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Abstract While a number of increasingly sophisticated numericalhods have
been developed for time-dependent problems in electroatignthe Yee scheme is
still widely used in the applied fields, mainly due to its slioity and computational
efficiency. A fundamental drawback of the method is the usstaifcase boundary
approximations, giving inconsistent results. Usuallyerg@nce of numerical experi-
ments provides guidance of the impact of these errors onrtaksimulation result. In
this paper, we derive exact discrete solutions to the Yeerseftlose to the staircase
approximated boundary, enabling a detailed theoretiodlysbf the amplitude, phase
and frequency errors created. Furthermore, we show hovweseant waves of ampli-
tudeO(1) occur along the boundary. These characterize the incensists observed
in electromagnetic simulations and the locality of the veaseplain why, in practice,
the Yee scheme works as well as it does. The analysis is sigpidny detailed proofs
and numerical examples.

Keywords FDTD - Yee- staircasing
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1 Introduction

One of the more popular methods for numerically solving wak@pagation prob-
lems is the Yee scheme, also sometimes referred to as the-Bifierence Time-
Domain (FDTD) method. Originally devised for Maxwell’s exjions in electromag-
netics [18], it has since also found many uses in acoustialaiions [1,11,15]. It
is a simple algorithm based on compact centered finite @iffeg approximations on
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a uniform staggered grid. The scheme is explicit, makindgghly efficient, as well
as having a small memory footprint since the field values atestored on all dis-
cretization points. A drawback of this approach is that lataries not aligned with
the grid are difficult to model, and hence are usually appnaxéd by staircasing.
Not only is this a poor approach, it is inconsistent [16]. Elerin general the scheme
will produceO(1) errors. Despite this, it is still common in applicationsgedo its
simplicity.

Previous work on the analysis of the numerical errors cabsestaircase ap-
proximations include the oft-cited paper by Cangellarid 8right [2], where they
show that staircasing of a boundary witii4 inclination compared to the grid admit
surface waves. Holland [8] shows numerically the largersrgenerated in practi-
cal problems. The issue is also discussed in a number ofqatiolns regarding the
development of more accurate boundary approximations§414,17].

Since staircase approximations of boundaries are stillnsomin applications, a
more detailed theoretical understanding is worthwhilkeeathen to rely on numerical
experiments. In this paper we study a two-dimensional mpdablem for numeri-
cal solution of electromagnetic waves by the classical ébeme with a boundary
approximated by staircasing. This model problem includesidaries of all rational
inclinations.

Despite the fact that the most popular use of the Yee scheineecigctromag-
netics, we shall instead use the acoustic wave equatiorufation, as this gives a
simpler notation. We will mainly focus on perfect electrisncluctor (PEC) bound-
aries for both the TM and TE modes of Maxwell’s equations.seheorrespond to
stress release and perfectly rigid boundaries in acoustics

In two dimensions the acoustic equations are given by

pt:a(ux‘f‘vy)a u[:bp)(a V'[:bp)h (11)

where p denotes the pressure andv are thex- and y-components of the veloc-
ity field. We will assume thaa andb are constant. We also introduce the velocity
¢ = +v/ab. The equations (1.1) are equivalent to the two-dimensiwaakverse mag-
netic (TM) and transverse electric (TE) vacuum modes of Maksvequations under
the set of substitutionp = E;, u=Hy, v=—Hy andp=H, u= —Ej, v= —E,
respectively, together wita = 1/¢, b= 1/u. Note that in three dimensions there is
no such equivalence.

We will consider (1.1) set in a semi infinite open doma&n= {(x,y) € R? :
y > ax}, where 0< a < 1. On the boundary = {(x,y) € R? :y = ax}, we will
prescribe boundary conditions. We consider homogeneaishizit conditions both
in the formp =0, referred to asoft boundariesandf - (u,v) = 0, referred to akard
boundarieswherefi | (1, a) is the unit normal vector. These two forms of boundary
conditions correspond to PEC boundaries for the TM and TEanaspectively, in
two-dimensional electromagnetics. The equations are tmmgnted with initial data
for p, uandv.

In the analysis we will restrict ourselves tational slopesa which lie between
zero and one, i.e., we write = u/v, wherey andv are two positive, relatively
prime integers with G< 4 < v. The casesr = 0 anda = 1 are quite special, since
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the staircase approximation of the boundary becomes oéhmylder than in the other
cases [16]. The errors in the Yee scheme are then much magnbsee Remark 4.1.

Our aim is to analyze the errors generated in staircase gippaitions by deriving
exact discrete modal solutions. As far as the authors knmwsthircase boundaries
this has not been done before.

A number of boundary modeling techniques have been creafetprove the ac-
curacy of the Yee scheme for curved boundaries withoutdhicing non-orthogonal
coordinates or unstructured grids. One of the earliestisémtour-path FDTD method
(CP-FDTD) [9], which in its initial form was plagued by latene instabilities, regar-
dles of the timestep used [10]. This can be fixed by e.g. adalitegm to the update
equations [12]. Later another scheme was introduced by Déittra [3], usually
dubbed locally conformal FDTD (CFDTD), which is much simpl&his class of
methods involve weighting the update stencil accordinghéoftaction of the sides
of the unit cube which are inside the domain. See [13] for aangew. Another
approach is to remove the highest order term in the Tayloaesion of the local
truncation error [16,5,6]. A big motivation for studyingetfboundary errors in de-
tail in this paper is to give further insights and hopefulpen the door to additional
improvements to the above techniques.

Note that, although commonly used to analyze numericailgyalive here use
the modal solutions to study the typical errors in the Yeesuh That the Yee scheme
is stable for a staircase boundary is already known, se¢.g.

Our main results of the analysis is that away from boundadhiedotal error is
dominated by a first order error stemming from an error in tiiecéve (discrete)
reflection coefficient of the staircased boundary. Closkédbundaries, on the other
hand, anO(1) error is present. It comes from evanescent waves that ctrateion
the boundary, but die off exponentially with the number aflgroints away from the
boundary. Hence, th®(1) errors produced by the inconsistent discretization will be
localized at the boundary. Our conclusion is that this @rglavhy, in practice, the
Yee scheme works as well as it does. We note also that the gEmee rate ir.?
norm is formally reduced t®(v/h) due to the large errors at the boundary.

While the model problem might at first seem oversimplified anguie that asymp-
totically it is still applicable to general boundaries arairthins, since the critical ef-
fect of the boundary on the accuracy is independent of thiesizeh. We also show
a numerical example with a more general domain where we s¢ahté numerical
results are consistent with the conclusions of the analysis

The article is organized as follows. After stating the Yebesne in Section 2,
we derive the necessary conditions for modal solutions tti@e 3, giving explicit
expressions first for soft boundaries, and then hard boigslaie then proceed to
analyze the accuracy by looking at the asymptotic behatifin@ discretizations in
Section 4. In Section 5 we collect the proofs of the analyas finish by verifying
the analysis with numerical tests in Section 6.
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2 The Yee scheme

We introduce the Yee staggered grid as follows. Xt mh y; = jh andt, = nAt,
whereh is the grid spacing andt is the time step. Denote biy,; the Yee cell
[Xm: Xm+1] X [¥j,Yj+1]. The unknowns are approximated in different spatial |areti
in the cell:u, v on the cell boundary angd in the center of the cell. Moreovep, is
approximated half a time step off fromandv. More precisely,

n+3
Prncg g~ Pla 08/ 2 5m /2,5 +1/2),
u”m’H% ~ U(th, Xm,Yj +h/2), v”m+%’j ~ V(tn, Xm+h/2,y;).

Discretizing (1.1) on this staggered grid gives the Yee sehavhich for interior cells
reads

n+3 n-3 al ( n n )
1= _ UV =) (21
pm+%=l+% pm%al+%+ m1,j+3 m,1+%+ m+3j+1 midj)o (2.1)
1 1
n+1 N bA N+ _ N+ 29
mitd ~ Umisd T <pm+%,j+§ Pm-14+1 ) (2.2)
1 1
VALE TR VAR oy N (5 L S Lo A 2.3
medg T mid, Pl 12 " P11 ) (2.3)

whereA = At/h.

The boundary is approximated by staircasing where the baryrwells are those
whose centers are just inside the domain, i.e. the set ofdayyrcells/¢ is defined
asfc = {Imj: a(Xm+h/2) <yj; < a(xm+h/2)+h}.

We furthermore define the indices for these cell$ragm) so that

e=Ulmjm  im=[(m+1/2)a—-1/2]. (2.4)

The boundary cells are illustrated in Fig. 2.1. We note dist sincea = /v the
indices satisfy

jmiv = jm+ 4. (2.5)

The discretization in the boundary cells depends on the éfjp@undary conditions
chosen. For all cases we consider, the stencil is only aliarthe boundary cells, not
in any other cells. The precise discretization will be dethiater on.

3 Modal solutions of the Yee scheme

The aim is to study the behavior of numerical solutions df),22.2) and (2.3) around
staircase approximations of boundaries in the Yee scheortbisiend we want to find
exact discrete modal solutions for a given time frequescy
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Fig. 2.1 lllustrating the boundary cells. The cells marked by sgsiare the boundary cellg and thus
are adjacent to the staircased boundary.

3.1 Continuous case

To motivate our derivation of the discrete modes we condidstr the continuous
case. We fix a time frequeney and seek solutions of the form

pt.xy)\  [Pxy) o
wit,x,y) = [ ut,xy) | =€ Uxy) | = €*W(xy),
v(t,x.y) V(xy)

WhereVV(x, y) is the modal solution. This corresponds to the frequencyesgalu-
tions given by Helmholtz equation. We can also thinkfas the Fourier transform
in time ofw(t,x,y) at w. Propagating modes are given by sums of exponentials,

VT/(X, y) = Vvin eikxx+ikyy + BVVrefeik,XXHk/yya (3-1)

where (recalt? = ab)

1 1
VVin = bkx/w ) eref = bK(/w )
bky/w bk,/w

which represents an incoming and a reflected wave. The waneensk,, ky, k; and
k{, should satisfy the dispersion relation

Ak + k) = cz(k§(2+k§,2) = o, (3.2)
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and the exponentials should be equal when evaluated on threlboy,
kx4 aky = k+ ak, mod 2. (3.3)

The value of8 is determined by the chosen boundary condition. For softdaties

B = —1and for hard boundarigs= 1. We note that these modes can be parametrized
by the temporal frequenay and the value oK = kx+ aky, which corresponds to the
angle of incidence with the boundary. The same turns out tiougefor the discrete
modes. For these parameters we assume that there is a @algber > 0 such that

||
Vita?’

which essentially means that we only consider waves hittiedpoundary at an angle.
These conditions also mean that (3.2)—(3.3) has two dislations.

Kl <n

lw| >n, (3.4)

Remark 3.1There are also non-propagating modal solutions with zerdhese cor-
respond to the non-zero rotational part of the solutioncWlig stationary. They are

of the form
0

W(Xv y) = Vvsstatei kxx+ikyy7 Wstat = —ky |,
kx
For soft boundaries all such modes are valid. For hard baigsidiey are restricted
to the casdy + aky = 0.

3.2 Admissible discrete modes

As in the continuous case we fix a temporal frequesacgnd seek a discrete modal
solutionW such that

P j _ _ P(m,j)
wh = | U | =€ W(m,j) i=®™ U (m,j)

The modal solutions will be parameterized dyand a valueK, which corresponds
to the angle of incidence with the boundary, as above. Nateiththis definition the
discrete solution can be evaluated at any real valuésigf); in the Yee scheme only
certain discrete values are used, and they are differeft idrandV.

To find admissible discrete modal solutions we will first ddes the free space
case and find what restrictions are imposed. Motivated byctmginuous case we
look for a solution of the form

p

W(m,j):=wE(m,j), W= , E(m, j) = ghamhrikyih,

a
v

where(ky, ky) are unknown wave numbers. For the actual grid functions irséte
scheme, this means
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n+3 _ Aot Hats i
Proi 141 =Y M 2YNBE(M+1/2,j+1/2),
n+1 _ dow(n+1)Atyn ;
um,H% =€ GE(m,j+1/2),
+1 _ dw(n+1)Aty ;
v“m%’j_eI VE(m+1/2,j).

Then for the time derivative

gwn+1)At _ JownAt B isin(wAt/Z)
At A2

where tilde (7) denotes the mapping

dwnt3)at _. i&)(At)eiw(n+%)At

)

. sinxy/2
i) = =02
Similarly for the space derivatives,
E(m+1,j)—E(m,j)
E(m,j+ 1?— E(m, j)
h
Entering this into the scheme (2.1)—(2.3) we obtain
iGPE (M+1/2, ] +1/2)e“" = ja (kadi+ ky0) E(Mm+1/2, ] +1/2)d®n4t,
I@OE (m, j + 1/2) é90M 24t — ipk BE (m, | +1/2) 24t
IQVE (m+1/2, ) 9 DAt _ bk BE (m-+1/2, ) 24t

(3.5)

= ike(h)E (M+1/2, ),

—iky(N)E(m, j+1/2).

which simplifies to the linear equations fpy G'andV,
op=a(ka+k9),  a=bkp,  @I=bkp.

We have a nontrivial solution when the system matrix of thexgeations is singular,
that is when

@ —ak, —aky o

det[ —bkx @ 0 |=a(A([K+K)- @) =0.
—bky, 0 @

When® # 0 we have propagating modes and the null space is spanned lagc¢tor

The corresponding/ can be written as

1
w(m,j) = (ng/&)) E(m,j).
bk, /&
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Based on the analysis above we will call a discrete propagatodal solution of this
typeadmissibleor w andK if (ky,ky) satisfy the discrete dispersion relation

A2 +k2) = @, (3.6)
and the boundary relation

2m
e

We will also simply say thatky, ky) are admissible for the real numbepsandK if
(3.6) and (3.7) hold. Note that (3.6) can be expanded to

cohke 5 hky . 5 WAt At
2452 —_ — _— = —
cA (sm2 5 + sir? 2> sir? 5 A h

k«+aky =K mod (3.7)

Since the solution does not change if we add an integer neiRip/h to the real part
of ky or ky we will further assume that

0<Rek< 2T, o< Reky < %" (3.8)

In Section 5, Theorem 5.1, we shall see that the system (B8c5(3a7) always has\w2
solutions wher{ky, ky) are restricted to this set. Moreover, for small enobdhere
arev — 1 solutions with a negative imaginary partkgpor ky, which corresponds to
exponentially growing waves. These we discard. We denetegimaining solutions
by (K, k), r=0,...,v.

With this we are now ready to consider some explicit formstairsasing.

3.3 Soft boundaries

First we consider homogeneous Dirichlet conditions in theariable, which are
sometimes referred to as soft or stress release boundartbe iacoustic commu-
nity. In electromagnetics they correspond to PEC bounddoiethe TM mode. Thus
the boundary condition in the continuous case is givep(byx,y) =0,y = ax, xe R.
The corresponding numerical boundary condition is

1
pnmiz%’jm% =0, VmeZ.
We will derive modal solutions which satisfy this for a fixedipw andK. As men-
tioned in the previous section there are- 1 admissible pairgk],k)) which satisfy
(3.6) and (3.7) and are bounded, for each choiae ahdK, whenh is small enough.
We denote thé part of these modes b (m, j) = mPikiih '+ — 0 . v. From
these we take a linear combination and set

P(m j) = iarmm,j),

5
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F|g 3.1 Staircasing of soft boundaries apd= 2,v = 5. The boundary is defined by the pressure points

at(3.3), (3 )(%%) (3:3). (3.3)-
wherea, are to be determined such that
P m+} j +} =g lont; >Atanr2 =0 vme Z
2" 2 Limtd '
Let us now define the offse, . 1 between the exact boundary and the staircase
approximation at these pointqm% = jm+1/2—a(m+1/2). See Fig. 3.1. Then

0<9,, 1< 1 andd vl = 6m+% by the definition ofj, in (2.4) and by (2.5). We
obtain

v
P(m+§,jm+g) . Z) 3 (it )1
r

i(Ket-akl) (m+2)h+ikEs 1 h
_ %are ky 2) y m+ 5
|k§,6m+%h.

_ v
= e'K(m%)h %are
r=

We note that the function within the sumusperiodic inmand it is therefore suffi-
cient to enforce the zero condition for=0,...,v — 1. To further simplify, we note
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thatém%v =(jm+1/2—a(m+1/2))v = jmv—mu+(v—p)/2:=dn+d, where

dm:jmv—mu—i-{%JeN, d_:{V;“}. (3.9)

Here{x} denotes the fractional part &f Note thatd is independent af. Thus if we
definez := exp(ikjh/v), we get the condition

1. 1 iK (m+3)h - +d
P m+§7]m+_ =€ ? %arzgm =0, m=0,...,v—-1
=

2
We can write this in matrix form a&a = 0, where
A=7zSeCV*V) o =(ay,...,ay)T e CV*, (3.10)
and
Zgo ZSO
z=| : .. ¢ |ecvxvty, (3.11)
ng—l Z?}v—l
S=diag4,...,#) e CVrIx(v+1) (3.12)

The coefficientsx are thus given by first finding a vector in the null spac& @nd
then scaling it by the nonsingular diagonal masix.
From these coefficients we thus have the full modal solution as

v

W(m,j) = Zoarv“err(m, D, (3.13)

where

1
Er(m, j) = 5miGhn iy = | bky/@ ) .
bk{/
In Theorem 5.1 it is proved that the null spacefas one-dimensional, and that

we can always obtain a unique (up to normalization) nonairsolutiona bounded
in h.

3.4 Hard boundaries

Next we consider another common type of boundary conditimhgch is homoge-
neous Dirichlet conditions for the normal component of thwity field,f - (u,v) =
0, fory = ax, x € R. In the acoustics community this is sometimes referred teaad
boundaries, and it is equivalent to PEC boundaries for thenbHe in electromag-
netics.

In the discretization we use the same boundary cells (2.4) e case of soft
boundaries. However, the boundary cells are divided intodets according to

Qcr={M: jmy1= jm+1}, Qnhz={M: jmi1=jm}, (3.14)
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Fig. 3.2 Staircasing of hard boundaries for= 2, v = 5. In the case shown, the boundary cells centered at
x/h=1/2,7/2 are corner cells, in that the boundary occur along bathdv. In the cells centered around
x/h=3/2,5/2,9/2, the boundary only occurs along

where Q. refers to the corner cells with two faces adjacent to the Hagn and
Qnz the remaining cells. See Fig. 3.2 for an illustration. ThHem$taircase boundary
condition is enforced by

UniLjmid ~Vinidjm =0 VME Qo (3.15)
Vi Ljm =0 VME Onz. (3.16)

M3, Im

Again we look for modal solutions satisfying this for a fixegipw andK. Thus,
using the wave numbers defined by (3.6)—(3.7) we denott thrdV part of these
modes by

ko . bk' .
U (m,j) = b_:)xelk,ﬂthk{,Jh’ Vi(m,j) = Ekyelk)ﬂmhﬂk{,m7

forr =0,...,v. If we evaluate these expressions on the boundary poirgs,ttiey
reduce to

%)Ur(er 1 jm+3) = R)r(eik;(ml)h+ik;(jm+%)h

~ ik (m1)hik (5 1+a(m+1))h
ro X AN 2
ke 2
ikih/2-+iki3 1 h

X0/ Yy m+:2L

—kgk(mz)e (3.17)
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w . o~ ar
Bvr(m‘f' %’ jm) = k;/elk;(er%)thlk{,Jmh

B ~reik;(m+%)h+ik§,(6m+%7%+a(m+%)>h

- g;e«(m%)e‘k?(%{%)“. (3.18)

Recalling that, := exp(ikjh/v) andzin+d = exp(ik{,émé h), we can now write the
linear combination of (3.17) and (3.18) as

. Voo _
%)U (M+1,jm+3) = gk (m+3)h Zoark)’(e'kxh/zz?m*d,
r=

v —
V(M4 3, jm) = gk (m+3)h %ark}r/e—ik)',h/ZZ?erd'
r=|

From these expressions we can formulate the discrete boundaditions (3.15)—
(3.16) as

v L - -
%ar (R{(e'kxh/ Z—Ke N 2) Zmtd — 0, Vme Q. (3.19)
A

v —
Z;ar Kelh2zntd —0,  vYme Q. (3.20)
r=

Thus since these expressions arperiodic inm, we only need to satisfy the zero
conditionsfom=0,...,v—1. We also point out that there guenumber of equations
(3.19), andv — 4 number of equations (3.20). We can write (3.19)—(3.20) aseat
systemAa = 0, with

A (QZK(RX) +ZK(_Ry))Se cvx(vil), (3.21)

and where
K(k) _ diaqkoeikoh/Z7 o kveikvh/Z) c C(V+l)><(v+l)’ ke CV+1,
andQ € CV*V is the diagonal matrix with
B 1 me Qg,
(Qmm= {o mé Q.

In Theorem 5.1 we prove thak,kj) ~ 1/h, forr > 2. Therefore we rescale the
K matrices a¥’ = KD, whereD = diag(1,1,h,...,h). Then by using (3.5) we see
that the (diagonal) elements i (ky) andK’(—ky) for r > 2 are given by,

hicekh/2 — j(1—wz H),
_hR;efik{,h/Z _ I(l— ZFV)’

respectively, wherev:= &<"", and we usé¢ = K — ak.
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As in the previous case, the full modal solution is then givgn

v
Wi(mj)= 3 arin(m,)). (3.22)
r=|
Remark 3.2Unlike the situation with soft boundaries, there could paitly be sit-
uations where (3.21) is singular. In particular, consider tase whew = u =1,
giving the anglea = 1, together with incoming waves along the boundary. For this
case therA — (0,0) whenh — 0, which falls outside the theory covered here. This
case is, however, considered in [2].

4 Error estimates

In computations involving the Yee schent@(1) errors are sometimes observed
around boundaries [16]. The aim here is to give precise espes for the errors
in the discrete modal solutions compared to the continuadatsolutions, i.e.

error=W(m, j) — W(mh jh),

for a givenw andK. The wave vectors for the continuous modes are denoted by
k = (ke ky), K = (K, k), and the admissible waves iy = (K}, k). To normalize

the modes in the same way we alwaysdgt= 1 in the discrete modal expressions,
(3.13), (3.22). We can then divide the error as follows

v _ _ _ _

o - . = . =

error— Z arwrelkxmhﬂkyjh _Wine|kxmh+|kyjh+Wrefe|k’xmh+|k§,1h
r=

= Ejn + Eret + Ephase"f‘ Eevab
where
En = Woeikgmhﬂkgjh -~ Wineifxmhirifyjh’
Eret = —VAVleik%thk%jh +erefei@mh+i@jha

Ephase= (a1 + 1)Wleik%mh+ik%jhv
Vv
Eova= zzarwreik;mMikg,jh.
r=
The first two terms are the error in the free space wave prdigegd he third term
is the error in the reflection coefficient of the approximaterdary, which adds an
extra phase factor. The fourth term is the error from the eseent waves which
concentrate on the boundary.
These errors can be explained by using Theorem 5.1 in Sestibor the free
space propagation error we use the resultkfiét) — k = O(h?). Then

|Ein| < |Wo — Win| + [Win|
b

w

gkemhiikdjh _ eiixmhﬂiyjh‘

W~ - _
SRO() — K] + Wi

ei(kO(h)flz)-(mh,jh) — 1‘ < Chza
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sincew/ @ = 1+ O(At?). Precisely the same argument can be madEdfgrNote that
the barg - | here denote the point wise Euclidean norrikth Hence, the propagation
errors in Yee are second order, regardless of boundary timmslias expected.

For the remaining errors we must consider the particulantdaty conditions
separately. We find below in Sections 4.1 and 4.2 that for hatkd and soft bound-
aries the phase err@hnaseis of first order, while the evanescent wave efgy, is of
zeroth order on the boundary but decays exponentially vaghdistance, measured
in grid points, away from the boundary. The total error igdfiereO(h) away from
boundaries, where it is dominated Byhase andO(1) in the grid points close to the
boundary, where it is dominated I8, When measured ih? norm, this implies
an error of sizeD(v/h). We recall that the staircase discretization of the bouedar
is formally inconsistent and that, therefof@(1) errors in general will appear. Our
conclusion here is that the localization of these errors@bbundaries explains why
the staircase discretization still works well for many desbs in practice.

4.1 Soft boundaries

As derived in Section 3.3, the system of equations for theahsalutions when we
have soft boundaries Ba = ZSx = 0, whereA, SandZ are given in (3.10), (3.12)
and (3.11). We note first that by Theorem 5.1 the null spaZd®bne-dimensional so
the direction ofx is well-defined. To normalize it we fix the first component= 1.
Let& = (ay,...,ay)T be the remaining part ak and similarly letZ, Sbe the parts
of Z andSwhere the first columns have been removed,

Zo ... Ao -
Z=| : ... |, S=dag4,.. .. 2. (4.1)
ng—lluzdv—l
Then
[ n(h)%
Z(hSh)éa(h) = —zo(h)* :
zo(h) -1

Definea’ = (—1,0,...,0)T € RV. Then

21() %4 — 75(h) 9
Z(hSh)(&(h) - a') = -

21()%-++9 - zo()d-3+9,

By Theorem 5.2 the roots satisfy(h) = 1+ O(h) andz (h) = 1+ O(h). Hence, the
right hand side i$D(h). By Theorem 5.1 the inverse @fh) is bounded for small
enoughh. Therefore,

l&— o' <ch 4.2)
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With this estimate we can now consider the remaining erfwsthe phase error we
have o
|Ephasé = ‘(Gl(h) + 1)Wle|kxmh+|kyjh‘ <cCh,

since (4.2) implies thata (h) + 1| < Ch and the remaing factors are boundedin
due tok*(h) being bounded itn by Theorem 5.1.
The final error from the evanescent wa¥&g, is a sum of terms of the form

1
arwreik,r(mh-kik{,jh _ Gr(h) bg;(h)/&) eik;mh—Hk{,jh.
bky(h)/ &
By Theorem 5.1 there is aim > 0 such that Inkj(h) > n/h. Moreover, since is
real in (3.7) we have I (h) = —a Imk](h). Hence,
|eik;mh+ik;jh| _ eflm(k;mh+k§jh) Imky —amh+jh) < efr)(jfam)'

For the amplitude we note further that by (4.2) we haweh)| < Chand by (5.2) in
Theorem 5.1 we havik'| < C/h. Therefore, we get different errors in tipeand the
remaining components. More preciselyEfa = (E&a EL s Eda) | We get

|[ERal = O(he MU=™) - |Eg | = [Ed ) = O(e 10, (4.3)

Note thatj — amis approximately equal to the distance in grid cells from bt
(j,m) to the boundary, in thg-direction. The error from the evanescent waves thus
die off with the number of grid cells, not with the physicas@@ince. They therefore
concentrate more and more at the boundaries at fine reswdutiat never go away.

Thus we see that we have three types of errors: Propagatiogs &, Eoyt Of
second orde@(hz), phase shift errorBpnase0f first orderO(h), as well as boundary
errorsEey, Of zeroth ordeO(e ") for u,v, andO(h) for p. Close to the boundary
thenEevadominates fou, v, elsewhere the phase erfeghase This gives formally the
estimated effective? norms

N N2
|EP||, < J Y (Ch)?h2+ § (Ch)2h? = \/C?h3+C?h2 = O(h)
m=1 m=1

N N2
1B, <J 3 CHP+ 3 (Chihe = /CPho CPre = o(vh
m=1

m=1

since there ar®(N) = O(1/h) boundary cells in a computation oriNax N grid.

4.2 Hard boundaries
For hard boundaries the systemfia = 0, whereA is given by (3.21),

A= (QZK(RX) +ZK(_Ry))sz (QZK’(RX) +ZK’(_Ry)) D-1se (i),
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which is similar to (3.10), besides the extra scalings. Glershe factoA’ = QZ K’(Rx) +
ZK'(—ky). Summing the columns gives that

1A' = (¢.—¢,0,....0)T +O(h), (4.4)

wherec = ukg - vk?. To see this we first introduce the notation whérds therth
column ofA. Also, denotez, = Z;. Thus for the first two columns,= 0,1,

(17QZK!(k))r = 17 QzK(0) + O(h) = uk,(0) + O(h),
(17ZK'(—ky))r = 172 (~K(0)) + O(h) = ~VK.(0) + O(h),

sincez; (h) = 1+0O(h), r = 0,1, and1"Q1 = . Thatpk? — vk = — uk} + vk} fol-
lows from the boundary conditiam- (u,v) = O for the continuous solution (3.1). For
the remaining columns=2,...,v —1, then

(1TQZK!(ky)) r_< % z‘,’m> i(1—wz#

u—1
—<Zoi“>i(1—vvzr“) (1-wzH)
(1TZK/ (—ky))r = (Z z;“> j:ii(l—z(").

Here we have used Lemma 5.8. Taking these two together givegw = 1+ O(h),

% p(z)+o(h) - Ofh).

(1A, =

whereP is the polynomial (5.6). Hence (4.4) follows.

Thus we can expand the matrix equatide = A'a’ = 0, wherea/ = D 1Sq,
aslTAa/ = ajc—ajc+O(h) =0, giving a] = 1+ O(h), since we normalize the
incoming wave taxg = 1 andaj = 1. The unprimed is given bya. = S'De’, and
thusa, = O(h),r=2,...,v.

The phase error then becomes

|Ephasd = | (a1 (h) — Ly ™| < ch,

Sincea; <Ch,r =2,...,v for the evanescent waves, the same arguments as for soft
boundaries hold and we get the bounds (4.3). In the end wéndb&asame behavior
of the different errors as for soft boundaries.

Remark 4.1The casesr = 0 anda = 1 can be analyzed in simpler ways than with
the techniques used above. Still, our analysis, althougtricted to the case &

o < 1, can give some insight also into the limiting cases: 0, 1. The basic second
order propagation errois, andEe; are independent af and will also be present
for a = 0,1. However, theD(1) errorEeya = O disappears. The reason is that when
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a =0,1, thenv =1, u = a andP(z) in (5.6) is just a second order polynomial
(a +1)(z— 1)? with two roots. There are therefore only two admissible veaké
andk?!, which correspond to the incoming and reflected waves, anevanescent
waves. When it comes to th@(h) phase erroEphase it may or may not be present.
It is easy to check thady, = 0 whena = 0,1. In the soft boundary case one then
getsZ = 1 anday (h) = —(z0(h) /z1(h))¢. Sincezy(0) = z(0) = 1, Lemma 5.7 shows
thatzy(h)/z(h) = 14+ O(h) and the phase err@pnhase= O(|a1(h) + 1]) is of size
O(h) unlessd = 0, in which caseEphasevanishes. But sincdyn = 0 andv = 1 we
haved = dy, 1,2, the offset between the grid cell center and the boundanyceighe
O(h) phase error disappears when all grid cell centers lie on thedary. With the
convention we have used for boundary c&ljsn (2.4) this happens when= 1 (then
Omy1/2 = 0) but not wherr = 0 (thendn, 12 = 1/2). Upon shifting the grid by half a
cell one would remove the phase error also for the cased. The argument for hard
boundaries is a bit more involved, but renders the sameipghresult, although in
this case our boundary cell convention leads @®(l) phase error whea = 1 and no
phase error whea = 0, since the quantities involved in the boundary conditiGng
are now evaluated on the edges of the boundary cells. Ingsiod, wheno = 0,1
the basicO(h?) error remains. There is, however, @41) error from evanescent
waves and also n@(h) phase error if the quantities in the boundary conditions are
evaluated precisely on the boundary.

5 Analysis of the admissible wave numbers

We now prove the results we have referred to in the previoctsoses. The aim is to
show the following main theorem.

Theorem 5.1 Assumey > u are relatively prime and thad < h < hg.

— There are2v admissible wavek" withr =0,...,2v — 1, for all h.
— For small enough hiwe can ordef k' (h)} such that they are continuously differ-
entiable in h on(0, hp).
— For small enough fiwe can choose the r-indexing such that:
— Forr € {0,1} the wave vectork' (h) are bounded 000, hy) and

fm ORY — e U W
Llinok (hy=k, and hILrgk (h)y =K/,

which are the incoming and reflected waves in the continuase (3.1).
Moreover, if(3.4) holds,

IK°(h)—k| <cr?,  |ki(h)—K/| <CF. (5.1)
— For 2<r <, the imaginary part of Kh) is positive and
Imkj(h) >C/h, [k"| <C/h, r=2,...,Vv. (5.2)

— Forv+1<r <2y, the imaginary part of h) is negative.
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— For small enough fithe null space of the matrix Z i{8.11)is one-
dimensional. The matri¥ in (4.1)is non-singular and its inverse is bounded in
[0, hg.
The first two waves have real-valued wave numbers and camesjo the incoming
and reflected waves. The ones with positive imaginary pareeanescent waves that
concentrate on the staircase boundary. The remaining waitbshegative imaginary
part, are non-physical waves which cannot exist in a bousdedion.
The main steps in the proof are as follows:

1. Rewrite the admissibility conditions (3.6) and (3.7) gsoéynomial equation of
order 2 (Section 5.1).

2. Analyze the roots of this polynomial in the linfit— 0 (Theorem 5.2 in Section
5.2).

3. Use perturbation arguments to show that the roots aréafialy the same also
for h small (Section 5.3, Lemma 5.7).

4. Use the properties of the roots and show their implicatimn the wave vectors
k" and the matriceg, Z (Section 5.3.1).

5.1 Preliminaries

The dispersion relation for the Yee scherii = c2(k? +k2), ¢? = ab, expands to

o WAL 5 o ohke o hk _ At
sinf —— =%\ (sm2 > + sir? 2), A= (5.3)

This equation together with the equation
ke + aky =K modz—n, (5.4)

defines the admissible wave numbersdoandK, as was seen in Section 3.2.
First we note that we can rewrite (5.3) as

coshky + coshk, = Cz—iz(coswAt -1+2

Thus using (5.4) we get an equivalent equation

ghtk-aly) | gih(K=aky) | ghky 4 g-itky — 4 (1— coswAt)

c2A2
to (5.3)—(5.4). This we can simplify by introducing= €K, z= /v  giving the
order 2 polynomial equation

22V+vivzv+“ —RZ4+w2 H+1=0, (5.5)
whereR := 4 — 2(1 — coswAt) /(c?A?). This gives us 2 solutions, which we index
by r. We finally note that by (5.4)k" = ékhe-ihka — \wz-H Hence, if we pick
Rehk, and Rék, as the arguments i@, 27) for 2/ andwz # respectively, we have
a solution that satisfies (5.3), (5.4) as well as (3.8). Meegceaclz corresponds to
precisely one such palg andky.
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5.2 The limit equation

To study the asymptotics of these waves, we notewthat 1 andR — 4 in the limit
h — 0 andAt — 0, and thus the polynomial reduces to

P2 =2 +2"H -4’ + 2V H+1=0. (5.6)
For this equation we can show the following theorem.

Theorem 5.2 The polynomia(5.6), wherev > u are relatively prime, has one dou-
ble root at z= 1. Its other roots are all distinct. Moreover, half of the reimiag roots
have magnitude stricly less than one, and the other half haagnitude stricly larger
than one.

The result follows from a sequence of lemmas in which we akethe assump-
tion thatv > u are relatively prime.

Lemma 5.3 There are no positive real roots other thaa-1, which is a double root.
Whenv is odd there are no negative real roots.

Proof. First we observe that the polynomial is symmetric in the sehat ifz, # 0
is a root, then so is /.. This follows from the simple relatior?”P(1/z.) = P(z.).
The existence of a double robt 1 is established by taking the derivative, i.e.,

P(1)=1+1-4+1+41=0,
P(1)=2v+ (v+p)—4v+(v—pu) =0,
which is not a higher order root since
P'(1) = (v+u)?+(v—p)*>0.

To show that this is the only real positive root, asswwaeR, s> 1. Thens! +sH > 2
and

P() =V +8/TH 48" + " H 11> 28" +1= (8" —1)?>0.

Hence there are no other roots for 1. Assume now that is odd. Then
P(—s) = (—9)% + (—)VTH —4(—9)V + (—9)V H +1
=V 4 ((—1)VHHH —4(-1)V + (-1)V Hs M) +1
= &/ (—(—DH +4— (—DHs ) +1
=4+ (4— (-DH(H +sH)+1
> 4e'(4—1-H)+1
>3s"+1>0,

which means that there are no roots$at —1. By symmetry of rootg,, 1/z, there
are therefore also no roasvith 0 < s< 1 and, ifv is odd, no roots with-1 < s < 0.
Finally, whenv is odd,

P(-1)=1— (- +4— (-1 +1=6—2(-1) £0,
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which proves the lemma. O
Next we can prove tha has no roots on the lines shooting out from the origin in
the complex plane, crossing rootszjf+ 1 = 0.

Lemma5.4 Let uj = €% andaj = 271(j +1/2)/v. Then Rsy;) # 0 for s> 0 and
0<j<v-—-1

Proof. We first note thatP(0) = 1 # 0 so we only need to consider> 0. Since
uy = —1 we get
ImP(su;) = Im (s® —s’(su)* — 48’ —s’(su) H +1) (5.7)
= —s’Im ((su)* + (suj) H).

If Im uﬁ‘ # 0 this can only be zero if(su;)#| = 1. Since|(suj)"| = s we must then
haves= 1, but

P(uj) =1-uf +4—u; " +1 (5.8)
_ u —H
_6—(uj+uj )
=6—2Reu] >6-2|uj|4>0.

Hence,P(sy;) # 0 for s> 0 if Imuf' # 0. On the other hand, if Inff' = 0 then
exp(2mi (j+1/2)pu/v) € R,or (2j+1)u/v € Z for somej =0,...,v — 1. Sinceu
andv are relatively prime, the only possibility isj2- 1 = v, which corresponds to
uj = —1. But thenv is odd andz = 1 is the only real root according to Lemma 5.3;
P(su;) = P(—s) is therefore non-zero also for this case, which proves theria. O

For the nextlemma we construct a pie-shaped region in th@lexplane, bounded
by the lines

yp={z=su |0<s<R},
yo={z=Ré*|aj <s<aj1},
y3={z=sU1|0<s<R},

whereu; is defined as in Lemma 5.4. We can then show the following tesul

Lemma 5.5 Lety be the union of the curvas, y» andy; defined above. If R is large
enough, there are precisely two roots(6f6)insidey.

Proof. We choseR strictly larger than the magnitude of all roots Bf This means
that P(z) # 0 on y,. It follows from Lemma 5.4 thaP(z) # 0 also ony; and y,

and hence on all of. We can then use the argument principle, that for any closed
curvey C C, and analytic functiorf, with no zeros ory, the change in argument in
P(z) asztraversey is equal to 2rtimes the number of zeros z) insidey. First
considery; and noting that arg(0) = arg1= 0. If Imu; = 0, thenP(z) is purely

real and there is no change in the argument. On the other Hadnduy; # 0 then by
(5.7) the only zeros of IfR(suj) on y; are whers= 0 ors= 1. For both these points
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ReP > 0 by (5.8) and therefor never crosses the negative real axis. Seuiﬁgjﬁ‘
and exploiting the fact that‘j’ = —1, we then get
ImP(Ruy;)
ReP(Ruy;)

—RVIm[RHv+ R Hv H]
RV + 4RV 4+ 1 — RVRe[RHV + R-Hy—H]

—Im[v+ R 2Ky H]

1+4RV+R 2V —RU-VRe[V+ R H-VvH]
=arctarR* Y (-1+O(R™")) = O(R*").

argP(Ru;) = arctal

= arctan

= arctarR{ ™Y

The same result also holds fg:: Now consides. For this case we hawlz = iRd3ds
and

argP (Ru;j) — argP (Ruj;1) =

P2) . (4P (Rés) is
'VZP(Z)dZ_I/ —~Rée%ds

aj P(Red)
But the quotient reduces according to
ZP(z)  2v2+(u+v)2HV —4vz’ + (v— )2 H
P(z) VY — 47+ V41
This means that we can simplify according to
. / "jyq
P dz=2vi [ ds+O(R!™Y) = 2vi(aji1— aj) + O(RHTY).
Jy, P(2) aj
The total change in the argument alopthus becomeA argP(z) = 4mi + O(RH™Y).
This is valid for allR large enough, so if we I&®® — o we can conclude that there are

precisely two roots insidg. O
Finally we consider the unit circle and show the followingima.

=2v+0(|ZH).

Lemma 5.6 There are no roots on the unit circle other thag-2.
Proof. We have

P(e?) = 20V  dOHTV) _4dtv 4 dO(v-H) 4 1
=e?% 1+ 2d% (cosBu —2)+1

::I5(eie",u6),

whereP(z, 8) = 22+ 2z(cosd — 2) + 1. Hence, ifP (6°) = 0, the polynomiaP(z 0 p)
with fixed O has a unit root. This happens precisely wimsfpu — 2| <1, i.e. only
when6u = 2rm for some integen. But in that case ca®u — 2 = —1 and the root
is one, 1= €9V, giving v = 2rm for some integem. Sinceu andv are relatively
prime it follows thaté = 2rm’ for some integen’, so the only root with magnitude
oneisz=1. O

By the symmetry of rootg, and 1/z, it now follows that the two roots in each
pie shaped region considered in Lemma 5.5 are differengpxehen the root is
one. Therefore their magnitudes are also strictly smallantand larger than one,
respectively. This proves Theorem 5.2.
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5.3 Results for smah

From the conclusions about the limiting equation (5.5) we@et results also for the
full equation (5.6) with smalh andAt by considering it as a perturbation. We et
w andK be fixed. Then the roots of (5.5) only dependioand we denote them by
zj(h). The following lemma shows that they are all first order pdxations inh.

Lemma 5.7 Assumev > u are relatively prime. For small enoughhive can order
{z;(h)} such that eachjzh) is continuously differentiable in h 0@, hy) and z(0)
are the roots 0f5.6). Moreover,

1zj(h)—z(0)| <Ch, vhe [0,hy), (5.9)

where C is independent of h and j.

Proof. Let P(z) be the limit polynomial (5.6) an®(z h) the full polynomial (5.5)
with a fixedA, w andK,

Vv 1 V V V—
Qzh) =2 +Wz TH_R(h)z’ +w(h)z 4+ 1.

It is classical perturbation theory that we can order thesgothe way described in
the theorem and that (5.9) holds for the distinct root® ). By Theorem 5.2 all
roots ofP(z) are distinct except a double rootzat 1. For this root, classical theory
tells us that it can be expanded in a Puiseux series,

z(h) = 1+ z;h¥ +o(hY), (5.10)

for some exponent < 1. Sincew = 1+iKh+ O(h?) andR = 4+ O(h?) we can write
Q(zh) as

Q(zh) =P(2) +hP(2) +O(h?),  P(z) =iK(2' H—-2/"H).
SinceP(1) = 0, entering (5.10) in this expansion@fz h) we get

0=Q(z(h),h) = P(1+ z:h¥ 4+ o(h")) + hP(1+ zzh" + o(h¥)) + O(h?)

= SPA + oft) + B ()2 -+ ofh¥ ) + O(h?)

The leading term must vanish and sine&(1) # 1 this can only happen if 2=
y+1=2.Hencey=1in (5.10) and (5.9) holds also for the double roozat 1.
Moreover, lim,_oZ(h) = z. |
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5.3.1 Proof of Theorem 5.1

Since there are\2roots to the polynomial (5.5) there are 2dmissible waves. The
ordering is given in the same way as fgith) in Lemma 5.7, and the statement
follows sincek' (h) depends smoothly an(h).

Let zy(h) andz (h) be the roots ofQ(z h) for which z,(0) = z(0) = 1. Then
again by Lemma 5.7 there is a const@rihdependent offi < hg, such that

Ky(h)| = | log(z (M) | = | log(1+ [z () -z (@) <€, (5.11)

for small enougtng andr =0, 1. Sincek| (h) = K — ak{(h), the same holds fd¢ (h).
Moreover,ke(h) = ke + O(k$h?), ky(h) = k¢ + O(K3H?), @(At) = w+ O(wh?), if
At = Ahfor a fixedA. Then,
24K ()2 = w? +h?O(h, K (h),K(h)), (5.12)
x(h) +aky(h) =

where|@| < Cindependent ofi < hg for r = 0,1 and small enoughy. From (5.11)
we furthermore see that the limit lim k" (h) is well-defined and equal &) (0)v/i.
Definingk" (0) thus by continuity we get that

21K(02=w?  K(0)+ak)(0) =K, (5.13)

which are the conditions for the incoming and reflected wavalmers in the contin-
uous case (3.2)—(3.3). The equation reduces to a secondpwiyaomial equation
with two roots. Hence, we can indeed choose our indeuch thak®(0) = k and
k1(0) = k. Let us now fixr € {0,1} and definex(h) = k.(h) — k!(0) andy(h) =
Kj,(h) —k;(0). Then, upon subtracting (5.13) from (5.12),
X(K(h) +K(0)) +y(K(h) + kj(0)) = h*®,
x+ay=0.
Eliminatingx with the second equation, gives
y="h? @ S -
ki (h) — aki(h) +K(0) — aki(0 q(h) +q(0)
whereq(h) := kj(h) — ak(h). From (3.4) and (5.13) we can now deduce that

(1+a%)w? = (K(0) —aky(0))?+ (K(0) +akj(0))? = (0)*+K? < q(0)*+n (1+a®)w?,

which shows thatq(0)| > é > 0. By continuity|q(0) + q(h)| > 5 > 0 for small
enoughh and thereforely| < CH. Since|x| = ay| the same holds foxrand (5.1) is
proved.

For the remaining roots we note first that singgh)| = |&<M/V| = e~ MKVt
follows that the sign of Ik (h) is positive whenz (h)| < 1 and negative ifz (h)| >
1. By Theorem 5.2, wheih = O there are precisely — 1 roots with magnitude
strictly smaller than one and the same number with magnisudetly larger than
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one. Moreover, by Lemma 5.7 the same thing holds also wherhG< hg if hg is
small enough. This proves that we can order the wave numbehnstsatr = 2,...,v
correspond to those with positive imaginary parts, aadv + 1, ..., 2v correspond
to those with negative imaginary parts. Finally, foK2 < v there is ad > 0 such
that for 0< h <o, 16 > [z(h)|, giving Imkj(h) > (v/h)[log(1— J)|. Moreover,
IhK| = v|[logz (h)| < C. Sincek; = K — akj the estimate (5.2) follows.

To investigate the properties of the matzixn (3.11) we first note that it is in fact
a permutation of a Vandermonde matrix due to the followingperty of the{dm}
indices.

Lemma 5.8 If v > u are relatively prime, ther{dm}‘r’r;%) as defined in(3.9) is a
permutation of the integefs), ..., v —1}. If m corresponds to the corner cells defined
by (3.14) then{dn} is a permutation of the integef®, ..., u — 1}.

Proof. Suppose first thatly, = dm,. Then 0= dy, — dmy, = (jm, — jmy)V — (M —
mp)u, and sincev and u are relatively primejm, — jm, = NU, My —mp = nv for
somen. But 0< my,mp < v —1 son =0 andm, = mp. Therefore aldy, are distinct.
Moreover, sinceﬁmé €[0,1) andd € {0,1/2},

dm= vém%—d_e [—%,v).

Hence, by counting, all integef®),...,v — 1} are represented by precisely aig
The second statement follows from the fact that whgn = jm+ 1,

. V-
Omi1 = jmeaV — (M+1)p+ {T“J =0On+Vv—U, me Qc,
anddm. 1 < V. O

It follows from Lemma 5.8 that there is a permutation matkixe RV* such that

1 1 -~ 1
L 4 o Ly
wz=| 3 4 - Z |ervv),
2\6;1 z{.’l 25',1
By its size, the column rank of this matrix is at mesBy Lemma 5.7, for 6 h < hg
with hy small enough, al; are distinct, except possiblg andz; which may be
equal. Upon removing the first column (tkgcolumn) we obtain a Vandermonde
matrix with distinct valueg;, which is non-singular. This M/Z in (4.1) showing that
Z is non-singular. Moreover, there are hencknearly independent columns ' Z,
so rankW Z = v, and therefore the dimension of the null spacé\f, and hence
also of WZ, is one. The inverse df is a continuous function df on the compact
interval [0, ho), since it is well-defined off0, hg] and eacty;(h) is continuous. It is
hence bounded.
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Fig. 6.1 The convergence afi1, which is the reflection coefficient for the propagating wavke case
considered is1 = 3, v = 2. Left: soft boundaryRight: hard boundary.

6 Numerical tests

To verify the analysis, we compute the explicit solution 810) and (3.21). We
choose the boundary angle= /v = 2/3, which gives 2 propagating modes and
v — 1 = 2 evanescent waves. We compare against the known solutibhqBthe
continuous problem. First we verify the convergence in Bid., where we clearly
observe first order behavior in the reflection coefficient for both hard and soft
boundaries. The wave vectors for the same solutions arershmokig. 6.2, showing
theO(1/h) growth in the frequency of the evanescent wakes3, as well aO(h?)
convergence for the reflected wake

Using the computed; andk' the full field can be obtained from (3.13). Evaluat-
ing this on g0, 1] domain for Vh = 26 27,28, we plot the field along a line=1/2
in Fig. 6.3, first for a soft boundary, and then a hard boundéky see thed(h)
convergence in the propagating waves anddt¥) spike at the boundary. Zooming
in shows the decay as a functiontofn Fig. 6.4. While the amplitude of the spike
seems to change for thé &solution, this is only due to the high frequency along the
boundary, which we see in Fig. 6.5.

6.1 General boundary shapes

To see that the analysis is applicable to more general danaaitt boundary shapes,
we perform a simulation of harmonic waves scattering againgid cylinder. The
setup is chosen so that we have an exact continuous solatiahd corresponding
continuous problem to compare the results with. It can bexdon any basic text
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Fig. 6.2 The wave vectors as a function of grid sizeTop: sincev = 3, we have 2 evanescent waves.
Bottom:the wave vector for reflecting wave displayi@gh?) convergence.

book. In polar coordinates it is given by

[e9]

¢""°(r,0) = "% = Jy(kr) + > 2(i)"In(kr) cosne,
n=1

9'(r,0) = 3 MaH{" (kr) cosne,
n=0

together with
Py ) = pRe(@de ), ulxyt)=Re(Ipe ™). (61)

The expansion coefficients for the reflected field are detegthby the boundary
conditions, givingMo = —J(kR) /HY (KR), My = —2(1)"3,(kR)/H" (kR). These
include Bessel function$, as well as Hankel functions of first kinﬂt@.

We use the computational domah= {(x,y) C [0,271] x [0,277] | (Xx— 1)+ (y—
m? > 1}, and initialize the field to the exact continuous solutiorL}J6We then run

the Yee scheme until= 0.3 and compare the result against the exact solution (6.1)

att = 0.3. The error is plotted in Fig. 6.6. Here we see that the saraeacteristic
spikes in the error occur along the boundary. These osels®(1/h) and have an
amplitude of the same order of magnitude as the incoming field
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Fig. 6.3 The absolute value of the computed solutions for a $off) @nd hard boundanbtton), shown
along a linex = 1/2, for three different grid resolutiorld = 28,27 28, We see théa convergence of the

propagating modes as well as the spike at the boundary in

=1/2
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Fig. 6.4 Close-up of the solution in Fig. 6.3 verifies the decay as atfan of the number of cells.

7 Conclusion

We have rigorously derived exact solutions to the Yee schdose to staircase ap-
proximated boundaries. This enables a detailed error sisakhowing how the stair-
casing affects amplitude, phase, frequency and attemuaitisaves. In particular, this
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Fig. 6.5 Surface plot ofv] for the soft boundary solution in Fig. 6.3 with= 2. The field oscillates along
the boundary, with frequend®(1/h).

0.8
0.6
0.4

0.2

\Wae,

’ i
= oel i A
AT ,Au‘samiar% e

0

X5
Jiv,
YL %
Dk RS | (155
o vug“.‘:i,.ﬁf»}‘«‘l‘

%

4.5

Fig. 6.6 Plot of the error inv for harmonic waves scattering against a hard (rigid) cgdmdhe errors
are seen to fluctuate with frequen€y(1/h) along the cylinder, with an amplitude of the same order of
magnitude as the incoming field.

characterizes th©(1) evanescent waves occurring at the boundary which prevents
convergence ih® and reduces it in? to O(v/h). The analysis shows that the errors
are local in nature, and explains why they can very often herigd in applications

if the field along the boundary is not the focus of the simolatiThe explicit form

of the solutions to the Yee scheme should also provide argjgobint for deriving
more accurate boundary approximations.



Accuracy of staircase approximations in FD methods for vaepagation 29

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Botteldooren, D.: Finite-difference time-domain siatidn of low-frequency room acoustic prob-
lems. J. Acoust. Soc. An98(6), 3302—3308 (1995)

Cangellaris, A., Wright, D.: Analysis of the numericalarcaused by the stair-stepped approximation
of a conducting boundary in FDTD simulations of electronetgnphenomena. IEEE Trans. Antennas
Propag39(10), 1518-1525 (1991)

Dey, S., Mittra, R.: A locally conformal finite-differead¢ime-domain (FDTD) algorithm for modeling
three-dimensional perfectly conducting objects. IEEEmdlic Guided. W7(9), 273-275 (1997)
Ditkowski, A., Dridi, K., Hesthaven, J.S.: Convergentteaian grid methods for Maxwell's equations
in complex geometries. J. Comput. Ph¥80(1), 39-80 (2001)

Engquist, B., Haggblad, J., Runborg, O.: On energy pveggconsistent boundary conditions for the
Yee scheme in 2D. BIB2(3), 615-637 (2012)

Haggblad, J., Enquist, B.: Consistent modeling of botiedain acoustic finite-difference time-
domain simulations. J. Acoust. Soc. A&823), 1303-1310 (2012)

Hao, Y., Railton, C.: Analyzing electromagnetic struetswith curved boundaries on Cartesian
FDTD meshes. IEEE Trans. Microw. Theory Tedi(1), 82—88 (1998)

Holland, R.: Pitfalls of staircase meshing. |IEEE TrarilecEomagn. C35(4), 434—-439 (1993)
Jurgens, T., Taflove, A., Umashankar, K., Moore, T.: Ehdiifference time-domain modeling of
curved surfaces. |IEEE Trans. Antennas Prog@@), 357—-366 (1992)

Madsen, N.K.: Divergence preserving discrete surfategral methods for Maxwell's curl equa-
tions using non-orthogonal unstructured grids. J. Comptys. 1191), 34-45 (1995). DOI
http://dx.doi.org/10.1006/jcph.1995.1114

Maloney, J.G., Cummings, K.E.: Adaptation of FDTD tegles to acoustic modeling. In: 11th An-
nual Review of Progress in Applied Computational Electrgraics, vol. 2, pp. 724—731. Monterey,
CA (1995)

Railton, C., Craddock, I.: Stabilised CPFDTD algoritfon the analysis of arbitrary 3D PEC struc-
tures. IEE Proc. Microwaves Antennas Propb435), 367—-372 (1996)

Railton, C., Schneider, J.: An analytical and numericallysis of several locally conformal FDTD
schemes. IEEE Trans. Microw. Theo#y(1), 56-66 (1999)

Rickard, Y., Nikolova, N.: Off-grid perfect boundaryratitions for the FDTD method. IEEE Trans.
Microw. Theory Tech53(7), 2274—-2283 (2005)

Stephen, R.A.: Modeling sea surface scattering by tine-tdomain finite-difference method. J.
Acoust. Soc. Am100(4), 2070-2078 (1996)

Tornberg, A.K., Engquist, B.: Consistent boundary déams for the Yee scheme. J. Comput. Phys.
227(14), 69226943 (2008)

Xiao, T., Liu, Q.H.: A staggered upwind embedded bound&UEB) method to eliminate the FDTD
staircasing error. IEEE Trans. Antennas Prof(3), 730—741 (2004)

Yee, K.S.: Numerical solution of initial boundary valpmblems involving Maxwell's equations in
isotropic media. IEEE Trans. Antennas Prophg.302—-307 (1966)



