
Journal of Computational Physics 178, 373–390 (2002)

doi:10.1006/jcph.2002.7033, available online at http://www.idealibrary.com on

High-Frequency Wave Propagation by the
Segment Projection Method

Björn Engquist,∗,1 Olof Runborg,†,2 and Anna-Karin Tornberg‡,3

∗Department of Mathematics, Princeton University, Princeton, New Jersey; †Department of Numerical Analysis
and Computer Science, KTH, Stockholm, Sweden; and ‡Courant Institute of Mathematical Sciences,

New York University, New York, New York
E-mail: engquist@math.princeton.edu; olofr@nada.kth.se; and tornberg@cims.nyu.edu

Received May 1, 2001; revised February 13, 2002

Geometrical optics is a standard technique used for the approximation of high-
frequency wave propagation. Computational methods based on partial differential
equations instead of the traditional ray tracing have recently been applied to ge-
ometrical optics. These new methods have a number of advantages but typically
exhibit difficulties with linear superposition of waves. In this paper we introduce
a new partial differential technique based on the segment projection method in
phase space. The superposition problem is perfectly resolved and so is the prob-
lem of computing amplitudes in the neighborhood of caustics. The computational
complexity is of the same order as that of ray tracing. The new algorithm is de-
scribed and a number of computational examples are given, including a simulation of
waveguides. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

High-frequency wave propagation is well approximated by asymptotic formulations such
as geometrical optics and the geometrical theory of diffraction. These formulations can be
the basis of computations or they can be used analytically for the understanding of high-
frequency phenomena.
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Let us consider the scalar wave equation

∂2u(x, t)

∂t2
= c(x)2�u(x, t), x ∈ IRd , t > 0,

u(x, 0) = u0(x), x ∈ IRd , (1)

∂u(x, 0)

∂t
= u1(x), x ∈ IRd .

When u0 or u1 contains high-frequency components it is customary to use the ansatz

u(x, t) ∼ eiωϕ(x,t)
∞∑
j=0

a j (x, t)(iω) j , (2)

or

u(x, t) ∼ eiω(ϕ(x)−t)
∞∑
j=0

a j (x)(iω) j , (3)

to derive the eikonal equations for the phase ϕ [9]. With ω → ∞ we get from (2)

∂ϕ

∂t
+ c(x)|∇ϕ| = 0, (4)

and from (3)

|∇ϕ| = 1

c(x)
. (5)

The transport equations for the leading amplitude functions a0 are for (2) and (3), respec-
tively, given by

∂a0

∂t
+ c

∇ϕ · ∇a0

|∇ϕ| + c2∇ϕ − ∂2ϕ

∂t2

2c|∇ϕ| a0 = 0, (6)

2∇ϕ · ∇a0 + �ϕa0 = 0. (7)

Ray tracing can be regarded as the method of characteristics applied to the eikonal equations.
The ray x(t) is parameterized by t and the local direction of the ray is p = ∇ϕ(x), |p| =
c−1 = η,

dx
dt

= c2 p, (8)

dp
dt

= c∇xη. (9)

The system (8), (9) can be augmented by an equation for the amplitude and approximated
by standard numerical methods for ordinary differential equations.

Ray tracing techniques have difficulties with resolution in regions of diverging rays, so
simulations based directly on the eikonal equation have recently been introduced [22, 23]
(see also [7, 8]).

The eikonal equation is of Hamilton–Jacobi type and has a unique viscosity solution [4].
This means that the phase has a unique value and that crossing rays or linear superposition of
waves are not allowed. The viscosity solution only gives the first arriving ray or wave front.
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One way to resolve this problem is to geometrically decompose the region of the indepen-
dent variables where there should be multiple rays. Extra-eikonal equation computations
can be performed in these domains to approximate each separate wave field in the super-
position. This was briefly discussed in [5] and more systematically developed by Benamou
[1, 2] and Symes [18].

It is possible to derive a Vlasov-type partial differential equation from (8), (9) which
gives the amplitude and allows for superposition [11],

∂w

∂t
+ c2p · ∇xw + c∇xη · ∇pw = 0. (10)

The density w = w(x, p, t) is a function of location, the ray vector, and time. It is related to
the amplitude as a2

0 = ∫
w dp. If w has support on |p| = c−1 initially this will be valid for

all time and w can be regarded as a function of p/|p| and thus of six independent variables
for x ∈ IR3.

When (10) is used for simulations the drawback is the computational complexity. Let h
be of the order of the numerical step size for the independent variables. The computational
complexity is O(h−6) in IR3 and O(h−4) in IR2 for an explicit difference method approx-
imating (10). This should be compared to simulations based on ray tracing for the time
harmonic problem. The corresponding complexities for the same resolutions are O(h−3) in
IR3 and O(h−2) in IR2. The complexities for explicit approximations of the eikonal equation
(4) are O(h−4) in IR3 and O(h−3) in IR2. The fast marching method [14] can be used for
(4) and the complexity is reduced to O(h−3 log h) and O(h−2 log h), respectively.

A different approach was taken in [6, 12]. The eikonal equation is replaced by a system
of nonlinear conservation laws that allows for a limited number of linear superpositions.
The conservation laws are derived by integrating Eq. (10) with respect to p and using the
finite number of superpositions as closure. The number of independent variables is then
reduced to four in IR3 and three in IR2 but the numerical approximations exhibit problems
when there are several crossing rays (see also [3] for the technique of reducing the number
of independent variables).

Another method was introduced by Steinhoff and collaborators in [15–17] and further
refined by Ruuth et al. in [13]. The dependent variables in this technique are essentially the
coordinates of the closest point on a wave front from a given x-coordinate. This clever choice
of representation and a time-stepping scheme following the rules of geometrical optics
allows for linear superposition. The present forms of the method have higher complexity
than ray tracing and certain cases will not be correctly described with the initial version.
One such example is a wave front given by a collapsing circle with two parallel tangent
lines. When the circle and the tangent lines have been reduced to one line the information
of the circle is lost and cannot be recovered. The method is quite straightforward and is
being further developed.

The new technique we introduce here is also based on the tracking of fronts, but it is
done in phase space. In two space dimensions a front is given as a curve in xyθ space
where θ = cos−1(p1/|p|) is the angle between the normal of the front and the x-axis. The
curve is represented by its projection onto the two-dimensional xy, xθ , and yθ spaces. The
representation of the curve in each of these spaces is evolved by the segment projection
method [19]. The segment projection method allows for the superposition of fronts and
the use of the phase plane makes it possible to describe caustics, including a correctly
approximated amplitude. The motion of the curve is determined by the solution of partial



376 ENGQUIST, RUNBORG, AND TORNBERG

differential equations in one space variable; in spite of the extension to the phase plane the
computational complexity is not more than that of standard ray tracing. This is a result of
the projection onto the lower dimensional spaces. In the segment projection a curve in two
dimensions is represented as a union of segments. These segments are chosen such that they
can be given as a function of one of the variables. In three dimensions the segments are
projected onto the two-dimensional coordinate planes. The spatial resolution should be of
the same order as is required by ray tracing. The method for the evolution of the segments
is explicit and the number of steps will in general be proportional to the number of steps in
the ODE solver for the rays.

The general form of the segment projection method for one-dimensional curves in IR2

and IR3 is given in Section 2. This is followed in Section 3 by a presentation of the method
adapted to geometrical optics. The final section contains numerical examples. In these
sections we use the notation x = (x1, x2) or (x, y) whenever convenient.

2. THE SEGMENT PROJECTION METHOD

The segment projection method is a computational method for tracking the dynamic
evolution of interfaces. It was recently developed in [19, 20]. The basic idea is to represent
a curve or surface as a union of segments. Each segment is chosen such that it can be given as
a function of the independent variables. The representation is thus analogous to a manifold
being defined by an atlas of charts. The motions of the individual segments are given by
partial differential equations based on the physics describing the evolution of the interfaces.

General software has been developed for curves γ in IR2 and we give a brief overview of
the method. The segments are here represented by functions Y j (x) and Xk(y). The domains
of the independent variables of these functions are projections of the segments onto the
coordinate axis. The coordinates of the points on γ are given by (x, y) = (x, Y j (x)) or
(x, y) = (Xk(y), y). For each point on a curve γ , there is a least one segment defining the
curve. To make the description complete, information about the connectivity of segments
must also be provided. For each segment in one variable there is information regarding which
parts of the curve have overlap with segments in the other variable, as well as pointers to
these segments.

The number of segments needed to describe a curve depends on the shape of the curve.
An extremum of a function Y j (x) defines a separation point for the y-segments, as no
segment given as a function of y can continue past this point. Similarly, an extremum of a
function Xk(y) defines a separation point for the x-segments. A sketch of a distribution of
segments is shown in Fig. 1. For moving interfaces, Y j = Y j (x, t) and Xk = Xk(y, t) are
also functions of time.

The segments are moved by equations of motion, and after each numerical advection step,
the segment representation is reinitialized. Dynamic creation and elimination of segments
are employed to follow the evolution of the curves. New segments are created if new extrema
have appeared, and segments are removed when extrema disappear. The connectivity of
segments must be kept updated such that the pointers relating the segments represents the
current configuration. If we assume that the lower deformed circle in Fig. 1 has evolved
from the circle above it, a new maximum and two new minima have appeared in the lower
x-segment. The number of y-segments should then be increased, as is seen in the figure.

For each segment, the domain of the independent variable must be defined. These seg-
ments are numerically given by arrays for Y j and Xk . The domains of the independent
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FIG. 1. Segment structure for circle and deformed circle. (Left) Curve γ ; (middle) x-segments; (right) y-
segments.

variables, the arrays, and information about connectivity between the segments define the
structure that represents the curve.

From the definition of an x-segment, an ordered set of numbers is created that contains
the start and endpoints of the segment, together with the extremum points of the segment.
The intervals between these points correspond to different segments of the other variable.
It is necessary to keep track of the connections between these segments.

Very short segments are not practical to work with for the evolution of γ . They are,
however, needed in the structure of connectivity and are defined as empty segments. If the
difference between two consecutive extrema in Y j is less than 2�y in absolute value, the
corresponding y-segment is defined as empty.

Let a velocity field u = (u, v)T be given by which the curve should move. The segments
y = Y (x, t) and x = X (y, t) are updated according to the partial differential equations

∂Y

∂t
+ u

∂Y

∂x
= v, (11)

∂ X

∂t
+ v

∂ X

∂y
= u. (12)

Note that there is only one spatial variable present in each of these equations. Quantities
that are transported by the velocity field can also be defined as functions on the segments.
Let F t (x, y) be the flow generated by u. If r(x, y, t) evolves according to the ODE

dr(F t , t)

dt
= h(F t , r(F t , t), t),

for fixed (x, y), then

∂ Rx

∂t
+ u

∂ Rx

∂x
= h(x, Y, Rx , t), (13)

∂ Ry

∂t
+ v

∂ Ry

∂y
= h(X, y, Ry, t), (14)

where Rx (x, t) = r(x, Y (x, t), t) and Ry(y, t) = r(Y (y, t), y, t).
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Boundary conditions must be defined for the segments. They are either given in the
original problem formulation or interpolated from an overlapping segment in the other
coordinate direction. Note that this interpolation is well defined as an interpolation on an
irregular mesh from the discrete segment in the other coordinate direction.

After the numerical advection step based on (11), (12), we need to review the segment
structure. If no new extrema have appeared, and no old have disappeared, no change needs
to be made in the structure of the segments. We need, however, to update the positions of
the extremum points, and to correct the corresponding segment information according to
this. If new extrema have appeared or disappeared, the structure of the segments defined as
functions of the other spatial variable needs to be modified.

Any moving curve γ is represented by overlapping segments. These segments evolve
individually and may separate slightly in the overlapping regions due to numerical errors.
A reinitialization is applied in every time step to realign the segments. This is done by a
weighted interpolation. A segment will typically yield the most accurate description of the
curve if its slope is small.

For a given point xk , an x-segment has the value fk = Y (xk, t). Denote by f̃ k the value
at xk , interpolated from the discretized segment in the y-direction. Compute the slope of
the two segments at this point and denote the average by sk . The new value at xk is set to

f new
k = fk + θ(sk)( f̃ k − fk), (15)

where the weight θ(s) is a function of the slope s, given by

θ(s) =




0 for s < 1/β,
β

β2−1 (s − 1/β) for 1/β ≤ s ≤ β,

1 for s > β.

(16)

The numerical examples in Section 4 are done with β = 2. For very coarse grids a smaller
β could be used. The same interpolation is also applied to the functions Rx and Ry that are
defined on the segments.

When different parts of γ cross each other, geometric rules for the segment interaction
must be given. Examples are the merging of two bubbles in multiphase flow and the reflection
of a wave front γ1 meeting a curve γ2, representing a perfect reflector.

The advection and reinitialization process for a structure of segments, representing a
curve γ , can be summarized as follows:

1. Advect all x- and y-segments from a velocity field u = (u, v) and evolve associated
quantities defined on the segments by numerical approximations of (11)–(14).

2. Update the segment structure. For each segment (a) check to see if any new local
extrema have appeared or if any local extrema have disappeared by examining any change
in monotonicity in the sequence of the points defining the segments, and split or merge
corresponding segments of the other coordinate; (b) review the use of empty segments and
add or remove short segments, as described above; and (c) use the position of the extrema
to update the start index and the stop index of the independent variable for the segment of
the other coordinate.

3. For each segment whose domain of definition has increased, new values need to be
defined. These are interpolated from the corresponding segment in the other coordinate
direction.
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4. Interpolate the segment between overlapping parts of the x- and y-segments. The new
values are assigned using a weight function based on the slopes of the segments.

5. Rearrange the segment structure from the rules of segment interactions.

These steps are generic and essentially the same for different applications. A common
software will thus apply to different problems with only minor modifications in, for example,
the advection and the interaction algorithms.

Curves of codimension two in IR3 are approximated by their projections onto the two-
dimensional coordinate planes. If a curve

γ (t) : {X1(s, t), X2(s, t), X3(s, t)}

is parameterized by s and evolves by the velocity field

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)),

we have

d X j

dt
= u j (X, t), j = 1, 2, 3.

Let the projection of γ onto the x j xk-plane be represented by a set of segment functions of
the type x j = X jk(xk, t) and xk = Xkj (x j , t). The evolution of the segment functions in all
three projection planes is then given by the equations

∂ X jk

∂t
+ uk

∂ X jk

∂xk
= u j , j = 1, 2, 3; k = 1, 2, 3; j �= k. (17)

The projections in the x j xk-planes are updated in time following steps 1–5 above. A sixth
step is then added with interpolation between the representations in the three coordinate
planes. This step is similar to step 4 and it is in general needed in order to define uk and u j

in (17). The simulations presented in this paper do not require such interpolations, however.
There is yet no general software for two-dimensional surfaces in IR3. The principle is

analogous to the lower dimensional case. The surface � is represented by functions defined
on the three coordinate planes. The functions x� = X jk

� (x j , xk, t) define the segments as in
IR2 and the union of segments defines �. Given the velocity field u(x, t), the motion of the
segments is given by

∂ X jk
�

∂t
+ u j

∂ X jk
�

∂x j
+ uk

∂ X jk
�

∂xk
= u�,

j = 1, 2, 3, k = 1, 2, 3, � = 1, 2, 3, j �= k, j �= �, k �= �.

3. THE SEGMENT PROJECTION METHOD FOR GEOMETRICAL OPTICS

The segment projection method is applied to track the evolution in phase space of fronts
that are given by geometrical optics. For two space dimensions a curve γ in IR3 is tracked
and for three space dimensions a surface � in IR5 is evolved. We mainly discuss the two-
dimensional case and only give one three-dimensional example, in Section 4.2. Section 3.1
discusses how to reduce the two-dimensional case to just one dimension. In the presentation
of the method, we may assume that γ or � and their projections are functions. The segment
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FIG. 2. Phase plane curve γ : thick line, with projections onto xy-, xθ -, and yθ -planes. (Left frame) Initial
circular wave front, t = 0; (middle frame) focus at t = 1; (right frame) t = 1.5.

projection technique reduces the general case to a set of segments that are functions of some
of the independent variables.

Let the independent variables be x , y, and θ . The orthogonal projections of γ onto
the xy-, xθ -, and yθ -planes are denoted by γxy , γxθ , and γyθ , respectively. The evolution
of γ = γ (t) will be determined by the two-dimensional segment projection method, as
presented in Section 2.

In Fig. 2, left frame, an initial circular wave front is given in the xy-plane. This frame
also displays the phase plane curve γ in IR3 together with its xθ - and yθ -projections. Let
the circular wave front contract with time and be focused to a point (x, y) = (1, 1) at time
t = 1, c(x) ≡ 1. The representations of γ at t = 1 in the xθ - and yθ -planes are smooth and
the evolution can easily be continued to t > 1.

The evolution of a wave front in the xy-plane is given by the velocity c(x) in its normal
direction n. The velocity field u = (u, v) in the xy-plane is thus

(u, v) = c(x)n = c(x) (cos θ, sin θ), (18)

where θ is the angle between the normal vector and the x-axis. The normal vector can be
computed from the segment functions.

From the general equations (11) and (12) and the velocity field (18), we get the Eulerian
form of the evolution equations for the x- and y-segments in the xy-plane, respectively,

{
∂Y x

∂t + c(x, Y x (x, t)) cos θ ∂Y x

∂x = c(x, Y x (x, t)) sin θ,

∂ X y

∂t + c(X y(y, t), y) sin θ ∂ X y

∂y = c(X y(y, t), y) cos θ.
(19)

The approach of tracking the front only in the xy-plane, computing θ from the segments,
breaks down at caustics. Therefore, the front must be tracked in phase space, and the other
two projections are needed.

With p = (cos θ, sin θ)/c(x) we can derive from (8), (9)

dθ

dt
= ∂c

∂x
sin θ − ∂c

∂y
cos θ. (20)
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This equation, together with (18), gives the velocity field needed to apply (11) and (12) to
the segment equations in the xθ - and yθ -planes.

Let the x- and θ -segments in the xθ -plane be denoted by �x and X θ and the y and θ

segments in the yθ -plane be �y and Y θ , respectively. The segment equations are{
∂�x

∂t + c cos θ ∂�x

∂x = α,

∂ X θ

∂t + α ∂ X θ

∂θ
= c cos θ,

(21)

{
∂�y

∂t + c sin θ ∂�y

∂y = α,

∂Y θ

∂t + α ∂Y θ

∂θ
= c sin θ,

(22)

α = ∂c(x)

∂x
sin θ − ∂c(x)

∂y
cos θ. (23)

The one-dimensional hyperbolic equations above are easily solved by standard numerical
methods. Note that the representation of the phase plane curve γ may be degenerate for the
projection onto one of the coordinate planes, but there will always be two projections for
which γ is well represented.

When η is constant the amplitude on the curve can easily be calculated by post processing
of the results from (21), (22). (In the next section we compute the amplitude for problems
with variable η.) By (10), the intensity A2 = ∫

w dp is a conserved quantity in time and
changes (pointwise) only through geometrical spreading. Consider for instance an initial
curve (x0(θ), y0(θ), θ) with amplitude A0(θ) moving in the normal direction (cos θ, sin θ)T .
At time t it will have evolved to (x(θ, t), y(θ, t), θ), where

x(θ, t) = x0(θ) + t cos θ, y(θ, t) = y0(θ) + t sin θ.

Let J (θ, t) be the Jacobian of the mapping (θ, t) �→ (x(θ, t), y(θ, t)) and set q = |detJ |.
Then the amplitude at time t is given by

A2(θ, t) = A2
0(θ)q(θ, 0)

q(θ, t)
, (24)

and since (xθ , yθ ) ⊥ (cos θ, sin θ) by the construction

q(θ, t) = |xθ yt − yθ xt | = |xθ sin θ − yθ cos θ | = ((xθ (θ, t))2 + (yθ (θ, t))2)1/2.

We note finally that q can be computed from X θ (θ, t) and Y θ (θ, t) in (21), (22).

3.1. Reduction to One Dimension

In many problems the x-component of the ray vector is always positive and the x-axis
can thus be used as the evolution direction. Time is not explicitly needed in the calculation
and θ can be computed as a function of x and y, and y as a function of x and θ . From (8),
(9), (20) we get the velocity field for this setting,

u = (u, v)T =
(

tan θ,
1

η
(ηy − ηx tan θ)

)T

,
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and the partial differential equation for the segments θ = �(x, y) and y = Y (x, θ) are

∂�

∂x
+ u

∂�

∂y
= v,

∂Y

∂x
+ v

∂Y

∂θ
= u.

The arrival time, T , is now a quantity defined on the phase plane curve, and it can be
computed according to (13), (14). LetF x (y, θ) = (F x

1 ,F x
2 )T be the flow generated by u. By

inverting (8), we see that dT (x,F x )/dx = η/ cos θ . This yields the following differential
equations, defined for the y- and θ -segments, respectively,

∂T y

∂x
+ u

∂T y

∂y
= η

cos θ
,

∂T θ

∂x
+ v

∂T θ

∂θ
= η

cos θ
.

(25)

To derive the equations for the amplitude, we consider the reduced form of (10) for the
phase space density w = w(x, y, θ),

∂w

∂x
+ u

∂w

∂y
+ v

∂w

∂θ
= 0, (26)

where again the amplitude is given by A2 = ∫
w dθ . Suppose the initial wave at x = 0 is a

curve in the phase plane defined by G(y, θ) = 0 with amplitude A0(y, θ). This corresponds
to the initial data

w(0, y, θ) = w0(y, θ) = A2
0(y, θ)δ(G(y, θ))|Gθ (y, θ)|

FIG. 3. Evolution of an initially elliptical wave front in the xy-plane.
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FIG. 4. Projection of phase plane curves γ . (Solid lines) xθ -plane; (dashed lines) yθ -plane.

for (26) whose solution is then w(x, y, θ) = w0(F−x (y, θ)). When � is well defined,
G(F−x (y, �(x, y))) = 0, and the amplitude on the segment is given by

A2(x, y) =
∫

w0(F−x (y, θ)) dθ = A2
0(F−x )|Gθ (F−x )|∣∣∇yθ G(F−x ) · ∂F−x

∂θ

∣∣ (y, �(x, y))

= A2
0(F−x )|Gθ (F−x )|| detJ x |∣∣G y(F−x )

∂F x
1

∂θ
− Gθ (F−x )

∂F x
1

∂y

∣∣ (y, �(x, y)),

where ∇yθ = (∂y, ∂θ ) and J x is the Jacobian of F x . The same equality holds when

FIG. 5. Evolution of amplitude as a function of θ .
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FIG. 6. Evolution of wave front in xyz space.

(y, �(x, y)) is replaced by (Y (x, θ), θ). In order to compute A(x, y) we must hence also
evolve F−x and J x as quantities on the curve. Let Du be the Jacobian of u(x, y, θ) with
respect to (y, θ ). We have

dF−x (F x )

dx
= 0,

dJ x (F x )

dx
= Du(F x )J x (F x ). (27)

Note, both F−x and J x remain bounded and smooth also at caustics, where A becomes
infinite.

The quantities are then given by the PDEs

∂ F y

∂x
+ u

∂ F y

∂y
= 0,

∂ J y

∂x
+ u

∂ J y

∂y
= DuJ y,

∂ Fθ

∂x
+ v

∂ Fθ

∂θ
= 0,

∂ J θ

∂x
+ v

∂ J θ

∂θ
= DuJ θ .

Here, F y , Fθ giveF−x and J y , J θ giveJ x on the segments�(x, y) and Y (x, θ), respectively.

FIG. 7. Projections of phase space surface � onto different coordinate planes at t = 0.
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FIG. 8. Results for the lens simulation. (Left frame) Local ray directions with contour lines of index of
refraction overlayed; (right frame) wave front in the xy-plane for a sequence of arrival times (T values).

Initial data for those equations are F y(0, y) = (y, �(0, y))T , Fθ (0, θ) = (Y (0, θ), θ)T ,
and J y(0, y) = J θ (0, θ) = I , the identity.

4. NUMERICAL EXAMPLES

We present four computational examples in order to describe different aspects of the
method. All of the examples involve caustics and superposition. The main purpose is to give
a proof of concept, and for simplicity we have used the first-order-accurate Lax–Friedrichs
scheme as evolution method.

FIG. 9. Results at different x-positions for the lens simulation. (Upper row) Phase plane curve; (lower row)
amplitude; (solid line) �y = �θ = 0.01; (dashed line) high-resolution ray tracing.



386 ENGQUIST, RUNBORG, AND TORNBERG

FIG. 10. Segment structure for lens simulation corresponding to phase plane curve in Fig. 9. (Upper row)
y-Segments; (Lower row) θ -segments.

4.1. Contracting Elliptical Wave Front

The initial values in this example correspond to a one-dimensional elliptical wave front
in IR2 (see Fig. 3). The initial motion is contraction and the index of refraction is constant.
The projections of the front in phase space onto the xθ - and yθ -planes are smooth even
through caustics (Fig. 4). The function α ≡ 0 (see (23)), which simplifies the calculations. No
differential equation needs to be solved in the xy-plane. Equations (21), (22) are sufficient
and the xy-location of the wave front is given by X θ , Y θ . With constant index of refraction
in the examples of Sections 4.1 and 4.2 there is no need to perform the interpolation that
was discussed in Section 2 as a sixth step in the segment projection process. There is no
problem in calculating the amplitude through the formation of caustics using (24) (Fig. 5),
even on a coarse grid; the quantities that we solve for are smooth. However, in order to
resolve the spikes in the postprocessed amplitude for the presentation, we used a fairly
dense grid, �θ = 2π/512 ≈ 0.01.

FIG. 11. Rays from initial plane wave for waveguide.
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FIG. 12. Results for the waveguide simulation. (Top frame) Local ray directions with contour lines of index
of refraction overlayed; (middle frame) amplitude, contour lines of min(A, 4); (bottom frame) wave fronts in the
xy-plane at T = 0.5, 6, 16.

4.2. Contracting Ellipsoidal Wave Front

The example in Section 4.1 is here extended to a surface in IR3. Even though general
software for the three-dimensional segment projection method has not yet been developed
this simulation can be done. The reason is that the index of refraction is constant and then
only one segment is needed in each of the coordinate planes given in Fig. 7, which displays
the projections of the initial surface in phase space onto the xθ1θ2, yθ1θ2, and zθ1θ2 spaces. In
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Fig. 6 we see the evolution of the wave front in xyz space at different times. For the general
case of variable index of refraction a larger number of segments could be required. It is in
principle also possible in the segment projection method. This will not increase the overall
computational complexity of the algorithm, but the software becomes more complicated
(see [21] for a simple three-dimensional example with several overlapping segments). The
grid resolution used in the computations was �θ1 = �θ2 = 2π/60 ≈ 0.1.

4.3. Focusing from a Lens

In this example with variable index of refraction a wave front passes through a lens,
modeled by the index of refraction

η(x, y) = 1.5 − 1

π
arctan(5[(y − 1)2 − 0.1(x − 0.5)]).

The left frame in Fig. 8 shows the direction of the rays and isocurves for the index of
refraction. In the right frame, the initial planar wave front is given together with the wave
fronts at later times. This includes the development of caustics.

Since all rays go in the positive x-direction in this simulation, we can use the reduced
model of Section 3.1. The arrival time T is a well-defined quantity on the phase plane curve.
It is computed via (26) and the y-segment functions T y(x, y) are used to plot the wave fronts
in Fig. 8. Note, since we use a constant �x and a uniform y grid, T is in fact obtained on a
uniform x × y grid. At each point the number of y-segments corresponds to the number of
crossing wave fronts. Figure 9 compares the results obtained with the segment projection
method on a grid with �y = �θ = 0.01 and a ray-traced reference solution, in order to
give an indication of the numerical error. The segments � and Y are given in Fig. 10.

4.4. Waveguide

In this simulation an incoming plane wave at x = 0 with constant amplitude A = 1 enters
a waveguide. The variable index of refraction in the waveguide, η(x, y) = 1 + exp(−y2),
causes the rays to bend. The ray pattern is given in Fig. 11. The corresponding local ray

FIG. 13. Results for waveguide at x = 17 as a function of y. (Left frame) sin(θ); (middle frame) amplitude
A; (right frame) time T .
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directions, amplitude, and wave fronts as computed by the segment projection method are
shown in Fig. 12. The technique described in Section 3.1 of having the x-axis as evolution
direction is also used in this application. The phase space curve in the yθ -plane becomes
complicated at larger x-values but it is still handled well by the segment projection method
(see Fig. 13). The grid resolution was high, �y = 7/4096 ≈ 0.002, to get an accurate
rendering of the amplitude at the far end of the waveguide.

5. CONCLUSION

We have presented a new PDE-based method for computing the geometrical optics app-
roximation of the wave equation. The wavefront is tracked directly in phase space through
an adapted version of the segment projection method. In this way, there is no extra difficulty
when computing solutions with multiple crossing waves. Nor do caustics present a problem
when computing amplitudes. The method is defined on an Eulerian grid and does not require
regridding, due to diverging rays. The computational complexity is of the same low order
as that of ray tracing and the algorithm explicitly defines the wave front.

We have applied the method to a number of examples and have shown how to use it
for efficiently computing multivalued travel times as well as amplitudes. The examples
cover problems with constant and variable index of refraction in two dimensions and a
constant coefficient problem in three dimensions. The computations in the two-dimensional
examples were done by codes based on the general segment projection method software.
The three-dimensional example was done by a special purpose code.

Finally, we should remark that our method can also be used for more general Hamilton–
Jacobi equations. Given a Hamiltonian H(x, ∇ϕ), we can just replace the system (8), (9)
by

dx
dt

= ∇p H(x, p),

dp
dt

= −∇x H(x, p),

and the transport equation (10) by

∂w

∂t
+ ∇p H · ∇xw − ∇x H · ∇pw = 0.

Geometrical optics is the special case when H(x, ∇ϕ) = c(x)|∇ϕ|.
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