A Note on "Self-Organized Criticality: Analysis and Simulation of a 1D Sandpile"

Olof Runborg*

March 4, 1998

Abstract

We prove a conjecture made in the paper Self-Organized Criticality: Analysis and Simulation of a 1D Sandpile, by Lorenz, Jackett and Qin, IMA preprint 1515, 1997, available at http://www.ima.umn.edu/preprints/OCT97/1515.pdf. Also published in Doedel, Eusebius (ed.) et al., Numerical methods for bifurcation problems and large-scale dynamical systems. Based on two workshops held as part of the 1997-1998 IMA academic year on emerging applications of dynamical systems. New York, NY: Springer. IMA Vol. Math. Appl. 119, 229-264 (2000).

The conjecture concerns the spectral radius of a block $\left(P_{11}\right)$ of the Markov matrix. Terminology and notation are as in the original paper.

Introduce the functional $$
\begin{equation*} \beta: \mathcal{A}_{L} \rightarrow \mathbb{N}, \quad \beta(u)=\sum_{s=1}^{L} \max \left(s-u_{s}, 0\right) \tag{1} \end{equation*}
$$

which can be seen as a measure how far a given set is from the set of recurrent states \mathcal{R}_{L}. We observe that

$$
\begin{equation*}
0 \leq \beta(u) \leq \sum_{s=1}^{L} s=\frac{L(L+1)}{2} \equiv N_{L} \tag{2}
\end{equation*}
$$

Two useful properties of β are the following.
Lemma 1 For all $u \in \mathcal{S}_{L}$

$$
\begin{equation*}
\beta\left(E_{r} u\right) \leq \beta(u), \quad 1 \leq r \leq L \tag{3}
\end{equation*}
$$

Proof: We split the toppling operator into $L+1$ suboperators $\left\{\tilde{T}_{k}\right\}$ such that

$$
\tilde{T}_{k}: \mathcal{A}_{L} \rightarrow \mathcal{A}_{L}, \quad\left(\tilde{T}_{k} u\right)_{s}= \begin{cases}u_{s}-2, & s=k \leq L \text { and } u_{k} \geq u_{k-1}+3 \tag{4}\\ u_{s}+2, & s=k-1>0 \text { and } u_{k} \geq u_{k-1}+3 \\ u_{s-1}, & s=L+1 \text { and } k=L+1 \\ u_{s}, & \text { otherwise }\end{cases}
$$

[^0]for $1 \leq k \leq L+1$. Then the toppling operator can be written
\[

$$
\begin{equation*}
T=\tilde{T}_{L+1} \tilde{T}_{L} \cdots \tilde{T}_{1} \tag{5}
\end{equation*}
$$

\]

If $u_{k} \leq u_{k-1}+2$ or if $k=L+1$ we clearly have that $\beta\left(\tilde{T}_{k} u\right)=\beta(u)$. Otherwise, since $\max (x+2,0)-\max (x, 0)$ is an increasing function of x,

$$
\begin{align*}
\beta\left(\tilde{T}_{k} u\right)-\beta(u)= & \max \left(k-u_{k}+2,0\right)-\max \left(k-u_{k}, 0\right)+ \tag{6}\\
& \max \left(k-1-u_{k-1}-2,0\right)-\max \left(k-1-u_{k-1}, 0\right) \\
\leq & \max \left(k-u_{k-1}-3+2,0\right)-\max \left(k-u_{k-1}-3,0\right)+ \\
& \max \left(k-1-u_{k-1}-2,0\right)-\max \left(k-1-u_{k-1}, 0\right) \\
= & 0,
\end{align*}
$$

for $1<k \leq L$ and

$$
\begin{align*}
\beta\left(\tilde{T}_{1} u\right)-\beta(u) & =\max \left(1-u_{1}+2,0\right)-\max \left(1-u_{1}, 0\right) \tag{7}\\
& \leq \max \left(1-u_{0}-3+2,0\right)-\max \left(1-u_{0}-3,0\right) \\
& =\max \left(u_{0}, 0\right)=0
\end{align*}
$$

So, for all $u \in \mathcal{A}_{L}$ and $1 \leq k \leq L+1$, we have that $\beta\left(\tilde{T}_{k} u\right) \leq \beta(u)$ and by (5) this extends to $\beta(T u) \leq \beta(u)$. Moreover, for $1 \leq r \leq L$,

$$
\begin{equation*}
\beta\left(R_{r} u\right)-\beta(u)=\max \left(r-u_{r}-1,0\right)-\max \left(r-u_{r}, 0\right) \leq 0, \quad \forall u \in \mathcal{A}_{L} \tag{8}
\end{equation*}
$$

Since for $u \in \mathcal{S}_{L} \subset \mathcal{A}_{L}$ the evolution operator $E_{r} u=T^{n} R_{r} u$ for some n, the lemma follows.

Lemma 2 For each $u \in \mathcal{I}_{L}$ there exists an $r \geq 1$ such that $\beta\left(E_{r} u\right)=\beta(u)-1$.
Proof: This follows immediately from the beginning of Lemma 3.2, where it is asserted that for any $u \in \mathcal{T}_{L}$ there exists an $r \geq 1$ such that $u_{r}<r$ and $R_{r} u \in \mathcal{S}_{L}$.

We can now state the theorem.
Theorem 1 The diagonal block P_{11} of the Markov matrix P satisfies

$$
\begin{equation*}
\rho\left(P_{11}\right)=(L-1) / L \tag{9}
\end{equation*}
$$

Proof: Let $\left\{V_{k}\right\}$ be the disjoint family of sets such that

$$
\begin{equation*}
V_{k}=\left\{u \in \mathcal{S}_{L}: \beta(u)=k\right\} \tag{10}
\end{equation*}
$$

Trivially, $V_{0}=\mathcal{R}_{L}$ and by (2)

$$
\begin{equation*}
\mathcal{T}_{L}=\bigcup_{k=1}^{N_{L}} V_{k} \tag{11}
\end{equation*}
$$

Order the states in \mathcal{T}_{L} according to which V_{k} they belong to, so that $u \in V_{N_{L}}$ come first. Then, in view of Lemma $1, P_{11}$ can be partitioned into blocks as

$$
P_{11}=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1, N_{L}} \tag{12}\\
0 & A_{22} & \ldots & A_{2, N_{L}} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & A_{N_{L}, N_{L}}
\end{array}\right), \quad A_{k k} \equiv\left\{a_{i j}^{k}\right\} \in \mathbb{R}^{m_{k} \times m_{k}}
$$

It is clear that $\rho\left(P_{11}\right)=\max _{k} \rho\left(A_{k k}\right)$. What is more, the number of non-zero entries in each row of $A_{k k}$ is at most $L-1$, because of Lemma 2. Therefore,

$$
\begin{equation*}
\rho\left(A_{k k}\right) \leq\left|A_{k k}\right|_{\infty}=\max _{1 \leq i \leq m_{k}} \sum_{j=1}^{m_{k}}\left|a_{i j}^{k}\right| \leq \frac{L-1}{L}, \quad 1 \leq k \leq N_{L} \tag{13}
\end{equation*}
$$

So $\rho\left(P_{11}\right) \leq(L-1) / L$. That $\rho\left(P_{11}\right) \geq(L-1) / L$ is already stated in Lemma 4.3.

Remark 1: The sets V_{k} used in the proof above can be seen as a ladder such that a sequence of states will start at a certain level and steadily go downwards, but never up. Note, however, that there is no guarantee that a sequence does not take two steps at a time. (For instance $\beta\left(\left[\begin{array}{llll}0 & 2 & 4 & 6\end{array}\right]\right)=4$ and $\beta\left(E_{3}\left[\begin{array}{llll}0 & 2 & 4 & 6\end{array}\right]\right)=$ 2.) Hence, in the general case the index of the set does not signify the least number of evolution steps needed for its states to reach \mathcal{R}_{L}. (This is, however, true for $L<5$.)
Remark 2: In the proof of Lemma 4.3, the matrix A is actually the same as P on level $L-1$, scaled by $(L-1) / L$. The result therefore follows directly from Theorem 4.1. Also $N_{0}=\# \mathcal{S}_{L-1}$.

[^0]: *Numerical Analysis and Computing Science, KTH

