction, is given by

V3,z
h [ f ] := h

∑

k∈Z
U3
h [ f (·, ·, zk)] = h3

∑

ȳ∈hZ3 \
(⋃

k∈Z N zk
h,4(y0(zk ))

)
f (ȳ)

+ h2
∑

k∈Z

4∑

i=1

ωi [s0( · ; zk);α2(zk), β2(zk)]v(y�,i (zk), zk)

+ h3
∑

k∈Z
ω[s1( · ; zk);α1(zk), β1(zk)] v(y�(zk), zk)

+ h2
∑

k∈Z

∑

y∈N zk
h,4(y0)\N

zk
h,1(y0)

{
s(y − y0(zk); zk) − s0(y − y0(zk); zk)

}
v(y, zk).

(37)
If we apply the two-dimensional ruleU3

h plane-by-plane along the x- or y- direction,

weobtain the corresponding rulesV3,x
h andV3,y

h respectively. These cases are discussed
in the following Sect. 3.1.1.

3.1.1 Plane-by-plane correction for different normal directions

The normal direction n̄ directly affects the decomposition of a three dimensional
Cartesian grid into union of planes, on which we apply the new correction.We identify
the dominant direction of n̄ = (nx , ny, nz), and discretize the volumetric integral along
that direction. If the dominant direction is nz , the setup is the one described above.
If it is ny , we discretize along the y-direction, and if it is nx , we discretize along the
x-direction.
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We shall use V p
h for the general three-dimensional p-order corrected trapezoidal

rule, and using the division presented for the change of coordinates, we define it as

V p
h [ f ] :=

⎧
⎪⎨

⎪⎩

V p,z
h [ f ] = h

∑
k∈Z U p

h [ f (·, ·, zk)], if nz is dominant,

V p,y
h [ f ] = h

∑
k∈Z U p

h [ f (·, yk, ·)], if ny is dominant,

V p,x
h [ f ] = h

∑
k∈Z U p

h [ f (xk, ·, ·)], if nx is dominant.

(38)

3.2 Expansions of layer kernels

In this section, we will analyze and expand the singular functions defined in (35) when
K are the Laplace kernels (28):

(SL) : sSL(y; z) = 1

4π

1

|P�(y + y0(z), z) − x̄∗| ,

(DL) : sDL(y; z) = − 1

4π

n̄Ty (P�(y + y0(z), z) − x̄∗)
|P�(y + y0(z), z) − x̄∗|3 ,

(DLC) : sDLC (y; z) = 1

4π

n̄Tx (P�(y + y0(z), z) − x̄∗)
|P�(y + y0(z), z) − x̄∗|3 . (39)

The approach developed in Sect. 2 requires analytic formulae of the expansions. This
means that in order to adopt the third order quadrature rule (38) for the implicit
boundary integral defined in (29), one needs explicit analytical expressions for the
first two expansion functions in (36) related to the singular functions above. Through
a third order approximation of the surface near the target point x̄∗, we find these
functions, which are given in the following theorem.

Theorem 3.1 Let x̄∗ ∈ � be the target point. Suppose that the normal n̄ at x̄∗ satisfies
n̄T ēz �= 0, and that ȳ0(z) ∈ Tε. Then, there is an r > 0, depending on z, such that all
the singular functions defined in (39) can be written in the form

sX (y; z) = 1

|y|�
X
(

|y|, y
|y| ; z

)
, |y| < r , X=SL, DLC, DL, (40)

where �X ∈ C∞((−r , r) × S
1). Moreover, the functions sX0 (y; z) and sX1 (y; z) in the

expansion (36) are

sSL0 (y) := 1

|y|
1

ψ0(ŷ)
, sSL1 (y) := − ψ1(ŷ)

ψ0(ŷ)2
,

sDLC
0 (y) := 1

|y|
ξ0(ŷ)

ψ0(ŷ)3
, sDLC

1 (y) := −3
ξ0(ŷ)ψ1(ŷ)

ψ0(ŷ)4
+ ξ1(ŷ)

ψ0(ŷ)3
,

sDL
0 (y) := sDLC

0 (y) , sDL
1 (y) := −3

ξ0(ŷ)ψ1(ŷ)
ψ0(ŷ)4

+ ξ̃1(ŷ)
ψ0(ŷ)3

.

(41)
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where ŷ = y/|y| and ψ j , ξ j and ξ̃1 are given explicitly in Sect.3.2.4.

In order to use the expansions in the theorem in our quadrature method, we need to
be able to evaluate the functions ψ j , ξ j and ξ̃1. They depend on the local behavior of
� at the target point x̄∗, more precisely on the principal directions and curvatures, and
the third derivatives of the function whose graph locally describes �. In the Appendix,
it is described how those quantities can be computed numerically using the closest
point mapping.

In the subsequent subsections, we will prove Theorem 3.1. First, in Sect. 3.2.1, we
rotate the frame of reference and look at � locally as the graph of a two-dimensional
function. Second, we expand the expressions we obtained around y = 0 in Sect. 3.2.2
and apply a general lemma to show (40) in Sect. 3.2.3. Finally, we use the expansions
to derive expressions for sX0 (y; z) and sX1 (y; z) in Sect. 3.2.4.

3.2.1 Expressions of the layer kernels via the projection mapping

Let x̄∗ ∈ � be the target point. At x̄∗ we denote the surface principal directions τ̄ 1, τ̄ 2,
the normal n̄, and the principal curvatures κ1, κ2. We introduce the principal basis
B = (τ̄ 1, τ̄ 2, n̄) and the notation

(x ′
1, x

′
2, x

′
3)B := τ̄ 1x

′
1 + τ̄ 2x

′
2 + n̄x ′

3.

The basis vectors used here are assumed to be normalized. If x̄′ are the coordinates
in the B-basis for the point x̄ in the canonical basis (ēx , ēy, ēz), we denote by Q the
(orthogonal) change of basis matrix, satisfying

x̄ = Qx̄′, Q =
⎛

⎝
| | |

τ̄ 1 τ̄ 2 n̄
| | |

⎞

⎠ , QT Q = I . (42)

The surface � can now be parameterized locally in the B-coordinates. More pre-
cisely, in a neighborhood of the origin, IL ′ = {y′ ∈ R

2 | |y′| < L ′}, we can represent
� as the image of a smooth function f : R2 → R with f ∈ C∞(IL ′) such that

x̄∗ + (y′, f (y′))B ∈ �.

The constant L ′ depends on the maximum curvature of � and can be taken to be
independent of x̄∗. Moreover, since P� is smooth in the tubular neighborhood Tε of �,
the mapping (y′, z′) �→ P�(x̄∗ + (y′, z′)B) is smooth for (y′, z′) ∈ Tε := {(y′, z′) ∈
R
3 : x̄∗ + (y′, z′)B ∈ Tε}. Therefore, for (y′, z′) ∈ ML = Tε ∩ (IL × R), with

L possibly smaller than L ′, we can use the B-basis and f , to write the closest point
mapping as

P�(x̄∗ + (y′, z′)B) = x̄∗ + (
yp, f (yp)

)
B, yp := h(y′, z′), (43)
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for some smooth function h ∈ C∞(ML). The constant L is chosen such that

sup
(y′,z′)∈ML

|h(y′, z′)| ≤ L ′.

Clearly h(0, z′) = 0, which guarantees that L > 0.
We now write (y + y0(z), z) as a point in the B-basis centered in the target point

x̄∗,
(y + y0(z), z) = x̄∗ + (y′, z′)B .

For (y′, z′) ∈ ML , we can then write the numerators and denominators of the layer
kernels (39) using (43) and the orthogonality of Q:

∣∣P�(y + y0(z), z) − x̄∗∣∣ = ∣∣(yp, f (yp)
)
B

∣∣ = ∣∣(yp, f (yp)
)∣∣ , (44)

n̄Tx (P�(y + y0(z), z) − x̄∗) =
(
0
1

)T

B

(
yp

f (yp)

)

B
=

(
0
1

)T (
yp

f (yp)

)
, (45)

n̄Ty (P�(y + y0(z), z) − x̄∗) = 1√
1 + (∇ f (yp))2

(−∇ f (yp)
1

)T

B

(
yp

f (yp)

)

B

= 1√
1 + (∇ f (yp))2

(−∇ f (yp)
1

)T (
yp

f (yp)

)
.

(46)

We next have to find how (y′, z′) depends on y and z. From the definitions above,
we have (

y
0

)
+ ȳ0(z) =

(
y + y0(z)

z

)
= x̄∗ + Q

(
y′
z′

)
.

Since ȳ0(z) − x̄∗ is parallel to the normal n̄ by definition, we can express this as

ȳ0(z) − x̄∗ = (0, η(z))B, ⇒
(
y
0

)
= Q

(
y′

z′ − η(z)

)
.

where η(z) := d�(ȳ0(z)) is the signed distance of ȳ0(z) to �. Defining

QT =
(

A c
dT α

)
, A ∈ R

2×2, c,d ∈ R
2×1, α ∈ R, (47)

we finally obtain {
y′ = Ay ,

z′ = dT y + η(z).
(48)
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Therefore, we can write the kernels (39) using (44,45,46) and (48):

yp := h(Ay, dT y + η(z)),

(SL) sSL(y; z) = 1

4π

1

|(yp, f (yp))| ,

(DLC) sDLC (y; z) = 1

4π

f (yp)
|(yp, f (yp))|3 ,

(DL) sDL(y; z) = − 1

4π

(−∇ f (yp), 1)

|(yp, f (yp))|3
√
1 + (∇ f (yp))2

(
yp

f (yp)

)
.

(49)

These expressions are valid for (y′, z′) ∈ ML . By (48) and the fact that |Ay| ≤
|QT (y, 0)| = |y| (with equality if y ⊥ d) they are therefore validwhen (y+y0(z), z) ∈
Tε and |y| < L .

3.2.2 Expansion of f and h

By the definition of the B-basis, the function f introduced above in Sect. 3.2.1 satisfies

f (0) = 0, ∇ f (0) = 0,
∂2 f

∂x2
(0) =

(
κ1 0
0 κ2

)
=: M . (50)

The Taylor expansions up to second order for f and ∇ f are then given by

f (y) = 1
2y

T My + B(y, y, y) + O(|y|4) ,

∇ f (y) = My + C(y, y) + O(|y|3), (51)

where B is the third order trilinear term, andC is its bilinear gradient.With y = (x, y),
they are given by

B(y, y, y) := 1
2

[
fxxx

x3
3 + fyyy

y3

3 + fxxy x2y + fxyyxy2
]
,

C(y, y) :=
(

∂B
∂x
∂B
∂ y

)
= 1

2

(
fxxx x2 + 2 fxxyxy + fxyy y2

fyyy y2 + 2 fxyyxy + fxxyx2

)
;

(52)

where fxxx , fxxy, fxyy, fyyy are the third order derivatives of f evaluated in 0.
We next need to expand h. It is given by the following lemma, the proof of which

can be found in the Appendix.

Lemma 3.2 Let
D(z′) = (I − z′M)−1,

with M given in (50). For (y′, z′) ∈ ML the matrix is well-defined. The function
h ∈ C∞(ML) introduced in Sect.3.2.1 then satisfies

h(0, z′) = 0,
∂h
∂z

(0, z′) = 0,
∂h
∂y

(0, z′) = D(z′), (53)
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and the Taylor expansion of h can be written in the form

h(y′, z′) = D(z′)y′ + z′ D(z′)C
(
D(z′)y′, D(z′)y′) + O(|y′|3), (54)

where C is defined in (52).

3.2.3 General form of the kernels

We now have expressions (49) of the kernels and expansions around y = yp = 0 of
h and f . The next step is to prove (40), i.e., that the three kernels in (49) can all be
written in the form |y|−1�(|y|, y/|y|). To do this, we use the following lemma, a proof
of which can be found in the Appendix .

Lemma 3.3 Let ḡ : R
m → R

n be C∞(Br0(0)) for some r0 > 0, with n > m,
ḡ(0) = 0, and Dḡ(0) ∈ R

n×m has full rank. Let p̄ : Rm → R
n be C∞(Br0(0)), such

that p̄(0)T Dḡ(0) = 0. Then, there exist functions �1, �2 and 0 < r1 ≤ r0 such that
�i : R × S

m−1 → R, �i ∈ C∞((−r1, r1) × S
m−1), i = 1, 2 and

1

|ḡ(y)| = 1

|y|�1
(

|y|, y
|y|

)
,

p̄(y)T ḡ(y)
|ḡ(y)|3 = 1

|y|�2
(

|y|, y
|y|

)
.

For the single-layer kernel, we take

ḡ(y) = (yp, f (yp)) =
(
h(Ay,dT y + η(z)), f

(
h(Ay,dT y + η(z))

))
.

For (0, η(z)) ∈ ML , i.e., when |η(z)| < ε, Lemma 3.2 gives that ḡ(0) = (0, 0)
and

∂ ḡ
∂y

(0) =
⎛

⎝
∂h
∂y (0, η(z))

(
A + ∂h

∂z (0, η(z))dT
)

(
∂h
∂y (0, η(z))

(
A + ∂h

∂z (0, η(z))dT
))T ∇ f (0)

⎞

⎠ =
(
D(η(z))A

0

)
,

which has full rank since det A = ēTz (τ̄ 1 × τ̄ 2) = ēTz n̄ �= 0. Hence, (49) together with
the first result of Lemma 3.3 now shows (40) for X = SL .

For the double-layer case, we let p̄(y) = (−∇ f (yp), 1)/
√
1 + |∇ f (yp)|2 so that

sDL = −p̄T ḡ/4π |ḡ|3 by (49). Then, Lemma 3.2 gives

p̄(0)T Dḡ(0) = p̄(0)T
∂ ḡ
∂y

(0) =
(−∇ f (0)

1

)T (
D(η(z))A

0

)
=

(
0
0

)
,

and the second result of Lemma 3.3 shows (40) for X = DL . Finally, for the dou-
ble layer conjugate kernel, we take simply p̄(y) = (0, 0, 1), which again makes
p̄(0)T Dḡ(0) = 0 and (40) for X = DLC follows as before. This completes the
proof of (40).
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3.2.4 Kernel expansions

The expansion of the kernels is based on the expansions of f in (51) and h in (54).
We will skip most tedious intermediate calculations and focus on the end results.

We recall that

y′ = Ay, z′ = dT y + η(z), η(z) = d�(ȳ0(z)), ŷ := y/|y|.

In the first step, we expand the functions f (h(y′, z′)), D(z′) and h(y′, z′) as func-
tions of y, instead of yp and y′ as before. We get

D(z′) = D0

[
I + dT yD0M

]
+ O(|y|2),

h(y′, z′) = χ0(ŷ)|y| + χ1(ŷ)|y|2 + O(|y|3),
f (yp) = ξ0(ŷ)|y|2 + ξ1(ŷ)|y|3 + O(|y|4),

where D0 := (I − ηM)−1,

χ0(y) := D0Ay,
χ1(y) := (dT y)D0D0MAy + ηD0C(D0Ay, D0Ay),

ξ0(y) := 1

2
yT (AT DT

0 MD0A)y,

ξ1(y) := 1

2
η(D0C(D0Ay, D0Ay))T MD0Ay + (dT y)yT AT (MT DT

0 DT
0 MD0)Ay

+1

2
η(D0Ay)T MD0C(D0Ay, D0Ay) + B(D0Ay, D0Ay, D0Ay).

In this step, we used the fact that χ j and ξ j are homogeneous of degree j + 1 and
j + 2 respectively, so that χ j (y) = χ j (ŷ)|y| j+1 and ξ j (y) = ξ j (ŷ)|y| j+2. From these
expansions for f and h, we obtain furthermore that

∣∣(yp, f (yp))
∣∣ = ψ0(ŷ)|y| + ψ1(ŷ)|y|2 + O(|y|3),

(∇ f (yp),−1)
√
1 + (∇ f (yp))2

(
yp

f (yp)

)
= ξ0(ŷ)|y|2 + ξ̃1(ŷ)|y|3 + O(|y|4), (55)

where

ψ0(y) :=|χ0(y)|, ψ1(y) := χ0(y)Tχ1(y)
|χ0(y)| ,

ξ̃1(y) :=1

2
η(D0C(D0Ay, D0Ay))T MD0Ay + (dT y)yT AT D0MD0D0MAy

− B(D0Ay, D0Ay, D0Ay) + yT AT DT
0 (I + ηMD0)C(D0Ay, D0Ay)

− 1

2
η(D0Ay)T MD0C(D0Ay, D0Ay).
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Here, ξ̃1 is homogeneous of degree three. Using (55) one can finally deduce the expan-
sions of the kernels in (49). This concludes the proof of Theorem 3.1.

We note that the matrix A and vector d contain elements of the principal directions
and normal at the target point; see (42) and (47). Thematrices D0 and M are built from
the principal curvatures of �, and the functions B and C contain the third derivatives
of f ; see (51) and (52). In the Appendix, we show how to numerically compute
the information about the surface in the target point (κ1, κ2, τ̄ 1,τ̄ 2, and the third
derivatives of f , fxxx , fxxy , fxyy , fyyy) using the projection mapping P� and its
derivatives.

3.3 Requirements for order higher quadratures for the singular IBIM integrals

Given the class of singular integrands, the main obstruction to obtaining higher order
quadratures using the proposed approach is the smoothness of the surface. When
applying the proposed method in the IBIM formulation using uniform Cartesian grids,
one needs firstly a sufficiently accurate approximation of the distance function to the
surface, d� , or the projection, P� , on the grid nodes.

The construction of these functions are application dependent, but general method-
ologies do exist, see, e.g., [12]. If the surfaces are reconstructed on a grid by a level
set method, then typically one does not expect that d� be more than 4th order accurate
in the grid spacing due to the limitation imposed by commonly used level set reini-
tialization algorithms [12]. This may cause a main bottleneck in practice. Then, one
needs to extract the surface’s geometrical information from finite differences of d� or
P� – in this paper, the related quantities to be approximated are the partial derivatives
of f defined in (52), where f is defined in (31). In the Appendix, the reader will find
more details.

When the surface is sufficiently smooth, it has a non-zero reach, i.e., d� is smooth
within Tτ� for some τ� > 0. The Cartesian grid inside Tτ� should be sufficiently dense
to support the finite difference stencil around any node inside Tε, where ε ≤ τ� . Thus
higher order approximations require denser grids around the surface to support the
wider finite difference stencils used in high-order finite differences. For example the
second order corrected rule V2

h needs curvature information which is obtained through
a centered 5 point three-dimensional stencil. This implies that one needs accurate
d� or P� within the distance of ε + 2h to the surface, and that ε + 2h should be
smaller than the reach τ� . Analogously, the third order information about the surface
needed for V3

h is obtained using a 5 × 5 × 5 stencil around each node, which leads
to the bound ε + 2

√
2h < τ� . If the surface geometry varies “wildly,” we envision

that the proposed method should/could be generalized to multi-resolution gridding for
efficiency.

We present an example supporting the above discussion in Sect. 4. We also refer
the interested readers to the results and discussion in the recent paper [19], for an
application of the proposed quadratures in computing the electrostatic potentials of
large molecules in a solvent.
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4 Numerical tests

In this section, we test the corrected trapezoidal rules derived in Sect. 2 and Sect. 3. In
Sect. 4.1, we test the rules Qp

h for integrating functions of the kind sk v from Sect. 2.4,
and then the general rules U p

h for integrating s v from Sect. 2.5. In Sect. 4.2, we test
the third-order accurate quadrature rule V3

h derived for the three-dimensional layer
potentials discussed in Sect. 3.

4.1 Corrections to the punctured trapezoidal rules in two dimensions

The quadrature rules discussed in Sect. 2 have been developed to correct any function
of the kind

f (x) = sk(x)v(x) , sk(x) = |x|k−1φk(x/|x|) , k ∈ N \ {0} ,

where v is a smooth function, and then composite rules have been constructed to
correct functions which can be expanded as

f (x) = s(x − x0)v(x)

where s(x) = s0(x) + s1(x) + s2(x) + . . . .

We tested the rules Qp
h for p = 1, 2, 3, 4 (p = 1 (13), p = 2 (17), p general (19))

for functions sk , k = 0, 1, 2. Specifically, we used the test function where sk and v

are:

sk(x) =|x|k−1φ(x/|x|),
φ(x/|x|) =φ(cos(ψ(x)), sin(ψ(x)))

=4.2398 + 0.816735 cos(ψ(x) − 0.2) − 1.24397865 sin(2ψ(x) + 0.1) ,

v(x) =
(
1.1 + �

(
H (1)

|x|2+1
(3)

))
exp

(
−|x − (0.027, 0.0197)|8

)

· (0.5 + sin(x1(x2 − 1))).
(56)

The function H (1)
α is the Hankel function of the first kind of degree α, and �

indicates the real part of a complex number. Although formally v is not compactly
supported, it is smaller than the numerical machine precision outside [−2, 2]2, which
we use as integration domain.

In Fig. 5, we plot the difference between approximation values for grid sizes h and
h/1.5, obtained for the four different quadratures Qp

h , p = 1, 2, 3, 4, and the punctured
trapezoidal rule T 0

h . The order of accuracy shown for integrating sk v, k = 0, 1, 2, is
k+1 for the punctured trapezoidal rule and k+p+1 for the quadrature Qp

h , as expected.
The error constant is determined by the value of (α, β) and in our tests we fixed
(α, β) = (0.81, 0.46). The stencils used for the different quadratures are represented
in Fig. 3. The weights for the quadratures are all non-negative. Their maximum values
are shown in Table 2. They are of moderate size also for the high-order corrections.
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Fig. 5 Correction of sk in two dimensions. Error from integrating sk (56) with p-order correction Qp
h . For

k = 0, 1, 2 (left, center, and right figures respectively) we present the difference between values obtained
from grid sizes h and h/1.5, with the different methods. As expected, the order of accuracy is k + p + 1
where p is the order of the correction

In order to test the general quadrature rule (26), we used the function

s(x) =
(
|x|−1φ0(x) + φ1(x) + |x|φ2(x) + |x|2φ3(x) + |x|3r(x)

)
(57)

where x = |x|(cos(ψ(x)), sin(ψ(x))),

φ0(x) = 4.2398 + 0.816735 cos(ψ(x) − 0.2) − 1.24397865 sin(2ψ(x) + 0.1),

φ1(x) = 0.78167 sin(ψ(x) + 0.5) − 2.24397865 cos(3ψ(x) − 0.3)

φ2(x) = 1.127 + 1.2134875 cos(ψ(x) − 0.65) − 1.24397865 sin(2ψ(x) + 0.1),

φ3(x) = 0.77 − 1.29 cos(4ψ(x) − 0.35) + 0.987 sin(2ψ(x) + 0.14),

r(x) = 1.2927 − 0.929 cos(ψ(x) + 0.34) + 0.712 sin(3ψ(x) + 0.14)

Table 2 Maximum of the weights. Largest weight max p̃i=1 ωi in the stencilNh, p̃ for different correction
orders p = 1, 2, 3, 4, and different singularity order k = 0, 1, 2. The weights correspond to the ones used
in the tests shown in Fig. 5. All weights are non-negative

Q1
h Q2

h Q3
h Q4

h

k = 0 15.20855 11.39144 11.82856 11.61144

k = 1 5.05848 4.91377 4.92476 5.11844

k = 2 2.46476 4.59018 6.76066 8.88673
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+ log(|x| + 1.3),

v(x) =
(
1.1 + �

(
H (1)

|x|2+1
(3)

))
exp

(
−|x − (0.027, 0.0197)|8

)

·(0.5 + sin(x1(x2 − 1))).

In Fig. 6, we plot the difference between values obtainedwith grid sizes h and h/1.5 for
the four different quadraturesU p

h (26) and the punctured trapezoidal rule T 0
h . The order

of accuracy shown is 1 for the punctured trapezoidal rule and p for the quadrature U p
h ,

which is what was expected. The error constant is determined by the value of (α, β).
In all our tests, we fixed (α, β) = (0.81, 0.46). The stencils used for the different
quadratures Qk

h needed to compose U p
h are the same as the previous test, represented

in Fig. 3.

4.2 Evaluating the layer potentials in the IBIM formulation

We demonstrate the convergence and accuracy of the proposed quadrature rules by
evaluating the single-layer, double-layer, and double-layer conjugate potentials with
some smooth density ρ on the surface � ⊂ R

3:

∫

�

G0(x̄∗, ȳ)ρ(ȳ)dσȳ,
∫

�

∂G0

∂ny
(x̄∗, ȳ)ρ(ȳ)dσȳ,

∫

�

∂G0

∂nx
(x̄∗, ȳ)ρ(ȳ)dσȳ, x̄∗ ∈ �.

Fig. 6 Corrected trapezoidal rules for a general function s in two dimensions. Corrected trapezoidal
rules U p

h for p = 2, 3, 4, 5 using additive splitting (26) for the function f = s v with singular integrand s

(57). The first p − 1 terms of the expansion (5) (sk , k = 0, 1, . . . , p − 2) are needed to use U p
h . In the plot,

we see that the punctured trapezoidal rule T 0
h has first order accuracy, and the corrections U p

h have order
of accuracy p as predicted
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The integrals are first extended to the tubular neighborhood of Tε, as in (27) using
the compactly supported C∞ averaging function

δ(η) =
⎧
⎨

⎩
a exp

(
2

η2 − 1

)
, if |η| < 1,

0, otherwise;
(58)

here a ≈ 7.51393 normalizes the integral
∫
R

δ(η)dη to 1.
A numerical study on a smooth surface
The surface chosen for the tests is a torus, centered at a randomly chosen point in

3D and rotated with randomly chosen angles along the x-, y-, and z-axes (see Fig. 7).
This is to avoid any symmetry of the uniform Cartesian grid which can influence
the convergence behavior. This setup includes all the essential difficulties one may
encounter when applying the proposed method to a smooth surface: non-convexity,
finite reach from the geometry, and asymmetry in the discretized system.

The torus is described by the following parametrization

T (θ, φ) = Q

⎛

⎝
(R2 cos θ + R1) cosφ

(R2 cos θ + R1) sin φ

R2 sin θ

⎞

⎠ + C (59)

where R1 = 0.7, R2 = 0.2, C imposes a translation, and Q = Qz(c)Qy(b)Qx (a) is
the composition of three rotation matrices; Qx (a), Qy(a), and Qz(a) are the matrices
corresponding to a rotation by an angle a around the x , y, and z axes respectively. The
parameters used for the translation and the rotations were:

C = (
0.5475547095598521, 0.6864792402110276, 0.3502726366462485

) · 10−1,

a = 0.199487 · 101,
b = 0.2540979476510170 · 101,
c = 0.4219760487439292 · 101.

The known density function ρ used in the test is defined using the parametrization of
the torus:

ρ(ȳ) = ρ(θ, φ) = 1.38 + 2.196 sin θ − 0.29837 cosφ sin θ + 1.128 sin φ cos θ .

We present the errors

E3
SL(h) =

∣∣∣V3
h

[
G0(x̄∗, ȳ)ρ(ȳ)

] − V3
hmin

[
G0(x̄∗, ȳ)ρ(ȳ)

]∣∣∣ ,

E3
DL(h) =

∣∣∣∣V3
h

[
∂G0

∂ny
(x̄∗, ȳ)ρ(ȳ)

]
− V3

hmin

[
∂G0

∂ny
(x̄∗, ȳ)ρ(ȳ)

]∣∣∣∣ ,

E3
DLC (h) =

∣∣∣∣V3
h

[
∂G0

∂nx
(x̄∗, ȳ)ρ(ȳ)

]
− V3

hmin

[
∂G0

∂nx
(x̄∗, ȳ)ρ(ȳ)

]∣∣∣∣ ,

(60)
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computed for a sequence of grid size values {hi }i , where we used as reference value
half of the smallest grid size hmin = 1

2 mini hi . We tested our third order rule V3
h (38).

Moreover, we compared with the previously developed second order rule, denoted by
V2
h , from [8].
In the presented simulations, we take the component nz of n̄ to be dominant if

| tan θ | <
√
2, where n̄/|n̄| = (sin θ cosφ, sin θ sin φ, cos θ). If instead | tan θ | ≥ √

2
and | tan φ| ≥ 1, we take ny to be dominant, and if | tan θ | ≥ √

2 and | tan φ| < 1, we
take nx to be dominant. We used θ and φ to determine the dominant direction because
of their extensive use in the rest of the code.

At each target point x̄∗, the total error is the sum of the errors of the two-dimensional
rule applied on each plane. Recall that under the IBIM formulation, the kernel is
singular along the surface’s normal line passing through x̄∗, and the singularity of the
kernel on each plane lies at the intersection of the surface normal line and that plane.
Since the normal lines of the surface generally do not align with the grid, the position
of the singular point relative to the grid tends not to lie on any grid node. Recall further
that the parameters α, β are used to described the position of the singular point relative
to the closest grid node on the plane, and the error constants depend on them. Those
parameters may change abruptly between planes, depending on which grid node in the
plane is closest to the singular point. The closest grid nodes to each surface normal line
certainly are expected to exhibit jumps as one refines the grids (decreases h). Thus, as
noted in [8], the errors (60) as functions of h are generally not smooth. Consequently,
we cannot see a clear slope.

To show the overall convergence behavior, we average the errors, defined in (60),
over 20 target points, randomly chosen. The results can be seen in Fig. 8. In the left
column, we present the averaged errors. In the right column, we present a scatter plot
of the errors at all the target points. We additionally highlight the errors corresponding
to two specific target points to showcase an “average” error behavior (green line) and
a “bad” error behavior (magenta line).

By construction of the quadrature rule (38), we expect it to be third order accurate
in h. However, from the plots, we observe order of accuracy≥ 3.5. We conjecture that
an additional cancellation of errors occurs when adding the results from each plane

Fig. 7 Torus test surface. Left: the torus used in the tests. Right: the torus and the projections of the
Cartesian grid nodes inside the tubular neighborhood Tε . The projected nodes serve as the quadrature nodes
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Fig. 8 Errors in the evaluation of the three Laplace layer potentials. The errors (60) are computed for
20 randomly chosen target points on a tilted torus. The plots in the left column show the mean of the 20
errors. The plots in the right column show the scatter plot of the 20 target points. In the right plots, we
additionally highlight the behavior of two specific target points, to showcase a “bad” error (magenta line)
and an “average” error (green line)
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(see [8] for a related discussion regarding V2
h ). A rigorous analysis of this behavior is

beyond the scope of this article.
Of course, to test our algorithms, we retain no information about the parametriza-

tions. The test torus is represented only by d� and P� on the given grid. Figure7 shows
the torus that we use and the points used in the quadrature rule for a given grid config-
uration. We use fourth-order centered differencing of P� on the grid to approximate
the Jacobian J� (see [17]). We also use fourth-order centered differencing of P� to
find the third derivatives of f needed for the functions B and C in (52), as they are
related via a linear system (see the Appendix).

A numerical study on a more complicated surface
We present a test of the quadrature rule applied to IBIM for a more complicated

surface, shown in Fig. 9. The surface represents the solvent-molecule interface of a
complex biomolecular system immersed in a solvent [20]. A level set representation
of the surface is generated using VISM [21] by the authors of [20] on a 5123 Cartesian
grid. We compute the relative error in the double-layer identity

∫

�

∂G0

∂ny
(x̄, ȳ)dσȳ = −1

2
, x̄ ∈ �,

using the proposed method. The relative error is defined as

E p(h) = 2

√√√√h3
∑

x j∈hZ3∩Tε

∣∣∣∣V
p
h

[
∂G0

∂ny
(x̄ j , ȳ)

]
+ 1

2

∣∣∣∣
2

δ�,ε(x j ), ε = 2h,

with p = 0 denoting the punctured trapezoidal rule.
In our setup, inherited from the shared data set, the signed distance function is

accurate up to distance ≈ 9h, which is minimally adequate for the application of
V2
h . The computed values are E0(h) = 0.0159 for the punctured trapezoidal rule and

E2(h) = 0.00142 for the second order corrected rule. Furthermore, when applyingV3
h ,

we notice that the resulting pointwise errors oscillate across grid nodes, x̄ j , and do not

Fig. 9 A solvent-molecule
interface. The surface is
computed by the VISM method
for biomolecular system
p53-MDM2 (PDB ID 1YCR)
[22] from the Protein Data Bank
(PDB)
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appear to be smaller than those computed by V2
h . On some x̄ j ′ , the error even appear

to be larger that those computed by the punctured trapezoidal rule. This is expected
because the grid

Appendix 1. Proofs of the lemmas and theorems

In this section, we will prove the Lemmas and Theorems mentioned in Sect. 2 and
Sect. 3.

Proof of Theorem 2.1

Consider a cut-off function ψ ∈ C∞
c (Rn) such that

ψ(x) =
{
1 , |x| ≤ 1

2 ,

0 , |x| ≥ 1 .
(61)

Then, we can write f as

f (x) =s(x)v(x) = s(x)v(x)ψ(x/r0) + s(x)v(x)(1 − ψ(x/r0))

=|x| j�(|x|, x/|x|)ψ(x/r0)v(x) + s(x)v(x)(1 − ψ(x/r0))

=|x| j�1(|x|, x/|x|)v(x) + s(x)v(x)(1 − ψ(x/r0)).

The first term is a function compactly supported in Br0 , so by extending it to zero
in Rn it satisfies the hypotheses of Theorem 4.1. Hence, the result is valid for the first
term.

The second term has regularity C∞
c (Rn) and is zero in Br0/2, so the error for the

punctured trapezoidal rule will decrease faster than any polynomial of h.
By combining the results for the two terms, we prove the result.

Results on which Theorem 2.1 depends

Theorem 4.1 Suppose v ∈ C∞
c (Rn) and � ∈ C∞(R × S

n−1). Then, for integers
j ≥ 1 − n,

∣∣∣∣
∫

Rn
s(x)v(x)dx − T 0

h,Nh
[s v]

∣∣∣∣ ≤ Ch j+n , s(x) = |x| j �
(

|x|, x
|x|

)
, (62)

where the constant C is independent of h, but depends on j , � and v.

Proof Define f (x) := |x| j�(|x|, x/|x|)v(x), and consider the cut-off function ψ ∈
C∞
c (Rn) (61). Then, we can write the punctured trapezoidal rule as

T 0
h,Nh

[ f ] = Th[ f ( · )(1 − ψ(·/h))],
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where we cut out the singularity point by multiplying by 1 − ψ around 0; the scaling
by h ensures that, for fixed h, only the node in the singularity point is cut out. This
allows us to split the error of the punctured trapezoidal rule as

∫

Rn
f (x)dx − T 0

h,Nh
[ f ] =

∫

Rn
f (x)ψ(x/h)dx

︸ ︷︷ ︸
(I)

+
∫

Rn
f (x)(1 − ψ(x/h))dx − Th[ f (·)(1 − ψ(·/h))]

︸ ︷︷ ︸
(II)

.

We will consider the two terms (I), (II) separately, and prove that both can be
bounded by Ch j+n .

(I): Given the compact support of ψ , the integral is reduced to an integral over
{|x| ≤ h}:

∫

Rn
f (x)ψ(x/h)dx =

∫

|x|≤h
v(x)|x| j�(|x|, x/|x|)ψ(x/h)dx

= h j+n
∫

|x|≤1
v(hx)|x| j�(|hx|, x/|x|)ψ(x)dx

⇒
∣∣∣∣
∫

Rn
f (x)ψ(x/h)dx

∣∣∣∣ ≤ h j+n|v|∞|�|∞
∫

|x|≤1
|x| jdx ≤ C1h

j+n,

since |x| j is integrable as j ≥ 1 − n. We have proven the estimate for the first term.
(II): For the second term, knowing that the volume of the fundamental paral-

lelepiped of the lattice V := (hZ)n is hn and that the dual lattice is V ∗ = (h−1
Z)n ,

we use the Poisson summation formula:

Th[ f ] = hn
∑

j∈V
f (j) = hn

hn
∑

l∈V ∗
f̂ (l) =

∫

Rn
f (x)dx +

∑

k �=0

f̂

(
k
h

)
.

Then, the error in (II) is:

Th [ f (·) (1 − ψ(·/h))] −
∫

Rn
f (x)(1 − ψ(x/h))dx =

∑

k �=0

f̂ψ(k, h),

where

f̂ψ(k, h) := f̂ (k/h) =
∫

Rn
f (x)(1 − ψ(x/h))e−2π ik·x/hdx

= hn
∫

Rn
f (hx)(1 − ψ(x))e−2π ik·xdx .
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Using integration by parts separately on each of the variables, we find

∫

Rn
∂

β
x [ f (hx)(1 − ψ(x))]e−2π ik·xdx = 2π i k j

∫

Rn
∂

β−e j
x [ f (hx)(1 − ψ(x))]e−2π ik·xdx

= (2π ik)β
∫

R2
f (hx)(1 − ψ(x))e−2π ik·xdx.

For the Laplacian operator applied q times, we therefore have

∫

Rn
�q [ f (hx)(1 − ψ(x))]e−2π ik·xdx

= − 4π2

⎛

⎝
n∑

j=1

k2j

⎞

⎠
∫

Rn
�q−1[ f (hx)(1 − ψ(x))]e−2π ik·xdx

=(−1)q(2π)2q |k|2q
∫

Rn
f (hx)(1 − ψ(x))e−2π ik·xdx .

We use this result to find an expression we can bound using Lemma 4.2; given an
integer q, we find

∣∣∣ f̂ψ(k, h)

∣∣∣ ≤ hn

(2π)2q |k|2q
∫

Rn

∣∣∣�q [ f (hx)(1 − ψ(x)]ei k·x
∣∣∣ dx

≤ hn

(2π)2q |k|2q
∑

|β|=2q

cβ

∫

Rn

∣∣∣∂β
x [ f (hx)(1 − ψ(x)]

∣∣∣ dx

≤ hn

(2π)2q |k|2q
∑

|β|=2q

c̃β(h j + h|β|−n) = c̄β

h j+n + h2q

|k|2q .

Then, the series of Fourier coefficients is

∣∣∣∣Th [ f (·) (1 − ψ(·/h))] −
∫

Rn
f (x)(1 − ψ(x/h))dx

∣∣∣∣ ≤
∑

k �=0

∣∣∣ f̂ψ(k, h)

∣∣∣

≤ c̄β

∑

k �=0

h j+n + h2q

|k|2q .

The series converges if 2q > n, and the leading order is h j+n if 2q ≥ j + n, so by
taking q ≥ max(1+n/2, (n+ j)/2), we find the result sought. Combining the results
for (I) and (II), we find the bound

∣∣∣∣
∫

Rn
f (x)dx − T 0

h,Nh
[ f ]

∣∣∣∣ ≤ Cβh
j+n .

This proves the theorem.
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We use the notation x = (x1, x2, . . . , xn) = ∑n
l=1 xlel , and indicate with el the

l-th element of the standard R
n basis.

Lemma 4.2 Let g, ψ ∈ C∞
c (Rn), � ∈ C∞(R × S

n−1), where ψ is such that

ψ(x) =
{
1 |x| ≤ 1

2 ,

0 |x| ≥ 1 .

Let j ≥ 1− n, and f (x) = |x| j�(|x|, x/|x|)g(x); then, for any multi-index β ∈ N
n
0

it exists a constant Cβ independent of h such that, for 0 < h ≤ 1,

∫

R2

∣∣∣∂β
x [ f (hx)(1 − ψ(x))]

∣∣∣dx ≤ Cβ(h j + h|β|−n) . (63)

Proof Given β ∈ N
n
0, we first prove that there exist functions fβ : R × S

n−1 → R in
C∞
c (R × S

n−1) such that

∂
β
x f (x) = |x| j−|β| fβ(|x|, x/|x|) . (64)

We prove this by induction. The induction base β = 0 is true because

∂0x f (x) = f (x) = |x| j�(|x|, x/|x|)g(x) =: |x| j f0(|x|, x/|x|),

where f0 ∈ C∞
c (R × S

n−1). For the induction step, we assume that (64) is true for β

and prove it for β + el :

∂
β+el
x f (x) = ∂elx |x| j−|β| fβ(|x|, x/|x|) .

By computing the derivative, we find

∂elx |x| j−|β| fβ
(

|x|, x
|x|

)
= |x| j−|β|−1

[
( j − |β|)

(
x
|x|

)

l
fβ

(
|x|, x

|x|
)

+ ∇u fβ

(
|x|, x

|x|
)

·
(
el −

(
x
|x|

)

l

x
|x|

)

+ |x|
(

x
|x|

)

l
∂r fβ

(
|x|, x

|x|
)]

= : |x| j−|β|−1 fβ+el

(
|x|, x

|x|
)

.

Because fβ ∈ C∞
c (R × S

n−1) the same is also true for fβ+el .
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The next step is to expand the derivative in (63) and use (64), and then bound it:

∂
β
x [ f (hx)(1 − ψ(x))] =

∑

ν≤β

(
β

ν

)
∂β−ν[1 − ψ(x)] h|ν|∂ν f (hx)

=
∑

ν≤β

(
β

ν

)
∂β−ν[1 − ψ(x)]h j |x| j−|ν| fν(|hx|,u) .

We use the properties of ψ , and the compact support of fν . Let L > 0 be such that
∀ν ≤ β, supp fν is contained in the ball BL(0). Note furthermore that the derivatives
of ψ are compactly supported in the annulus {x ∈ R

n : 1
2 ≤ |x| ≤ 1}. From this, we

can say that

∣∣∣∂β
x [ f (hx)(1 − ψ(x))]

∣∣∣ ≤ C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 , |x| ≤ 1
2 ,

h j , 1
2 ≤ |x| ≤ 1 ,

h j |x| j−|β| , 1 ≤ |x| ≤ L/h ,

0 , |x| > L/h .

We use these bounds in the evaluation of the integral, and after passing to polar
coordinates, we arrive at (63) via

∫

Rn

∣∣∣∂β
x [ f (hx)(1 − ψ(x))]

∣∣∣dx ≤C1

∫ 1

1/2
h jrn−1dr + C2h

j
∫ L/h

1
r j−|β|+n−1dr

=C̄1h
j + C2h

|β|−n
∫ L

h
r j−|β|+n−1dr

=C̄1h
j + C2h

|β|−n
(
C3 + C4h

j−|β|+n
)

≤Cβ (h j + h|β|−n) .

The lemma is proven.

Proof of Lemma 2.2

For any u ∈ S
1, we expand � around r = 0 and write the remainder in integral form:

�(r ,u) =
q∑

j=0

1

j !∂
j
r �(0,u)r j + rq+1

q!
∫ 1

0
∂
q+1
r �(tr ,u)(1 − t)qdt .

Then,

	qs(x) = 1

|x|�
(

|x|, x
|x|

)
−

q∑

j=0

1

j !∂
j
r �

(
0,

x
|x|

)
|x| j−1
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= |x|q
q!

∫ 1

0
(1 − t)q∂q+1

r �(t |x|, x/|x|)dt = |x|qσ(|x|, x/|x|) ,

where σ ∈ C∞((−r0, r0) × S
1) because � ∈ C∞((−r0, r0) × S

1). The lemma is thus
proven.

Proof of Lemma 3.2

The first two identities in (53) follows since P�(x̄∗ + (0, z′)B) = x̄∗ for all z′, as was
already pointed out in Sect. 3.2.1. For the second part, we note that the surface normal
at the point x̄∗ + (

yp, f (yp)
)
B is parallell to (−∇ f (yp), 1)B . Therefore, there is a

t ∈ R such that

x̄∗ + (y′, z′)B = x̄∗ + (
yp, f (yp)

)
B + t(−∇ f (yp), 1)B,

which implies that

y′ = yp − (z′ − f (yp))∇ f (yp) =: F(yp). (65)

Using the fact that yp = h(y′, z′) and differentiating both sides with respect to y′ gives
us,

I = ∂F(yp)
∂yp

T ∂h
∂y

= ∂h
∂y

−
(

(z′ − f (yp))
∂2 f

∂y2
(yp) − ∇ f (yp)∇ f (yp)T

)
∂h
∂y

,

and the result follows upon evaluating at y′ = yp = 0 and using (50). Since h is
smooth onML the matrix D must thus be well-defined.

For the second order term in the Taylor expansion, we write yp = (y1, y2), h =
(h1, h2)T and F = (F1, F2)T . We then get for j = 1, 2,

0 = ∂2Fj (h)

∂y2
= ∂Fj (yp)

∂ y1

∂2h1
∂y2

+ ∂Fj (yp)
∂ y2

∂2h2
∂y2

+ ∂h
∂y

T ∂2Fj (yp)
∂y2p

∂h
∂y

.

From the expressions above, we have that ∂F(0)
∂yp

= D−1(z). Therefore, evaluating

at y′ = yp = 0, yields

0 = D(z′)−1
j j

∂2h j

∂y2
+ D(z′)T

∂2Fj (yp)
∂y2p

D(z′), j = 1, 2.

Since
∂2Fj (yp)

∂y2p

∣∣∣∣∣
yp=0

= −z′ ∂

∂ y j

∂2 f

∂y2p

∣∣∣∣∣
yp=0

,
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we finally get

1

2

⎛

⎝ y′T ∂2h1
∂y2 y

′

y′T ∂2h2
∂y2 y

′

⎞

⎠ = − 1

2
D(z′)

⎛

⎜⎝
y′T D(z′)T ∂2F1(yp)

∂y2p
D(z′)y′

y′T D(z′)T ∂2F2(yp)
∂y2p

D(z′)y′

⎞

⎟⎠

= z′D(z′)C
(
D(z′)y′, D(z′)y′).

This gives (54) and the lemma is proven.

Proof of Lemma 3.3

For the first function, using the hypothesis ḡ(0) = 0 and the notation x = |x|u with
x/|x| =: u ∈ S

m−1, we write the expansion around x = 0 as

ḡ(x) =ḡ(0) + Dḡ(0)x +
∑

|ν|=2

Eḡ,ν(x)xν

=|x|
⎛

⎝Dḡ(0)u + |x|
∑

|ν|=2

Eḡ,ν(x)uν

⎞

⎠ =: |x| f (|x|,u) ,

where Eḡ,ν(x) := 2
ν!

∫ 1
0 (1− t)∂ν ḡ(tx)dt is given by the integral form of the remainder

term. Using the full rank of Dḡ(0), there exists 0 < r1 ≤ r0 be such that f (|x|,u) �= 0
in (−r1, r1) × S

m−1. Then,

1

|ḡ(x)| = 1

|x|
1

| f (|x|,u)| = 1

|x|�1 (|x|,u) ,

and from the hypotheses on Dḡ(0) and on the smoothness of ḡ, �1 is C∞((−r1, r1) ×
S
m−1).
For the second function form, let r(x) := p̄(x)T ḡ(x); then,∇r(x) = ḡ(x)T Dp̄(x)+

p̄(x)T Dḡ(x). Using the hypothesis p̄(0)T Dḡ(0) = 0, we write the expansion of r
around x = 0 using the integral form of the remainder:

r(x) = r(0) + ∇r(0)x +
∑

|ν|=2

Er ,ν(x)xν = |x|2
∑

|ν|=2

Er ,ν(x)uν ,

where Er ,ν(x) := 2
ν!

∫ 1
0 (1 − t)∂νr(tx)dt , so that we find

p̄(x)T ḡ(x)
|ḡ(x)|3 = |x|2 ∑

|ν|=2 Er ,ν(x)uν

|x|3 f (|x|,u)3
= 1

|x|
∑

|ν|=2 Er ,ν(x)uν

f (|x|,u)3
= 1

|x|�2(|x|,u) .

From the hypotheses on the smoothness of ḡ and p̄, �2 is C∞((−r1, r1) × S
m−1) and

the result is proven.
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Appendix 2. Computation of the derivatives of the local surface func-
tion

In this section, wewill show how to find numerically the derivatives of f in the Implicit
Boundary Integral Methods setting of Sect. 3. The derivatives are needed to evaluate
the functions B and C of (52), which are used in the approximated kernels (41).

The first derivatives and the mixed second derivatives are zero by construction, so
we will show how to find the pure second derivatives and all the third derivatives.

Let z̄ be an arbitrary point in Tε, and η = d�(z̄). Let �η := {z̄ ∈ Tε : d�(z̄) = η}
be the surface parallel to � at signed distance η.

The pure second derivatives of f at P�(z̄), fxx , fyy , are the principal directions
κ1, κ2 of � at P�(z̄). We find the principal curvatures g1, g2 of �η in z̄ via the Hessian
of d� at z̄:

Hd� (z̄) = ∇2d�(z̄) = [
n̄ τ̄ 1 τ̄ 2

]
⎡

⎣
0

−g1
−g2

⎤

⎦[
n̄ τ̄ 1 τ̄ 2

]T

where τ̄ 1, τ̄ 2 are the principal directions and n̄ is the normal to � in P�(z). In practice,
the values of either P� or d� are given on the grid nodes. The principal directions and
curvatures are computed from eigendecomposition of third order numerical approxi-
mations of the Hessian, Hd� . Alternatively, one can obtain this information from the
derivative matrix of P� , see [17]. Then, the following relation lets us find the principal
curvatures κ1, κ2 from g1, g2 and η:

−κi = −gi
1 + ηgi

, i = 1, 2.

The third derivatives of f can be found by computing the second derivatives with
respect to y′ of h(y′, z′) from Sect. 3.2.1. By differentiating twice (65) with respect
to y′ = (x, y) with h(y′, z′) = yp = (h1, h2) and evaluating in y′ = 0, we find the
following two linear systems:

V

⎛

⎜⎜⎝

fxxx
fxxy
fxyx
fxyy

⎞

⎟⎟⎠ = 1 − z′κ1
z′

⎛

⎜⎜⎜⎜⎜⎝

∂2h1
∂x2

∂2h1
∂x∂ y
∂2h1
∂ y∂x
∂2h1
∂ y2

⎞

⎟⎟⎟⎟⎟⎠
, V

⎛

⎜⎜⎝

fyxx
fyxy
fyyx
fyyy

⎞

⎟⎟⎠ = 1 − z′κ2
z′

⎛

⎜⎜⎜⎜⎜⎝

∂2h2
∂x2

∂2h2
∂x∂ y
∂2h2
∂ y∂x
∂2h2
∂ y2

⎞

⎟⎟⎟⎟⎟⎠
,

(66)

where V :=

⎛

⎜⎜⎜⎜⎜⎝

(
∂h1
∂x

)2
∂h1
∂x

∂h2
∂x

∂h1
∂x

∂h2
∂x

(
∂h2
∂x

)2

∂h1
∂x

∂h1
∂ y

∂h1
∂x

∂h2
∂ y

∂h1
∂ y

∂h2
∂x

∂h2
∂x

∂h2
∂ y

∂h1
∂x

∂h1
∂ y

∂h1
∂ y

∂h2
∂x

∂h1
∂x

∂h2
∂ y

∂h2
∂x

∂h2
∂ y(

∂h1
∂ y

)2
∂h1
∂ y

∂h2
∂ y

∂h1
∂ y

∂h2
∂ y

(
∂h2
∂ y

)2

⎞

⎟⎟⎟⎟⎟⎠
.

123



   60 Page 46 of 47

We find the first and second derivatives of h(y′, z′) by computing the derivatives of
P� in z̄ and applying a change of basis transformation.

By construction z̄ = P�(z̄) + ηn̄. Then, we use the closest point projections of the
grid nodes around z̄,

v̄i jk := P�(z̄ + (i, j, k)h), i, j, k = −2,−1, 0, 1, 2.

In the B basis, these points are expressed as v̄i jk = x̄∗ + (w̄i jk)B , where w̄i jk =
Q−1(v̄i jk − x̄∗). We apply finite differences (central differences of 4th order in this
case) to the component of the nodes w̄i jk = (Xi jk,Yi jk, Zi jk) to compute

W1 ≈ ∇X , W2 ≈ ∇Y , W3 ≈ ∇2X , W4 ≈ ∇2Y .

We can then use these approximations to find the derivatives of hi , i = 1, 2 by
applying the following transformations:

∂h1
∂x = τ̄ T

1 W1,
∂h1
∂ y = τ̄ T

2 W1,
∂h2
∂x = τ̄ T

1 W2,
∂h2
∂ y = τ̄ T

2 W2,

∂2h1
∂x2

= τ̄ T
1 W3τ̄ 1,

∂2h1
∂x∂ y = τ̄ T

2 W3τ̄ 1,
∂2h1
∂ y∂x = τ̄ T

1 W3τ̄ 2,
∂2h1
∂ y2

= τ̄ T
2 W3τ̄ 2,

∂2h2
∂x2

= τ̄ T
1 W4τ̄ 1,

∂2h2
∂x∂ y = τ̄ T

2 W4τ̄ 1,
∂2h2
∂ y∂x = τ̄ T

1 W4τ̄ 2,
∂2h2
∂ y2

= τ̄ T
2 W4τ̄ 2.

Finally, we solve the two systems (66) with these values and z′ = η.
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