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We prove a conjecture made in the paper Self-Organized Criticality: Anal-
ysis and Simulation of a 1D Sandpile, by Lorenz, Jackett and Qin, IMA preprint
1515, 1997, available at http://www. ima.umn.edu/preprints/0CT97/1515. pdf.
Also published in Doedel, Eusebius (ed.) et al., Numerical methods for bifur-
cation problems and large-scale dynamical systems. Based on two workshops
held as part of the 1997-1998 IMA academic year on emerging applications of
dynamical systems. New York, NY: Springer. IMA Vol. Math. Appl. 119,
229-264 (2000).

The conjecture concerns the spectral radius of a block (Pi1) of the Markov
matrix. Terminology and notation are as in the original paper.

Introduce the functional

L
8: AL — N, Blu) = Zmax(s — usg,0) (1)
s=1

which can be seen as a measure how far a given set is from the set of recurrent
states Rr,. We observe that

L
OSﬁ(u)SZs:@ENL (2)
s=1

Two useful properties of 3 are the following.
Lemma 1 For allu € S,

B(E,u) < B(u), 1<r<L. (3)
Proof: We split the toppling operator into L + 1 suboperators {Tk} such that
us —2, s=4k<Landuy>up_1+3,
us+2, s=k—1>0and up > up—1 + 3,

Ug_1, s=L+1landk=L+1,
Usg, otherwise,

Tk : AL i .AL, (Tku)g =

(4)
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for 1 <k < L+ 1. Then the toppling operator can be written
T =TTy Th (5)

If up < up_1+2 orif k = L+ 1 we clearly have that §(Tyu) = B(u). Otherwise,
since max(z + 2,0) — max(z, 0) is an increasing function of z,

B(Tiu) — B(u) =

=

ax(k — ux +2,0) — max(k — ug,0) + (6)
max(k — 1 —ug—1 — 2,0) — max(k — 1 — ug_1,0)

< max(k —up—1 —3+2,0) — max(k —ug—1 — 3,0) +
max(k — 1 —ug—1 — 2,0) — max(k — 1 — ur_1,0)
for 1 <k <L and
B(Thu) — Bu) = max(l—uj +2,0) — max(1 — uy,0) (7)

< max(l —ug —3+2,0) — max(l —ug — 3,0)

= max(up,0) =0.

So, for all u € Ay, and 1 < k < L + 1, we have that 8(Tpu) < S(u) and by (5)
this extends to B(Tu) < B(u). Moreover, for 1 <r < L,

B(Ryu) — f(u) = max(r — u, — 1,0) — max(r — u,,0) <0, Yue Ar.  (8)

Since for uw € S, C A, the evolution operator E,.u = T"R,u for some n, the
lemma follows. O

Lemma 2 For each u € Ty, there exists an r > 1 such that 3(E,u) = f(u) — 1.

Proof: This follows immediately from the beginning of Lemma 3.2, where it
is asserted that for any w € 71 there exists an > 1 such that u, < r and
RueS,. O

We can now state the theorem.

Theorem 1 The diagonal block Py1 of the Markov matriz P satisfies
p(P11) = (L —1)/L. (9)
Proof: Let {Vi} be the disjoint family of sets such that
Vi ={ueS,: Bu) =k} (10)
Trivially, Vo = R, and by (2)
N

7. = |J W (11)
k=1



Order the states in 77, according to which Vj, they belong to, so that u € Vi,
come first. Then, in view of Lemma 1, P;; can be partitioned into blocks as

Au A12 ALNL
0 A22 . AQ,NL & e X
P11: : . . . s AkkE{aij}ER k k. (12)
0 0 ANLyNL

It is clear that p(P11) = maxy p(Agk). What is more, the number of non-zero
entries in each row of Ay is at most L — 1, because of Lemma 2. Therefore,

L L-1
_ k
p(Akk) < |Akk|oo = 122}7;;@ E 1 |aij| < —7 1<k<Nj. (13)
j:

So p(P11) < (L —1)/L. That p(P11) > (L —1)/L is already stated in Lemma
4.3. O

Remark 1: The sets Vj, used in the proof above can be seen as a ladder such
that a sequence of states will start at a certain level and steadily go downwards,
but never up. Note, however, that there is no guarantee that a sequence does not
take two steps at a time. (For instance S([0 024 6]) =4 and S(E5[0024 6]) =
2.) Hence, in the general case the index of the set does not signify the least
number of evolution steps needed for its states to reach Ry. (This is, however,
true for L < 5.)

Remark 2: In the proof of Lemma 4.3, the matrix A is actually the same as P
on level L — 1, scaled by (L — 1)/L. The result therefore follows directly from
Theorem 4.1. Also Ny = #S1_1.



